劉傳霞,陳欣,王曉,李雪雯,李婷婷,翁長(zhǎng)江,鄭君
豬CD1d蛋白多克隆抗體的制備及應(yīng)用
劉傳霞,陳欣,王曉,李雪雯,李婷婷,翁長(zhǎng)江,鄭君
中國(guó)農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所/動(dòng)物疫病預(yù)防控制國(guó)家重點(diǎn)實(shí)驗(yàn)室/國(guó)家非洲豬瘟專業(yè)實(shí)驗(yàn)室/基礎(chǔ)免疫創(chuàng)新團(tuán)隊(duì),哈爾濱 150069
【目的】制備豬源CD1d的多克隆抗體,為探究豬CD1d蛋白在非洲豬瘟病毒(African swine fever virus,ASFV)感染過(guò)程中的功能奠定基礎(chǔ)?!痉椒ā坷肞CR方法擴(kuò)增了豬CD1d基因,并將其同源重組至pGEX-6p1載體中,構(gòu)建了原核重組表達(dá)質(zhì)粒pGEX-6p1-CD1d。將重組質(zhì)粒轉(zhuǎn)化BL21(DE3)并用IPTG進(jìn)行誘導(dǎo)表達(dá),表達(dá)的GST-CD1d重組蛋白經(jīng)SDS-PAGE和Western blot(WB)方法鑒定,SDS-PAGE結(jié)果顯示約50 ku處有一條明顯的條帶,該蛋白以包涵體形式表達(dá)。然后利用谷胱甘肽瓊脂糖親和層析方法進(jìn)行蛋白純化,將純化的GST-CD1d蛋白與等體積的弗氏完全佐劑混合乳化后,將純化的蛋白免疫新西蘭大白兔,采用頸背部多點(diǎn)皮下注射,免疫劑量為200 μg/只,首免后第3周和第5周分別進(jìn)行二免和三免,均采用弗氏不完全佐劑乳化,方法和劑量與首免相同。三免后第7天,通過(guò)耳緣靜脈采血分離血清。首免后第7周進(jìn)行第四次免疫,一周后心臟采血。該抗體經(jīng)Protein G親和層析純化后凍存于-80 ℃冰箱。通過(guò)WB和間接免疫熒光(IFA)鑒定瞬時(shí)轉(zhuǎn)染表達(dá)的外源CD1d蛋白和豬原代巨噬細(xì)胞(PAMs)表達(dá)的內(nèi)源CD1d蛋白的表達(dá)與細(xì)胞定位情況。同樣,制備的CD1d抗體可以將外源瞬時(shí)轉(zhuǎn)染表達(dá)的CD1d通過(guò)IP拉下。為了探究CD1d在ASFV感染早期的情況,將ASFV接種于PAMs,制備ASFV感染0、15、30、60 min的樣品,以CD1d為一抗,通過(guò)WB檢測(cè)了CD1d蛋白的表達(dá)情況。在HEK293T細(xì)胞共轉(zhuǎn)pCAGGS-HA-CD1d和pCAGGS-Flag-CD2v質(zhì)粒,24 h后收取細(xì)胞裂解,加入Flag beads過(guò)夜結(jié)合蛋白,通過(guò)WB檢測(cè)互作情況染,同時(shí),質(zhì)粒共轉(zhuǎn)染于共聚焦小皿中的HEK293T細(xì)胞,用標(biāo)簽抗體對(duì)其進(jìn)行孵育,選擇相應(yīng)的熒光二抗,通過(guò)激光共聚焦顯微鏡觀察CD1d與CD2v在細(xì)胞中共定位情況。采用Co-IP驗(yàn)證CD1d與ASFV外囊膜蛋白CD2v的相互作用?!窘Y(jié)果】原核表達(dá)的GST-CD1d蛋白以包涵體形式表達(dá)在感受態(tài)細(xì)胞中,分子質(zhì)量約為35 ku;實(shí)驗(yàn)兔4次免疫CD1d重組蛋白后采血并分離血清,純化的抗體經(jīng)SDS-PAGE檢測(cè)在45和25 ku處各出現(xiàn)一條特異性條帶,分別為CD1d抗體的重鏈與輕鏈。以純化的CD1d蛋白作為免疫原制備的兔抗CD1d抗體包含重鏈和輕鏈,且具有較好純度;該抗體能夠通過(guò)WB和IFA鑒定瞬時(shí)轉(zhuǎn)染的外源以及PAMs內(nèi)源CD1d蛋白的表達(dá)和細(xì)胞定位。進(jìn)一步檢測(cè)結(jié)果顯示,ASFV感染PAMs后,CD1d蛋白表達(dá)水平明顯增加,并且WB和IFA結(jié)果顯示CD1d與ASFV編碼的外囊膜蛋白CD2v存在相互作用和共定位?!窘Y(jié)論】通過(guò)原核表達(dá)技術(shù)制備了CD1d的抗體,為進(jìn)一步探究CD1d蛋白在ASFV感染過(guò)程中的生物學(xué)功能打下了基礎(chǔ)。
CD1d蛋白;原核表達(dá);多克隆抗體;非洲豬瘟病毒;CD2v蛋白
