徐蕾,于嘉霖,劉莉,鄧光存,吳曉玲
lincRNA Cox2通過miR-129-5p/AMPK調(diào)控BCG感染的巨噬細(xì)胞糖酵解進(jìn)程
徐蕾,于嘉霖,劉莉,鄧光存,吳曉玲
寧夏大學(xué)生命科學(xué)學(xué)院/西部特色生物資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室,銀川 750021
【目的】探究lincRNA Cox2對(duì)BCG(Calmette-Guérin)感染的RAW264.7巨噬細(xì)胞糖酵解進(jìn)程的調(diào)控作用,闡明Mtb與巨噬細(xì)胞之間的相互作用,為結(jié)核病的診斷和治療提供新的靶點(diǎn)?!痉椒ā坷眯「蓴_RNA敲減lincRNA Cox2的表達(dá),以及使用miR-129-5p mimics過表達(dá)載體,結(jié)合BCG感染,通過實(shí)時(shí)熒光定量PCR檢測lincRNA Cox2、miR-129-5p和促炎因子IL-1β、TNF-α、IL-6的表達(dá)量;乳酸含量檢測試劑盒檢測乳酸(LD)的分泌情況;平板涂布法檢測巨噬細(xì)胞菌載量情況;雙熒光素酶報(bào)告基因系統(tǒng)驗(yàn)證lincRNA Cox2與miR-129-5p以及miR-129-5p與AMPK的互作關(guān)系;蛋白免疫印跡檢測AMPK(AMP依賴蛋白激酶)及糖酵解途徑中關(guān)鍵基因HK1(己糖激酶1)、PKM2(丙酮酸激酶2)和LDHA(乳酸脫氫酶)的表達(dá)變化。【結(jié)果】 BCG感染12 h能夠極顯著上調(diào)RAW264.7巨噬細(xì)胞中l(wèi)incRNA Cox2的表達(dá)(=0.000013),與BCG組相比,siRNA+BCG組中AMPK(=0.000771)、HK1(=0.00323)、PKM2(=0.000135)和LDHA(=0.002532)的表達(dá)量以及乳酸的分泌量(=0.020802)發(fā)生顯著上調(diào),而促炎因子IL-1β(=0.000451)、TNF-α(=0.000147)、IL-6(=0.0001)的表達(dá)發(fā)生顯著下調(diào),菌載量試驗(yàn)表明siRNA+BCG組中的巨噬細(xì)胞菌載量顯著下調(diào)(=0.000127)。雙熒光素酶報(bào)告基因系統(tǒng)表明lincRNA Cox2和miR-129-5p存在相互作用關(guān)系并以AMPK為靶基因。BCG感染RAW264.7巨噬細(xì)胞12 h后極顯著下調(diào)miR-129-5p的表達(dá)(=0.000156),與BCG組相比,miR-129-5p mimics+BCG組中AMPK(=0.000262)、HK1(=0.019524)、PKM2(=0.001658)和LDHA(=0.000887)表達(dá)量以及乳酸分泌量(=0.044952)發(fā)生顯著下調(diào)。【結(jié)論】 lincRNA Cox2通過海綿吸附miR-129-5p并靶向AMPK,促進(jìn)BCG感染的RAW264.7巨噬細(xì)胞糖酵解進(jìn)程。
lincRNA Cox2;miR-129-5p;AMPK;BCG;巨噬細(xì)胞;糖酵解進(jìn)程
【研究意義】結(jié)核?。╰uberculosis,TB)是由結(jié)核分枝桿菌(,Mtb)感染引起的人畜共患呼吸道傳染性疾病。根據(jù)世界衛(wèi)生組織2022年全球結(jié)核病報(bào)告,2021年結(jié)核病死亡病例高達(dá)140萬例[1]。其中,由于耐多藥結(jié)核病、人類免疫缺陷病毒(human immunodeficiency virus,HIV)及新型冠狀病毒(SARS-CoV-2)的沖擊[2-3],導(dǎo)致結(jié)核病的發(fā)病現(xiàn)狀不斷加劇,嚴(yán)重威脅人類身體健康。結(jié)核分枝桿菌屬于胞內(nèi)寄生菌,對(duì)其感染機(jī)制及宿主抗感染機(jī)制的研究將為結(jié)核病的預(yù)防及治療提供重要幫助?!厩叭搜芯窟M(jìn)展】巨噬細(xì)胞是Mtb的主要宿主細(xì)胞與靶細(xì)胞,當(dāng)機(jī)體感染Mtb時(shí),巨噬細(xì)胞識(shí)別、吞噬病原體,并在胞內(nèi)發(fā)生一系列復(fù)雜的相互作用[4]。在這復(fù)雜的博弈過程中,細(xì)胞代謝扮演著重要角色,其通過改變胞內(nèi)能量水平,從而增強(qiáng)細(xì)胞在惡劣環(huán)境中的生存能力,這一過程被稱為代謝重編程[5]。其中,最為常見的是糖酵解重編程,指巨噬細(xì)胞受到細(xì)菌感染時(shí),葡萄糖被一系列酶,如己糖激酶(HK1)、丙酮酸激酶(PKM2)和乳酸脫氫酶(LDHA)等催化分解為乳酸并產(chǎn)能的過程[6]。