摘要:目的 探討小球藻提取物(CE)對(duì)糖尿病小鼠皮膚創(chuàng)面的愈合作用。方法 細(xì)胞毒性實(shí)驗(yàn)設(shè)置空白對(duì)照組(CON組),CE低(1 mg/L)、中(10 mg/L)和高(100 mg/L)劑量組;抗氧化實(shí)驗(yàn)分組增加了H2O2(100 μmol/L)組,各實(shí)驗(yàn)組增加了100 μmol/L H2O2;抗炎實(shí)驗(yàn)分組增加了脂多糖(1 mg/L),各實(shí)驗(yàn)組增加了1 mg/L脂多糖干預(yù)。采用MTT法檢測(cè)CE的細(xì)胞毒性;熒光探針?lè)z測(cè)CE的抗氧化作用;熒光定量PCR檢測(cè)CE的抗炎作用。設(shè)置空白CON組、CE低(0.5 g/L)、中(5 g/L)和高(50 g/L)劑量組,采用平板菌落計(jì)數(shù)法檢測(cè)CE的抗菌能力。腹腔注射鏈脲佐菌素法誘導(dǎo)糖尿病小鼠模型,并采用隨機(jī)數(shù)字表法分為CON組、CE低(0.5 g/L)、中(5 g/L)和高(50 g/L)劑量組,每組12只。在小鼠脊柱兩側(cè)對(duì)稱性各做一個(gè)直徑6 mm的圓形創(chuàng)面進(jìn)行給藥處理,每日1次,連續(xù)14 d。分別進(jìn)行拍照并取材,記錄創(chuàng)面愈合情況并對(duì)皮膚組織進(jìn)行組織學(xué)(7 d和14 d)及免疫熒光染色(7 d)檢測(cè)。結(jié)果 體外實(shí)驗(yàn):CE各劑量組對(duì)NIH-3T3細(xì)胞都有良好的細(xì)胞相容性;與H2O2組相比,CE低、中和高劑量組的活性氧(ROS)熒光信號(hào)依次減弱;與脂多糖組相比,CE低、中和高劑量組CD86的表達(dá)降低,CD206的表達(dá)升高(P<0.05);與CON組相比,CE低、中和高劑量組對(duì)細(xì)菌生長(zhǎng)的抑制作用依次增強(qiáng)(P<0.05)。體內(nèi)實(shí)驗(yàn):術(shù)后第7天和第14天,CE組糖尿病小鼠創(chuàng)面的閉合速率加快,創(chuàng)面愈合效果明顯;對(duì)創(chuàng)面組織分別進(jìn)行HE染色和Masson染色發(fā)現(xiàn),與CON組相比,CE低、中和高劑量組糖尿病小鼠創(chuàng)面有更多的膠原沉積。免疫熒光檢測(cè)結(jié)果顯示,與CON組相比,CE治療后的創(chuàng)面的α平滑肌肌動(dòng)蛋白(α-SMA)、血小板-內(nèi)皮細(xì)胞黏附分子(CD31)及巨噬細(xì)胞甘露糖受體(CD206)水平升高,而白細(xì)胞分化抗原86(CD86)表達(dá)水平降低。結(jié)論 CE可有效促進(jìn)糖尿病小鼠創(chuàng)面愈合,其機(jī)制可能與其抗氧化、抗炎和抗菌有關(guān)。
關(guān)鍵詞:小球藻屬;糖尿?。豢寡趸瘎?;抗菌藥;抗炎;創(chuàng)面愈合
中圖分類號(hào):R587.2,R285.5 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20230825
Study on the effect of Chlorella extract on promoting skin wound healing in diabetic mice
HUANG Yu1, 2, HE Ruiying3, LIU Sen1, CHEN Kaiyuan1, LI Meiyun1, CHENG Jianye1, WU Yan1
1 School of Life Sciences, Mudanjiang Medical College, Mudanjiang 157011, China; 2 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University; 3 School of Chemistry and Chemical Engineering, Hubei University
Corresponding Author E-mail: wuyan@mdjmu.edu.cn
