仲金平,鄭子成,李廷軒,何曉玲
磷肥不同施用量對(duì)紫色土坡面膠體態(tài)磷流失的影響
仲金平1,鄭子成1,李廷軒1,何曉玲2
1四川農(nóng)業(yè)大學(xué)資源學(xué)院,成都 611130;2西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100
【目的】農(nóng)田磷流失風(fēng)險(xiǎn)與磷肥用量密切相關(guān),鑒于土壤膠體在土-水界面磷素遷移轉(zhuǎn)化過(guò)程中的重要作用,探討施用磷肥對(duì)紫色土坡面膠體態(tài)磷流失的影響及其與產(chǎn)流產(chǎn)沙之間的關(guān)系,為從土壤膠體視角認(rèn)識(shí)磷素遷移機(jī)制提供科學(xué)依據(jù)?!痉椒ā吭囼?yàn)采用人工模擬降雨和室內(nèi)分析相結(jié)合的方法,開(kāi)展4個(gè)磷肥施用量0(P0)、20(P20)、40(P40)和100(P100)mg·kg-1下紫色土坡面產(chǎn)流產(chǎn)沙及膠體態(tài)磷流失特征研究。【結(jié)果】地表徑流量受磷肥施用量影響較小, 侵蝕產(chǎn)沙量受磷肥施用量影響較大,施磷后坡面初始產(chǎn)沙量顯著降低了49.3%—68.7%,P100處理累積產(chǎn)沙量較其他施磷處理顯著降低了26.5%—30.9%。地表徑流是紫色土坡面水分散性總磷(WTP)和膠體態(tài)磷(CP)的主要流失途徑,其流失比例分別占總流失量的57.5%—93.9%和62.3%—94.8%,且CP是地表徑流WTP流失的主要形態(tài),占WTP流失量的72.1%—80.7%。施磷顯著增加了磷素流失風(fēng)險(xiǎn),與P0處理相比,施磷后地表徑流WTP、CP、DP(溶解態(tài)磷)累積流失負(fù)荷量分別提高了2.56—20.97倍、2.72—22.21倍、1.17—10.40倍,侵蝕泥沙WTP、CP、DP的累積流失負(fù)荷量分別提高了0.24—0.92倍、0.05—1.09倍、0.47—0.76倍。【結(jié)論】紫色土坡面膠體態(tài)磷流失的主要途徑為地表徑流,膠體態(tài)磷流失與產(chǎn)流過(guò)程密切相關(guān),流失負(fù)荷量主要取決于磷肥施用量。水分散性總磷與膠體態(tài)磷呈極顯著相關(guān)關(guān)系,膠體態(tài)磷是紫色土坡面磷素流失主要形態(tài),可以通過(guò)調(diào)控地表徑流,合理減施磷肥以減少坡面CP流失。
膠體態(tài)磷;磷肥;地表徑流;侵蝕泥沙;紫色土
【研究意義】磷素不僅是農(nóng)業(yè)生態(tài)系統(tǒng)的限制性養(yǎng)分元素,也是引發(fā)水體富營(yíng)養(yǎng)化的關(guān)鍵制約因子[1-3]。作物生長(zhǎng)所需磷素一般通過(guò)土壤磷庫(kù)和外施磷肥獲得,但磷肥施入土壤后極易被吸附固定,導(dǎo)致土壤磷素的生物有效性極低[4-5]。土壤膠體是粒徑1 nm至1 μm的顆粒,具有比表面積大、吸附性能強(qiáng)等特點(diǎn),其對(duì)磷的吸附固定能力高達(dá)單位重量不可移動(dòng)土壤基質(zhì)的5 000倍,故被視為吸收儲(chǔ)存磷素的重要場(chǎng)所,而通過(guò)吸附、絮凝和沉積形成的土壤膠體態(tài)磷(CP)不僅是土壤磷庫(kù)的重要組分,也是磷素遷移流失的主要載體[6-9]。川中紫色土區(qū)是四川玉米、小麥等糧食作物的主要生產(chǎn)區(qū),但其土層淺薄,結(jié)構(gòu)松散,易形成大量膠結(jié)能力差的松散碎屑物,膠體穩(wěn)定性差,加之該區(qū)域降雨充沛且集中,極易引發(fā)水土流失,加劇了土壤膠體及膠體態(tài)磷的流失[10-14]。因此,明確紫色土膠體態(tài)磷的流失特征對(duì)于促進(jìn)川中紫色土丘陵區(qū)農(nóng)業(yè)生態(tài)可持續(xù)發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】土壤磷素在固液界面遷移機(jī)制較為復(fù)雜,已有研究表明,土壤膠體是溶解性有機(jī)物、重金屬元素和營(yíng)養(yǎng)元素進(jìn)行遠(yuǎn)距離遷移的載體[15-19],膠體概念的引入為研究磷素遷移轉(zhuǎn)化機(jī)制提供了新視角。膠體態(tài)磷相較于溶解態(tài)磷(DP)而言,內(nèi)部結(jié)構(gòu)及其表面性質(zhì)具有固體特性,有利于吸附溶質(zhì);與顆粒態(tài)磷(PP)相比,其粒徑小,受重力沉降作用較小,更易遷移進(jìn)入水體[16,20]。孫小靜等[21]通過(guò)切向流超濾技術(shù)發(fā)現(xiàn)太湖水體膠體態(tài)磷占總磷(TP)的39%以上,膠體是水體中營(yíng)養(yǎng)鹽的重要載體,而陸源輸入是水體膠體態(tài)磷的主要來(lái)源[22-23]。因此,磷素在土壤膠體表面的吸附是導(dǎo)致磷流失的主要原因,土壤膠體態(tài)磷的含量也成為表征膠體態(tài)磷流失潛力的常用指標(biāo)[24-26]。目前,針對(duì)農(nóng)田土壤膠體態(tài)磷的遷移機(jī)制已展開(kāi)大量研究,土壤膠體態(tài)磷主要受到土壤理化性質(zhì)、施肥及降雨的影響,其形成及遷移機(jī)制具有特殊性和復(fù)雜性[27-30]。土壤理化性質(zhì)會(huì)直接影響土壤膠體態(tài)磷的形成環(huán)境及遷移機(jī)制[29-30]。施肥會(huì)影響膠體態(tài)磷的含量,有研究表明施用無(wú)機(jī)磷肥會(huì)使土壤膠體磷含量顯著提高,而沼液和糞肥還會(huì)提高膠體態(tài)磷的流失量[31-33]。此外,施肥還會(huì)改變土壤膠體表面電化學(xué)特性[34-35],BAKEN等[36]發(fā)現(xiàn)在不同磷濃度條件下,膠體態(tài)磷的穩(wěn)定性存在較大差異,低磷濃度下膠體與磷的結(jié)合更為穩(wěn)定,而磷濃度較高時(shí)由吸附產(chǎn)生的膠體態(tài)磷絕大多數(shù)在短期內(nèi)從膠體表面釋放。土壤膠體態(tài)磷在降雨、灌溉等因素作用下進(jìn)入下游水體,在降雨-徑流-入滲過(guò)程中會(huì)使大量土壤可移動(dòng)膠體釋放,為磷素流失提供載體[37-38]。此外,降雨也會(huì)通過(guò)降低徑流pH來(lái)增加膠體態(tài)磷的流失貢獻(xiàn)[14]。