【研究意義】非洲豬瘟病毒(African swine fever virus,ASFV)是危害全球生豬產(chǎn)業(yè)的“頭號(hào)殺手”之一,目前還沒(méi)有商品化的藥物或疫苗能夠控制該病毒的傳播,其中一個(gè)主要原因是人們對(duì)其感染與免疫逃逸機(jī)制認(rèn)知不足[1]?!厩叭搜芯窟M(jìn)展】ASFV病毒顆粒由核酸、核殼、內(nèi)膜和衣殼4個(gè)同心結(jié)構(gòu)組成[2],成熟的病毒粒子在通過(guò)細(xì)胞質(zhì)膜出芽時(shí)獲得病毒的外囊膜,由ASFV EP402R基因編碼的CD2v蛋白是已知的病毒外囊膜上的唯一標(biāo)記分子[2-4]。CD2v基因全長(zhǎng)為1 083 bp,預(yù)測(cè)的蛋白質(zhì)大小為41 kDa,由402個(gè)氨基酸構(gòu)成,是一個(gè)高度糖基化的囊膜蛋白[4-5]。因編碼蛋白的胞外區(qū)氨基酸序列與宿主細(xì)胞的CD2非常相似,所以命名為CD2v,該蛋白在促進(jìn)病毒復(fù)制與傳播、病毒免疫逃逸等方面發(fā)揮著重要作用[2]。CD2v也具有良好的免疫原性,可應(yīng)用在減毒活疫苗、亞單位疫苗等研究中。有研究顯示泛素化的CD2v蛋白很可能參與了MHC-I類分子抗原遞呈途徑,從而激活特異性T細(xì)胞免疫[6]。MINMA等[7]的研究使用計(jì)算機(jī)模擬方法鑒定CD2v 蛋白胞外區(qū)包含4個(gè)B細(xì)胞表位和5個(gè)T細(xì)胞表位。BURMAKINA等[8]的研究鑒定結(jié)果顯示了4個(gè)T細(xì)胞表位能夠出現(xiàn)T細(xì)胞應(yīng)答。CD1d分子是CD1家族的成員之一,是一種與MHC-I類分子類似的蛋白[9-10],主要來(lái)源于單核細(xì)胞、樹(shù)突狀細(xì)胞及巨噬細(xì)胞等。CD1d的分子結(jié)構(gòu)包含胞外功能區(qū)(a1、a2、a3區(qū))、跨膜區(qū)和胞內(nèi)區(qū)。其中a1和a2區(qū)構(gòu)成抗原結(jié)合域,它是由疏水性氨基酸組成的利于糖脂類分子與之結(jié)合的空穴樣結(jié)構(gòu)[11]。CD1d分子的組成包括非糖基化和糖基化兩種,后者是由β2微球蛋白(β2m)與CD1d分子以非共價(jià)鍵形成的二聚體。CD1d能夠識(shí)別并遞呈糖脂類抗原給T細(xì)胞,通過(guò)特異性激活自然殺傷T(NKT)細(xì)胞,發(fā)揮抗病毒感染的免疫功能[12]。CD1d分子與β2-微球蛋白結(jié)合后,通過(guò)內(nèi)質(zhì)網(wǎng)-高爾基體的分泌途徑到達(dá)質(zhì)膜,進(jìn)而特異性地將抗原提呈給NKT細(xì)胞,使其活化并分泌多種細(xì)胞因子,直接或間接參與機(jī)體免疫應(yīng)答[13]。CD1d分子提呈糖脂抗原[14],在抗原裝載、胞內(nèi)運(yùn)輸和其加工處理等方面,具有獨(dú)特特征,從而在抗腫瘤、抗感染和抑制自身免疫中發(fā)揮重要作用[15-17]。CD1d主要表達(dá)在抗原提呈細(xì)胞等細(xì)胞表面,髓系細(xì)胞通常低表達(dá)CD1d,這有助于避免激活自身反應(yīng)性NKT細(xì)胞。自身免疫病患者外周血中CD1d的表達(dá)呈上調(diào)狀態(tài),促進(jìn)了對(duì)機(jī)體自身糖脂類抗原的提呈,從而導(dǎo)致了病理性的免疫應(yīng)答。類風(fēng)濕性關(guān)節(jié)炎患者體內(nèi)檢測(cè)出低水平的可溶性CD1d[18],而正常人體的CD1d分子是以跨膜蛋白的形式存在,可溶性CD1d在自身免疫性疾病中作用尚不清楚,有待進(jìn)一步揭示?!颈狙芯壳腥朦c(diǎn)】柯薩奇病毒感染心肌細(xì)胞后,CD1d出現(xiàn)明顯表達(dá)升高的現(xiàn)象[19]。HBV或HCV感染者的肝臟組織中CD1d表達(dá)出現(xiàn)上調(diào)的現(xiàn)象[20]。這些都提示了CD1d能夠介導(dǎo)產(chǎn)生抗病毒感染的作用?!緮M解決的關(guān)鍵問(wèn)題】由于商品化的其他物種CD1d抗體不能很好識(shí)別豬CD1d蛋白,本研究利用原核表達(dá)系統(tǒng)制備了豬源CD1d重組蛋白,通過(guò)免疫新西蘭大白兔制備了CD1d多克隆抗體,進(jìn)而將其應(yīng)用于WB、IFA和Co-IP等試驗(yàn),鑒定了ASFV感染后CD1d蛋白的表達(dá)變化,驗(yàn)證了CD1d與CD2v蛋白的相互作用,為研究CD1d在ASFV感染過(guò)程中的生物學(xué)功能以及抗原提呈機(jī)制奠定了基礎(chǔ)。
HEK293T細(xì)胞由哈爾濱獸醫(yī)研究所基礎(chǔ)免疫團(tuán)隊(duì)保存,豬肺泡巨噬細(xì)胞(PAMs)分離自30日齡ASFV陰性豬;DH5ɑ菌株、BL21(DE3)感受態(tài)細(xì)胞購(gòu)自TaKaRa公司;真核表達(dá)質(zhì)粒pCAGGS- HA-CD1d、pCAGGS-Flag-CD1d由哈爾濱獸醫(yī)研究所基礎(chǔ)免疫團(tuán)隊(duì)制備并保存[21];SPF級(jí)2月齡雌性新西蘭大白兔購(gòu)自遼寧長(zhǎng)生生物技術(shù)股份有限公司。