Abstract: Objective To investigate the effect of Chlorella vulgaris extract (CE) on skin wound healing in diabetic mice. Methods The blank control group (CON group), CE low (1 mg/L), medium (10 mg/L) and high (100 mg/L) dose groups were set up in vitro cytotoxicity assay. The additional H2O2 (100 μmol/L) group was set up for antioxidant experiments, and the concentration of H2O2 (100 μmol/L) in each experimental group was also added. The additional lipopolysaccharide (1 mg/L) group was set up for the anti-inflammatory experiments, and the concentration of lipopolysaccharide (1 mg/L) in each experimental group was" also added. The cytotoxicity of CE was detected by MTT method. The antioxidant activity of CE was investigated by fluorescent probe assay. The anti-inflammatory effect of CE was detected by fluorescent quantitative PCR. The blank control group (CON group), CE low (0.5 g/L), medium (5 g/L) and high (50 g/L) dose groups were set up, and the antibacterial properties of CE were examined by plate colony counting method. The diabetic mouse model was induced by streptozotocin, and model mice were divided into the control group, the CE low (0.5 g/L), medium (5 g/L) and high (50 g/L) dose groups using the random number table method, with 12 mice in each group. After the model was successfully established, two 6 mm wounds were symmetrically created on each side of spine of mouse. The wounds were administered once daily for a total of 14 consecutive days. The wound healing was observed and photographed on days 0, 7 and 14 respectively. The wound samples were taken and processed for histology (7 d and 14 d) and immunofluorescence (7 d). Results In vitro experiments: CE low, medium and high dose groups showed good cytocompatibility with NIH-3T3 cells compared to the control group, and CE low, medium and high dose groups showed weaker reactive oxygen species (ROS) fluorescence signal compared to the H2O2 group. CE low, medium and high dose groups showed lower expression of CD86 and higher expression of CD206 compared to the control group (P<0.05). The inhibition of bacterial growth was enhanced in the CE low, medium and high dose groups compared to the control group (P<0.05) . In vivo experiment results demonstrated that wound healing rates on the 7th and 14th day after operation were accelerated in the CE group, and the wound healing