






摘要:土壤酶活性是表征土壤肥力水平和養(yǎng)分轉(zhuǎn)化的重要指標(biāo),揭示種植模式和季節(jié)變化對(duì)茶園土壤酶活性影響,闡明影響茶園土壤酶活性變化的主要環(huán)境因子,為合理評(píng)估有機(jī)茶種植的土壤生態(tài)效應(yīng)提供理論依據(jù)。結(jié)合野外調(diào)查和室內(nèi)分析方法,以武夷山茶區(qū)3種類(lèi)型樣地,即林地(FD)、常規(guī)茶園(CT)和有機(jī)茶園(OT)為研究對(duì)象,測(cè)定了參與土壤碳、氮和磷循環(huán)的6種酶活性,研究不同種植模式下土壤酶活性的季節(jié)變化規(guī)律及影響因子。結(jié)果顯示,與林地土壤相比,常規(guī)種植模式茶園土壤銨態(tài)氮、全磷、有效磷和有效鉀含量顯著增加,土壤全鉀和pH顯著降低;相比常規(guī)茶園,有機(jī)茶園土壤有機(jī)質(zhì)和全氮含量顯著增加,土壤全磷、有效磷、全鉀和速效鉀含量顯著降低,土壤pH有所增加,土壤養(yǎng)分比例更為協(xié)調(diào)。種植模式和季節(jié)及其交互作用對(duì)土壤脲酶和過(guò)氧化氫酶活性影響顯著。與林地土壤相比,常規(guī)茶園土壤脲酶、多酚氧化酶、過(guò)氧化氫酶和酸性磷酸酶活性下降了12.05%~63.55%,有機(jī)茶園土壤脲酶顯著提高了324.95%,種植模式并未改變土壤硝酸還原酶活性??傮w而言,夏秋季節(jié)(5月和8月)土壤脲酶、多酚氧化酶、蔗糖酶和酸性磷酸酶活性明顯高于冬春季節(jié)(11月和2月),土壤硝酸還原酶和過(guò)氧化氫酶活性在春季最高。置換多元方差分析結(jié)果顯示,種植模式對(duì)土壤整體理化性質(zhì)的影響遠(yuǎn)大于季節(jié)變化。冗余分析結(jié)果顯示,土壤環(huán)境因子解釋了土壤酶活性變異的77.03%,土壤有機(jī)質(zhì)、全氮、銨態(tài)氮、全磷、有效磷、全鉀、有效鉀和pH對(duì)土壤酶活性有顯著或極顯著的影響。綜上所述,林地轉(zhuǎn)變?yōu)椴鑸@對(duì)土壤理化性質(zhì)和酶活性產(chǎn)生顯著影響,常規(guī)種植導(dǎo)致茶園土壤速效磷鉀積累,土壤酶活性降低,有機(jī)種植提高了土壤酶活性,增強(qiáng)了土壤碳氮養(yǎng)分供應(yīng)能力,具有良好的生態(tài)環(huán)境效應(yīng)。
關(guān)鍵詞:種植模式;季節(jié)變化;土壤理化性質(zhì);土壤酶活性
中圖分類(lèi)號(hào):S571.1;S146 " " " " " " 文獻(xiàn)標(biāo)識(shí)碼:A " " " " " " "文章編號(hào):1000-369X(2024)02-231-15
Seasonal Dynamic Characteristics of Soil Physical and Chemical Properties and Enzyme Activities of Different Planting Patterns in the Wuyishan
WANG Feng1,2, CHANG Yunni1, SUN Jun1, WU Zhidan1,2, CHEN Yuzhen1,2*,
JIANG Fuying1,2, YU Wenquan1,3*
1. Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; 2. National Agricultural Experimental Station for Soil Quality, Fu′an 355015, China; 3. Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
Abstract: Tea (Camellia sinensis L.) is one of the most important and traditional economic crops widely cultivated in the subtropical regions of China, which are usually developed from forestland. Soil enzyme activity is an important indicator of soil fertility and nutrient transformation. The purpose of this study is to investigate the seasonal dynamic characteristics of soil properties and enzyme activities of different planting patterns in Wuyishan city, and to provide theoretical basis for reasonable evaluation of soil ecological effects of organic tea cultivation. In this paper, three different planting patterns (forestland, conventional and organic tea gardens) were selected as the research objects. Soil samples were collected in May, August, November and February from 2021 to 2022. The soil properties and enzyme activities (urease, nitrate reductase, polyphenol oxidase, catalase, invertase and acid phosphatase) were determined in different seasons, and the dynamic changes with seasons were also investigated. The results show that: comparing with the forestland, the contents of soil ammonium nitrogen, total phosphorus, available phosphorus and available potassium increased significantly in the conventional tea garden, while the total potassium and pH decreased significantly. Compared with the conventional tea garden, the soil organic matter and total nitrogen contents increased significantly in the organic tea garden. The soil total phosphorus, available phosphorus, total potassium and available potassium contents decreased significantly. The soil pH also increased, and the proportion of soil nutrients was more coordinated. The effects of planting pattern and season and their interactions on urease and peroxidase activities were significant. Compared with the forestland, the soil urease, polyphenol oxidase, catalase and acid phosphatase activities decreased by 12.05% to 63.55% in the conventional tea garden, while urease activities significantly increased by 324.95% in the organic tea garden, and the soil nitrate reductase activities were not changed by planting mode. In general, the soil urease, polyphenol oxidase, invertase and acid phosphatase activities were significantly higher in summer and autumn (May and August) than those in winter and spring (November and February). The highest soil nitrate reductase and catalase activities were found in spring (February). The results of permutational multivariate analysis of variance show that the effect of planting pattern on the overall soil physical and chemical properties was much greater than that of seasonal changes. Redundancy analysis shows that soil environmental factors explained 77.03% of the variation in soil enzyme activity, and the soil organic matter, total nitrogen, ammonium nitrogen, total phosphorus, soil available phosphorus, total potassium, available potassium and pH were the main driving factors of soil enzymes. In summary, the conversion of forestland into tea gardens has a significant impact on soil properties and enzyme activities. Conventional planting leads to the accumulation of available phosphorus and potassium in tea garden soil and the decrease of soil enzyme activity, while organic planting improves soil enzyme activity and enhances soil carbon and nitrogen nutrient supply capacity, and thus is beneficial for maintaining a sustainable ecosystem in tea garden soil.