有研究表明,巨噬細(xì)胞糖酵解重編程已成為宿主對(duì)Mtb感染的早期免疫反應(yīng)的關(guān)鍵[7]。在使用糖酵解抑制劑2-DG處理Mtb感染后的巨噬細(xì)胞時(shí),發(fā)現(xiàn)Mtb的存活率顯著上調(diào),這表明糖酵解途徑可以抑制巨噬細(xì)胞中Mtb的生長[8]。但隨著感染的持續(xù)發(fā)展,Mtb也通過多種途徑拮抗糖酵解途徑。研究發(fā)現(xiàn),Mtb不僅可以上調(diào)miR-21促進(jìn)IL-4的產(chǎn)生,并且能夠抑制糖酵解限速酶—磷酸果糖激酶的產(chǎn)生,以降低糖酵解的進(jìn)程,從而確保菌體的存活和復(fù)制[9]。miRNA對(duì)病原菌感染的巨噬細(xì)胞生物學(xué)功能的調(diào)控具有重要作用,但miRNA功能的行使與長鏈非編碼RNA(long noncoding RNA,LncRNA)密不可分,因此探究LncRNA與miRNA的相互作用從而調(diào)控糖酵解進(jìn)程具有重要意義。LncRNA是一類長度超過200個(gè)核苷酸且缺乏蛋白質(zhì)編碼能力的轉(zhuǎn)錄本,該RNA能夠重新編程基因表達(dá)并影響不同的細(xì)胞功能[10],且其表達(dá)水平與結(jié)核分枝桿菌的感染機(jī)制及細(xì)胞命運(yùn)的調(diào)控密切相關(guān)[11]。研究表明,Lnc- EST12能夠抑制巨噬細(xì)胞中炎癥和焦亡的活化,并且能夠通過FUBP3負(fù)調(diào)節(jié)巨噬細(xì)胞抗Mtb的先天免疫[12]。在一些情況下,LncRNA還可以充當(dāng)microRNA誘餌,從而對(duì)抑制靶mRNA或靶蛋白的表達(dá)有重要作用。本團(tuán)隊(duì)研究發(fā)現(xiàn),LncRNA NR_003508能夠作為正調(diào)節(jié)劑,通過海綿吸附miR-346-3p以調(diào)節(jié)RIPK1的表達(dá),進(jìn)而抑制Mtb誘導(dǎo)的程序性壞死[13]。lincRNA Cox2屬于基因間非編碼RNA,是誘導(dǎo)度最高的lncRNA之一,其位于蛋白質(zhì)基因前列腺素-過氧化物內(nèi)切酶2(Cox2/Ptgs2)下游51 kb處,主要功能與調(diào)節(jié)巨噬細(xì)胞炎癥反應(yīng)有關(guān)。如lincRNA Cox2在急性肺損傷期間高表達(dá),通過降低促炎因子的表達(dá)進(jìn)而調(diào)控肺泡巨噬細(xì)胞的炎癥反應(yīng),最終維持肺部穩(wěn)態(tài)[14]。【本研究切入點(diǎn)】本項(xiàng)目組在前期已經(jīng)證明,BCG感染巨噬細(xì)胞后lincRNA Cox2會(huì)發(fā)生顯著上調(diào),但有關(guān)其如何調(diào)控Mtb誘導(dǎo)巨噬細(xì)胞糖酵解的研究尚未見詳細(xì)報(bào)道。且生物信息學(xué)數(shù)據(jù)庫預(yù)測出lincRNA Cox2與miR-129-5p存在相互結(jié)合位點(diǎn)。研究發(fā)現(xiàn),miR-129-5p在多種癌癥中表現(xiàn)出抗腫瘤的功能。如miR-129-5p能夠通過調(diào)節(jié)ADAM9抑制細(xì)胞增殖和侵襲能力[15],以及削弱了SPN對(duì)細(xì)胞增殖、遷移、侵襲和細(xì)胞周期進(jìn)程的促進(jìn)作用,增強(qiáng)了細(xì)胞凋亡活性[16]。然而miR-129-5p在糖酵解進(jìn)程中的作用并未見確切描述。在糖酵解進(jìn)程中,AMP/ATP傳感器AMP依賴蛋白激酶(adenosine 5′- monophosphate-activated protein kinase,AMPK)能夠調(diào)控并維持細(xì)胞的代謝穩(wěn)態(tài),從而降低TCA循環(huán)產(chǎn)生的能量[17]。由此可見,探討lincRNA Cox2對(duì)Mtb與巨噬細(xì)胞相互作用過程中的糖酵解重編程調(diào)控的作用,為篩選治療與預(yù)防結(jié)核病的靶向藥物及探索增強(qiáng)宿主抗Mtb感染免疫手段至關(guān)重要?!緮M解決的關(guān)鍵問題】采用牛分枝桿菌疫苗株卡介苗(Calmette-Guérin,BCG)誘導(dǎo)RAW264.7巨噬細(xì)胞引發(fā)糖酵解重編程,通過小干擾敲減lincRNA Cox2的表達(dá)并過表達(dá)miR-129-5p,同時(shí)利用蛋白免疫印跡技術(shù)檢測糖酵解關(guān)鍵酶的表達(dá)情況,進(jìn)而明確lincRNA Cox2對(duì)BCG感染的RAW264.7巨噬細(xì)胞糖酵解的調(diào)控作用,并探討其中的分子機(jī)制。上述研究有助于闡明Mtb與巨噬細(xì)胞之間的相互作用,并為結(jié)核病的診斷或治療提供新的靶點(diǎn)。