Prime STAR Max DNA Polymerase 購(gòu)自寶生物工程有限公司;限制性內(nèi)切酶HⅠ、I購(gòu)自NEB公司;同源重組試劑盒購(gòu)自Vazyme公司;DMEM培養(yǎng)基、胎牛血清購(gòu)自Gibco公司;質(zhì)粒小提試劑盒、膠回收試劑盒均購(gòu)自QIAGEN公司;弗氏完全佐劑和弗氏不完全劑購(gòu)自Sigma公司;兔抗GST單克隆抗體(MAb)由哈爾濱獸醫(yī)研究所基礎(chǔ)免疫團(tuán)隊(duì)制備并制備;兔源HA標(biāo)簽MAb購(gòu)自Zen Bioscience公司;兔源Flag標(biāo)簽MAb購(gòu)自Sigma- Aldrich公司;紅外熒光標(biāo)記的山羊抗兔和抗鼠IgG購(gòu)自LICOR公司。
利用TMHMM軟件分析GenBank中登錄的豬CD1d蛋白的氨基酸序列,預(yù)測(cè)其跨膜區(qū)(267aa— 289aa),針對(duì)該區(qū)對(duì)應(yīng)cDNA序列設(shè)計(jì)引物CD1d-F:5'-TCCAGGGGCCCCTATGCTGCATTCCCTTCCA GC-3'(下劃線為HⅠ酶切位點(diǎn))CD1d-R: 5'-GTCAGTCACGATTCAGATGTCCTGGTCTCCTA-3'(下劃線為Ⅰ酶切位點(diǎn)),由庫(kù)美生物科技有限公司(吉林)合成,預(yù)期PCR產(chǎn)物大小為834 bp。由吉林省庫(kù)美生物科技有限公司合成。
以pCAGGS-HA-CD1d為模板,CD1d-F/CD1d-R為引物,利用PCR方法擴(kuò)增CD1d對(duì)應(yīng)的cDNA片段,PCR擴(kuò)增體系50 μL:PrimeSTARMax Premix(2×)25 μL、上下游引物各1 μL、DNA模板50 ng,ddH2O補(bǔ)至50 μL。PCR反應(yīng)條件:98 ℃預(yù)變性2 min;98 ℃變性10 s,55 ℃退火15 s,72 ℃延伸20 s,共35個(gè)循環(huán);72 ℃延伸5 min;同時(shí),pEGX-6p1空載體經(jīng)H I和I雙酶切,將PCR產(chǎn)物和酶切產(chǎn)物經(jīng)瓊脂糖凝膠電泳鑒定后,用膠回收試劑盒純化回收,然后二者產(chǎn)物經(jīng)同源重組酶連接。連接產(chǎn)物轉(zhuǎn)化感受態(tài)DH5α,并涂布于氨芐抗性LB平板,37 ℃倒置過(guò)夜培養(yǎng)12 h。菌液PCR鑒定正確后,送至吉林省庫(kù)美生物科技有限公司測(cè)序。測(cè)序正確的重組質(zhì)粒按照小提質(zhì)粒試劑盒說(shuō)明書(shū)提取質(zhì)粒,命名為pGEX-6p1-CD1d,-20 ℃保存。正確的重組質(zhì)粒命名為 pGEX-6p1- CD1d。將重組質(zhì)粒pGEX-6p1-CD1d轉(zhuǎn)化至大腸桿菌BL21(DE3)感受態(tài)細(xì)胞中,37 ℃ 220 r/min培養(yǎng)至OD600nm值為0.6—0.8,加入終濃度為1mol·L-1的IPTG,16℃220 r/min誘導(dǎo)20 h。收集細(xì)菌,超聲破碎后離心,收集上清和沉淀后分別經(jīng)SDS-PAGE檢測(cè)重組蛋白的表達(dá)。獲得的重組GST-CD1d蛋白可以與谷胱甘肽S轉(zhuǎn)移酶融合,因此可以通過(guò)谷胱甘肽-瓊脂糖親和層析進(jìn)行純化,經(jīng)BCA法測(cè)定純化蛋白濃度后置-80℃保存。
將純化的GST-CD1d蛋白與等體積的弗氏完全佐劑混合乳化后,采用頸背部多點(diǎn)皮下注射,免疫劑量為200 μg/只,首免后第3周和第5周分別進(jìn)行二免和三免,均采用弗氏不完全佐劑乳化,方法和劑量與首免相同。三免后第7天,通過(guò)耳緣靜脈采血分離血清。首免后第7周進(jìn)行第四次免疫,一周后心臟采血,分離血清利用 Protein G在4℃過(guò)夜結(jié)合后經(jīng)1 mol·L-1Tris-HCl(pH8.5)洗脫液洗脫純化并經(jīng)SDS-PAGE鑒定后,進(jìn)一步以兔抗 GST MAb(1﹕2 000)作為一抗,以IRDye 800CW標(biāo)記的山羊抗兔IgG(1﹕10 000)作為二抗進(jìn)行WB鑒定。