Keywords: planting patterns, seasonal dynamic, soil physical and chemical properties, soil enzyme activities
有機(jī)茶園種植模式是一種禁止使用人工合成的化學(xué)品,采取一系列可持續(xù)發(fā)展的農(nóng)業(yè)技術(shù)模式(種養(yǎng)循環(huán)、立體種植、微生物菌肥及蚯蚓等)來(lái)提高茶葉品質(zhì)和質(zhì)量安全的可持續(xù)生產(chǎn)體系[1]。土壤酶主要來(lái)源于土壤中微生物合成、動(dòng)植物殘?bào)w分解及根系分泌物等[2-3],是土壤中十分活躍的有機(jī)組分,其在參與土壤養(yǎng)分物質(zhì)轉(zhuǎn)化(碳氮磷硫等)及能量代謝過(guò)程中起著重要的促進(jìn)作用[4-5]。在農(nóng)業(yè)生態(tài)系統(tǒng)中,土壤酶活性對(duì)人類(lèi)活動(dòng)(耕作、施肥及噴施農(nóng)藥等)[6-7]和環(huán)境變化(干旱、氮沉降及酸雨等)[8-9]十分敏感,且與土壤物理、化學(xué)指標(biāo)關(guān)系密切,因而時(shí)常被用作表征土壤肥力和微生物活性的重要指標(biāo)之一[10]。
植茶是亞熱帶丘陵山區(qū)重要的土地利用方式之一,長(zhǎng)期單一化種植模式的耕作和施肥措施對(duì)土壤酶活性產(chǎn)生重要影響[11]。植被類(lèi)型的改變(物種多樣性豐富原生植被轉(zhuǎn)變?yōu)閱我徊铇?shù)植被)會(huì)通過(guò)直接或間接改變土壤微生境來(lái)引起土壤理化性質(zhì)(尤其是養(yǎng)分有效性)的改變,進(jìn)而間接影響土壤酶活性。張海闊等[12]研究表明,天然林轉(zhuǎn)變?yōu)榧s化經(jīng)營(yíng)茶園后,土壤胞外酶活性發(fā)生了明顯變化,土壤酸性磷酸酶、β-葡萄糖苷酶、纖維二糖水解酶、N-乙酰-β-D氨基葡萄糖苷酶活性均顯著降低,土壤pH是驅(qū)動(dòng)土壤總體胞外酶活性改變的主要因素。同時(shí),長(zhǎng)期植茶使得茶園土壤碳氮循環(huán)相關(guān)酶活性隨著植茶年限增加先升高后降低,在植茶17 a時(shí)酶活性較高,而土壤酸性磷酸酶活性則逐年升高[13];栽培型古茶園由于物種多樣性遠(yuǎn)高于臺(tái)地茶園,其凋落物、下層草本植物歸還土壤較多,因而古茶園土壤脲酶、酸性磷酸酶和蔗糖酶活性高于臺(tái)地茶園[14];有機(jī)培肥模式均能不同程度提高茶園土壤蛋白酶、脲酶和磷酸酶的活性,尤其是半量化肥+半量有機(jī)肥+豆科綠肥的培肥模式,而長(zhǎng)期施用化肥對(duì)于土壤酶活性的維持和增加作用有限[15];茶園種植多種覆蓋植物能顯著提高茶園土壤脲酶、過(guò)氧化氫酶及磷酸酶活性,且能提高茶園土壤有機(jī)碳礦化速率和累積礦化量[16]。有機(jī)茶園大多使用有機(jī)肥或間作綠肥,通過(guò)物理或生物農(nóng)藥防治病蟲(chóng)害,這些農(nóng)業(yè)管理措施都為土壤微生物繁殖生長(zhǎng)創(chuàng)造了有利條件,且間作模式下植物根系分泌物明顯不同,從而最終影響土壤酶活性[17]。在前期明確種植模式能明顯改變土壤微生物群落結(jié)構(gòu)及功能的基礎(chǔ)上[18],關(guān)于不同種植模式下茶園土壤酶活性的季節(jié)性響應(yīng)規(guī)律尚缺乏系統(tǒng)的研究。本研究以武夷山茶區(qū)3種類(lèi)型樣地,即林地(Forest land,F(xiàn)D)、常規(guī)茶園(Conventional tea,CT)和有機(jī)茶園(Organic tea,OT)為研究對(duì)象,分析不同種植模式下參與茶園土壤碳(蔗糖酶、多酚氧化酶及過(guò)氧化氫酶)、氮(脲酶和硝酸還原酶)和磷(酸性磷酸酶)6種酶活性的季節(jié)性變化趨勢(shì),探討驅(qū)動(dòng)土壤酶活性變化的影響因素,以期為茶園合理培肥及有機(jī)茶進(jìn)一步推廣和應(yīng)用提供科學(xué)依據(jù)。
1 材料與方法
1.1 研究區(qū)概況
研究區(qū)域位于福建省武夷山市興田鎮(zhèn)仙店村毛嶺碓,地處117°56' E,27°34' N,海拔435 m,屬于亞熱帶季風(fēng)氣候區(qū),四季分明,年平均氣溫18.2 ℃,空氣相對(duì)濕度70%~85%,年平均降水量1 926.9 mm,降雨集中在每年3月至6月。研究區(qū)內(nèi)茶園均由原生林地開(kāi)墾而來(lái),林地優(yōu)勢(shì)樹(shù)種為馬尾松,坡度為22°,土壤類(lèi)型為花崗巖母質(zhì)發(fā)育的紅壤,屬于福建省典型的丘陵山地茶園。茶樹(shù)品種為肉桂,種植時(shí)間為2000年,雙條行種植,株距40 cm。常規(guī)茶園為大宗機(jī)采茶園(采摘輪次為每年春、夏、秋3次),每畝年撒施復(fù)合肥(N∶P2O5∶K2O=15∶15∶15)150 kg,按照春季追肥期(2月底至3月初)、秋季追肥期(8月中旬至9月初)和冬季基肥期(12月底至1月初)3∶3∶4比例施入,梯壁除草,病蟲(chóng)害防治以化學(xué)防治為主;有機(jī)茶園以采摘春茶和秋茶為主(夏茶留養(yǎng)),按照有機(jī)管理方式進(jìn)行管理,2005年通過(guò)杭州中農(nóng)質(zhì)量認(rèn)證中心的認(rèn)證,每2年施用豆粕餅肥2 250 kg·hm-2,梯壁留草或間作綠肥,常規(guī)茶園和有機(jī)耕作茶園中間種植杉木保護(hù)行。
1.2 土壤樣品采集與分析
在野外實(shí)地調(diào)查的基礎(chǔ)上,以基地周邊林地(FD)為對(duì)照,選取同一坡面的常規(guī)茶園(CT)和有機(jī)茶園(OT)作為研究樣地,每個(gè)樣地設(shè)置3個(gè)樣方,每個(gè)樣方10 m×10 m。分別在2021年5月、8月、11月和2022年3月在每個(gè)樣地相同位置隨機(jī)選擇5個(gè)取樣點(diǎn)(茶行中線1個(gè)、兩邊茶樹(shù)滴水線附近各2個(gè)),用土鉆采集表層0~20 cm的土壤,混合均勻后放入保溫箱內(nèi)帶回實(shí)驗(yàn)室,采樣時(shí)避開(kāi)施肥區(qū),共計(jì)36個(gè)樣品。采集的土壤樣品一部分過(guò)2 mm篩后置于4 ℃冰箱用于土壤硝態(tài)氮和銨態(tài)氮含量測(cè)定,一部分室內(nèi)風(fēng)干后過(guò)2 mm和0.149 mm篩用于土壤酶活性及其他理化性質(zhì)測(cè)定。
1.3 土壤理化性質(zhì)和土壤酶活性測(cè)定