effect was obvious. Results of HE and Masson staining showed that there were more collagen deposition in wound in the CE low, medium and high dose groups compared to the control group. Results of the immunofluorescence assay showed that the higher expression levels of" α-smooth muscle actin (α-SMA), platelet endothelial cell adhesion molecule-1 (CD31) and macrophage mannose receptor (CD206) after treatment, and the lower levels of leukocyte differentiation antigen 86 (CD86) in wound compared to the control group. Conclusion CE can effectively promote wound healing in diabetic mice, and the mechanism may be related to its antioxidant, anti-inflammatory and antibacterial effects.
Key words: chlorella; diabetes mellitus; antioxidants; anti-bacterial agents; anti-inflammatory; wound healing
糖尿病引起的創(chuàng)面是一種不易愈合、復(fù)發(fā)率高的慢性創(chuàng)面。其創(chuàng)面微環(huán)境復(fù)雜,具有高糖、活性氧(ROS)過(guò)多、免疫功能失調(diào)、易感染以及營(yíng)養(yǎng)不良等特點(diǎn)[1]。傳統(tǒng)治療糖尿病創(chuàng)面的方法主要包括控制血糖[2]、徹底清創(chuàng)[3]和控制感染[4]等,而采用外源性生長(zhǎng)因子[5]、富血小板血漿[6]和高壓氧[7]等療法效果也多不盡理想。小球藻是存在于淡水和海洋生態(tài)系統(tǒng)中的單細(xì)胞綠色微藻,含有豐富的蛋白質(zhì)、脂類、核酸和維生素等營(yíng)養(yǎng)成分[8]。由于其生物相容性好,具有抗氧化[9]、調(diào)節(jié)免疫[10]和抑菌[11]等多種作用,故將小球藻有效成分進(jìn)行提取,可以更好地發(fā)揮其藥理作用。目前關(guān)于小球藻提取物(chlorella extract,CE)對(duì)糖尿病創(chuàng)面愈合的研究較少。本研究擬通過(guò)體內(nèi)體外實(shí)驗(yàn)探討CE對(duì)糖尿病小鼠創(chuàng)面愈合的影響,為CE用于糖尿病創(chuàng)面治療提供理論依據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)細(xì)胞與動(dòng)物 小鼠成纖維細(xì)胞NIH-3T3和RAW 264.7巨噬細(xì)胞購(gòu)于上海酶研生物科技有限公司;SPF級(jí)雄性C57BL/6小鼠共48只,8~10周齡,體質(zhì)量18~20 g,購(gòu)自遼寧長(zhǎng)生生物技術(shù)股份有限公司[實(shí)驗(yàn)動(dòng)物生產(chǎn)許可證號(hào):SCXK(黑)2019-003]。將小鼠飼養(yǎng)于SPF級(jí)動(dòng)物房[實(shí)驗(yàn)動(dòng)物使用許可證號(hào):SYXK(黑)2019-006],溫度(23±2)℃,濕度55%±5%,12 h交替照明,自由進(jìn)食飲水,適應(yīng)性喂養(yǎng)1周后進(jìn)行分組實(shí)驗(yàn),動(dòng)物實(shí)驗(yàn)流程經(jīng)牡丹江醫(yī)學(xué)院動(dòng)物倫理委員會(huì)審查批準(zhǔn)(倫理號(hào):IACUC-20230215-97)。