紫色土顆粒分散性高,張維等[39]針對(duì)坡地尺度紫色土膠體釋放與遷移機(jī)制展開(kāi)研究,發(fā)現(xiàn)紫色土膠體顆粒遷移速率比產(chǎn)流速率更快,且膠體濃度峰值的主要決定因子是雨強(qiáng),說(shuō)明在暴雨頻發(fā)的紫色土區(qū),土壤膠體對(duì)坡面磷素遷移的潛在作用不容忽視?!颈狙芯壳腥朦c(diǎn)】紫色土作為一種重要的農(nóng)業(yè)土壤,礦質(zhì)膠體含量豐富,但其抗侵蝕能力弱,為紫色土膠體態(tài)磷流失提供載體及動(dòng)力。目前紫色土區(qū)磷素流失的特征及規(guī)律方面的研究,大多關(guān)注溶解態(tài)磷和顆粒態(tài)磷,對(duì)于膠體態(tài)磷的流失及其與施磷量、產(chǎn)流產(chǎn)沙等之間的關(guān)系亟待深入研究,以明晰紫色土區(qū)磷素流失的本質(zhì)特征。因此,本研究采用人工模擬降雨和室內(nèi)分析相結(jié)合的方法,對(duì)裸露坡面不同施磷量下紫色土膠體態(tài)磷的流失特征展開(kāi)研究,探明不同形態(tài)磷素對(duì)磷流失的貢獻(xiàn),明確膠體態(tài)磷流失與施磷量和產(chǎn)流產(chǎn)沙的關(guān)系?!緮M解決的關(guān)鍵問(wèn)題】本研究針對(duì)紫色土區(qū)膠體含量豐富、膠體態(tài)磷流失潛力大的特點(diǎn),探討紫色土膠體態(tài)磷的流失特征,解析膠體態(tài)磷在磷素流失中的作用及貢獻(xiàn),以期為紫色土磷素流失防控提供理論依據(jù),促進(jìn)該區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展。
研究區(qū)位于四川省資陽(yáng)市雁江區(qū)松濤鎮(zhèn),地處四川盆地中部,長(zhǎng)江上游沱江水系花椒溝支流上游。屬亞熱帶季風(fēng)氣候,年均氣溫17℃,多年平均降雨量為966 mm,年內(nèi)降雨充沛但時(shí)空分布不均,夏季(6—8月)降雨量為517 mm,暴雨頻發(fā)。該區(qū)土壤為侏羅紀(jì)遂寧組紅棕紫泥,采樣深度為0—40 cm。供試土壤pH為8.1、有機(jī)質(zhì)8.08 g·kg-1、全氮1.27 g·kg-1、全磷1.16 g·kg-1、全鉀31.29 g·kg-1、堿解氮130.82 mg·kg-1、有效磷179.67 g·kg-1、速效鉀182.98 mg·kg-1,土壤膠體含量為389.07 g·kg-1。
(1)供試土壤:在研究區(qū)分層(0—10、10—20和20—40 cm)采集供試土壤,風(fēng)干后過(guò)1 cm篩備用[6,34]。
(2)試驗(yàn)設(shè)計(jì):根據(jù)當(dāng)?shù)責(zé)o機(jī)磷肥(KH2PO4)施用習(xí)慣,試驗(yàn)設(shè)0(P0)、20(P20)、40(P40)、100(P100)mg·kg-14個(gè)施肥處理,每個(gè)處理重復(fù)3次。
(3)試驗(yàn)小區(qū):試驗(yàn)裝置為坡度可調(diào)節(jié)的鋼制土槽(2.0 m×1.0 m×0.5 m),槽內(nèi)填土深度為40 cm,大約裝土1 040 kg。填土?xí)r為保證土面平整并模擬研究區(qū)各土層自然容重,采取分層填土法,按照自然容重1.31 g·cm-3(0—10 cm)、1.34 g·cm-3(10—20 cm)、1.40 g·cm-3(20—40 cm)從下至上依次填充。根據(jù)當(dāng)?shù)剞r(nóng)耕習(xí)慣,按照不同施磷量將磷肥(KH2PO4)溶于蒸餾水中,均勻噴灑于0—10 cm原狀土樣上,用于填充徑流土槽最上層(0—5 cm)以模擬施磷土層。填土完成后立即用塑料薄膜密封土槽上部,靜置4周后開(kāi)展試驗(yàn)?;谝巴鈱?shí)地調(diào)查及研究區(qū)典型坡耕地坡度占比,土槽坡度設(shè)置為15°。
(4)模擬降雨:土槽人工模擬降雨實(shí)驗(yàn)在四川農(nóng)業(yè)大學(xué)人工降雨場(chǎng)進(jìn)行。人工降雨裝置采用SR 型野外移動(dòng)式人工模擬降雨器,包括供水和降雨兩個(gè)系統(tǒng)(圖1)。根據(jù)研究區(qū)多年降雨資料設(shè)計(jì)典型雨強(qiáng)為1.5 mm·min-1,降雨持續(xù)60 min。模擬降雨前進(jìn)行降雨強(qiáng)度校正,降雨均勻系數(shù)在85%以上,降雨高度為6 m,以確保模擬降雨條件與自然降雨接近[40]。降雨開(kāi)始后,采用染色劑示蹤法每隔10 min分別在上、中、下部坡面多次測(cè)定流速[41]。
圖1 模擬降雨裝置圖
(1)樣品采集:產(chǎn)流開(kāi)始后,每隔3 min用塑料桶收集一次泥水混合樣品,直至產(chǎn)流結(jié)束,并用秒表記錄降雨產(chǎn)流開(kāi)始及結(jié)束時(shí)間。降雨試驗(yàn)結(jié)束后,將塑料桶套上保鮮膜防止水分蒸發(fā),待泥水混合樣品放置澄清后,用體積法測(cè)定徑流體積,隨后用250 mL塑料瓶收集上清液,加硫酸調(diào)節(jié)pH≤1,存放于冰箱(-21 ℃)中保存。隨后將塑料桶中的泥沙于105 ℃烘箱中烘干、稱(chēng)重后過(guò)篩(<2 mm)備用。
(2)樣品測(cè)定:徑流水分散性總磷(WTP)和溶解態(tài)磷(DP):用真空泵分別抽濾出徑流樣品中<2 μm和<0.1 μm的液體,經(jīng)121 ℃、酸性過(guò)硫酸鉀消解30 min后,用鉬銻抗比色法測(cè)得磷濃度。膠體態(tài)磷(CP)濃度為WTP與DP之差。泥沙樣品以水土比1﹕8加入去離子水,在25 ℃條件下以180 r/min振蕩24 h后靜置2 h,移取上清液以3 000離心10 min,然后用真空泵分別抽濾浸提液中<2 μm和<0.1 μm部分液體,樣品磷含量測(cè)定方法同徑流一致[42]。
(1)徑流剪切力(Pa)=sin[43]
式中,為水體密度(kg·m-3);為重力加速度(N·kg-1);是徑流深度(m);為坡度(°)。
(2)磷流失表觀系數(shù)(%)={[某施磷處理磷素投入量(mg·kg-1)-未施磷處理下磷素流失量(mg·kg-1)]/該施磷處理磷素投入量(mg·kg-1)}×100[44]。
所有數(shù)據(jù)測(cè)定結(jié)果均為3次重復(fù)試驗(yàn)的平均值。采用Excel 2018和SPSS 22.0進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)分析和擬合,用最小顯著差異法(least significant difference, LSD)進(jìn)行不同處理間的顯著性分析(<0.05)。采用Arcmap10.5和Origin 2023進(jìn)行圖的制作。