按照《土壤農(nóng)業(yè)化學(xué)分析方法》對(duì)土壤理化性質(zhì)進(jìn)行測(cè)定[19]:土壤有機(jī)質(zhì)(Soil organic matter,SOM)采用重鉻酸鉀氧化-外加熱法測(cè)定;土壤全氮(Total nitrogen,TN)含量采用凱氏定氮法測(cè)定;土壤堿解氮(Alkaline-N,AN)采用堿解擴(kuò)散法測(cè)定;土壤硝態(tài)氮(Nitrate nitrogen,NO3--N)和銨態(tài)氮(Ammonium nitrogen,NH4+-N)采用KCL(2 mol·L-1)浸提-靛酚藍(lán)比色法測(cè)定;土壤全磷(Total phosphorus,TP)采用氫氧化鈉堿熔-鉬銻抗比色法測(cè)定;土壤全鉀(Total potassium,TK)采用NaOH熔熔-火焰光度計(jì)法測(cè)定;土壤速效磷(Available phosphorus,AP)用NaHCO3浸提-鉬銻抗比色法測(cè)定;土壤速效鉀(Available potassium,AK)用中性乙酸銨浸提(1 mol·L-1)-火焰光度計(jì)法測(cè)定;土壤pH值采用pH計(jì)(pHS-25型,水土質(zhì)量比為2.5︰1)測(cè)定。
本研究共測(cè)定了參與土壤有機(jī)質(zhì)分解(多酚氧化酶、過(guò)氧化氫酶及蔗糖酶)、氮素轉(zhuǎn)化(脲酶和硝酸還原酶)和磷轉(zhuǎn)化(酸性磷酸酶)的6種酶。土壤酶活性采用試劑盒法(北京索萊寶科技有限公司)測(cè)定,操作步驟按照說(shuō)明書(shū)進(jìn)行。其中,土壤多酚氧化酶(Polyphenol oxidase,PPO)和過(guò)氧化氫酶(Catalase,CAT)活性采用鄰苯三酚比色法測(cè)定,土壤蔗糖酶(Invertase enzyme,INV)活性采用3,5-二硝基水楊酸比色法測(cè)定,脲酶(Urease,UR)活性采用靛酚藍(lán)比色法測(cè)定,硝酸還原酶(Nitrate reductase,NIR)采用酚二磺酸比色法測(cè)定,酸性磷酸酶(Acid phosphatase,ACP)通過(guò)催化磷酸苯二鈉水解生成苯酚和磷酸氫二鈉,進(jìn)一步測(cè)定酚的生成量即可計(jì)算出S-ACP活性。每個(gè)樣品測(cè)定3個(gè)重復(fù),計(jì)算平均值。
1.4 數(shù)據(jù)處理與統(tǒng)計(jì)分析
采用SPSS 26.0軟件中的單因素方差分析(One-way ANONA)和多重比較法(Duncan)分析不同種植模式下土壤理化性質(zhì)和酶活性之間的差異顯著性(Plt;0.05);采用雙因素方差分析(Two-way ANOVA)分析種植模式和季節(jié)是否存在交互作用;用Pearson相關(guān)系數(shù)探討土壤酶活性與理化性質(zhì)之間的關(guān)系;采用冗余分析(RDA)進(jìn)一步探索土壤理化性質(zhì)和酶活性之間的關(guān)系,在進(jìn)行RDA前,利用方差膨脹因子(VIF)判斷解釋變量間的共線性程度,剔除VIF大于10的變量,并對(duì)分析結(jié)果進(jìn)行蒙特卡羅檢驗(yàn)(Monte Carlo test)。RDA和VIF計(jì)算分別基于R語(yǔ)言中的vegan和packfor程序包進(jìn)行,采用GraphPad Prism 9.0軟件作圖。
2 結(jié)果與分析
2.1 不同種植模式對(duì)土壤理化性質(zhì)的季節(jié)性影響
由表1可知,不同種植模式下土壤理化因子有著明顯的變化趨勢(shì),在整個(gè)采樣期間,土壤SOM平均值表現(xiàn)為OTgt;FDgt;CT,其中OT處理平均值顯著高于CT和FD處理(Plt;0.05);土壤TN、AN和NH4+-N均值表現(xiàn)為OTgt;CTgt;FD,其中OT處理TN含量平均值顯著高于CT和FD處理(Plt;0.05),各種植模式下AN和NH4+-N含量差異不顯著(Pgt;0.05);土壤TP、AP和AK均值則表現(xiàn)為CTgt;OTgt;FD,其中CT處理平均值顯著高于OT和FD處理(Plt;0.05),OT和FD處理之間TP、AP和AK含量差異不顯著(Pgt;0.05);對(duì)于土壤TK和pH而言,F(xiàn)D處理平均值顯著高于CT和OT處理(Plt;0.05)。對(duì)于不同季節(jié)而言,5月和8月的土壤TN、AN、NO3--N、TP和AP含量大多高于11月,土壤SOM、TN、TK、AK和NH4+-N則變化不明顯。雙因素方差分析結(jié)果表明,種植模式對(duì)土壤SOM、TN、AN、NO3--N、TP、AP、TK、AK和pH存在顯著影響,季節(jié)變化對(duì)土壤AN、NO3--N、TP、AP、TK和pH存在顯著影響;種植模式和季節(jié)變化對(duì)土壤AN、NO3--N、TP、AP、TK和pH存在顯著交互作用??傮w而言,林地轉(zhuǎn)化為茶園,土壤TK和pH明顯降低,土壤酸化嚴(yán)重,常規(guī)茶園土壤速效養(yǎng)分顯著積累,尤其是速效磷含量嚴(yán)重超標(biāo);相比常規(guī)茶園,有機(jī)茶園土壤有機(jī)質(zhì)和全氮含量明顯增加,土壤pH也有所增加,有利于緩解茶園土壤酸化現(xiàn)狀。
2.2 種植模式對(duì)土壤酶活性季節(jié)性變化的影響
土壤UR活性受種植模式(Plt;0.001)、季節(jié)(Plt;0.001)及兩者交互作用的顯著影響(圖1A),呈現(xiàn)8月gt;11月≈2月gt;5月的特征,各季節(jié)中OT處理土壤UR活性均顯著高于FD和CT處理(Plt;0.05),5月、8月和11月中FD處理土壤UR活性均顯著高于CT處理(Plt;0.05)。種植模式、季節(jié)及兩者交互作用對(duì)土壤NIR活性的影響未達(dá)到顯著水平,2月的土壤NIR活性要高于其他季節(jié),5月、8月和2月中各種植模式下土壤NIR活性差異均不顯著(Pgt;0.05),11月FD和OT處理土壤NIR活性顯著高于CT處理(Plt;0.05)。土壤INV的活性受季節(jié)的顯著影響(Plt;0.001),5月、8月和11月土壤INV的活性要顯著高于2月(Plt;0.05),各種植模式之間土壤INV的活性差異均不顯著。土壤PPO的活性受季節(jié)(Plt;0.001)、季節(jié)和種植模式交互作用(Plt;0.05)的顯著影響,5月、8月和11月土壤PPO的活性要高于2月,5月和8月均以FD處理最高,11月則表現(xiàn)為OT處理最高,2月以CT處理最低。土壤CAT活性受種植模式(Plt;0.001)、季節(jié)(Plt;0.001)及兩者交互作用的顯著影響,2月土壤CAT活性明顯高于其他季節(jié),5月、11月和2月土壤CAT活"性均表現(xiàn)為FDgt;OTgt;CT,8月則以CT處理土壤CAT最高,但是各處理之間差異均不顯著。種植模式、種植模式和季節(jié)兩者交互作用對(duì)土壤ACP活性有顯著影響(Plt;0.001),各季節(jié)土壤ACP活性大多表現(xiàn)為OTgt;FDgt;CT,其中5月、8月和11月(FD和CT之間除外)OT和FD處理土壤ACP活性顯著高于CT處理(Plt;0.05),2月各處理之間差異均不顯著??傮w而言,有機(jī)種植模式明顯提高了土壤UR和ACP的活性,林地轉(zhuǎn)變?yōu)椴鑸@則大多降低了土壤PPO和CAT活性,土壤NIR活性不受種植模式、季節(jié)及兩者交互作用的影響。