牛結(jié)核分枝桿菌卡介苗,購自上海生物制品研究所并保存于西部特色生物資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室(寧夏大學(xué))。使用DifcoTMMiddlebrook 7H10培養(yǎng)基(BD公司)對(duì)BCG進(jìn)行平板涂布并置于37 ℃培養(yǎng)箱中培養(yǎng),于對(duì)數(shù)期挑取單菌落轉(zhuǎn)接至DifcoTMMiddlebrook 7H9液體培養(yǎng)基(BD公司)中,37 ℃培養(yǎng)箱中培養(yǎng),待BCG培養(yǎng)至合適濃度時(shí)(OD600 nm=1.5)進(jìn)行傳代。小鼠肺泡巨噬細(xì)胞(RAW264.7)和人腎上皮細(xì)胞(HEK293T),購自中國科學(xué)院上海生命科學(xué)研究院細(xì)胞資源中心并保存于西部特色生物資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室(寧夏大學(xué))。使用含體積分?jǐn)?shù)10%胎牛血清的DMEM(賽默飛)培養(yǎng)液,于37 ℃、飽和濕度、5% CO2的細(xì)胞培養(yǎng)箱中培養(yǎng),當(dāng)細(xì)胞培養(yǎng)密度達(dá)到90%時(shí)傳代一次。以上細(xì)胞感染試驗(yàn)均在西部特色生物資源保護(hù)與利用教育部重點(diǎn)實(shí)驗(yàn)室的P2級(jí)實(shí)驗(yàn)室中進(jìn)行。
根據(jù)lincRNA Cox2的mRNA全長序列,設(shè)計(jì)并合成小干擾。干擾序列如下:
si-lincRNA Cox2:5′-AAGAGUAAGAUUCUGAA GAUCUU-3′。
根據(jù)miR-129-5p的全長序列,設(shè)計(jì)并合成miR-129-5p mimics,序列如下:
miR-129-5p mimics: sense 5′-CUUUUUGCGGUC UGGGCUUGC-3′
antisense 5′-AAGCCCAGACCGCAAAAAGUU-3′
Negative control: sense 5′- UUCUCCGAACGUGU CACGUTT-3′
antisense 5′-ACG UGACACGUUCGGAGAATT-3′。
以上序列交由上海吉瑪制藥技術(shù)有限公司合成。
將生長于對(duì)數(shù)期的RAW264.7巨噬細(xì)胞接種于6孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為1×106,恒溫培養(yǎng)5 h待細(xì)胞貼壁后,取轉(zhuǎn)染試劑(ZETA LIFE)與載體等比例混合于200 μL EP管中,并室溫靜置15 min。將混合物加入細(xì)胞培養(yǎng)液中,混勻后放入細(xì)胞培養(yǎng)箱中培養(yǎng)24 h。
1.4.1 總RNA提取及cDNA合成 總RNA提取方法按照TRIZOL法,使用TRIZOL、氯仿、異丙醇、75%乙醇和無核酶水等試劑進(jìn)行提取。以提取出的RNA為模板,使用Prime Script RT Master Mix(TAKARA)說明書配制RT反應(yīng)液20 μL,反應(yīng)結(jié)束后將cDNA放置在-20 ℃或-80 ℃保存。
1.4.2 熒光定量PCR反應(yīng) 根據(jù)Universal SYBR Green Fsat qpcr Mix(愛博泰克)說明書,配制qPCR體系20 μL,渦旋混勻后,上機(jī)進(jìn)行熒光信號(hào)定量檢測。qPCR反應(yīng)程序:預(yù)變性95 ℃ 3 min,95 ℃ 5 s、60 ℃ 32 s循環(huán)40次。熒光定量PCR反應(yīng)的具體條件詳見Universal SYBR Green Fsat qPCR Mix試劑說明書。相關(guān)引物序列如表1。
將生長于對(duì)數(shù)期的RAW264.7巨噬細(xì)胞接種于6孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為1×106。待細(xì)胞貼壁,并根據(jù)試驗(yàn)條件處理不同時(shí)間后收集細(xì)胞培養(yǎng)液,使用乳酸(LD)測試盒(南京建成生物工程研究所)檢測乳酸,然后酶標(biāo)儀中波長530 nm進(jìn)行OD值讀取,并根據(jù)試劑盒說明書進(jìn)行含量計(jì)算。
表1 實(shí)時(shí)熒光定量PCR引物序列