徑流及泥沙是坡面磷素流失的載體,降雨是引起坡面侵蝕的動(dòng)力因子,明確降雨過(guò)程中產(chǎn)流產(chǎn)沙特征是探討膠體態(tài)磷流失機(jī)制的前提[45]。不同施磷處理下坡面產(chǎn)流總量及產(chǎn)沙總量如圖2所示,坡面產(chǎn)流總量63.61—69.50 mm,各處理之間差異不顯著。而坡面產(chǎn)沙總量則有別于產(chǎn)流總量,P100處理下的產(chǎn)沙總量較其他處理顯著降低了26.5%—30.9%,其余各處理間差異不顯著。施用化肥能夠調(diào)控土壤團(tuán)粒結(jié)構(gòu)的組成,過(guò)量施用磷肥后可能會(huì)促進(jìn)小團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)變,反而降低了坡面侵蝕產(chǎn)沙量[46]。
圖中不同小寫(xiě)字母表示處理間差異顯著(P<0.05)。P0、P20、P40、P100分別代表施無(wú)機(jī)磷肥量分別為0、20、40、100 kg·hm-2。下同
由圖3可知,在降雨過(guò)程中,各處理坡面徑流產(chǎn)流率為0.12—1.59 mm·min-1,產(chǎn)流趨勢(shì)基本一致,在降雨初期迅速增大,之后隨著降雨時(shí)間的延長(zhǎng)呈現(xiàn)緩慢增長(zhǎng)后趨于穩(wěn)定。產(chǎn)流迅速增長(zhǎng)期在0—24 min,且在降雨持續(xù)到36 min左右時(shí)坡面產(chǎn)流趨于穩(wěn)定。而產(chǎn)沙率為1.48—11.62 g·min-1,隨著降雨時(shí)間的延長(zhǎng)呈不規(guī)則波動(dòng)變化趨勢(shì),在降雨初期產(chǎn)沙率波動(dòng)較大,后期趨于穩(wěn)定。在24 min左右,各處理產(chǎn)沙率均有一個(gè)谷點(diǎn),隨后會(huì)不斷增加,并在39 min之后基本穩(wěn)定,由此可見(jiàn),加強(qiáng)降雨初期的抗侵蝕能力可有效減少紫色土侵蝕。P0處理下產(chǎn)沙率在降雨前期的變化幅度最明顯,且在降雨延續(xù)至21 min時(shí)達(dá)到最大,此時(shí)產(chǎn)沙率為11.62 g·min-1;在27 min時(shí)最小,為1.48 g·min-1。P20、P40和P100的初始產(chǎn)沙量分別為(9.26±4.50)、(5.86±1.04)和(5.83±1.39)g。施磷后初始產(chǎn)沙量較P0處理顯著降低了49.3%— 68.7%,主要是因?yàn)樽仙量骨治g能力弱,P0處理下坡面團(tuán)聚體穩(wěn)定性較其他處理更差,所以施磷對(duì)于減少坡面侵蝕產(chǎn)沙具有積極作用。徑流剪切力變化范圍為1.61—12.12 Pa,其變化趨勢(shì)與產(chǎn)流率相似,在降雨前期逐漸增加,36 min左右徑流剪切力逐漸平緩,各施磷處理下徑流剪切力差異不顯著。降雨初期,紫色土坡面土質(zhì)疏松,抗侵蝕能力弱,土壤團(tuán)聚體穩(wěn)定性遭到持續(xù)破壞,產(chǎn)流率迅速增加使產(chǎn)沙量也提高,剪切力最小;而在降雨后期,土壤表面產(chǎn)流率逐漸平穩(wěn),其對(duì)土壤的侵蝕沖刷作用減弱,土壤表層孔隙堵塞后會(huì)形成土壤結(jié)皮,產(chǎn)沙率減少;隨著降雨量超過(guò)坡面入滲量時(shí),徑流深度增加,徑流剪切力增強(qiáng);當(dāng)坡面細(xì)溝形成后,徑流沿細(xì)溝流動(dòng),細(xì)溝發(fā)育較為穩(wěn)定,徑流剪切力趨于平緩,且在降雨結(jié)束時(shí)剪切力達(dá)到最大值。
圖3 不同施磷處理下紫色土坡面產(chǎn)流率、產(chǎn)沙率及徑流剪切力隨降雨時(shí)間的變化
圖4為地表徑流中各形態(tài)磷素的流失濃度。由圖可知,P0處理下WTP濃度的變化趨勢(shì)為單峰變化曲線(xiàn),峰值出現(xiàn)在第15分鐘左右,施磷后WTP濃度的峰值出現(xiàn)在第21分鐘左右,較P0處理延遲。P0處理下土壤膠體吸附磷飽和度較低,解吸能力較差,土壤膠體吸附磷穩(wěn)定性高,不易被徑流攜帶流失[9]。P0、P20、P40和P100處理下徑流中WTP平均濃度分別為0.04、0.118、0.254和0.775 mg·L-1,施磷顯著提高了徑流中WTP濃度,P20、P40和P100處理的平均濃度較P0處理分別提高了2.0倍、1.8倍和2.9倍。徑流中WTP、CP、DP濃度與地表產(chǎn)流量變化相似,隨降雨時(shí)間的延續(xù)先迅速上升,緩慢下降,后趨于穩(wěn)定。P0、P20、P40和P100處理下徑流中CP平均濃度分別為0.028、0.094、0.199和0.595 mg·L-1,施磷處理徑流中CP平均濃度是P0處理的3.3—20.9倍,流失濃度顯著提高。P0、P20、P40和P100處理徑流中DP平均濃度分別為0.003、0.007、0.018和0.035 mg·L-1,P0與P20之間差異不顯著,但施磷處理下徑流中DP平均濃度是P0處理的2.1—10.3倍??傮w而言,徑流WTP的流失以CP為主,各施磷處理CP流失平均濃度高于DP,主要是因?yàn)槟z體顆粒能夠長(zhǎng)期以分散相懸浮于徑流中,說(shuō)明CP相較于DP而言遷移能力更強(qiáng)[14]。
WTP:Water-dispersible total phosphorus; CP: Colloidal
圖5為泥沙中各形態(tài)磷素流失量。P0、P20、P40和P100處理泥沙中WTP平均流失量分別為7.87、10.75、15.53和22.92 mg·kg-1,P20、P40和P100處理相較于P0處理分別增加了0.37、0.97和1.9倍。泥沙中WTP含量在各施磷處理下均隨降雨時(shí)間的延續(xù)呈先下降后趨于平穩(wěn)的趨勢(shì),泥沙中CP含量變化趨勢(shì)與WTP較為相似。P0、P20、P40和P100處理泥沙中CP平均含量分別為5.77、6.74、12.41和18.19 mg·kg-1,P20、P40和P100處理相較于P0處理分別增加了0.17、1.2和2.2倍。泥沙中DP含量除P100處理有明顯峰值外,其余各處理變化趨勢(shì)較為穩(wěn)定。P0、P20、P40和P100處理泥沙中DP平均含量分別為2.09、4.01、3.12和4.73 mg·kg-1,P20、P40和P100處理相較于P0處理分別增加了0.91、0.49和1.3倍。因此,施肥處理均增加了泥沙中WTP和CP含量,泥沙WTP的流失以CP為主,且在降雨初期流失量較高,這主要是因?yàn)榱姿乇淮罅课接谀z體表面,降雨初期表層土壤在雨滴濺蝕的作用下被剝蝕,沖刷效應(yīng)使得土壤膠體被大量剝離,加之此時(shí)徑流含沙量較高,產(chǎn)流率卻較低,水流對(duì)WTP的浸提作用較弱;而隨著坡面水分不斷飽和,產(chǎn)流率不斷提高,WTP會(huì)向地表徑流中釋放,泥沙中WTP和CP含量隨之減少。而DP相較于CP而言分子量更小,更容易通過(guò)地表徑流流失,泥沙對(duì)其攜帶能力較CP弱。