基于土壤理化性質(zhì)和酶活性整體進(jìn)行非度量多維測(cè)度(NMDS)分析發(fā)現(xiàn)(圖2),不同種植模式對(duì)土壤整體理化性質(zhì)有顯著影響,各處理之間差異顯著,OT和FD處理有少數(shù)樣品出現(xiàn)聚集;相同種植模式下,OT和FD處理11月和2月土壤樣品較為緊密地聚集在一起,CT處理中各季節(jié)土壤樣品能夠明顯區(qū)分。置換多元方差分析結(jié)果表明(表2),不同種植模式和季節(jié)變化土壤整體理化性質(zhì)達(dá)到極顯著的差異(Plt;0.01),種植模式可以解釋土壤整體理化性質(zhì)83.95%的差異,季節(jié)變化可以解釋土壤整體理化性質(zhì)8.09%的差異,種植模式對(duì)土壤整體理化性質(zhì)的影響更大。
2.3 土壤酶活性與土壤理化性質(zhì)之間的關(guān)系
Pearson相關(guān)性分析顯示(圖3),UR和ACP活性呈顯著正相關(guān),INV與PPO活性呈顯著正相關(guān),與CAT活性呈顯著負(fù)相關(guān)。UR與土壤SOM、TN和AN存在顯著正相關(guān),與TK和AK存在顯著負(fù)相關(guān);NIR、INV和PPO與土壤所有理化性質(zhì)指標(biāo)相關(guān)性均不顯著;CAT與土壤pH存在顯著正相關(guān),與TP和AK存在顯著負(fù)相關(guān);ACP與土壤SOM、TN和TK存在顯著正相關(guān),與土壤TP、AP和AK存在顯著負(fù)相關(guān)。整體來(lái)看,土壤脲酶、過(guò)氧化氫酶、酸性磷酸酶與土壤有機(jī)質(zhì)、全氮、速效磷鉀相關(guān)性較高。
進(jìn)一步采用RDA研究土壤酶活性與土壤理化性質(zhì)之間的關(guān)系,獲得對(duì)土壤酶活性特征影響的排序圖(圖4)。結(jié)果顯示,前兩個(gè)排序軸分別解釋了土壤酶活性變化的76.99%和0.02%,兩者共解釋了77.02%,土壤有機(jī)質(zhì)(SOM,P=0.001)、全氮(TN,P=0.002)、銨態(tài)氮(AN,P=0.037),全磷(TP,P=0.023)、土壤有效磷(AP,P=0.007)、全鉀(TK,P=0.001)、有效鉀(AK,P=0.001)和pH(P=0.013)是主導(dǎo)土壤酶活性變化的關(guān)鍵環(huán)境因子(表3)。
3 討論
3.1 不同種植模式對(duì)不同季節(jié)土壤理化性質(zhì)的影響
長(zhǎng)期集約化常規(guī)種植模式中大量使用化肥、農(nóng)藥等導(dǎo)致農(nóng)田土壤酸化、農(nóng)業(yè)面源污染、重金屬污染、生物多樣性降低、土壤肥力指數(shù)下降等一系列問(wèn)題[20-22],是導(dǎo)致土壤質(zhì)量和生產(chǎn)力下降的重要因素之一。與常規(guī)種植模式相比,有機(jī)種植模式是環(huán)境友好型、可持續(xù)發(fā)展的農(nóng)業(yè)模式,其核心理念在于生產(chǎn)過(guò)程中完全不使用任何化學(xué)生產(chǎn)資料(化肥、農(nóng)藥及生長(zhǎng)調(diào)節(jié)劑等),依靠輪作、免耕、多樣化間作、生物有機(jī)肥及生物防治等方法維持生態(tài)系統(tǒng)內(nèi)養(yǎng)分的循環(huán)利用[23]。有研究表明,有機(jī)種植模式能顯著提高土壤有機(jī)質(zhì)、氮、磷和速效鉀含量[24],還可以提高土壤過(guò)氧化氫酶、脲酶和纖維素酶等酶活性[25],且能夠有效降低土壤重金屬的富集[26-27],從而有效改善土壤質(zhì)量[28]。曹春霞等[29]研究發(fā)現(xiàn),雖然總體上(綜合5種土地利用方式的均值)有機(jī)管理的土壤pH較高,但是有機(jī)管理下土壤全磷、全鉀、有效磷含量顯著降低,且并非在所有土地利用方式下有機(jī)管理能降低土壤Cr、Cu、Ni、Zn含量。Lori等[30]基于全球149個(gè)樣地薈萃分析表明,有機(jī)種植模式下土壤脫氫酶、脲酶和蛋白酶活性分別比常規(guī)種植模式提高了74%、84%和32%,但不同土地利用方式(耕地、果園和草地)、植物生命周期(一年生和多年生)和氣候帶之間差異很大。本研究結(jié)果表明,林地轉(zhuǎn)化為茶園,土壤全鉀和pH明顯降低,這意味著植茶導(dǎo)致土壤鉀素虧缺和酸化嚴(yán)重;而土壤氮磷等養(yǎng)分含量顯著提高,常規(guī)茶園土壤中硝態(tài)氮、全磷、速效磷和速效鉀增幅較高,有機(jī)茶園土壤中以全氮、堿解氮和銨態(tài)氮增幅明顯,這說(shuō)明日常施肥管理顯著提高土壤氮磷含量,但不同種植模式的管理方式的差異導(dǎo)致土壤各養(yǎng)分指標(biāo)變化趨勢(shì)不同。顏鵬等[31]研究發(fā)現(xiàn),與周邊森林或荒地相比,茶園土壤pH平均下降了0.89,明顯低于周邊水稻和果蔬等土地利用類(lèi)型。福建地處亞熱帶氣候區(qū),是中國(guó)典型的酸雨沉降區(qū)[32],高溫多雨的氣候條件使得土壤風(fēng)化淋溶及脫硅富鋁化作用強(qiáng)烈,導(dǎo)致鉀、鈣、鈉和鎂等鹽基離子大量淋洗出土壤,從而造成土壤酸化,也進(jìn)一步導(dǎo)致土壤鉀庫(kù)貧化[33],這與茶園土壤鉀的貧化率較高的趨勢(shì)一致[34]。與此同時(shí),由于茶園長(zhǎng)期偏施化肥,使得茶園土壤氮磷等速效養(yǎng)分積累,尤其是常規(guī)茶園土壤磷含量均值達(dá)到了194.27 mg·kg-1,遠(yuǎn)超優(yōu)質(zhì)高效高產(chǎn)茶園有效磷(20 mg·kg-1)[35]和國(guó)際認(rèn)定的環(huán)境臨界值(60 mg·kg-1)[36],也與前期研究結(jié)果一致[37-38]。與常規(guī)茶園相比,有機(jī)茶園土壤有機(jī)質(zhì)、全氮、堿解氮、銨態(tài)氮和pH值明顯增加,速效磷鉀含量顯著降低,這與有機(jī)管理模式的養(yǎng)分投入有關(guān)。有機(jī)茶園每2年施用豆粕餅肥2 250 kg·hm-2,富含蛋白質(zhì)的有機(jī)肥持續(xù)分解帶來(lái)的有機(jī)質(zhì)和礦質(zhì)態(tài)氮對(duì)土壤有機(jī)質(zhì)和氮素積累有積極的影響;梯壁留草或間作綠肥措施使得有機(jī)茶園系統(tǒng)中歸還的有機(jī)物質(zhì)以及根系分泌物產(chǎn)生的多糖、有機(jī)酸等膠結(jié)物質(zhì)不斷積累,也進(jìn)一步促使土壤碳氮物質(zhì)積累,緩解茶園土壤酸化;另外,茶樹(shù)養(yǎng)分需求特征為高氮低磷中鉀,常規(guī)茶園施用復(fù)合肥為主,等比例的氮磷鉀三元復(fù)合肥養(yǎng)分配比并不符合茶樹(shù)養(yǎng)分的需求特性[39],容易造成磷鉀養(yǎng)分的過(guò)量投入,從而導(dǎo)致土壤速效磷鉀積累。
不同種植模式對(duì)部分土壤理化性質(zhì)的影響同樣受季節(jié)變化調(diào)控。在本研究中,土壤銨態(tài)氮、硝態(tài)氮、全磷、全鉀和pH均受季節(jié)變化調(diào)控。5月和8月的各種植模式下堿解氮、硝態(tài)氮、全磷和速效磷含量大多高于11月和2月,這可能與夏秋季氣候條件、茶園施肥及茶樹(shù)養(yǎng)分吸收有關(guān)。一方面,5月和8月是亞熱帶丘陵地區(qū)傳統(tǒng)的高溫多雨季節(jié),高溫潮濕的環(huán)境有利于土壤微生物的生理活動(dòng)[40],加快了土壤碳氮磷等養(yǎng)分礦化過(guò)程,使其含量增加;另一方面,春茶采摘前和夏季茶園修剪,修剪枝條分解過(guò)程中明顯增加了土壤有機(jī)質(zhì)的輸入,為土壤微生物提供了合適量的碳源,微生物礦化作用大于固持作用[41],土壤氮磷速效養(yǎng)分含量增加;同時(shí),茶園春季(3月初)和秋季(8月初)追肥可能也是造成土壤氮磷養(yǎng)分含量增加的主要原因。11月和2月時(shí)的土壤溫度相對(duì)較低,且降雨較少,茶樹(shù)進(jìn)入休眠期,根系活動(dòng)較低,對(duì)氮素利用減弱,因而使得此時(shí)茶園土壤銨態(tài)氮含量高于夏秋季節(jié)。