1.1.2 主要試劑與儀器 小球藻購(gòu)自陜西省正禾藥業(yè)生物工程有限公司;聚乙二醇(PEG)購(gòu)自中國(guó)上海阿拉丁生化科技有限公司;DMEM高糖培養(yǎng)基、胎牛血清購(gòu)于美國(guó)Gibco公司;青霉素、鏈霉素、蘇木素-伊紅(HE)染色液、改良Masson三色染色試劑盒、鏈脲佐菌素(STZ)購(gòu)自北京索萊寶科技有限公司;H2O2、2′-7′二氯熒光素二乙酸酯(DCFH-DA)、脂多糖(LPS)購(gòu)自上海碧云天生物技術(shù)有限公司;二苯基四氮唑溴鹽購(gòu)自廣州賽國(guó)生物科技有限公司;逆轉(zhuǎn)錄cDNA合成試劑盒購(gòu)自瑞士Roche公司;金黃色葡萄球菌和大腸桿菌購(gòu)自湖南豐暉生物科技有限公司;甲醛購(gòu)自遼寧泉瑞試劑有限公司;二甲苯購(gòu)自天津市富宇精細(xì)化工有限公司;辣根過(guò)氧化物酶標(biāo)記羊抗兔IGg抗體購(gòu)自北京中杉金橋生物技術(shù)有限公司;二甲基亞砜(DMSO)、4′,6-二脒基-2-苯基吲哚(DAPI)購(gòu)自美國(guó)Sigma公司;白細(xì)胞分化抗原86(CD86)抗體、巨噬細(xì)胞甘露糖受體(CD206)抗體購(gòu)自美國(guó)proteintech公司;異氟烷購(gòu)于深圳瑞沃德公司;白細(xì)胞介素(IL)-1β、腫瘤壞死因子(TNF)-α、IL-10、精氨酸酶(ARG)-1、β-actin購(gòu)自生工生物工程(上海)股份有限公司;CO2細(xì)胞培養(yǎng)箱購(gòu)自上海力申科學(xué)儀器有限公司;多功能酶標(biāo)儀購(gòu)自美國(guó)Molecular Devices公司;生物顯微鏡、激光共聚焦顯微鏡購(gòu)自日本奧林巴斯公司;熒光顯微鏡購(gòu)自日本尼康公司。
1.2 方法
1.2.1 CE的制備 將1 g小球藻粉加入10 mL PEG中,80 ℃,4 h,5 000 r/min離心5 min。收集上清液,用0.22 μm濾膜過(guò)濾,4 ℃保存?zhèn)溆谩?/p>
1.2.2 細(xì)胞培養(yǎng)與分組 NIH-3T3細(xì)胞和RAW 264.7巨噬細(xì)胞分別置于含有10%胎牛血清的DMEM培養(yǎng)基中,于37 ℃、5%CO2的恒溫培養(yǎng)箱中進(jìn)行培養(yǎng)。當(dāng)細(xì)胞融合度達(dá)到80%~90%時(shí),用0.25%胰蛋白酶消化后傳代,選取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)。細(xì)胞毒性實(shí)驗(yàn)分組:對(duì)照組(CON組,PEG)、CE低(1 mg/L)、CE中(10 mg/L)和CE高(100 mg/L)劑量組??寡趸瘜?shí)驗(yàn)分組:CON組(PEG)、H2O2(100 μmol/L)組、H2O2(100 μmol/L)+CE低(1 mg/L)劑量組、H2O2(100 μmol/L)+CE中(10 mg/L)劑量組和H2O2(100 μmol/L)+CE高(100 mg/L)劑量組??寡讓?shí)驗(yàn)分組:CON組(PEG)、LPS(1 mg/L)組、LPS" (1 mg/L)+CE低(1 mg/L)劑量組、LPS(1 mg/L)+CE中(10 mg/L)劑量組和LPS(1 mg/L)+CE高(100 mg/L)劑量組。
1.2.3 MTT法檢測(cè)CE的細(xì)胞毒性 將對(duì)數(shù)生長(zhǎng)期的NIH-3T3細(xì)胞制成細(xì)胞懸液,接種于96孔板中(5×103個(gè)細(xì)胞/孔),置于37 ℃、5%CO2培養(yǎng)箱中24 h。按照1.2.2實(shí)驗(yàn)分組進(jìn)行加藥,無(wú)細(xì)胞的PEG溶液作為空白組,每組設(shè)置6個(gè)復(fù)孔,繼續(xù)培養(yǎng)24 h,加入MTT染料,在CO2培養(yǎng)箱中孵育4 h后加入DMSO,最后使用多功能酶標(biāo)儀于490 nm波長(zhǎng)處檢測(cè)光密度(OD490)并計(jì)算細(xì)胞存活率。細(xì)胞存活率=(實(shí)驗(yàn)組OD490-空白組OD490)/(對(duì)照組OD490-空白組OD490)×100%。
1.2.4 熒光探針?lè)z測(cè)CE的抗氧化作用 取6孔板加入少量培養(yǎng)基,將消毒玻片小心擺放在其中,將對(duì)數(shù)生長(zhǎng)期的NIH-3T3細(xì)胞制成細(xì)胞懸液,并按照4×105個(gè)/孔接種于6孔板中培養(yǎng)24 h。按照1.2.2實(shí)驗(yàn)分組進(jìn)行加藥,每組設(shè)置3個(gè)復(fù)孔,繼續(xù)培養(yǎng)2 h后,清洗細(xì)胞,用10 μmol/L DCFH-DA孵育30 min。激光共聚焦顯微鏡檢測(cè)細(xì)胞內(nèi)熒光信號(hào)并拍照。