圖5 不同施磷處理下降雨過(guò)程中泥沙中水分散性總磷、膠體態(tài)磷和溶解態(tài)磷流失特征
磷素的表觀流失系數(shù),是表征投入磷肥流失的常用指標(biāo)之一[44]。地表徑流及泥沙中各形態(tài)磷流失表觀系數(shù)結(jié)果如圖6所示。隨著施磷量的增加,地表徑流中各形態(tài)磷流失表觀系數(shù)增加,而泥沙中各形態(tài)磷流失表觀系數(shù)不同于地表徑流。地表徑流中CP的流失系數(shù)為0.18%—0.29%,遠(yuǎn)遠(yuǎn)高于DP,說(shuō)明膠體態(tài)磷是徑流中磷流失的主要形態(tài)。泥沙攜帶的CP流失較少,流失系數(shù)在0.002%—0.01%,遠(yuǎn)低于地表徑流,降雨產(chǎn)流過(guò)程中,在水流沖刷作用下磷素向徑流中釋放,而泥沙顆粒所吸附磷素也會(huì)解吸于徑流水中,因此泥沙中CP流失系數(shù)較地表徑流而言更低。但泥沙中CP較DP而言流失系數(shù)也更高,泥沙在磷素流失中的作用不可忽視。總體而言,坡面CP流失的主要途徑是地表徑流,其CP流失量占總流失量的62.3%—94.8%。
圖6 不同施磷處理地表徑流(A)及泥沙(B)中各形態(tài)磷素的表觀流失系數(shù)
圖7-A為地表徑流中WTP、CP、DP流失與各因子之間的相關(guān)性分析。結(jié)果表明,施肥是徑流中各形態(tài)磷流失的來(lái)源,地表徑流中各形態(tài)磷的流失量都受到磷肥施用量的影響,且關(guān)系顯著。過(guò)量施磷后土壤磷吸附飽和度高于土壤磷吸持能力,在水流作用下大量可移動(dòng)水分散性膠體剝離并攜帶磷素遷移。徑流中磷素流失量與磷肥用量之間的相關(guān)性比與降雨時(shí)間、產(chǎn)流率和徑流剪切力的相關(guān)性更高。降雨時(shí)間與各形態(tài)磷素流失濃度之間呈負(fù)相關(guān)關(guān)系,這主要是因?yàn)榻涤陼r(shí)間與產(chǎn)流率及徑流剪切力之間呈極顯著正相關(guān)關(guān)系,隨著降雨時(shí)間的延長(zhǎng),產(chǎn)流率不斷提高,稀釋了徑流中各形態(tài)磷素的濃度。徑流中各形態(tài)磷素之間也具有一定的相關(guān)關(guān)系,CP流失與WTP之間呈極顯著正相關(guān)關(guān)系,相較于DP而言,CP同WTP之間的相關(guān)性更高,說(shuō)明CP是徑流磷素流失的主要形態(tài)。CP具有膠體特性,相較于DP而言,不僅能夠以分散相存在于徑流中,還能吸附于泥沙等顆粒物上,在徑流攜帶泥沙遷移過(guò)程中,泥沙中的水分散膠體被徑流反復(fù)浸提,致使大量CP釋放到徑流中。因此,過(guò)量施磷會(huì)導(dǎo)致大量磷素流失,其中CP是主要流失形態(tài),徑流除了對(duì)其流失發(fā)揮載體作用以外,還會(huì)促進(jìn)土壤膠體釋放,是CP流失的重要影響因素。
圖7-B為泥沙中WTP、CP、DP流失與各因子之間的相關(guān)性分析。結(jié)果表明,除WTP和CP含量同施磷量之間呈極顯著正相關(guān)關(guān)系外,其余各指標(biāo)與磷肥用量之間無(wú)相關(guān)關(guān)系。降雨時(shí)間同WTP、CP流失量呈顯著負(fù)相關(guān)關(guān)系,含沙量同WTP、CP流失量呈顯著正相關(guān)關(guān)系,二者同DP均無(wú)相關(guān)關(guān)系。此外,含沙量與降雨時(shí)間之間呈顯著負(fù)相關(guān)關(guān)系。隨著降雨時(shí)間的延長(zhǎng),土壤表面產(chǎn)流率和徑流剪切力逐漸平穩(wěn),土壤表層孔隙堵塞后會(huì)形成土壤結(jié)皮,徑流通過(guò)穩(wěn)定發(fā)育的細(xì)溝流動(dòng),對(duì)土壤的侵蝕沖刷作用減弱,同時(shí)徑流稀釋泥沙使得含沙率降低。泥沙作為土壤顆粒態(tài)磷的重要載體,攜帶有礦物膠體-磷結(jié)合體,促進(jìn)了WTP和CP的流失,這也導(dǎo)致了含沙量與WTP、CP流失負(fù)荷呈顯著正相關(guān)關(guān)系。泥沙中磷素流失負(fù)荷與磷肥用量之間的相關(guān)關(guān)系較徑流更低,主要是因?yàn)閺搅髟跀y帶泥沙遷移時(shí),水流浸提作用將泥沙中水分散性膠體向徑流中釋放,而泥沙顆粒也會(huì)將磷素解吸于徑流中。泥沙CP流失負(fù)荷同WTP流失負(fù)荷之間呈極顯著正相關(guān)關(guān)系,相較于DP與WTP之間的相關(guān)性更高,說(shuō)明泥沙中CP是主要流失形態(tài)。雖然施磷量對(duì)泥沙中CP的流失影響較徑流中更小,但CP是泥沙磷素流失的主要形態(tài),泥沙不僅能攜帶膠體顆粒遷移,還能在徑流-泥沙遷移過(guò)程中向徑流中釋放CP,其對(duì)磷素流失的作用不容忽視。紫色土坡耕地水土流失是當(dāng)前制約該區(qū)域農(nóng)業(yè)生態(tài)可持續(xù)發(fā)展不容忽視的問(wèn)題,有必要針對(duì)不同流失途徑實(shí)施各形態(tài)磷流失調(diào)控措施,關(guān)鍵在于提高磷肥利用率,同時(shí)注重保水保土,減少CP的流失。
P:磷肥用量;T:降雨時(shí)間;R:徑流率;τ:徑流剪切力;R-CWTP:WTP濃度;R-LWTP:WTP流失負(fù)荷;R-CCP:CP濃度;R-LCP:CP流失負(fù)荷;R-CDP:DP濃度;R-LDP:DP流失負(fù)荷;S:含沙量;S-CWTP:WTP含量;S-LWTP:WTP流失負(fù)荷;S-CCP:CP含量;S-LCP:CP流失負(fù)荷;S-CDP:DP含量;S-LDP:DP流失負(fù)荷。*P<0.05, **P<0.01