將生長于對(duì)數(shù)期的RAW264.7巨噬細(xì)胞接種于6孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為1×106。待細(xì)胞貼壁,根據(jù)試驗(yàn)條件處理后收集細(xì)胞,并用0.1% TritonX-100裂解,離心收集沉淀后用PBS重懸沉淀,將重懸后的沉淀梯度稀釋涂布于7H10平板上,37℃恒溫培養(yǎng)兩周后計(jì)數(shù)。
利用網(wǎng)站(https://bibiserv.cebitec.uni-bielefeld.de/)預(yù)測lincRNA Cox2和miR-129-5p、miR-129-5p和AMPK的相互作用位點(diǎn),將該兩個(gè)結(jié)合位點(diǎn)的野生型及突變型目的片段分別構(gòu)建并整合進(jìn)pmirGLO Vector載體中。將生長于對(duì)數(shù)期的293T細(xì)胞接種于12孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為3×105,將質(zhì)粒載體轉(zhuǎn)染入293T細(xì)胞后,使用dual-luciferase reporter assay system(Promega)試劑盒進(jìn)行雙熒光素酶報(bào)告基因檢測。上述質(zhì)粒載體交由上海吉瑪制藥技術(shù)有限公司設(shè)計(jì)合成。
將生長于對(duì)數(shù)期的RAW264.7巨噬細(xì)胞接種于6孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為1×106。待細(xì)胞貼壁,并根據(jù)實(shí)驗(yàn)條件處理不同時(shí)間后,使用全蛋白提取試劑盒(凱基生物)提取細(xì)胞全蛋白,使用BCA蛋白含量檢測試劑盒(賽默飛)檢測蛋白濃度,將蛋白調(diào)整至同一濃度后,進(jìn)行SDS-PAGE凝膠電泳并轉(zhuǎn)膜,隨后進(jìn)行Western blot,使用AMPK(CST)、HK1、PKM2、LDHA和β-actin抗體(ABclonal),檢測蛋白的相對(duì)表達(dá)變化。
將生長于對(duì)數(shù)期的RAW264.7巨噬細(xì)胞接種于鋪有無菌蓋玻片的12孔細(xì)胞培養(yǎng)皿中,使每孔細(xì)胞數(shù)量為3×105。待細(xì)胞貼壁后對(duì)細(xì)胞按照不同試驗(yàn)組進(jìn)行處理。處理完成后將培養(yǎng)液吸棄,用4%多聚甲醛固定細(xì)胞25 min,0.5% TritonX-100在室溫條件下通透30 min,5% BSA室溫條件下封閉1 h。后在37 ℃培養(yǎng)箱中孵育一抗3 h(使用5% BSA以1﹕200稀釋AMPK抗體),后同樣條件下避光孵育二抗(使用PBS以1﹕200稀釋熒光抗體)。最后將含DAPI的封片劑滴在載玻片上,將鋪有細(xì)胞的蓋玻片倒扣在封片劑上。待片子避光自然風(fēng)干后,使用激光共聚焦顯微鏡觀察AMPK的熒光表達(dá)并拍照。
所有數(shù)據(jù)均經(jīng)過3次獨(dú)立試驗(yàn),并采用GraphPad Prism 7軟件中的One Way ANOVA進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)均使用平均值±標(biāo)準(zhǔn)誤差(M±SEM)表示。圖中標(biāo)注ns代表無顯著差異,*代表顯著差異(<0.05),**代表差異極顯著(<0.01),***代表差異極顯著(<0.001)。
lincRNA Cox2是巨噬細(xì)胞中重要的免疫調(diào)節(jié)因子,為探究BCG感染對(duì)RAW264.7巨噬細(xì)胞中l(wèi)incRNA Cox2的影響,本研究使用熒光定量PCR檢測lincRNA Cox2的表達(dá)變化。結(jié)果表明(圖1),與感染0 h相比,BCG感染RAW264.7巨噬細(xì)胞后,lincRNA Cox2的表達(dá)在感染前期呈顯著上調(diào)的趨勢(shì),且在感染時(shí)間為12 h(=0.000013)和18h(=0.000019)時(shí)表達(dá)量最高。當(dāng)BCG持續(xù)感染RAW264.7巨噬細(xì)胞24 h后,lincRNA Cox2的表達(dá)趨于下調(diào),但仍顯著高于感染0 h(=0.00047)。由此可知,BCG感染RAW264.7巨噬細(xì)胞可誘導(dǎo)lincRNA Cox2的表達(dá)發(fā)生上調(diào),并在12 h時(shí)表達(dá)量最高。
ns 無顯著差異 No significant difference ; *P<0.05; ***P<0.001 下同 The same as below