將pCAGGS-HA-CD1d轉(zhuǎn)染至HEK293T細(xì)胞中,24 h后收集細(xì)胞,用含1% NP-40的細(xì)胞裂解液裂解,離心后取上清,經(jīng)SDS-PAGE電泳后,轉(zhuǎn)印到PVDF膜,用TBST配制的5%脫脂乳封閉2 h。以制備的CD1d抗體(1﹕2 000)作為一抗,以IRDye 800CW標(biāo)記的山羊抗兔IgG(1﹕10 000)作為二抗;以轉(zhuǎn)染空質(zhì)粒的細(xì)胞裂解液作為陰性對(duì)照,經(jīng)WB鑒定CD1d抗體與真核表達(dá)CD1d蛋白的反應(yīng)性,評(píng)估CD1d抗體在檢測(cè)外源CD1d蛋白表達(dá)中的應(yīng)用效果。然后利用多聚賴氨酸包被的共聚焦培養(yǎng)皿,進(jìn)而接種HEK293T細(xì)胞,將pCAGGS-HA-CD1d質(zhì)粒轉(zhuǎn)染HEK293T細(xì)胞24 h后,棄上清,固定、透膜后,10% FBS室溫封閉1 h;分別以HA標(biāo)簽抗體(1﹕1 000)或CD1d抗體(1﹕100)作為一抗;以Alexa Fluor-594山羊抗兔IgG(1﹕2 000)作為二抗,室溫避光孵育1 h;經(jīng)DAPI染色20 min,IFA檢測(cè)CD1d抗體與真核表達(dá)CD1d蛋白的反應(yīng)性,鑒定豬CD1d外源蛋白在HEK293T細(xì)胞中的定位。
將PAMs鋪于6孔板中,24 h收集細(xì)胞,采用WB方法檢測(cè)CD1d抗體與內(nèi)源表達(dá)CD1d蛋白的反應(yīng)性;以HEK293T細(xì)胞裂液作為陰性對(duì)照。評(píng)估CD1d抗體在檢測(cè)內(nèi)源表達(dá)CD1d蛋白中的應(yīng)用。利用多聚賴氨酸包被的共聚焦培養(yǎng)皿,進(jìn)而接種PAMs,24 h后棄上清,采用IFA方法檢測(cè)CD1d抗體與內(nèi)源表達(dá)CD1d蛋白的特異性反應(yīng),鑒定內(nèi)源性CD1d蛋白的定位情況。
將pCAGGS-Flag-CD1d真核表達(dá)質(zhì)粒轉(zhuǎn)染至HEK293T細(xì)胞中,同時(shí)轉(zhuǎn)染空質(zhì)粒至HEK293T細(xì)胞作為對(duì)照。24 h后收集細(xì)胞樣品,裂解細(xì)胞后進(jìn)行IP試驗(yàn):在樣品中加入FLAG-Agarose beads,4℃旋轉(zhuǎn)孵育至少6 h;用預(yù)冷的含1% NP-40 細(xì)胞裂解液洗滌beads 5次后煮沸,將制備的樣品經(jīng)SDS-PAGE電泳,轉(zhuǎn)印到PVDF膜,以制備的CD1d抗體(1﹕1 000)作為一抗,以IRDye 800CW標(biāo)記的山羊抗兔IgG(1﹕10 000)作為二抗,檢測(cè)免疫沉淀中的CD1d蛋白,評(píng)估CD1d抗體在IP試驗(yàn)中的應(yīng)用效果。
將PAMs鋪于6孔板中,24 h后接種ASFV(1 MOI),分別于0、15、30、60 min收集細(xì)胞并裂解,以不接種ASFV的細(xì)胞裂解液作為對(duì)照。以制備的CD1d抗體(1﹕1 000)作為一抗,以IRDye 800CW標(biāo)記的山羊抗兔IgG(1﹕10 000)作為二抗,經(jīng)WB檢測(cè)PAMs中CD1d蛋白的表達(dá)水平變化。
將pCAGGS-HA-CD1d和pCAGGS-Flag-CD2v各2 μg共轉(zhuǎn)染共聚焦培養(yǎng)皿和六孔板中的HEK293T細(xì)胞,對(duì)照細(xì)胞不作任何處理。24 h后棄去培養(yǎng)基,4%多聚甲醛室溫固定共聚焦培養(yǎng)皿中的細(xì)胞30 min,分別以CD1d抗體(1﹕500)、HA和Flag標(biāo)簽抗體(1﹕500)為一抗,以Alexa Fluor-594 山羊抗鼠IgG(1﹕2 000)和Alexa Fluor-633山羊抗兔IgG(1﹕2 000)為二抗,通過(guò)激光共聚焦顯微鏡觀察CD1d與CD2v的共定位情況;六孔板中的HEK293T細(xì)胞,轉(zhuǎn)染質(zhì)粒24 h后使用FLAG beads進(jìn)行Co-IP試驗(yàn),以驗(yàn)證CD1d與CD2v的相互作用。
以pCAGGS-HA-CD1d質(zhì)粒為模板,PCR擴(kuò)增出的CD1d片段與預(yù)測(cè)大小相符(834 bp)。將獲得的豬CD1d片段克隆至pGEX-6p1原核表達(dá)載體,獲得的重組表達(dá)質(zhì)粒經(jīng)限制性內(nèi)切酶HⅠ和Ⅰ雙酶切鑒定及測(cè)序鑒定,結(jié)果表明重組質(zhì)粒pGEX-6p1-CD1d構(gòu)建正確。將重組質(zhì)粒轉(zhuǎn)化BL21(DE3)并誘導(dǎo)表達(dá),SDS-PAGE結(jié)果顯示約50 ku處有一條明顯的條帶,該蛋白以包涵體形式表達(dá)(圖1-A)。WB結(jié)果顯示,此條帶為CD1d蛋白特異性條帶,其大小與預(yù)期結(jié)果一致,且經(jīng)過(guò)純化的蛋白較為純凈(圖1-B)。以上結(jié)果說(shuō)明得到了純度較高的CD1d重組蛋白,經(jīng)BCA法測(cè)定后的蛋白濃度為58 mg·mL-1。