水土流失造成的面源污染已經(jīng)演變成亟需解決的生態(tài)環(huán)境問(wèn)題。水土流失侵蝕了耕作表層,土壤養(yǎng)分大量流失,使得坡耕地土壤肥力下降。本試驗(yàn)研究表明,不同施磷處理下產(chǎn)流總量差異不顯著,產(chǎn)流量隨著降雨歷時(shí)的變化先逐漸增加后趨于平緩,這與土壤水分含量密切相關(guān)。不同施磷處理下產(chǎn)沙總量差異較大,產(chǎn)沙量隨著降雨歷時(shí)的變化呈不規(guī)則變化趨勢(shì)。在降雨過(guò)程中,由于降雨初期紫色土坡面的表土土質(zhì)較為松散,抗蝕性能差,土壤團(tuán)聚體的穩(wěn)定性隨著降雨時(shí)間的延長(zhǎng)而遭到破壞,土壤顆粒隨水流沖刷不斷流失,導(dǎo)致初始產(chǎn)沙量較大;但施磷后有利于提高紫色土團(tuán)聚體穩(wěn)定性,使得坡面初始產(chǎn)沙量較P0處理顯著減少了49.3%—68.7%。在降雨后期,土壤表面會(huì)形成較為穩(wěn)定的徑流,徑流剪切力減弱,產(chǎn)沙量趨于穩(wěn)定。此外,坡耕地沉積結(jié)皮也會(huì)抑制坡面產(chǎn)沙[47]。由此可見(jiàn),施磷可以減少坡面產(chǎn)沙量,從而降低水土流失,保護(hù)耕地土壤。郭甜等[48]的研究發(fā)現(xiàn)增施化肥顯著減少產(chǎn)沙量,對(duì)產(chǎn)流量影響不大,這與本研究結(jié)果相似。而吳小雨等[49]的研究則表明過(guò)量施肥會(huì)促進(jìn)徑流率提高,但通過(guò)改變耕作措施,即使長(zhǎng)期施肥,也能對(duì)徑流的產(chǎn)生起到抑制作用,橫坡壟作措施能增大地表水流阻力,有效阻攔地表徑流。就紫色土坡耕地水土流失現(xiàn)狀而言,有機(jī)肥配施無(wú)機(jī)肥、改變耕作措施等調(diào)控措施較單施無(wú)機(jī)肥而言效果更好[40-41, 48-49]。
施磷能夠增加土壤磷含量,提高土壤磷吸附飽和度[9]。在降雨后,磷素隨水土流失進(jìn)而增加徑流中磷濃度。此外,施用磷肥還可能會(huì)增加土壤溶液中的離子強(qiáng)度、改變土壤pH,影響膠體表面電化學(xué)性質(zhì),促使膠體發(fā)生絮凝作用,與土壤磷素形成較大粒徑的顆粒態(tài)磷進(jìn)而沉淀[50]。因此,整個(gè)降雨過(guò)程中DP濃度普遍較低,徑流中磷流失形態(tài)以CP為主,其對(duì)水體中總磷的貢獻(xiàn)率為72.1%—80.7%,遠(yuǎn)超過(guò)了DP的貢獻(xiàn)率,可能就是降雨-徑流過(guò)程中膠體顆粒發(fā)生絮凝,加上紫色土含有大量松散碎屑物,為土壤CP絮凝提供來(lái)源[13-16]。坡面CP流失的主要途徑是徑流,在泥沙中流失負(fù)荷較少,磷流失表觀系數(shù)也遠(yuǎn)低于徑流。雖然土壤具有較強(qiáng)的固磷能力,但在降雨沖刷后,土壤磷素隨著膠體顆粒被剝離搬運(yùn),而吸附在泥沙顆粒的磷素也可能會(huì)在水流作用下會(huì)重新釋放于徑流水中[9,14,20]。而且由于泥沙中依舊存在大量非活性磷,石灰性紫色土的大量礦質(zhì)元素同磷素結(jié)合,WENG等[51]發(fā)現(xiàn)土壤弱堿性時(shí),土壤對(duì)磷酸根離子的吸附可以通過(guò)靜電斥力形成鈣離子橋鍵礦物-Ca-P絡(luò)合物,在化學(xué)擾動(dòng)和物理擾動(dòng)過(guò)程中易被釋放,成為水體環(huán)境磷面源污染潛在來(lái)源。HE等[27]對(duì)玉米季徑流及泥沙中CP流失進(jìn)行研究也發(fā)現(xiàn),地表徑流是CP流失的主要途徑,此外,壤中流中CP流失不可忽視的問(wèn)題,紫色土微細(xì)裂隙發(fā)育,易形成大孔隙流,促進(jìn)膠體顆粒遷移。閆大偉等[14]對(duì)稻田田面水與排水徑流中膠體態(tài)磷的研究得出,施肥可以改變土壤電導(dǎo)率和離子強(qiáng)度,促進(jìn)CP絮凝,易形成大粒徑顆粒,在稻田生態(tài)系統(tǒng)中易在重力作用下沉降,進(jìn)而減少稻田徑流中CP的流失。而在本研究中,過(guò)量施磷促進(jìn)了土壤CP的形成,但強(qiáng)降雨沖刷作用下大顆粒磷釋放于徑流中,且由于地形坡度的存在,反而會(huì)促進(jìn)CP的流失。由于CP具有吸附性強(qiáng)的特點(diǎn),且布朗運(yùn)動(dòng)強(qiáng)于重力作用,成為長(zhǎng)期穩(wěn)定存在的磷污染源,再加上紫色土抗侵蝕能力弱,降雨侵蝕過(guò)程中表土釋放的膠體態(tài)磷穩(wěn)定存在于徑流水中,極易通過(guò)大孔隙流流失[16,37,39]。而CP的靜電斥力較強(qiáng),其遷移速度較DP而言更快,所以徑流中大量CP的存在是下游水體環(huán)境不可忽視的威脅。
本研究通過(guò)模擬降雨試驗(yàn)研究了紫色土坡面膠體態(tài)磷的遷移特征,同時(shí)對(duì)其影響因素進(jìn)行探討,但在研究深度及相關(guān)機(jī)理探討方面仍有不足,還需在以下方面繼續(xù)深入研究。(1)土壤膠體態(tài)磷的流失是復(fù)雜的物理化學(xué)過(guò)程,本研究主要探討了施肥、降雨和產(chǎn)流產(chǎn)沙對(duì)紫色土坡面膠體態(tài)磷流失特征的影響,缺乏對(duì)于土壤化學(xué)等因素的探討,應(yīng)充分研究土壤化學(xué)擾動(dòng)條件下膠體態(tài)磷的流失機(jī)制;(2)磷素的粒徑大小與其環(huán)境行為息息相關(guān),缺乏對(duì)不同粒徑膠體態(tài)磷流失特征的探討,應(yīng)借助膜過(guò)濾、場(chǎng)流分離等方法進(jìn)一步探討不同粒徑膠體態(tài)磷的環(huán)境行為;(3)本研究采用室內(nèi)模擬降雨試驗(yàn),具有一定的局限性,應(yīng)進(jìn)一步開(kāi)展自然降雨條件下紫色土坡耕地膠體態(tài)磷流失特征研究。
磷肥用量對(duì)產(chǎn)流量影響較小,而對(duì)產(chǎn)沙量影響較大,施磷后坡面初始產(chǎn)沙量顯著降低49.3%—68.7%。徑流中水分散性總磷、膠體態(tài)磷的變化特征與產(chǎn)流過(guò)程密切相關(guān),坡面磷素流失形態(tài)主要為膠體態(tài)磷,徑流是土壤膠體態(tài)磷流失的主要途徑,徑流中膠體態(tài)磷流失對(duì)磷流失量貢獻(xiàn)率達(dá)到62.3%—94.8%。由于徑流對(duì)泥沙中水分散性膠體具有浸提作用,泥沙磷流失表觀系數(shù)均低于徑流。徑流及泥沙中膠體態(tài)磷含量與磷肥用量呈極顯著正相關(guān)關(guān)系,通過(guò)調(diào)控產(chǎn)流產(chǎn)沙量,減少磷肥用量,可以有效控制坡面土壤膠體態(tài)磷流失。
[1] ISSAKA S, ASHRAF M A. Impact of soil erosion and degradation on water quality: A review. Geology, Ecology, and Landscapes, 2017, 1(1): 1-11.