1.2.5 實(shí)時(shí)熒光定量PCR(qPCR)法檢測(cè)CE的抗炎作用 將對(duì)數(shù)生長(zhǎng)期的RAW 264.7巨噬細(xì)胞配置細(xì)胞懸液,按照4×105個(gè)/孔接種于6孔板中,置于37 ℃、5%CO2培養(yǎng)箱中24 h,按照1.2.2實(shí)驗(yàn)分組進(jìn)行加藥,每組設(shè)置6個(gè)復(fù)孔。孵育24 h后收集細(xì)胞,采用RNA提取試劑盒提取總RNA。qPCR檢測(cè)細(xì)胞中CD86、IL-1β、TNF-α、CD206、IL-10、精氨酸酶(ARG)?1的mRNA水平。引物序列見(jiàn)表1。以β-actin為內(nèi)源性參照基因。反應(yīng)條件:95 ℃預(yù)變性10 min;95 ℃ 15 s、60 ℃ 30 s、72 ℃ 30 s,進(jìn)行40個(gè)循環(huán)。采用2-ΔΔCt法計(jì)算mRNA相對(duì)表達(dá)量,實(shí)驗(yàn)重復(fù)3次。
1.2.6 體外抗菌實(shí)驗(yàn) 采用金黃色葡萄球菌和大腸桿菌研究CE的抑菌作用。實(shí)驗(yàn)分4組,分別為CON組(PEG)、CE低(0.5 g/L)、CE中(5 g/L)和CE高(50 g/L)劑量組,每組加入菌液1 mL(6×105 CFU/mL),再按照上述實(shí)驗(yàn)分組加藥1 mL,每組設(shè)3個(gè)重復(fù)樣本。放入37 ℃恒溫?fù)u床震蕩18 h后,用細(xì)菌培養(yǎng)基將細(xì)菌懸液稀釋1 000倍,取40 μL菌液,均勻涂布在LB瓊脂平板上。在37 ℃下培養(yǎng)24 h,對(duì)LB瓊脂平板上的細(xì)菌進(jìn)行拍照并計(jì)數(shù),統(tǒng)計(jì)細(xì)菌存活率。細(xì)菌存活率=實(shí)驗(yàn)組細(xì)菌數(shù)/對(duì)照組細(xì)菌數(shù)×100%。
1.2.7 糖尿病創(chuàng)面小鼠模型的制備與分組干預(yù) 48只C57BL/6小鼠禁食12 h后,腹腔注射50 mg/kg STZ,連續(xù)注射3 d,每日1次。2周后全自動(dòng)血糖監(jiān)測(cè)儀測(cè)量血糖,連續(xù)3 d血糖水平≥16.7 mmol/L為造模成功。將造模成功的48只小鼠按照隨機(jī)數(shù)字表法分成CON組、CE低(0.5 g/L)、中(5 g/L)和高(50 g/L)劑量組,每組12只。術(shù)前用異氟烷麻醉小鼠,剃除背部毛發(fā)并用70%乙醇擦拭。在小鼠背部區(qū)域沿著脊柱兩側(cè)分別做2個(gè)6 mm直徑的全層皮膚缺損創(chuàng)面。CON組和各CE組小鼠均在創(chuàng)面部位注射,0.5 mL/孔,1次/d,連續(xù)14 d,其中CON組注射相同體積的PEG。用濕紗布進(jìn)行覆蓋,創(chuàng)面四周用手術(shù)縫線進(jìn)行固定,并且于第7天和第14天取材,每次每組6只。
1.2.8 創(chuàng)面愈合狀況測(cè)定 在第0、7、14天觀察并拍照,Image J軟件統(tǒng)計(jì)創(chuàng)面面積。創(chuàng)面愈合率=(第0天的創(chuàng)面面積-特定日期的創(chuàng)面面積)/第0天的創(chuàng)面面積×100%。
1.2.9 HE染色、Masson染色及免疫熒光染色 分別于實(shí)驗(yàn)第7、14天頸椎脫臼處死小鼠,取創(chuàng)面皮膚組織固定于4%多聚甲醛48 h,常規(guī)梯度乙醇脫水,包埋,切片,厚度為4 μm,進(jìn)行HE染色和Masson染色,中性樹(shù)脂封片,顯微鏡下觀察并拍照。另取第7天創(chuàng)面皮膚組織進(jìn)行免疫熒光染色,冷凍切片,固定、漂洗、封閉、用一抗(α-SMA、CD31、CD86、CD206)抗體對(duì)切片進(jìn)行染色,4 ℃過(guò)夜,然后與二抗一起孵育,并用DAPI染色。使用熒光顯微鏡觀察并拍照。
1.3 統(tǒng)計(jì)學(xué)方法 采用Graphpad Prism 8.0.1統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差([x] ±s)表示,組間均數(shù)比較采用單因素方差分析,多重比較采用Tukey檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 CE的細(xì)胞毒性 CON組和CE低、中、高劑量組細(xì)胞存活率分別為100.00%、98.76%±1.23%、98.74%±2.47%和99.49%±1.64%,差異無(wú)統(tǒng)計(jì)學(xué)意義(F=0.865,P>0.05),結(jié)果顯示不同濃度CE處理無(wú)明顯細(xì)胞毒性。