糖酵解進(jìn)程受到多種酶的調(diào)控,其中HK1作為己糖激酶中的一種亞型,可與線粒體外膜結(jié)合,通過調(diào)節(jié)GAPDH改變葡萄糖代謝[18];丙酮酸激酶PK亞型中的PKM2在免疫細(xì)胞中高表達(dá),從而調(diào)控丙酮酸的產(chǎn)生[19];乳酸脫氫酶LDHA是催化糖酵解最后一步的關(guān)鍵酶,可催化丙酮酸轉(zhuǎn)化為乳酸[20]。為探究BCG感染RAW264.7巨噬細(xì)胞后糖酵解的變化,本研究檢測了不同感染時(shí)間下3種酶的表達(dá)變化。結(jié)果顯示(圖2),HK1(=0.0031)、PKM2(=0.0155)和LDHA(=0.0021)的表達(dá)量均在感染12 h時(shí)顯著上調(diào)且達(dá)到最高;隨著感染時(shí)間的延長,3種蛋白的表達(dá)量逐漸下調(diào)。因此,本研究后續(xù)實(shí)驗(yàn)選用12 h為最佳感染時(shí)間,從而探究lincRNA Cox2對(duì)糖酵解進(jìn)程的調(diào)控作用。
圖2 BCG感染RAW264.7巨噬細(xì)胞后糖酵解關(guān)鍵酶的表達(dá)變化
糖酵解受多種因子的協(xié)同調(diào)控,而AMPK是一種綜合代謝傳感器,可在細(xì)胞水平上維持能量平衡,并在協(xié)調(diào)組織間代謝信號(hào)傳導(dǎo)中發(fā)揮重要作用[21]。因此,為探究BCG感染RAW264.7巨噬細(xì)胞后AMPK的表達(dá)變化,本研究使用Western Blot檢測了在不同感染時(shí)間下AMPK的相對(duì)表達(dá)量。結(jié)果表明,與對(duì)照組相比,BCG感染RAW264.7巨噬細(xì)胞至12 h時(shí),AMPK的表達(dá)量達(dá)到最高(=0.0031,圖3-A)。為明確lincRNA Cox2在BCG感染RAW264.7巨噬細(xì)胞后對(duì)AMPK的作用,本研究設(shè)計(jì)并合成了lincRNA Cox2的小干擾RNA。通過qPCR檢測結(jié)果可以觀察到,與對(duì)照組相比,小干擾RNA的干擾效率極為顯著(=0.000013,圖3-B)。之后本研究將該條小干擾RNA或NC轉(zhuǎn)染進(jìn)RAW264.7巨噬細(xì)胞24 h并感染BCG 12 h后,檢測了AMPK的相對(duì)表達(dá)量,發(fā)現(xiàn)與BCG組相比,siRNA+BCG組中AMPK的相對(duì)表達(dá)量發(fā)生級(jí)顯著的上調(diào)(=0.000771,圖3-C)。之后,進(jìn)一步通過免疫熒光檢測AMPK的表達(dá),發(fā)現(xiàn)相對(duì)于對(duì)照組中的綠色熒光斑點(diǎn),siRNA+BCG組中綠色熒光斑點(diǎn)顯著增多(圖3-D)。由此可知,干擾lincRNA Cox2可以促進(jìn)BCG感染的RAW264.7巨噬細(xì)胞中AMPK的表達(dá)。
A:Western blot檢測BCG感染RAW264.7巨噬細(xì)胞不同時(shí)間下AMPK的表達(dá)量;B:qPCR檢測lincRNA Cox2的干擾效率;C:對(duì)RAW264.7巨噬細(xì)胞轉(zhuǎn)染NC或lincRNA Cox2的小干擾RNA 24 h并且感染BCG 12 h后,Western blot檢測AMPK的表達(dá)量;D:免疫熒光檢測AMPK的表達(dá)水平,綠色光點(diǎn)表示AMPK蛋白表達(dá),藍(lán)色光點(diǎn)表示細(xì)胞核
為明確lincRNA Cox2在BCG感染RAW264.7巨噬細(xì)胞后對(duì)糖酵解進(jìn)程的調(diào)控作用,本研究選用糖酵解途徑中3種關(guān)鍵酶進(jìn)行實(shí)驗(yàn),分別為HK1、PKM2和LDHA,使用Western Blot檢測了BCG感染RAW264.7巨噬細(xì)胞并且干擾lincRNA Cox2后,3種關(guān)鍵酶的表達(dá)變化。結(jié)果表明(圖4-A),相對(duì)于BCG組,siRNA+BCG組中HK1(=0.00323,圖4-B)、PKM2(=0.000135,圖4-C)和LDHA(=0.002532,圖4-D)的表達(dá)都顯著上調(diào)。因此,本研究進(jìn)一步檢測了糖酵解下游乳酸的分泌情況,結(jié)果表明(圖4-E),siRNA+BCG組中的乳酸含量顯著高于BCG組(=0.020802)。與此同時(shí),qPCR檢測促炎因子的表達(dá)發(fā)現(xiàn),相較于BCG組,siRNA+BCG組中IL-1β(=0.000451,圖4-F)、TNF-α(=0.000147,圖4-G)和IL-6(=0.0001,圖4-H)的表達(dá)發(fā)生顯著下調(diào)。由此可知,si-lincRNA Cox2能夠促進(jìn)糖酵解的進(jìn)程并抑制炎癥因子的表達(dá)。