[2] KRAGH T, SAND-JENSEN K, PETERSEN K, KRISTENSEN E. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields. Ecological Engineering, 2017, 108: 2-9.
[3] BOUWMAN A F, BEUSEN A H W, LASSALETTA L, VAN APELDOORN D F, VAN GRINSVEN H J M, ZHANG J, ITTERSUM VAN M K. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 2017, 7: 40366.
[4] TANG X A, LIU H Y, QIN H L, ZHAO J R, WANG H, LI B, LU Y. Organic/inorganic phosphorus partition and transformation in long-term paddy cultivation in the Pearl River Delta, China. Scientific Reports, 2023, 13: 11122.
[5] 任嘉欣, 劉京, 陳軒敬, 張躍強(qiáng), 張勇, 王潔, 石孝均. 長(zhǎng)期施肥紫色土有效磷變化及其對(duì)稻麥輪作產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(21): 4601-4610. doi: 10.3864/j.issn.0578-1752.2021.21.010.
REN J X, LIU J, CHEN X J, ZHANG Y Q, ZHANG Y, WANG J, SHI X J. Variation of available phosphorus in purple soil and its effects on crop yield of rice-wheat rotation under long-term fertilizations. Scientia Agricultura Sinica, 2021, 54(21): 4601-4610. doi: 10.3864/ j.issn.0578-1752.2021.21.010. (in Chinese)
[6] 周亦靖. 稻田紅壤發(fā)生層膠體賦存特征及其負(fù)載磷的流失風(fēng)險(xiǎn)[D]. 南京: 南京信息工程大學(xué), 2022.
ZHOU Y J. Occurrence characteristics of soil colloids and colloidal phosphorus loss risk in pedogenic horizon of red paddy soil[D]. Nanjing: Nanjing University of Information Science & Technology, 2022. (in Chinese)
[7] DEMAY J, RINGEVAL B, PELLERIN S, NESME T. Half of global agricultural soil phosphorus fertility derived from anthropogenic sources. Nature Geoscience, 2023, 16(1): 69-74.
[8] ZOU T, ZHANG X, DAVIDSON E A. Global trends of cropland phosphorus use and sustainability challenges. Nature, 2022, 611(7934): 81-87.
[9] 趙越, 梁新強(qiáng), 傅朝棟, 朱思睿, 金熠, 葉玉適. 磷肥輸入對(duì)稻田土壤剖面膠體磷含量的影響. 生態(tài)學(xué)報(bào), 2015, 35(24): 8251-8257.
ZHAO Y, LIANG X Q, FU C D, ZHU S R, JIN Y, YE Y S. Effects of phosphorus addition on soil colloidal phosphorus content in a paddy soil profile. Acta Ecologica Sinica, 2015, 35(24): 8251-8257. (in Chinese)
[10] 何曉玲, 鄭子成, 李廷軒. 玉米種植下紫色坡耕地徑流中磷素流失特征研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 31(12): 2441-2450.
HE X L, ZHENG Z C, LI T X. Phosphorus loss via runoff from sloping cropland of purple soil under corn planting. Journal of Agro-Environment Science, 2012, 31(12): 2441-2450. (in Chinese)
[11] 馮小杰, 鄭子成, 李廷軒, 范麗. 暴雨條件下紫色土區(qū)玉米季坡耕地氮素流失特征. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(4): 738-749.doi: 10.3864/j.issn.0578-1752.2018.04.013.
FENG X J, ZHENG Z C, LI T X, FAN L. Characteristics of nitrogen loss in sloping cropland of purple soil during maize growth stage under rainstorm. Scientia Agricultura Sinica, 2018, 51(4): 738-749. doi: 10.3864/j.issn.0578-1752.2018.04.013. (in Chinese)
[12] 鄭子成, 林代杰, 李廷軒, 何淑勤, 張錫洲, 林超文. 不同耕作措施下成熟期玉米對(duì)徑流及侵蝕產(chǎn)沙的影響. 水土保持學(xué)報(bào), 2012, 26(2): 24-28.
ZHENG Z C, LIN D J, LI T X, HE S Q, ZHANG X Z, LIN C W. Effect of maize in maturity stage on runoff and sediment yield under different tillage practices. Journal of Soil and Water Conservation, 2012, 26(2): 24-28. (in Chinese)
[13] 何曉玲. 川中丘陵區(qū)紫色土膠體態(tài)磷遷移模擬研究[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2020.
HE X L. Simulation studies on colloidal phosphorus transport from purple soil in central hilly area of Sichuan, China[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese)
[14] 閆大偉, 梁新強(qiáng), 王飛兒, 周俊杰, 周曉穎, 田光明. 稻田田面水與排水徑流中膠體磷流失貢獻(xiàn)及流失規(guī)律. 水土保持學(xué)報(bào), 2019, 33(6): 47-53.
YAN D W, LIANG X Q, WANG F E, ZHOU J J, ZHOU X Y, TIAN G M. Contribution of colloidal phosphorus loss in runoff of paddy surface water and drainage. Journal of Soil and Water Conservation, 2019, 33(6): 47-53. (in Chinese)
[15] 劉勝, 梁媛, 王思雨. 土壤膠體遷移行為及其介導(dǎo)污染物遷移模擬與研究進(jìn)展. 化學(xué)通報(bào), 2023, 86(7): 824-832.
LIU S, LIANG Y, WANG S Y. Research progress in soil colloid transport behavior and its mediated pollutant migration. Chemistry, 2023, 86(7): 824-832. (in Chinese)
[16] 楊?lèi)傛i, 王園園, 宋曉明, 于彤, 楊新瑤. 土壤和地下水環(huán)境中膠體與污染物共遷移研究進(jìn)展. 化工學(xué)報(bào), 2017, 68(1): 23-36.
YANG Y S, WANG Y Y, SONG X M, YU T, YANG X Y. Co-transport of colloids and facilitated contaminants in subsurface environment. CIESC Journal, 2017, 68(1): 23-36. (in Chinese)
[17] 杜曉麗, 劉殿威, 崔申申. 徑流入滲時(shí)土壤膠體釋放對(duì)重金屬截留的影響. 中國(guó)環(huán)境科學(xué), 2022, 42(3): 1278-1286.
DU X L, LIU D W, CUI S S. Effect of the released soil colloids on the interception of heavy metals during runoff infiltration. China Environmental Science, 2022, 42(3): 1278-1286. (in Chinese)
[18] ANDERSSON E, MEKLESH V, GENTILE L, BHATTACHARYA A, ST?LBRAND H, TUNLID A, PERSSON P, OLSSON U. Generation and properties of organic colloids extracted by water from the organic horizon of a boreal forest soil. Geoderma, 2023, 432: 116386.
[19] GOTTSELIG N, AMELUNG W, KIRCHNER J W, BOL R, EUGSTER W, GRANGER S J, HERNáNDEZ-CRESPO C, HERRMANN F, KEIZER J J, KORKIAKOSKI M, LAUDON H, LEHNER I, L?FGREN S, LOHILA A, MACLEOD C J A, M?LDER M, MüLLER C, NASTA P, NISCHWITZ V, PAUL-LIMOGES E, PIERRET M C, PILEGAARD K, ROMANO N, SEBASTIà M T, ST?HLI M, VOLTZ M, VEREECKEN H, SIEMENS J, KLUMPP E. Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biogeochemical Cycles, 2017, 31(10): 1592-1607.