試驗(yàn)兔4次免疫CD1d重組蛋白后采血并分離血清,通過(guò)Protein G純化的抗體經(jīng)SDS-PAGE檢測(cè),結(jié)果顯示,在45和25 ku處各出現(xiàn)一條特異性條帶,分別為CD1d抗體的重鏈與輕鏈(圖2)。結(jié)果表明,豬CD1d多克隆抗體被成功制備和純化。
A:SDS-PAGE的鑒定結(jié)果;B:WB的鑒定結(jié)果。M:蛋白分子質(zhì)量標(biāo)準(zhǔn);1:未誘導(dǎo)的菌液;2-4:IPTG誘導(dǎo)的重組菌菌液、超聲后沉淀、超聲后上清;5:WB鑒定純化的CD1d蛋白; 6: SDS-PAGE鑒定純化的CD1d蛋白
將pCAGGS-Flag-CD1d轉(zhuǎn)染HEK293T細(xì)胞,24 h后收集細(xì)胞,分別經(jīng)WB和IFA檢測(cè)。WB結(jié)果顯示,純化的CD1d抗體可以識(shí)別外源表達(dá)的Flag-CD1d蛋白,其大小近35 ku,結(jié)果中顯示出了兩條特異性條帶,推測(cè)可能是由于豬源的Flag-CD1d蛋白在HEK293T細(xì)胞中表達(dá)存在一定的修飾造成的(圖3-A)。質(zhì)粒pCAGGS-HA-CD1d轉(zhuǎn)染的細(xì)胞分別用HA標(biāo)簽抗體及CD1d抗體作為一抗,通過(guò)IFA檢測(cè),結(jié)果顯示,均可檢測(cè)到特異性的熒光,其位于細(xì)胞的胞質(zhì)內(nèi)(圖3-B)。這些結(jié)果說(shuō)明制備的CD1d抗體可以用于WB及IFA檢測(cè)外源表達(dá)的豬CD1d蛋白。
M:蛋白質(zhì)分子質(zhì)量標(biāo)準(zhǔn);1-4:純化的不同濃度CD1d抗體
A:WB分析外源CD1d蛋白在HEK293T細(xì)胞中的表達(dá);B:IFA鑒定外源CD1d蛋白在HEK293T細(xì)胞中的定位。M:蛋白質(zhì)分子質(zhì)量標(biāo)準(zhǔn);1:轉(zhuǎn)染pCAGGS-HA-CD1d的 HEK293T細(xì)胞裂解液;2:轉(zhuǎn)染pCAGGS-HA的HEK293T細(xì)胞裂解液
鋪于6孔板中的PAMs裂解后分別經(jīng)WB和IFA鑒定。WB結(jié)果顯示,制備的CD1d抗體能夠與PAMs中的內(nèi)源CD1d蛋白反應(yīng),產(chǎn)生一條近55 ku的特異性條帶(圖4-A);以CD1d抗體作為一抗,IFA結(jié)果顯示,PAMs中出現(xiàn)特異性紅色熒光,位于細(xì)胞膜和細(xì)胞質(zhì),而對(duì)照無(wú)熒光(圖4-B),表明CD1d定位于PAMs的胞質(zhì)內(nèi)。這些結(jié)果說(shuō)明制備的抗體可以用于檢測(cè)內(nèi)源表達(dá)的豬CD1d蛋白。
A:WB分析PAMs中CD1d的表達(dá);B:IFA鑒定CD1d在PAMs中的定位。M:蛋白質(zhì)分子質(zhì)量標(biāo)準(zhǔn);1:PAMs裂解液;2:MA104細(xì)胞裂解液
將pCAGGS-Flag-CD1d轉(zhuǎn)染至HEK293T細(xì)胞中,24 h后收集細(xì)胞樣品,經(jīng)IP試驗(yàn)檢測(cè),結(jié)果顯示,CD1d抗體可以將Flag-CD1d蛋白沉淀下來(lái)(圖5)。
將ASFV(1 MOI)接種6孔板中的PAMs,分別在不同時(shí)間收集并裂解細(xì)胞,通過(guò)WB檢測(cè)病毒感染不同時(shí)間PAMs中CD1d的表達(dá)水平。結(jié)果顯示,隨著ASFV感染時(shí)間的增加,CD1d蛋白的表達(dá)水平逐漸升高(圖6-A),通過(guò)Image J軟件對(duì)圖6-A的結(jié)果進(jìn)行灰度值分析,結(jié)果顯示,在ASFV感染60 min時(shí)CD1d的表達(dá)水平增加了近3倍(圖6-B)。結(jié)果表明,ASFV感染促進(jìn)了PAMs中CD1d蛋白的表達(dá)水平。
圖5 CD1d抗體用于IP試驗(yàn)
A:WB分析ASFV感染不同時(shí)間CD1d的表達(dá)情況;B:對(duì)A圖的灰度值進(jìn)行比較分析??v坐標(biāo)顯示的是CD1d與GAPDH的灰度比值
將pCAGGS-Flag-pCD2v與pCAGGS-HA-CD1d轉(zhuǎn)染HEK293T細(xì)胞,24 h后分別利用CD1d和HA標(biāo)簽抗體作為一抗,相應(yīng)熒光二抗孵育后經(jīng)激光共聚焦顯微鏡下觀察(圖7-A);將CD1d和CD2v質(zhì)粒轉(zhuǎn)染HEK293T細(xì)胞中,24 h后收集細(xì)胞,樣品經(jīng)IP試驗(yàn)檢測(cè)與相互作用(圖7-B)。結(jié)果顯示,宿主蛋白CD1d與非洲豬瘟外囊膜蛋白CD2v存在相互作用。