將BCG感染后的RAW264.7巨噬細(xì)胞裂解后,通過涂布平板法將裂解液稀釋涂布于7H10平板上,37℃恒溫培養(yǎng)14 d后檢測干擾lincRNA Cox2后對(duì)RAW264.7巨噬細(xì)胞中細(xì)菌載量的影響。結(jié)果發(fā)現(xiàn)(如圖5),與BCG組相比,si+BCG組中菌載量發(fā)生顯著下調(diào)(=0.000127)。
lncRNAs可通過堿基對(duì)互補(bǔ)性隔離miRNA,使其遠(yuǎn)離靶mRNA,從而起到miRNA海綿吸附的作用[22]。因此,為探究lincRNA Cox2對(duì)糖酵解重編程的作用機(jī)制,本研究利用網(wǎng)站BiBiServ預(yù)測lincRNACox2與miR-129-5p的結(jié)合位點(diǎn)(圖6-A),將野生型與突變型的序列整合進(jìn)pmirGLO Vector載體中,將其轉(zhuǎn)染進(jìn)293T細(xì)胞中37℃培養(yǎng)24h,最后使用雙熒光素酶報(bào)告基因試劑盒檢測熒光素酶活性。如圖6-B中雙熒光素酶報(bào)告基因檢測結(jié)果顯示,相較于NC組,轉(zhuǎn)染miR-129-5p mimics能夠顯著下調(diào)lincRNACox2- WT質(zhì)粒的熒光素酶活性(=0.001161),證明lincRNACox2與miR-129-5p能夠發(fā)生相互作用。為進(jìn)一步證明lincRNACox2與miR-129-5p的相互作用關(guān)系,本研究使用qPCR檢測在BCG感染RAW264.7巨噬細(xì)胞不同時(shí)間條件下miR-129-5p的表達(dá)情況(圖6-C)。結(jié)果表明,miR-129-5p在12 h時(shí)表達(dá)量顯著下調(diào)(=0.000156),與BCG感染RAW264.7巨噬細(xì)胞不同時(shí)間條件下lincRNACox2的表達(dá)量相比,miR-129-5p的表達(dá)呈相反趨勢(shì)。而干擾lincRNACox2后miR-129-5p發(fā)生了極顯著的上調(diào)(=0.000198,圖6-D)。由此可知,當(dāng)BCG感染RAW264.7巨噬細(xì)胞后,lincRNACox2與miR-129-5p特異性結(jié)合,從而進(jìn)行海綿吸附作用。
為探究miR-129-5p能否靶向AMPK,本研究利用網(wǎng)站BiBiServ預(yù)測了miR-129-5p 與AMPK的相互作用位點(diǎn)(圖7-A),設(shè)計(jì)并合成了由AMPK的野生型3'-UTR序列驅(qū)動(dòng)的熒光素酶報(bào)告基因,該序列包含潛在的miR-129-5p結(jié)合位點(diǎn)(AMPK-WT)或含有miR-129-5p結(jié)合位點(diǎn)(AMPK-MUT)的突變,將AMPK-WT質(zhì)粒和AMPK-MUT質(zhì)粒與NC或miR-129-5p mimics共轉(zhuǎn)染進(jìn)293T細(xì)胞中。結(jié)果顯示(圖7-B),相較于NC組,轉(zhuǎn)染miR-129-5p mimics能夠顯著下調(diào)AMPK-WT質(zhì)粒的熒光素酶活性(=0.000035),證明miR-129-5p與AMPK能夠發(fā)生相互作用。為進(jìn)一步探究miR-129-5p與AMPK的表達(dá)關(guān)系,將miR-129-5p過表達(dá)載體轉(zhuǎn)染進(jìn)RAW264.7巨噬細(xì)胞中從而檢測AMPK的表達(dá)量。Western blot結(jié)果表明(圖7-C, D),與BCG組相比,miR-129-5p mimics+BCG組中AMPK的表達(dá)量發(fā)生極顯著的下調(diào)(=0.000262)。由此可知miR-129-5p能夠負(fù)調(diào)控AMPK的表達(dá)。
為證明miR-129-5p是否能夠調(diào)控BCG感染的糖酵解進(jìn)程,利用Western blot檢測糖酵解關(guān)鍵酶的表達(dá)變化。結(jié)果顯示(圖7-C),與BCG組相比,miR-129-5p mimics+BCG組中HK1(=0.019524,圖7-E)、PKM2(=0.001658,圖7-F)和LDHA(=0.000887,圖7-G)均發(fā)生顯著下調(diào)。因此,本研究進(jìn)一步檢測了糖酵解下游乳酸的分泌情況,結(jié)果表明(圖7-H),miR-129-5p mimics+BCG組中的乳酸含量顯著低于BCG組(=0.044952)。由此可知,過表達(dá)miR-129-5p可以抑制BCG感染的RAW264.7巨噬細(xì)胞糖酵解進(jìn)程。