[20] 王沛芳, 包天力, 胡斌, 錢(qián)進(jìn). 天然膠體的水環(huán)境行為. 湖泊科學(xué), 2021, 33(1): 28-48.
WANG P F, BAO T L, HU B, QIAN J. Environmental behaviors of natural colloids in water environment. Journal of Lake Sciences, 2021, 33(1): 28-48. (in Chinese)
[21] 孫小靜, 張戰(zhàn)平, 朱廣偉, 秦伯強(qiáng). 太湖水體中膠體磷含量初探. 湖泊科學(xué), 2006, 18(3): 231-237.
SUN X J, ZHANG Z P, ZHU G W, QIN B Q. Content of colloidal phosphorus in water of Lake Taihu, China. Journal of Lake Sciences, 2006, 18(3): 231-237. (in Chinese)
[22] 姜雙城. 九龍江口水體中不同相態(tài)磷的環(huán)境化學(xué)行為研究. 應(yīng)用海洋學(xué)學(xué)報(bào), 2021, 40(3): 511-519.
JIANG S C. Environmental chemical behavior of different phase phosphorus in water of Jiulongjiang Estuary. Journal of Applied Oceanography, 2021, 40(3): 511-519. (in Chinese)
[23] LEE C P, WEN L S. Colloidal organic phosphorus in the South China Sea. Marine Chemistry, 2022, 246: 104179.
[24] MISSONG A, BOL R, NISCHWITZ V, KRüGER J, LANG F, SIEMENS J, KLUMPP E. Phosphorus in water dispersible-colloids of forest soil profiles. Plant and Soil, 2018, 427(1): 71-86.
[25] LI F Y, ZHANG Q A, KLUMPP E, BOL R, NISCHWITZ V, GE Z A, LIANG X Q. Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles. Environmental Science & Technology, 2021, 55(9): 5815-5825.
[26] 王瓊, 展曉瑩, 張淑香, 彭暢, 高洪軍, 張秀芝, 朱平, GILLES Colinet. 長(zhǎng)期不同施肥處理黑土磷的吸附-解吸特征及對(duì)土壤性質(zhì)的響應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(21): 3866-3877. doi: 10.3864/j.issn. 0578-1752.2019.21.015.
WANG Q, ZHAN X Y, ZHANG S X, PENG C, GAO H J, ZHANG X Z, ZHU P, COLINET G. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. doi: 10.3864/j.issn.0578-1752.2019.21.015. (in Chinese)
[27] HE X L, ZHENG Z C, LI T X, HE S Q, ZHANG X Z, WANG Y D, HUANG H G, YU H Y, LIU T, LIN C W. Transport of colloidal phosphorus in runoff and sediment on sloping farmland in the purple soil area of south-western China. Environmental Science and Pollution Research, 2019, 26(23): 24088-24098.
[28] HE X L, ZHENG Z C, LI T X, HE S Q, LI Z. Effects of phosphorus fertilizer application rates on colloidal phosphorus leaching in purple soil in southwest China. Water, 2022, 14(15): 2391.
[29] LIANG X Q, LIU J, CHEN Y X, LI H, YE Y S, NIE Z Y, SU M M, XU Z H. Effect of pH on the release of soil colloidal phosphorus. Journal of Soils and Sediments, 2010, 10(8): 1548-1556.
[30] ZHANG M K. Effects of soil properties on phosphorus subsurface migration in sandy soils. Pedosphere, 2008, 18(5): 599-610.
[31] KHAN S, LIU C L, MILHAM P J, ELTOHAMY K M, HAMID Y, JIN J W, HE M M, LIANG X Q. Nano and micro manure amendments decrease degree of phosphorus saturation and colloidal phosphorus release from agriculture soils. Science of the Total Environment, 2022, 845: 157278.
[32] KHAN S, MILHAM P J, ELTOHAMY K M, HAMID Y, LI F Y, JIN J W, HE M M, LIANG X Q.plantation decrease colloidal phosphorus contents by reducing degree of phosphorus saturation in manure amended soils. Journal of Environmental Management, 2022, 304: 114214.
[33] NIYUNGEKO C, LIANG X Q, LIU C L, LIU Z W, SHETEIWY M, ZHANG H F, ZHOU J J, TIAN G M. Effect of biogas slurry application rate on colloidal phosphorus leaching in paddy soil: a column study. Geoderma, 2018, 325: 117-124.
[34] ZANG L, TIAN G M, LIANG X Q, HE M M, BAO Q B, YAO J H. Profile distributions of dissolved and colloidal phosphorus as affected by degree of phosphorus saturation in paddy soil. Pedosphere, 2013, 23(1): 128-136.
[35] 胡良, 杜偉, 常博焜, 曹鋼, 楊學(xué)云, 呂家瓏. 不同磷水平塿土的表面性質(zhì)及其對(duì)磷素流失特征的影響. 土壤學(xué)報(bào), 2023, 60(2): 424-434.
HU L, DU W, CHANG B K, CAO G, YANG X Y, Lü J L. The surface properties of Lou soil with different phosphorus levels and their effects on the loss of phosphorus. Acta Pedologica Sinica, 2023, 60(2): 424-434. (in Chinese)
[36] BAKEN S, MOENS C, VAN DER GRIFT B, SMOLDERS E. Phosphate binding by natural iron-rich colloids in streams. Water Research, 2016, 98: 326-333.
[37] 崔申申, 杜曉麗, 劉殿威, 劉云逸飛, 趙夢(mèng). 降雨入滲對(duì)下滲設(shè)施土壤膠體-重金屬共釋放遷移的影響. 環(huán)境化學(xué), 2022, 41(9): 2842-2849.
CUI S S, DU X L, LIU D W, LIU Y, ZHAO M. Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column. Environmental Chemistry, 2022, 41(9): 2842-2849. (in Chinese)
[38] 李穎, 庾從蓉, 孫鈺峰, 段佩怡. 降雨強(qiáng)度對(duì)植被過(guò)濾帶中膠體遷移過(guò)程的影響. 水資源保護(hù), 2020, 36(6): 112-116.
LI Y, YU C R, SUN Y F, DUAN P Y. Effect of rainfall intensity on colloid migration in vegetation filter strips. Water Resources Protection, 2020, 36(6): 112-116. (in Chinese)
[39] 張維, 唐翔宇, 鮮青松. 紫色土坡地泥巖裂隙潛流中的膠體遷移. 水科學(xué)進(jìn)展, 2015, 26(4): 543-549.
ZHANG W, TANG X Y, XIAN Q S. Field-scale study of colloid transport in fracture flow from a sloping farmland of purple soil. Advances in Water Science, 2015, 26(4): 543-549. (in Chinese)
[40] 襲培棟, 張鵬程, 何為媛, 唐柄哲, 何丙輝, 李天陽(yáng). 模擬降雨下不同農(nóng)作措施紫色土坡耕地氮磷流失特征. 中國(guó)水土保持科學(xué)(中英文), 2021, 19(6): 69-76.
XI P D, ZHANG P C, HE W Y, TANG B Z, HE B H, LI T Y. Response of nitrogen and phosphorus losses to different farming treatments in purple sloping farmland under simulated rainfall. Science of Soil and Water Conservation, 2021, 19(6): 69-76. (in Chinese)
[41] 牛耀彬, 高照良, 劉子壯, 張少佳. 工程措施條件下堆積體坡面土壤侵蝕水動(dòng)力學(xué)特性. 中國(guó)水土保持科學(xué), 2015, 13(6): 105-111.