3.2 不同種植模式對(duì)不同季節(jié)土壤酶活性的影響
土壤酶活性是驅(qū)動(dòng)土壤生態(tài)系統(tǒng)中養(yǎng)分物質(zhì)循環(huán)的重要因素,也是評(píng)價(jià)土壤肥力的重要生物指標(biāo)之一。本研究結(jié)果表明,與林地土壤相比,植茶降低了土壤多酚氧化酶和過(guò)氧化氫酶活的活性,尤其是常規(guī)茶園,兩種酶活性分別下降了12.05%和42.55%;常規(guī)茶園土壤脲酶和酸性磷酸酶活性分別顯著下降了63.55%和51.22%(Plt;0.05),有機(jī)茶園土壤脲酶顯著提高了324.95%(Plt;0.05),土壤硝酸還原酶則不受種植模式的影響,這說(shuō)明林地轉(zhuǎn)變?yōu)槌R?guī)茶園會(huì)導(dǎo)致土壤酶活性下降,有機(jī)種植則有利于提高土壤酶活性。土壤多酚氧化酶和過(guò)氧化氫酶是與土壤碳轉(zhuǎn)化密切相關(guān)的酶,與土壤中纖維素和木質(zhì)素分解及腐殖化程度密切相關(guān)[42]。林地的物種多樣性較高,其凋落物數(shù)量和質(zhì)量遠(yuǎn)高于常規(guī)茶園生態(tài)系統(tǒng),較高的凋落物輸入量在分解過(guò)程中會(huì)促進(jìn)土壤微生物的生長(zhǎng)和繁殖[43],從而提高了林地土壤多酚氧化酶和過(guò)氧化氫酶的活性。同時(shí),長(zhǎng)期施用化肥的常規(guī)茶園土壤酸化嚴(yán)重,過(guò)低的土壤pH會(huì)使得參與土壤養(yǎng)分循環(huán)和抗氧化的酶活性降低[44]。有機(jī)茶園使用有機(jī)肥作為肥源,豆粕等有機(jī)肥能夠?yàn)椴鑸@土壤微生物活動(dòng)提供活性有機(jī)質(zhì)作為碳源,并為微生物生長(zhǎng)繁殖提供了大量酶促底物,從而提高土壤中參與碳氮相關(guān)的酶活性[45];另一方面,有機(jī)茶園采取自然生草和間作綠肥的方式控草管理,其生物多樣性和群落結(jié)構(gòu)遠(yuǎn)高于常規(guī)茶園,其凋落物和下層草本植物歸還了大量的養(yǎng)分,增加了土壤多營(yíng)養(yǎng)級(jí)生物網(wǎng)絡(luò)的復(fù)雜性[46],從而促進(jìn)物質(zhì)循環(huán),進(jìn)而提高土壤酶活性[47];此外,間作綠肥使得植物根系之間相互交叉,根系分泌物的數(shù)量和種類(lèi)多于常規(guī)茶園,使得根際微生物代謝活性增強(qiáng),間接導(dǎo)致土壤酶活性增強(qiáng)[48]。土壤酸性磷酸酶是促使南方酸性土壤有機(jī)磷礦化的主要酶[49],其活性高低是控制土壤磷有效性的重要生物因素之一。本研究中,林地轉(zhuǎn)變?yōu)槌R?guī)茶園后土壤酸性磷酸酶的活性顯著降低,這可能與亞熱帶森林酸性土壤普遍存在磷限制有關(guān)[50]。林地土壤中有效磷含量在1.79~5.89 mg·kg-1,在磷供給不充足的情況下,會(huì)刺激土壤微生物產(chǎn)生更多磷酸酶[51],以滿足其對(duì)磷的需求,而長(zhǎng)期施用復(fù)合肥使常規(guī)茶園土壤磷素供給充足(茶園土壤速效磷含量遠(yuǎn)高于林地),土壤微生物則無(wú)需分泌更多的磷酸酶就能滿足其生長(zhǎng),從而使得常規(guī)茶園土壤酸性磷酸酶活性顯著降低。同時(shí),有機(jī)茶園土壤速效磷含量為3.70~44.40 mg·kg-1,適宜土壤有效磷水平能夠促進(jìn)磷酸酶活性[52],有利于土壤有機(jī)磷向無(wú)機(jī)磷的轉(zhuǎn)化,增加茶樹(shù)的磷素養(yǎng)分供應(yīng)。
土壤酶活性變化可衡量土壤養(yǎng)分供應(yīng)能力,其季節(jié)變化可反映不同時(shí)期土壤養(yǎng)分供應(yīng)與植物需求的耦合關(guān)系,也是受諸多因素(溫度、水分、施肥時(shí)期及植物生長(zhǎng)階段等)交互影響的復(fù)雜過(guò)程[53]。從土壤酶活性的季節(jié)變化來(lái)看,5月和8月土壤脲酶、多酚氧化酶、蔗糖酶和酸性磷酸酶活性要明顯高于11月和2月,這與土壤碳氮磷養(yǎng)分季節(jié)變化趨勢(shì)基本一致,說(shuō)明夏秋季節(jié)土壤中參與碳氮分解的微生物較為活躍并向土壤中釋放相關(guān)酶類(lèi)[54]。而土壤硝酸還原酶和過(guò)氧化氫酶活性在2月份最高,這與楊海濱等[55]研究結(jié)果不完全一致,可能是研究區(qū)立地條件、林分及土壤性質(zhì)的差異[56],也可能與不同土壤酶活性對(duì)土壤溫濕度和養(yǎng)分有效性的敏感性不同有關(guān)。另外,置換多元方差分析結(jié)果顯示,種植模式(83.95%)對(duì)土壤整體理化性質(zhì)的解釋率遠(yuǎn)大于季節(jié)變化(8.09%),這說(shuō)明植被類(lèi)型的改變對(duì)土壤理化性質(zhì)和酶活性影響很大,同時(shí)常規(guī)種植向有機(jī)種植模式的改變也顯著影響土壤理化性質(zhì)和酶活性。
3.3 不同種植模式下土壤理化性質(zhì)與土壤酶活性之間關(guān)系
以往研究表明,土壤酶活性受到多種土壤環(huán)境變量的綜合影響,如土壤有機(jī)質(zhì)[57]、pH[58]、微生物量碳氮[59]及速效養(yǎng)分含量等[60]。本研究表明,土壤酶活性與土壤有機(jī)質(zhì)、全氮、速效鉀相關(guān)性較高,這與多數(shù)的研究結(jié)果基本一致[57,60]。RDA結(jié)果顯示,土壤有機(jī)質(zhì)、全氮、土壤有效磷、全鉀、有效鉀和pH對(duì)土壤酶活性有顯著的影響,這說(shuō)明土壤酶活性與土壤養(yǎng)分變化密切相關(guān),并受土壤pH的調(diào)控。Zhao等[57]研究發(fā)現(xiàn),秸稈還田能顯著增加土壤脲酶和蔗糖酶的活性,且這些酶活性均與土壤有機(jī)質(zhì)含量顯著正相關(guān)。本研究表明,土壤脲酶、蔗糖酶和酸性磷酸酶均與有機(jī)質(zhì)含量顯著正相關(guān),這表明隨著土壤有機(jī)質(zhì)含量的累積,土壤微生物代謝產(chǎn)生的酶活性相應(yīng)升高。較高的有機(jī)質(zhì)可以改善土壤團(tuán)粒結(jié)構(gòu)、通透性能及緩沖能力[61],為土壤酶的產(chǎn)生和釋放提供良好的環(huán)境,同時(shí)也為土壤微生物提供了充足的碳源,能夠減輕土壤微生物受碳源的限制,使得土壤微生物分泌的酶活性增加。