因此,通過以上數(shù)據(jù)能夠證明,lincRNA Cox2能夠通過海綿吸附miR-129-5p對(duì)AMPK進(jìn)行調(diào)控,進(jìn)而對(duì)糖酵解關(guān)鍵酶己糖激酶(HK1)、丙酮酸激酶(PKM2)和乳酸脫氫酶(LDHA)的表達(dá)產(chǎn)生影響,最終調(diào)控乳酸的產(chǎn)量(圖8)。
A:在RAW264.7巨噬細(xì)胞中轉(zhuǎn)染小干擾RNA 24 h并感染BCG 12 h后,Western blot檢測糖酵解關(guān)鍵酶的表達(dá)情況;B:定量分析RAW264.7巨噬細(xì)胞中HK1的表達(dá)情況;C:定量分析RAW264.7巨噬細(xì)胞中PKM2的表達(dá)情況;D:定量分析RAW264.7巨噬細(xì)胞中LDHA的表達(dá)情況;E:si-lincRNA Cox2對(duì)乳酸分泌情況的影響;F:qPCR檢測IL-1β的表達(dá)情況;G:qPCR檢測TNF-α的表達(dá)情況;H:qPCR檢測IL-6的表達(dá)情況
*** P<0.001
A:lincRNA Cox2和miR-129-5p的結(jié)合位點(diǎn);B:雙熒光素酶報(bào)告基因證明lincRNA Cox2和miR-129-5p能夠發(fā)生相互作用;C:BCG感染RAW264.7巨噬細(xì)胞不同時(shí)間下miR-129-5p的表達(dá);D:qPCR檢測干擾lincRNA Cox2后miR-129-5p的表達(dá)
結(jié)核分枝桿菌作為結(jié)核病的致病菌,能夠通過氣溶膠從活動(dòng)性肺部感染的個(gè)體傳播[23]。巨噬細(xì)胞作為首先被感染的免疫細(xì)胞,是一種研究結(jié)核分枝桿菌與宿主之間博弈過程的極佳介質(zhì)。當(dāng)巨噬細(xì)胞吞噬Mtb后,巨噬細(xì)胞啟動(dòng)信號(hào)級(jí)聯(lián)反應(yīng),將其他免疫細(xì)胞募集到肺部,這種免疫細(xì)胞的募集會(huì)在感染部位周圍形成結(jié)核肉芽腫。而Mtb和巨噬細(xì)胞相互作用的平衡能夠影響肉芽腫的結(jié)局,進(jìn)而抑制Mtb的感染進(jìn)程或者促進(jìn)Mtb的生長、增殖和全身擴(kuò)散[24]。巨噬細(xì)胞被感染后會(huì)極化為兩種活化形式,其中M1型巨噬細(xì)胞的特征是依靠糖酵解產(chǎn)生能量,并積累產(chǎn)生促炎細(xì)胞因子、活性氧、一氧化氮和前列腺素所需的代謝中間體。因此,糖酵解進(jìn)程重編程的發(fā)生以及病原體的存活是眾多調(diào)控因子相互作用的結(jié)果,其中的代謝機(jī)制并未完全闡明。
隨著高通量測序技術(shù)的發(fā)展及研究的深入,研究人員發(fā)現(xiàn)了大量的LncRNA。LncRNA是一類長度超過200個(gè)核苷酸的RNA,它們不會(huì)被翻譯成蛋白質(zhì)產(chǎn)物,而是作為RNA分子發(fā)揮作用。LncRNA與大多數(shù)mRNA相似,在5′端有特殊帽子結(jié)構(gòu),3′端有聚腺苷酸。近來有研究表明,一些LncRNA具有小的開放閱讀框,能夠編碼有關(guān)鍵生物學(xué)功能的短肽,這說明LncRNA可以同時(shí)在RNA和肽中發(fā)揮雙重作用[25]。如LncRNA-EPS作為一種炎癥反應(yīng)抑制劑,能在巨噬細(xì)胞中精確調(diào)控免疫反應(yīng)基因(IRGs)的表達(dá);LincRNA 00948可編碼一種跨膜α螺旋微肽—肌調(diào)蛋白,且僅在骨骼肌中表達(dá),能夠直接與SERCA膜泵相互作用進(jìn)而抑制肌質(zhì)網(wǎng)中的鈣攝取[26-27]。此外,LncFAM200B還可能通過影響脂肪分化標(biāo)志基因C/EBPα和AP2,及脂肪合成相關(guān)基因SIRT1和PTEN的表達(dá)進(jìn)而影響牦牛肌內(nèi)脂肪沉積[28]。LncRNA的研究多聚焦在microRNA上,進(jìn)而對(duì)下游靶基因進(jìn)行調(diào)控作用。其中,gga-miR-107-3p吸附LNC_003828影響MINPP1基因在靜原雞肌肉組織的相對(duì)表達(dá),進(jìn)而對(duì)IMP的含量產(chǎn)生影響,最終推測三者可能是影響肌肉肌苷酸特異性沉積的關(guān)鍵候選基因[29]。目前,LncRNA和miRNA用于宿主導(dǎo)向療法以及作為結(jié)核病的生物標(biāo)志物的研究逐漸增多。據(jù)報(bào)道,LncRNA MIAT在BCG感染巨噬細(xì)胞后發(fā)生顯著上調(diào),并能夠通過操縱miR-665/ULK1軸在自噬和抗菌作用中發(fā)揮負(fù)調(diào)節(jié)作用[30]。