NIU Y B, GAO Z L, LIU Z Z, ZHANG S J. Hydrodynamic characteristics of soil erosion on deposit slope under engineering measures. Science of Soil and Water Conservation, 2015, 13(6): 105-111. (in Chinese)
[42] KRETZSCHMAR R, BORKOVEC M, GROLIMUND D, ELIMELECH M. Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, 1999, 66: 121-193.
[43] 肖培青, 姚文藝, 申震洲, 楊春霞. 苜蓿草地侵蝕產(chǎn)沙過(guò)程及其水動(dòng)力學(xué)機(jī)理試驗(yàn)研究. 水利學(xué)報(bào), 2011, 42(2): 232-237.
XIAO P Q, YAO W Y, SHEN Z Z, YANG C X. Experimental study on erosion process and hydrodynamics mechanism of alfalfa grassland. Journal of Hydraulic Engineering, 2011, 42(2): 232-237. (in Chinese)
[44] 李玫, 王莉瑋, 何為媛, 周優(yōu)良, 李真熠, 曾榮. 重慶市農(nóng)田氮磷流失系數(shù)初探. 農(nóng)業(yè)環(huán)境與發(fā)展, 2013, 30(4): 83-86.
LI M, WANG L W, HE W Y, ZHOU Y L, LI Z Y, ZENG R. An exploration of farmland nitrogen and phosphorus loss coefficient in Chongqing city, China. Agro-Environment & Development, 2013, 30(4): 83-86. (in Chinese)
[45] HOU X N, ZHANG S H, RUAN Q Y, TANG C H. Synergetic impact of climate and vegetation cover on runoff, sediment, and nitrogen and phosphorus losses in the Jialing River Basin, China. Journal of Cleaner Production, 2022, 361: 132141.
[46] 李強(qiáng), 許明祥, 齊治軍, 王恒威. 長(zhǎng)期施用化肥對(duì)黃土丘陵區(qū)坡地土壤物理性質(zhì)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(1): 103-109.
LI Q, XU M X, QI Z J, WANG H W. Effects of long-term chemical fertilization on soil physical properties of slope lands in the Loess Hilly Region. Plant Nutrition and Fertilizer Science, 2011, 17(1): 103-109. (in Chinese)
[47] 馬金龍, 許歡歡, 王兵, 張寶琦, 淡彩虹. 黃土高原坡耕地土壤物理結(jié)皮對(duì)坡面產(chǎn)流產(chǎn)沙過(guò)程的影響. 水土保持學(xué)報(bào), 2022, 36(1): 45-49.
MA J L, XU H H, WANG B, ZHANG B Q, DAN C H. Effect of soil physical crust on runoff and sediment yield on sloping farmland of the loess plateau. Journal of Soil and Water Conservation, 2022, 36(1): 45-49. (in Chinese)
[48] 郭甜, 何丙輝, 姚軍, 黃巍, 諶蕓. 紫色土坡耕地施肥水平對(duì)土壤侵蝕及氮磷流失影響. 水土保持學(xué)報(bào), 2012, 26(4): 59-63.
GUO T, HE B H, YAO J, HUANG W, CHEN Y. Effects of different fertilization level on erosion, nitrogen and phosphorus losses on sloping farmland of purple soil. Journal of Soil and Water Conservation, 2012, 26(4): 59-63. (in Chinese)
[49] 吳小雨, 李天陽(yáng), 何丙輝. 長(zhǎng)期施肥和耕作下紫色土坡耕地徑流TN和TP流失特征. 環(huán)境科學(xué), 2021, 42(6): 2810-2816.
WU X Y, LI T Y, HE B H. Characteristics of runoff-related total nitrogen and phosphorus losses under long-term fertilization and cultivation on purple soil sloping croplands. Environmental Science, 2021, 42(6): 2810-2816. (in Chinese)
[50] SHARMA R, BELL R W, WONG M T F. Dissolved reactive phosphorus played a limited role in phosphorus transport via runoff, throughflow and leaching on contrasting cropping soils from southwest Australia. Science of the Total Environment, 2017, 577: 33-44.
[51] WENG L, VEGA F A, VAN RIEMSDIJK W V. Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environmental Science & Technology, 2011, 45(19): 8420-8428.
Effect of Phosphorus Fertilizer Application Rates on the Loss of Colloidal Phosphorus on Purple Soil Slopes
1College of Resources, Sichuan Agricultural University, Chengdu 611130;2College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
【Objective】The risk of phosphorus loss from farmland is closely related to the amount of phosphorus fertilizer. Given the important role of soil colloids in the process of phosphorus transport and transformation at the soil-water interface, the effect of phosphorus fertilizer application on the loss of phosphorus from colloidal state on purple soil slopes and its relationship with runoff and sand production were explored, in order to provide the scientific basis for the understanding of phosphorus transport mechanism from the soil colloid point of view. 【Method】Combining artificial simulated rainfall with laboratory analysis, the experiment was conducted to study the characteristics of abortion sediment production and colloid phosphorus loss on purple soil slope under the dosage of phosphorus fertilizer 0 (P0), 20 (P20), 40 (P40) and 100 (P100) mg·kg-1. 【Result】Surface runoff was less affected by phosphorus fertilizer application, and erosion sand production was more affected by phosphorus fertilizer application. The initial sand production of the slope was significantly reduced by 49.3%-68.7% after phosphorus application, and the cumulative sand production was significantly reduced by 26.5%-30.9% under P100 treatment compared to the other phosphorus treatments. Surface runoff was the main loss pathway of water-dispersible total phosphorus (WTP) and colloidal phosphorus (CP) from purple soil slopes, which accounted for 57.5%-93.9 and 62.3%-94.8% of the total loss, respectively; CP was the main form of WTP loss from surface runoff, which accounted for 72.1%-80.7% of the WTP loss. Phosphorus application significantly increased the risk of phosphorus loss. Compared with P0 treatment, the cumulative loss loads of surface runoff WTP, CP, and DP (dissolved phosphorus) under phosphorus fertilizer application treatments were increased by 2.56-20.97, 2.72-22.21, and 1.17-10.40 times after phosphorus application, respectively, and the cumulative loss loads of eroded sediment WTP, CP, and DP were increased by 0.24-0.92 times, 0.05-1.09 times, 0.47-0.76 times, respectively.【Conclusion】The main pathway of colloidal phosphorus loss from purple soil slopes was surface runoff, and the characteristics of concentration change were closely related to the flow production process, while the loss load mainly depended on the phosphorus content of slope soil and the amount of phosphorus fertilizer applied. Total water dispersible phosphorus and colloidal phosphorus showed a highly significant correlation, colloidal phosphorus was the main form of phosphorus loss on purple soil slopes, and CP loss on slopes could be reduced by regulating surface runoff and reducing the amount of phosphorus fertilizer.
colloidal phosphorus; phosphorus fertilizer; surface runoff; erosion sediment; purple soil
10.3864/j.issn.0578-1752.2024.08.010
2023-05-31;
2023-10-06
國(guó)家自然科學(xué)基金(41271307)
仲金平,E-mail:2021206015@stu.sicau.edu.cn。通信作者鄭子成,E-mail:zichengzheng@aliyun.com
(責(zé)任編輯 李云霞)
中國(guó)農(nóng)業(yè)科學(xué)2024年8期