2.2 CE的體外抗氧化作用 CON組,H2O2組和H2O2+CE低、中、高劑量組ROS熒光強(qiáng)度分別為0.00±0.00、50.97±1.80、35.55±2.32、2.65±0.06、0.00±0.00(F=992.400,P<0.01)。與CON組相比,加入H2O2后細(xì)胞內(nèi)熒光信號(hào)增強(qiáng)。與H2O2單獨(dú)處理相比,H2O2和CE共同處理?xiàng)l件下CE濃度越高,細(xì)胞內(nèi)的熒光強(qiáng)度越低(P<0.05)。見(jiàn)圖1。
2.3 CE的抗炎作用 與CON組相比,加入LPS后,CD86、IL-1β及TNF-α的mRNA水平明顯升高,CD206、IL-10及Arg-1的mRNA水平明顯降低,顯示巨噬細(xì)胞炎癥模型構(gòu)造成功。與LPS單獨(dú)處理相比,LPS和CE共同處理后,隨著CE濃度的升高,CD86、IL-1β及TNF-α的表達(dá)依次減少,而CD206、IL-10及Arg-1的表達(dá)依次增加,見(jiàn)表2。
2.4 CE對(duì)金黃色葡萄球菌和大腸桿菌的影響 與CON組相比,隨著CE濃度的升高,金黃色葡萄球菌和大腸桿菌的菌落數(shù)量依次減少,高劑量組無(wú)細(xì)菌生長(zhǎng)(P<0.05)。見(jiàn)表3、圖2。
2.5 CE對(duì)糖尿病小鼠皮膚創(chuàng)面的影響 與CON組相比,隨著CE濃度的升高,創(chuàng)面愈合依次加快(均P<0.05)。在第7天時(shí),CE高劑量組創(chuàng)面愈合最快,創(chuàng)緣處可見(jiàn)結(jié)痂。在第14天,CON組創(chuàng)面縮小,顏色加深呈褐色,CE高劑量組創(chuàng)面面積顯著縮小,見(jiàn)表4、圖3。
2.6 皮膚愈合創(chuàng)面組織學(xué)分析 HE染色顯示,術(shù)后7 d,與CON組相比,CE各治療組創(chuàng)面肉芽組織更為豐富,有較多成纖維細(xì)胞及新生毛細(xì)血管。術(shù)后14 d,CE各治療組較CON組有更多的皮膚附屬結(jié)構(gòu)的再生。Masson染色顯示,術(shù)后第14天,與CON組相比,CE治療組可以改善膠原蛋白在創(chuàng)面部位的沉積,從而加速皮膚再生。見(jiàn)圖4。
2.7 愈合創(chuàng)面組織免疫組織熒光變化 與CON組相比,隨著CE濃度的升高,α-SMA、CD31及抑炎因子CD206表達(dá)依次升高,促炎因子CD86表達(dá)依次降低(P<0.05)。見(jiàn)表5,圖5、6。
3 討論
糖尿病足潰瘍是糖尿病較為常見(jiàn)的并發(fā)癥之一。其創(chuàng)面存在愈合及治療時(shí)間長(zhǎng)、反復(fù)發(fā)作等問(wèn)題,給患者造成沉重的身心和經(jīng)濟(jì)負(fù)擔(dān)[12]。高糖環(huán)境可導(dǎo)致創(chuàng)面過(guò)度氧化應(yīng)激、異常炎癥反應(yīng)和細(xì)菌感染等,使創(chuàng)面不易愈合[13]。小球藻是一種富含多種營(yíng)養(yǎng)成分的微藻,具有抗氧化和一定的抗炎作用,可調(diào)節(jié)創(chuàng)面微環(huán)境[14]。本研究采用聚乙二醇對(duì)小球藻的有效成分進(jìn)行提取,分別從抗氧化、抗炎和抗菌方面評(píng)估其對(duì)糖尿病創(chuàng)面的治療作用。
3.1 CE的抗氧化作用 氧化應(yīng)激參與了糖尿病創(chuàng)面的發(fā)生和發(fā)展。有研究顯示,糖尿病創(chuàng)面由于持續(xù)的高血糖、感染和炎癥引起高水平的ROS積聚,顯著增加了創(chuàng)面環(huán)境中的氧化應(yīng)激,導(dǎo)致創(chuàng)面愈合延遲[15]。Li等[16]研究表明,采用三步法(己烷、乙酸乙酯和水)提取微藻的有效成分,通過(guò)總抗氧化能力檢測(cè)試劑盒(ABTS法)評(píng)估提取物的抗氧化能力,發(fā)現(xiàn)微藻可能是天然抗氧化劑的豐富來(lái)源。本研究結(jié)果顯示,與CON組相比,給予CE治療后小鼠成纖維細(xì)胞內(nèi)ROS水平明顯降低,提示CE可能通過(guò)降低ROS水平來(lái)減弱氧化應(yīng)激,進(jìn)而促進(jìn)創(chuàng)面愈合。
3.2 CE的抗炎作用 炎性細(xì)胞也是影響糖尿病創(chuàng)面愈合的原因之一。其中巨噬細(xì)胞是高度可塑性的細(xì)胞,M1型和M2型可以相互轉(zhuǎn)換。高血糖條件下的創(chuàng)面中促炎細(xì)胞因子表達(dá)增強(qiáng),而抗炎細(xì)胞因子則相反。有研究表明,微藻中的一些類胡蘿卜素、多不飽和脂肪酸和碳水化合物顯示出抗炎活性[17]。Zhang等[18]研究表明蛋白核小球藻中的色素蛋白復(fù)合物可抑制LPS刺激的RAW264.7細(xì)胞中炎性細(xì)胞因子TNF-α和IL-6以及炎癥介質(zhì)一氧化氮(NO)的產(chǎn)生。本研究結(jié)果顯示,CE組較CON組可以顯著降低促炎因子CD86、IL-1β和TNF-α的表達(dá),提高抗炎因子CD206、IL-10和Arg-1的表達(dá),提示CE可能通過(guò)調(diào)控炎癥反應(yīng)來(lái)促進(jìn)糖尿病創(chuàng)面的愈合。