A:IFA鑒定CD1d與CD2v的共定位;B:Co-IP鑒定CD1d與CD2v的相互作用
非洲豬瘟(African swine fever virus,ASF)是由ASFV感染家豬和野豬而引起的急性、烈性、高度接觸性傳染病。對(duì)中國(guó)甚至全世界造成嚴(yán)重的經(jīng)濟(jì)損失。非洲豬瘟的傳播方式眾多, 發(fā)病豬及感染豬的排泄物、分泌物、豬肉及其制品以及污染的運(yùn)輸車輛、飼料、人員、衣物、鞋子等均為重要的傳染源, 特別是感染豬的調(diào)運(yùn)會(huì)加速疫情的傳播[22]。在ASFV感染的巨噬細(xì)胞或其他細(xì)胞系中表達(dá)了超過(guò)150種病毒蛋白,這些蛋白不僅參與病毒進(jìn)入、復(fù)制、病毒粒子組裝和排出,還調(diào)節(jié)宿主抗病毒先天免疫應(yīng)答[23-28]。由于ASFV病毒粒子的結(jié)構(gòu)和逃避先天免疫應(yīng)答的復(fù)雜機(jī)制,目前還沒(méi)有現(xiàn)有的治療藥物或有效的疫苗。
CD1家族蛋白為非經(jīng)典的MHC-I類分子,主要與脂類或糖脂類抗原形成復(fù)合物,從而將抗原提呈給NKT細(xì)胞。CD1d與抗原結(jié)合的結(jié)構(gòu)域主要位于其胞外功能區(qū)頂端的a1和a2區(qū),它是由疏水性氨基酸組成的利于脂類分子與之結(jié)合的空穴樣結(jié)構(gòu),這便導(dǎo)致CD1d的疏水性較強(qiáng),因此在通過(guò)原核表達(dá)CD1d蛋白時(shí)呈現(xiàn)出不可溶的包涵體形式。然而其抗原表位仍有很大幾率暴露在外側(cè),通過(guò)免疫兔子制備的抗體也呈現(xiàn)出較好的反應(yīng)原性,說(shuō)明通過(guò)包涵體來(lái)制備豬CD1d的特異性抗體切實(shí)可行。
CD1d 的表達(dá)對(duì)于激活NKT 細(xì)胞是必要的,這一表達(dá)在病原感染時(shí)被調(diào)節(jié)。HCV在感染時(shí),肝臟的CD1d表達(dá)明顯增多,進(jìn)而被NKT細(xì)胞識(shí)別其遞呈的脂質(zhì)抗原,從而正向或負(fù)向調(diào)節(jié)炎癥應(yīng)答反應(yīng)[15]。巨細(xì)胞病毒(MCMV)或淋巴細(xì)胞脈絡(luò)叢腦膜炎病毒(LCMV)感染小鼠時(shí),控制NKT細(xì)胞的激活和CD1d抗原提呈,結(jié)果增強(qiáng)了對(duì)病毒的清除作用[16]。牛痘病毒(VV)或水皰性口炎病毒(VSV)感染后,CD1d分子被分離到細(xì)胞的一邊,這也伴隨著細(xì)胞信號(hào)通路的改變[17]。單純皰疹病毒-1(HSV-1)改變了人類CD1d的黏附力,致使CD1d介導(dǎo)的抗原提呈受到損傷,進(jìn)而抑制了NKT細(xì)胞的活化[18]。
早期對(duì)CD1d的研究主要集中認(rèn)為CD1d只能識(shí)別脂類抗原。但隨著對(duì)α-半乳糖基神經(jīng)酰胺研究的深入,發(fā)現(xiàn)CD1d分子還能夠特異性結(jié)合外源性糖脂類抗原[29]。但糖脂類抗原在未經(jīng)CD1d 加工處理不能被NKT 細(xì)胞所識(shí)別[30]。本研究結(jié)果顯示,CD1d蛋白存在于細(xì)胞膜和細(xì)胞質(zhì)中,在ASFV感染初期,CD1d的表達(dá)水平呈現(xiàn)逐漸增高的趨勢(shì)。此外,豬CD1d能夠與ASFV編碼的外囊膜蛋白CD2v相互作用,這些結(jié)果說(shuō)明CD1d可能與介導(dǎo)病毒入侵相關(guān),也可能是細(xì)胞的免疫調(diào)節(jié)反應(yīng),從而促進(jìn)CD1d的病毒抗原提呈作用。這種結(jié)合是否符合CD1d的抗原裝載過(guò)程,又是否能夠提呈CD2v抗原還有待進(jìn)一步鑒定。
本研究利用原核表達(dá)的豬CD1d蛋白成功制備了特異性多克隆抗體,該抗體能夠有效識(shí)別內(nèi)源性的豬CD1d抗原。通過(guò)使用該抗體,發(fā)現(xiàn)ASFV感染能夠促進(jìn)CD1d的表達(dá)水平,且CD1d與CD2v存在相互作用,這為進(jìn)一步鑒定CD1d在ASFV感染過(guò)程中的功能研究打下了基礎(chǔ)。
[1] DIXON L K, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41.
[2] ALEJO A, MATAMOROS T, GUERRA M, ANDRéS G. A proteomic atlas of the African swine fever virus particle. Journal of Virology, 2018, 92(23): e01293-18.