此外,有機(jī)茶園管理過(guò)程中,增施有機(jī)肥和綠肥間作使得進(jìn)入土壤中的植被凋落物、根系分泌物和其他根際沉積物(單糖、有機(jī)酸及衍生物分泌等)增加,促進(jìn)了土壤有機(jī)質(zhì)和全氮的積累,從而促進(jìn)了土壤酶的產(chǎn)生和釋放。土壤酸性磷酸酶與土壤全磷和有效磷呈顯著負(fù)相關(guān),常規(guī)茶園由于長(zhǎng)期施用不符合茶樹(shù)養(yǎng)分吸收規(guī)律的復(fù)合肥造成土壤磷積累,土壤微生物對(duì)限制性資源的獲取投入降低,因此負(fù)責(zé)獲取土壤中磷元素的酸性磷酸酶活性降低[62],有效磷缺乏的林地和有機(jī)茶園土壤微生物會(huì)分泌更多的酸性磷酸酶促進(jìn)有機(jī)磷礦化來(lái)緩解自身的磷限制[63]。Tan等[64]研究表明,土壤氮磷相關(guān)代謝酶與pH關(guān)系密切,本研究結(jié)果與之一致。林地轉(zhuǎn)變?yōu)椴鑸@后,常規(guī)和有機(jī)茶園土壤pH分別下降了0.48和0.43,大部分土壤水解酶的最適pH在5左右,過(guò)低的pH通過(guò)影響土壤微生物種類(lèi)來(lái)改變微生物分泌酶的數(shù)量和種類(lèi),從而對(duì)酶活性產(chǎn)生抑制作用[65]。
4 結(jié)論
不同種植模式下,林地和茶園土壤理化性質(zhì)與酶活性均表現(xiàn)出一定的季節(jié)變化,但是種植模式對(duì)土壤整體理化性質(zhì)的影響要遠(yuǎn)大于季節(jié)變化。林地轉(zhuǎn)變?yōu)椴鑸@后,植被類(lèi)型的改變和長(zhǎng)期常規(guī)種植模式導(dǎo)致土壤速效磷鉀積累,土壤脲酶、多酚氧化酶及酸性磷酸酶活性下降。有機(jī)種植則提高了土壤有機(jī)質(zhì)和各氮素形態(tài)含量,緩解了茶園土壤酸化趨勢(shì),且提高了土壤脲酶、酸性磷酸酶及多酚氧化酶活性。土壤有機(jī)質(zhì)、全氮、銨態(tài)氮、全磷、有效磷、全鉀、有效鉀和pH是影響土壤酶活性的主要因素。
參考文獻(xiàn)
[1] Lenc L, Kwasna H, Grabowski C S A. Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems [J]. Journal of Phytopathology, 2015, 163: 245-263.
[2] 鄧先智, 類(lèi)延寶, 沈杰, 等. 模擬根系分泌物輸入對(duì)高寒退化草地土壤微生物殘?bào)w的影響[J]. 生態(tài)學(xué)報(bào), 2022, 42(20): 8311-8321.
Deng X Z, Lei Y B, Shen J, et al. Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland [J]. Acta Ecologica Sinica, 2022, 42(20): 8311-8321.
[3] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions [J]. Soil Biology and Biochemistry, 2013, 58: 216-234.
[4] Yang Y, Liang C, Wang Y Q, et al. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration [J]. Soil Biology and Biochemistry, 2020, 149: 107928. doi: 10.1016/j.soilbio.2020.107928.
[5] Guo Z M, Zhang X Y, Green S M, et al. Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the karst critical zone observatory in southwest China [J]. Land Degradation amp; Development, 2019, 30(16): 1916-1927.
[6] 陳彥云, 夏皖豫, 趙輝, 等. 粉壟耕作對(duì)耕地土壤酶活性、微生物群落結(jié)構(gòu)和功能多樣性的影響[J]. 生態(tài)學(xué)報(bào), 2022, 42(12): 5009-5021.
Chen Y Y, Xia W Y, Zhao H, et al. Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land [J]. Acta Ecologica Sinica, 2022, 42(12): 5009-5021.
[7] Sharma S, Singh P, Choudhary O P, et al. Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India [J]. Field Crops Research, 2021, 266: 108131. doi: 10.1016/j.fcr.2021.108131.
[8] Jian S Y, Li J W, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biology and Biochemistry, 2016, 101: 32-43.
[9] Moreno J L, Bastida F, Díaz-López M, et al. Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem [J]. Geoderma, 2022, 407(4): 115536. doi: 10.1016/j.geoderma.2021.115536.
[10] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions [J]. Soil Biology and Biochemistry, 2013, 58: 216-234.
[11] Zhang L P, Jia G M, Xi Y. The soil enzyme activities with age of tea in three gorges reservoir area [J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1292-1296.
[12] 張海闊, 張寶剛, 周鐘昱, 等. 亞熱帶天然林轉(zhuǎn)變?yōu)槊窳趾筒鑸@對(duì)土壤胞外酶活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2022, 41(4): 826-833.
Zhang H K, Zhang B G, Zhou Z Y, et al. Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China [J]. Journal of Agro-Environment Science, 2022, 41(4): 826-833.
[13] 王晟強(qiáng), 張喆, 葉紹明. 桂南茶園土壤團(tuán)聚體酶活性對(duì)植茶年限的響應(yīng)[J]. 生態(tài)學(xué)報(bào), 2020, 40(18): 6532-6541.