3.3 CE的抗細(xì)菌感染作用 糖尿病創(chuàng)面通常還會(huì)伴隨細(xì)菌感染。本研究發(fā)現(xiàn)CE對(duì)于金黃色葡萄球菌和大腸桿菌的生長(zhǎng)均有較強(qiáng)的抑制作用。Hwang等[19]研究發(fā)現(xiàn)CE降低了齲齒中的變形鏈球菌生物膜的活/死細(xì)胞比率,提示CE可以通過(guò)減少糖尿病創(chuàng)面的細(xì)菌感染促進(jìn)糖尿病創(chuàng)面愈合。
在體內(nèi)實(shí)驗(yàn)中,CE低、中、高劑量組較CON組呈現(xiàn)出更高的創(chuàng)面愈合率,更多的皮膚附屬器和膠原沉積,CE高劑量組療效更好。免疫熒光染色結(jié)果顯示,與對(duì)照組相比,CE治療組的α-SMΑ、CD31、CD206表達(dá)增強(qiáng)、CD86表達(dá)減弱,提示應(yīng)用CE可以通過(guò)改善糖尿病創(chuàng)面微環(huán)境誘導(dǎo)高水平的血管生成,調(diào)節(jié)免疫反應(yīng),進(jìn)而有效促進(jìn)創(chuàng)面愈合。本實(shí)驗(yàn)使用聚乙二醇對(duì)小球藻的有效成分進(jìn)行提取,顯示出更高的創(chuàng)面愈合率,可能與提取出的小球藻有效成分(濃度更高或種類更多)有關(guān)。
綜上所述,CE可劑量依賴性地減少糖尿病創(chuàng)面的氧化應(yīng)激、炎癥反應(yīng)及細(xì)菌感染,從而促進(jìn)糖尿病創(chuàng)面愈合,本研究為探索CE治療糖尿病創(chuàng)面的可能性提供了理論依據(jù)。
參考文獻(xiàn)
[1] CAO W,PENG S,YAO Y,et al. A nanofibrous membrane loaded with doxycycline and printed with conductive hydrogel strips promotes diabetic wound healing in vivo[J]. Acta Biomater,2022,152:60-73. doi:10.1016/j.actbio.2022.08.048.
[2] WANG X,YUAN C X,XU B,et al. Diabetic foot ulcers:Classification,risk factors and management[J]. World J Diabetes,2022,13(12):1049-1065. doi:10.4239/wjd.v13.i12.1049.
[3] KIM K,MAHAJAN A,PATEL K,et al. Materials and cytokines in the healing of diabetic foot ulcers[J]. Adv Ther(Weinh),2021,4(9):2100075. doi:10.1002/adtp.202100075.
[4] 王一鳴,朱朝軍,孫旭,等. 化腐再生法治療糖尿病足瘡面標(biāo)準(zhǔn)操作流程的制定及實(shí)踐[J]. 中國(guó)中西醫(yī)結(jié)合外科雜志,2024,30(1):5-8. WANG Y M,ZHU C J, SUN X, et al. Formulation and practice of the standard operating procedures for the treatment of diabetes foot sore with the method of decay and regeneration[J]. Chinese Journal of Integrated Traditional Chinese and Western Medicine Surgery,2024,30(1):5-8. doi:10.3969/j.issn.1007-6948.2024.01.001.
[5] ZHENG S Y,WAN X X,KAMBEY P A,et al. Therapeutic role of growth factors in treating diabetic wound[J]. World J Diabetes,2023,14(4):364-395. doi:10.4239/wjd.v14.i4.364.