[3] WANG G G, XIE M J, WU W, CHEN Z Z. Structures and functional diversities of ASFV proteins. Viruses, 2021, 13(11): 2124.
[4] WANG N, ZHAO D M, WANG J L, ZHANG Y L, WANG M, GAO Y, LI F, WANG J F, BU Z G, RAO Z H, WANG X X. Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366(6465): 640-644.
[5] DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.
[6] 王曼, 沈宇清. 非洲豬瘟病毒結(jié)構(gòu)蛋白CD2v的功能研究進(jìn)展. 中國(guó)免疫學(xué)雜志, 2021, 37(22): 2734-2737, 2744.
WANG M, SHEN Y Q. Research progress in function of ASFV structural protein CD2v. Chinese Journal of Immunology, 2021, 37(22): 2734-2737, 2744. (in Chinese)
[7] MINMA K A, KATORKINA E I, KATORKIN S A, TSYBANOV S Z, MALOGOLOVKIN A S. In silico prediction of B- and T-cell epitopes in the CD2v protein of African swine fever virus (African Swine Fever Virus, Asfivirus, Asfarviridae). Problems of Virology, 2020, 65(2): 103-112.
[8] BURMAKINA G, MALOGOLOVKIN A, TULMAN E R, XU W D, DELHON G, KOLBASOV D, ROCK D L. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. Journal of General Virology, 2019, 100(2): 259-265.
[9] FOWLKES B J, KRUISBEEK A M, TON-THAT H, WESTON M A, COLIGAN J E, SCHWARTZ R H, PARDOLL D M. A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vβ gene family. Nature, 1987, 329(6136): 251-254.
[10] MAKINO Y, KANNO R, ITO T, HIGASHINO K, TANIGUCHI M. Predominant expression of invariant Vα14+TCR α chain in NK1.1+T cell populations. International Immunology, 1995, 7(7): 1157-1161.
[11] GODFREY D I, MACDONALD H R, KRONENBERG M, SMYTH M J, VAN KAER L. NKT cells: what’s in a Name? Nature Reviews Immunology, 2004, 4: 231-237.
[12] 陸田田, 黃震, 陳章權(quán). CD1d分子的結(jié)構(gòu)與功能. 生命的化學(xué), 2008, 28(2): 159-161.
LU T T, HUANG Z, CHEN Z Q. Structure and Function of CD1d Molecule. Chemistry of Life, 2008, 28(2): 159-161. (in Chinese)
[13] KANG S J, CRESSWELL P. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. Journal of Biological Chemistry, 2002, 277(47): 44838-44844.
[14] 師義, 王昆華, 劉為軍, 徐玉. CD1d分子研究進(jìn)展. 廣東醫(yī)學(xué), 2012, 33(11): 1678-1680.
SHI Y, WANG K H, LIU W J, XU Y. Research Progress of CD1d Molecular. Guangdong Medical Journal, 2012, 33(11): 1678-1680. (in Chinese)
[15] ARGILAGUET J M, PéREZ-MARTíN E, NOFRARíAS M, GALLARDO C, ACCENSI F, LACASTA A, MORA M, BALLESTER M, GALINDO-CARDIEL I, LóPEZ-SORIA S, ESCRIBANO J M, RECHE P A, RODRíGUEZ F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): e40942.
[16] DURANTE-MANGONI E, WANG R J, SHAULOV A, HE Q, NASSER I, AFDHAL N, KOZIEL M J, EXLEY M A. Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. The Journal of Immunology, 2004, 173(3): 2159-2166.
[17] RENUKARADHYA G J, WEBB T J R, KHAN M A, LIN Y L, DU W J, GERVAY-HAGUE J, BRUTKIEWICZ R R. Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. The Journal of Immunology, 2005, 175(7): 4301-4308.
[18] WEBB T J, CAREY G B, EAST J E, SUN W J, BOLLINO D R, KIMBALL A S, BRUTKIEWICZ R R. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathogens and Disease, 2016, 74(6): ftw055.
[19] YANG J Q, CHUN T, LIU H Z, HONG S, BUI H, VAN KAER L, WANG C R, SINGH R. CD1d deficiency exacerbates inflammatory dermatitis in MRL-mice. European Journal of Immunology, 2004, 34(6): 1723-1732.
[20] 陳建勇, 沈?qū)W文, 張吉翔. CD1d/NKT在抗HBV和HCV中的作用. 生命的化學(xué), 2007, 27(3): 246-248.
CHEN J Y, SHEN X W, ZHANG J X. Protection of CD1d/NKT against HBV and HCV. Chemistry of Life, 2007, 27(3): 246-248. (in Chinese)
[21] CHEN X, ZHENG J, LIU C X, LI T T, WANG X, LI X W, BAO M F, LI J N, HUANG L, ZHANG Z X, BU Z G, WENG C J. CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerging Microbes & Infections, 2023, 12(2): 2220575.
[22] 羅玉子, 孫元, 王濤, 仇華吉. 非洲豬瘟: 我國(guó)養(yǎng)豬業(yè)的重大威脅. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(21): 4177-4187.
LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: a major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187. (in Chinese)
[23] MATAMOROS T, ALEJO A, RODRíGUEZ J M, HERNáEZ B, GUERRA M, FRAILE-RAMOS A, ANDRéS G. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio, 2020, 11(4): e00789-20.
[24] ANDRE?S G, GARC??A-ESCUDERO R, VIN?UELA E, SALAS M L, RODR??GUEZ J M. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology, 2001, 75(15): 6758-6768.
[25] SáNCHEZ E G, PéREZ-Nú?EZ D, REVILLA Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines, 2017, 5(4): 42.