Wang S Q, Zhang Z, Ye S M. Response of soil aggregate-associated enzyme activities to tea planting age in the hilly region of southern Guangxi, China [J]. Acta Ecologica Sinica, 2020, 40(18): 6532-6541.
[14] 姜虹, 沙麗清. 云南瀾滄縣景邁古茶園土壤養(yǎng)分和土壤酶活性研究[J]. 茶葉科學(xué), 2008, 28(3): 214-220.
Jiang H, Sha L Q. Characteristics of soil nutrients and enzyme activity of ancient tea garden in Jingmai, Lancang, Yunnan Province [J ]. Journal of Tea Science, 2008, 28(3): 214-220.
[15] 王利民, 李衛(wèi)華, 范平, 等. 長(zhǎng)期培肥下紅黃壤區(qū)茶園土壤酶活性的變化[J]. 茶葉科學(xué), 2012, 32(4): 347-352.
Wang L M, Li W H, Fan P, et al. Variation in soil enzyme activities under long-term fertilization of tea garden in red-yellow soil area [J]. Journal of Tea Science, 2012, 32(4): 347-352.
[16] 汪洋, 楊殿林, 王麗麗, 等. 茶園多植物覆蓋種植對(duì)土壤酶活性和有機(jī)碳礦化特征的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào), 2020, 37(3): 371-380.
Wang Y, Yang D L, Wang L L, et al. Effects of cover crops on soil enzyme activity and organic carbon mineralization in a tea plantation [J]. Journal of Agricultural Resources and Environment, 2020, 37(3): 371-380.
[17] Maharjan M, Sanaullah M, Razavi B S, et al. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils [J]. Applied Soil Ecology, 2017, 113: 22-28.
[18] 王峰, 陳玉真, 吳志丹, 等. 有機(jī)管理模式對(duì)茶園土壤真菌群落結(jié)構(gòu)及功能的影響[J]. 茶葉科學(xué), 2022, 42(5): 672-688.
Wang F, Chen Y Z, Wu Z D, et al. Effects of organic management mode on soil fungal community structure and functions in tea gardens [J]. Journal of Tea Science, 2022, 42(5): 672-688.
[19] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 2000.
Lu R K. Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000.
[20] Hou Q, Wang W X, Yang Y, et al. Rhizosphere microbial diversity and community dynamics during potato cultivation [J]. European Journal of Soil Biology, 2020, 98: 103176. doi: 10.1016/j.ejsobi.2020.103176.
[21] Tedersoo L, Bahram M, P?lme S, et al. Global diversity and geography of soil fungi [J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688.
[22] Morrison-Whittle P, Lee S A, Goddard M R. Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems [J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313.
[23] Tsiafouli M A, Thébault E, Sgardelis S P, et al. Intensive agriculture reduces soil biodiversity across Europe [J]. Global Change Biology, 2015, 21: 973-985.
[24] Chen J W, Li J W, Yang Y R, et al. Effects of conventional and organic agriculture on soil arbuscular mycorrhizal fungal community in low-quality farmland [J]. Frontiers in Microbiology, 2022, 13: 914627. doi: 10.3389/fmicb.2022.
914627.
[25] 仝利紅, 蔣珊, 祝凌, 等. 有機(jī)種植對(duì)溫室土壤有機(jī)碳庫(kù)和酶活性的影響[J]. 中國(guó)土壤與肥料, 2020(6): 75-82.
Tong L H, Jiang S, Zhu L, et al. Effects of organic planting on soil carbon pool and enzyme activity in greenhouse [J]. Soils and Fertilizers Sciences in China, 2020(6): 75-82.
[26] Stazi S R, Mancinelli R, Marabottini R, et al. Influence of organic management on As bioavailability: soil quality and tomato As uptake [J]. Chemosphere, 2018, 211: 352-359.
[27] 李思萌, 于軍, 周正立, 等. 有機(jī)種植對(duì)土壤主要理化性質(zhì)及重金屬含量的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2017, 45(2): 253-257.
Li S M, Yu J, Zhou Z L, et al. Effect of organic planting on the main physical and chemical properties of soil and heavy metal content [J]. Jiangsu Agricultural Sciences, 2017, 45(2): 253-257.
[28] Bai Z G, Caspari T, Gonzalez M R, et al. Effects of agricultural management practices on soil quality: a review of long-term experiments for Europe and China [J]. Agriculture, Ecosystems Environment, 2018, 265: 1-7.
[29] 曹春霞, 朱升海, 顏越, 等. 有機(jī)管理對(duì)不同土地利用方式下土壤質(zhì)量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2021, 29(3): 474-482.
Cao C X, Zhu S H, Yan Y, et al. Effect of organic management on soil quality under different land use types [J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 474-482.
[30] Lori M, Symnaczik S, M?der P, et al. Organic farming enhances soil microbial abundance and activity: a meta-analysis and meta-regression [J]. PLoS One, 2017, 12(7): e0180442. doi: 10.1371/journal.pone.0180442.
[31] 顏鵬, 韓文炎, 李鑫, 等. 中國(guó)茶園土壤酸化現(xiàn)狀與分析[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(4): 795-801.
Yan P, Han W Y, Li X, et al. Present situation and analysis of soil acidification in Chinese tea garden [J]. Scientia Agricultura Sinica, 2020, 53(4): 795-801.
[32] 陳彬彬, 王宏, 鄭秋萍, 等. 福建省區(qū)域酸雨特征及成因分析[J]. 氣象與環(huán)境學(xué)報(bào), 2016, 32(4): 70-76.
Chen B B, Wang H, Zheng Q P, et al. Characteristics and causes of regional acid rain in Fujian province [J]. Journal of Meteorology and Environment, 2016, 32(4): 70-76.
[33] 阮建云, 吳洵. 鉀、鎂營(yíng)養(yǎng)供應(yīng)對(duì)茶葉品質(zhì)和產(chǎn)量的影響[J]. 茶葉科學(xué), 2003, 23(s1): 21-26.
Ruan J Y, Wu X. Productivity and quality response of tea to balanced nutrient management including K and Mg [J]. Journal of Tea Science, 2003, 23(s1): 21-26.
[34] 吳洵. 第四紀(jì)低丘紅壤茶園鉀的成土遷移和豐缺診斷[J]. 茶葉科學(xué), 1994, 14(1): 9-16.
Wu X. Movement of potassium in the soil during its development from quaternary red clay and the diagnosis of potassium deficiency in tea gardens of low-hilly red-earth areas [J]. Journal of Tea Science, 1994, 14(1): 9-16.
[35] 韓文炎, 阮建云, 林智. 茶園土壤主要營(yíng)養(yǎng)障礙因子及系列茶樹(shù)專(zhuān)用肥的研制[J]. 茶葉科學(xué), 2002, 22(1): 70-77, 65.
Han W Y, Ruan J Y, Lin Z. The major nutritional limitingfactors in tea soils and development of tea speciality fertilizer series [J]. Journal of Tea Science, 2002, 22(1): 70-74, 65.
[36] 張福鎖. 協(xié)調(diào)作物高產(chǎn)與環(huán)境保護(hù)的養(yǎng)分資源綜合管理技術(shù)研究與應(yīng)用[M]. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2008.
Zhang F S. Study and application of integrated nutrient management synchronizing high yield and environment protection [M]. Beijing: China Agricultural University Press, 2008.
[37] 陳玉真, 王峰, 吳志丹, 等. 林地轉(zhuǎn)變?yōu)椴鑸@對(duì)土壤細(xì)菌群落結(jié)構(gòu)與多樣性的影響[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 48(4): 97-106.