[6] USLU K,TANSUKER H D,TABARU A,et al. Investigation of the effects of thrombocyte-rich plasma,systemic ozone and hyperbaric oxygen treatment on intraoral wound healing in rats:experimental study[J]. Eur Arch Otorhinolaryngol,2020,277(6):1771-1777. doi:10.1007/s00405-020-05872-5.
[7] ZHANG Z,ZHANG W,XU Y,et al. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcers:An updated systematic review and meta-analysis[J]. Asian J Surg,2022,45(1):68-78. doi:10.1016/j.asjsur.2021.07.047.
[8] BITO T,OKUMURA E,F(xiàn)UJISHIMA M,et al. Potential of Chlorella as a dietary supplement to promote human health[J]. Nutrients,2020 ,12(9):2524. doi:10.3390/nu12092524.
[9] CHEN S,WANG L,F(xiàn)ENG W,et al. Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris:Evaluation of growth,photosynthesis,antioxidants,ultrastructure,and nucleic acids[J]. Sci Rep,2020,10(1):8243. doi:10.1038/s41598-020-65219-2.
[10] ZAHRAN E,ELBAHNASWY S,RISHA E,et al. Antioxidative and immunoprotective potential of Chlorella vulgaris dietary supplementation against chlorpyrifos-induced toxicity in Nile tilapia[J]. Fish Physiol Biochem,2020,46(4):1549-1560. doi:10.1007/s10695-020-00814-8.
[11] ZHOU J,WANG M,B?UERL C,et al. The impact of liquid-pressurized extracts of Spirulina,Chlorella and Phaedactylum tricornutum on in vitro antioxidant,antiinflammatory and bacterial growth effects and gut microbiota modulation[J]. Food Chem,2023,401:134083. doi:10.1016/j.foodchem.2022.134083.
[12] ZHOU X,GUO Y,YANG K,et al. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing[J]. JEthnopharmacol,2022,282:114662.
[13] YANG J,CHU Z,JIANG Y,et al. Multifunctional hyaluronic acid microneedle patch embedded by Cerium/Zinc-based composites for accelerating diabetes wound healing[J]. Adv Healthc Mater,2023,22:e2300725. doi:10.1002/adhm.202300725.
[14] WU H,YANG P,LI A,et al. Chlorella sp.-ameliorated undesirable microenvironment promotes diabetic wound healing[J]. Acta Pharm Sin B,2023,13(1):410-424. doi:10.1016/j.apsb.2022.06.012.
[15] QIAN B,LI J,GUO K,et al. Antioxidant biocompatible composite collagen dressing for diabetic wound healing in rat model[J]. Regen Biomater,2021,8(2):rbab003. doi: 10.1093/rb/rbab003.
[16] LI H,CHENG K,WONG C,et al. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae[J]. Food Chemistry,2007,102(3):771-776.
[17] MONTERO-LOBATO Z,VáZQUEZ M,NAVARRO F,et al. Chemically-induced production of anti-inflammatory molecules in microalgae[J]. Mar Drugs,2018,16(12):478.
[18] ZHANG R,CHEN J,MAO X,et al. Anti-inflammatory and anti-aging evaluation of pigment-protein complex extracted from Chlorella pyrenoidosa[J]. Mar Drugs,2019,17(10):586.
[19] HWANG H R,LEE E S,KANG S M,et al. Effect of antimicrobial photodynamic therapy with Chlorella and Curcuma extract on Streptococcus mutans biofilms[J]. Photodiagnosis Photodyn Ther,2021,35:102411. doi:10.1016/j.pdpdt.2021.102411.
基金項(xiàng)目:牡丹江市指導(dǎo)性科技計(jì)劃項(xiàng)目(HT2022JG125)
作者單位:1牡丹江醫(yī)學(xué)院生命科學(xué)學(xué)院(郵編157011);2武漢大學(xué)人民醫(yī)院婦產(chǎn)科;3湖北大學(xué)化學(xué)化工學(xué)院
作者簡(jiǎn)介:黃玉(1995),女,碩士在讀,主要從事糖尿病創(chuàng)面方面研究。E-mail:18208946170@126.com
通信作者 E-mail:wuyan@mdjmu.edu.cn
(本文編輯 李鵬)