[26] CUESTA-GEIJO M á, GARCíA-DORIVAL I, DEL PUERTO A, URQUIZA J, GALINDO I, BARRADO-GIL L, LASALA F, CAYUELA A, SORZANO C O S, GIL C, DELGADO R, ALONSO C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathogens, 2022, 18(1): e1009784.
[27] HERNAEZ B, ALONSO C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology, 2010, 84(4): 2100-2109.
[28] LIU J Y, GALLO R M, DUFFY C, BRUTKIEWICZ R R. A VP22-null HSV-1 is impaired in inhibiting CD1d-mediated antigen presentation. Viral Immunology, 2016, 29(7): 409-416.
[29] LEE A, FARRAND K J, DICKGREBER N, HAYMAN C M, JüRS S, HERMANS I F, PAINTER G F. Novel synthesis of α-galactosyl- ceramides and confirmation of their powerful NKT cell agonist activity. Carbohydrate Research, 2006, 341(17): 2785-2798.
[30] PRIGOZY T I, NAIDENKO O, QASBA P, ELEWAUT D, BROSSAY L, KHURANA A, NATORI T, KOEZUKA Y, KULKARNI A, KRONENBERG M. Glycolipid antigen processing for presentation by CD1d molecules. Science, 2001, 291(5504): 664-667.
Preparation and Application of Polyclonal Antibodies Against Pig CD1d Protein
LIU ChuanXia, CHEN Xin, WANG Xiao, LI XueWen, LI TingTing, WENG ChangJiang, ZHENG Jun
Division of Fundamental Immunology, National African Swine Fever Para-Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention/Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069
【Objective】 The aim of this study was to prepare polyclonal antibodies against porcine CD1d protein, so as to lay the foundation for exploring the function of porcine CD1d protein in the process of African swine fever virus (ASFV) infection. 【Method】 In this study, the pig CD1d gene was amplified using PCR and homologously recombined into the pGEX-6p1 vector, constructing a prokaryotic recombinant expression plasmid pGEX-6p1-CD1d. The recombinant plasmidBL21 (DE3) was transformed and induced for expression using IPTG. The expressed GST CD1d recombinant protein was identified by SDS-PAGE and Western blot (WB) methods. The SDS-PAGE results showed a clear band at approximately 50 ku, which was expressed in the form of an inclusion body. Then, protein purification was performed using glutathione agarose affinity chromatography. The purified GST-CD1d protein was mixed and emulsified with an equal volume of Freund's complete adjuvant. The purified protein was immunized in New Zealand white rabbits and administered subcutaneously at multiple points on the neck and back, with an immune dose of 200 μG/piece, and then second and third immunizations were performed at the 3rd and 5th weeks after the first immunization, respectively, using Freund's incomplete adjuvant emulsification, with the same method and dosage as the first immunization. On the 7th day after the third immunization, the blood was collected from the ear vein to isolate the serum. The fourth immunization was conducted at the 7 weeks after the first immunization, and the blood was collected from the heart one week later. The antibody was purified by Protein G affinity chromatography and frozen at -80 ℃. The expression and cellular localization of endogenous CD1d protein expressed by transient transfection of exogenous and porcine primary macrophages (PAMs) were indentified by using WB and indirect immunofluorescence (IFA). Similarly, the prepared CD1d antibody could pull down CD1d expressed by transient exogenous transfection through IP. In order to investigate the early stage of ASFV infection, ASFV was inoculated into PAMs and samples of ASFV infection for 0, 15, 30, and 60 minutes were prepared, respectively. CD1d was used as the primary antibody and the expression of CD1d protein was detected by WB. Plasmids pCAGGS-HA-CD1d and pCAGGS-Flag-CD2v were co transfected into HEK293T cells. After 24 hours, the cells were collected for lysis, and Flag beads overnight binding protein was added. The interaction was detected by WB staining. At the same time, the plasmids were cotransfected into HEK293T cells in a confocal dish, incubated with labeled antibodies, and corresponding fluorescent secondary antibodies were selected. The co localization of CD1d and CD2v was observed under a laser confocal microscope. Verification of Co-IP interaction between CD1d and ASFV outer capsule protein CD2v was verified.【Result】 The GST-CD1d protein expressed in prokaryotic cells was expressed in the form of inclusion bodies, with a molecular weight of approximately 35 ku; After four rounds of immunization with CD1d recombinant protein in experimental rabbits, blood was collected and serum was separated. The purified antibody was detected by SDS-PAGE and showed a specific band at 45 and 25 ku, respectively, representing the heavy and light chains of the CD1d antibody. The rabbit anti CD1d antibody prepared using purified CD1d protein as immunogen contained both heavy and light chains, and had good purity; This antibody could identify the expression and cellular localization of transient transfected exogenous and PAMs endogenous CD1d proteins through WB and IFA. Further testing results showed that after ASFV infection with PAMs, the expression level of CD1d protein significantly increased, and WB and IFA results showed that CD1d interacted and co localized with the outer capsule protein CD2v encoded by ASFV. 【Conclusion】 This study prepared antibodies against CD1d through prokaryotic expression technology, laying the foundation for further exploration of the biological function of CD1d protein in ASFV infection process.
CD1d protein; prokaryotic expression; polyclonal antibody; African swine fever virus; CD2v protein
10.3864/j.issn.0578-1752.2024.08.015
2022-11-17;
2024-03-01
十四五國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1800100)、國(guó)家自然科學(xué)基金(32172874)
劉傳霞,E-mail:18264110178@163.com。通信作者鄭君,E-mail:zhengjun01@caas.cn
(責(zé)任編輯 林鑒非)