Chen Y Z, Wang F, Wu Z D, et al. Effects of forestland to tea garden conversion on soil bacterial community and diversity [J]. Journal of Northwest A amp; F University (Natural Science Edition), 2020, 48(4): 97-106.
[38] 陳玉真, 王峰, 吳志丹, 等. 林地轉(zhuǎn)變?yōu)椴鑸@對(duì)土壤固氮菌群落結(jié)構(gòu)及多樣性的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2020, 26(5): 1096-1106.
Chen Y Z, Wang F, Wu Z D, et al. Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden [J]. Chinese Journal of Applied amp; Environmental Biology, 2020, 26(5): 1096-1106.
[39] 楊亞軍. 中國(guó)茶樹(shù)栽培學(xué)[M]. 上海: 上??茖W(xué)技術(shù)出版社, 2005: 374-432.
Yang Y J. Tea cultivation science in China [M]. Shanghai: Shanghai Science and Technology Press, 2005: 374-432.
[40] Fan Z Z, Lu S Y, Liu S, et al. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China [J]. Journal of Forestry Research, 2020, 31(5): 1949-1957.
[41] Zhao Z W, Ge T D, Gunina A, et al. Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis [J]. Plant and Soil, 2019, 445(1/2): 137-152.
[42] Qin X, Liu Y T, Huang Q Q, et al. Effects of sepiolite and biochar on enzyme activity of soil contaminated by Cd and atrazine [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(5): 642-648.
[43] Zhou Z H, Wang C K, Jin Y. Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils [J]. Biology and Fertility of Soils, 2017, 53(4): 397-406.
[44] 王海斌, 陳曉婷, 丁力, 等. 連作茶樹(shù)根際土壤自毒潛力, 酶活性及微生物群落功能多樣性分析[J]. 熱帶作物學(xué)報(bào), 2018, 39(5): 26-31.
Wang H B, Chen X T, Ding L, et al. Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31.
[45] 張英, 武淑霞, 雷秋良, 等. 不同類(lèi)型糞肥還田對(duì)土壤酶活性及微生物群落的影響[J]. 土壤, 2022, 54(6): 1175-1184.
Zhang Y, Wu S X, Lei Q L, et al. Effects of different manures on soil enzyme activity and microbial community [J]. Soils, 2022, 54(6): 1175-1184.
[46] 王文婷, 王蓉, 牛翠平, 等. 西雙版納農(nóng)林復(fù)合橡膠林土壤多營(yíng)養(yǎng)級(jí)生物網(wǎng)絡(luò)結(jié)構(gòu)[J]. 生物多樣性, 2023, 31(6): 132-145.
Wang W T, Wang R, Niu C P, et al. Soil multitrophic ecological network structure of agroforestry rubberplantation in Xishuangbanna [J]. Biodiversity Science, 2023, 31(6): 132-145.
[47] Liu C A, Nie Y, Zhang Y M, et al. Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environment [J]. Scientific Reports, 2018, 8: 17324. doi: 10.1038/s41598-018-35762-0.
[48] 王鵬, 祝麗香, 陳香香, 等. 桔梗與大蔥間作對(duì)土壤養(yǎng)分、微生物區(qū)系和酶活性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(3): 668-675.
Wang P, Zhu L X, Chen X X, et al. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 668-675.
[49] Chen L X, Zhang C, Duan W B. Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of Larixol gensis plantations [J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1): 67-77.
[50] Hou E Q, Luo Y Q, Kuang Y W, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems [J]. Nature Communications, 2020, 11: 637. doi: 10.1038/s41467-020-
14492-w.
[51] Fan Y X, Lin F, Yang L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem [J]. Biology and Fertility of Soils, 2018, 154: 149-161.
[52] Zhang G N, Chen Z, Zhang A, et al. Phosphorus composition and phosphatase activities in soils affected by long-term application of pig manure and inorganic fertilizers [J]. Communications in Soil Science and Plant Analysis, 2014, 45(14): 1866-1876.
[53] Chen Y X, Wei T X, Sha G L, et al. Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China [J]. Applied Soil Ecology, 2022(170): 104292. doi: 10.1016/j.apsoil.2021.104292.
[54] 王瑞, 宋祥云, 柳新偉. 黃河三角洲不同植被類(lèi)型土壤酶活性的季節(jié)變化[J]. 生態(tài)環(huán)境學(xué)報(bào), 2022, 31(1): 62-69.
Wang R, Song X Y, Liu X W. Seasonal characteristics of soil enzymes in different vegetations in the Yellow River Delta [J]. Ecology and Environmental Sciences, 2022, 31(1): 62-69.
[55] 楊海濱, 李中林, 鄧敏, 等. 不同施肥措施對(duì)重慶茶園土壤氮轉(zhuǎn)化酶活性的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2020, 26(5): 1107-1114.
Yang H B, Li Z L, Deng M, et al. Effects of the combined application of different fertilizers and urea on nitrogen transformation enzyme activities in tea-garden soil from Chongqing [J]. Chinese Journal of Applied amp; Environmental Biology, 2020, 26(5): 1107-1114
[56] 劉謠, 劉金超, 宋鈺瓏, 等. 季節(jié)變化對(duì)川西亞高山森林土壤酶活性及化學(xué)計(jì)量特征的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2023, 41(3): 456-463.
Liu Y, Liu J C, Song Y L, et al. Effects of seasonal changes on soil enzyme activities and their stoichiometric characteristics of subalpine forests in Western Sichuan [J]. Journal of Sichuan Agricultural University, 2023, 41(3): 456-463.
[57] Zhao S C, Li K J, Zhou W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China [J]. Agriculture, Ecosystems amp; Environment, 2016, 216: 82-88.
[58] Dick W A, Cheng L, Wang P. Soil acid and alkaline phosphatase activity as pH adjustment indicators [J]. Soil Biology and Biochemistry, 2000, 32(13): 1915-1919.
[59] 曹瑞, 楊萬(wàn)勤, 袁吉, 等. 馬尾松人工林土壤有機(jī)層和礦質(zhì)土壤層酶活性隨雨旱季的變化[J]. 生態(tài)學(xué)報(bào), 2022, 42(19): 8031-8040.
Cao R, Yang W Q, Yuan J, et al. Changes of soil enzyme activities in soil organic layer and mineral soil layer in the Masson pine plantation with critical periods [J]. Acta Ecologica Sinica, 2022, 42(19): 8031-8040.
[60] Wang Y F, Zheng M H, Wang S H, et al. Effects of long-term nitrogen and phosphorus additions on soil enzyme activities related N and P cycle in two plantations in South China [J]. Journal of Tropical and Subtropical Botany, 2022, 29(3): 244-250.
[61] 賈曼莉, 郭宏, 李會(huì)科. 渭北生草果園土壤有機(jī)碳礦化及其與土壤酶活性的關(guān)系[J]. 環(huán)境科學(xué), 2014, 35(7): 2777-2784.
Jia M L, Guo H, Li H K. Mineralization of soil organic carbon and its relationship with soil enzyme activities in apple orchard in Weibei [J]. Environmental Science, 2014, 35(7): 2777-2784.
[62] Wang S X, Liang X Q, Chen Y X, et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems [J]. Soil Science Society of America Journal, 2012, 76(1): 161-167.
[63] Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus [J]. Plant Physiology, 2011, 156(3): 989-996.
[64] Tan H, Barret M, Mooij M J, et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils [J]. Biology and Fertility of Soils, 2013, 49(6): 661-672.
[65] Liu X C, Zhang S T. Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil [J]. Plant and Soil, 2019, 440(1): 11-24.