而lincRNA Cox2可以介導(dǎo)不同免疫基因的激活和抑制,并且在H37Rv感染的患者血液中發(fā)生高表達(dá),能夠作為結(jié)核病診斷和治療靶點(diǎn)的新型生物標(biāo)志物[31]。本研究發(fā)現(xiàn)lincRNA Cox2與miR-129-5p存在結(jié)合位點(diǎn),經(jīng)雙熒光素酶報(bào)告基因試驗(yàn)證明lincRNA Cox2與miR-129-5p能夠發(fā)生特異性結(jié)合。并且當(dāng)BCG感染RAW264.7巨噬細(xì)胞12 h后上調(diào)lincRNA Cox2的表達(dá),下調(diào)miR-129-5p的表達(dá)。當(dāng)干擾lincRNA Cox2后miR-129-5p的表達(dá)會(huì)上調(diào),證明二者的表達(dá)存在負(fù)相關(guān)性。
A:miR-129-5p和AMPK的結(jié)合位點(diǎn);B:雙熒光素酶報(bào)告基因證明miR-129-5p和AMPK能夠發(fā)生相互作用;C:在RAW264.7巨噬細(xì)胞中轉(zhuǎn)染miR-129-5p過表達(dá)載體24 h并感染BCG 12 h后,Western blot檢測AMPK及糖酵解關(guān)鍵酶的表達(dá)情況;D:定量分析RAW264.7巨噬細(xì)胞中AMPK的表達(dá)情況;E:定量分析RAW264.7巨噬細(xì)胞中HK1的表達(dá)情況;F:定量分析RAW264.7巨噬細(xì)胞中PKM2的表達(dá)情況;G:定量分析RAW264.7巨噬細(xì)胞中LDHA的表達(dá)情況;H:過表達(dá)miR-129-5p對(duì)乳酸分泌情況的影響
圖8 lincRNA Cox2通過miR-129-5p/AMPK調(diào)控BCG感染的巨噬細(xì)胞糖酵解的機(jī)制圖
AMPK已被證明能夠參與巨噬細(xì)胞糖酵解進(jìn)程。研究表明,糖酵解能夠通過AMPK/SIRT1/NF-κB信號(hào)通路調(diào)控巨噬細(xì)胞焦亡[32];腺苷酸激酶4(Ak4)能夠抑制AMPK的活化,使糖酵解重編程產(chǎn)生大量ROS,提高巨噬細(xì)胞的殺菌能力[33]。本研究發(fā)現(xiàn),干擾lincRNA Cox2后上調(diào)了BCG感染的巨噬細(xì)胞中糖酵解進(jìn)程的關(guān)鍵酶的活性,促進(jìn)了乳酸的分泌,下調(diào)了促炎因子IL-1β、TNF-α和IL-6的表達(dá),并降低了巨噬細(xì)胞菌載量。通常糖酵解的活性與促炎因子的分泌以及細(xì)胞對(duì)菌的清除能力呈正相關(guān)關(guān)系。但在敗血癥研究中發(fā)現(xiàn),TGF-β可增強(qiáng)巨噬細(xì)胞的糖酵解水平,但下調(diào)炎癥因子的表達(dá)[34]。ó MAOLDOMHNAIGH等[35]研究也表明,Mtb感染會(huì)上調(diào)乳酸的分泌,而累積的乳酸會(huì)通過負(fù)反饋的形式,降低促炎細(xì)胞因子的表達(dá)。這與本研究的結(jié)果一致。此外,課題組前期研究發(fā)現(xiàn),lincRNA Cox2對(duì)巨噬細(xì)胞的程序性死亡具有重要作用。方舒等人研究表明,干擾lincRNA Cox2可通過促進(jìn)自噬體的形成,增強(qiáng)細(xì)胞自噬反應(yīng)[36];XU等[37]報(bào)道表明,干擾lincRNA Cox2可促進(jìn)巨噬細(xì)胞凋亡的發(fā)生。亦有研究表明,乳酸可促進(jìn)自噬并增強(qiáng)巨噬細(xì)胞對(duì)Mtb的清除作用[35]。最終胞內(nèi)菌的存活,是眾多免疫通路轉(zhuǎn)歸的結(jié)果。結(jié)合他人研究,本研究認(rèn)為干擾lincRNA-Cox2通過啟動(dòng)細(xì)胞的程序性死亡進(jìn)程,提高乳酸分泌,增強(qiáng)了細(xì)胞的殺菌能力。同時(shí)抑制了炎性因子的分泌,降低了因過度炎癥而損傷機(jī)體的風(fēng)險(xiǎn),有助于組織的修復(fù),提示其在結(jié)核病藥物治療靶點(diǎn)研發(fā)中的重要價(jià)值。
BCG感染RAW264.7巨噬細(xì)胞后,干擾lincRNA Cox2通過miR-129-5p/AMPK軸上調(diào)巨噬細(xì)胞糖酵解關(guān)鍵酶的活性以及乳酸的分泌,并抑制炎癥因子的表達(dá),最終抑制胞內(nèi)菌的存活。
[1] Global tuberculosis report 2022. Geneva: World Health Organization, 2022.
[2] 于嘉霖, 徐雅楠, 韓璐, 馬沁梅, 吳曉玲, 鄧光存. 脂肪酸結(jié)合蛋白4對(duì)BCG誘導(dǎo)巨噬細(xì)胞自噬的調(diào)控作用. 畜牧獸醫(yī)學(xué)報(bào), 2020, 51(9): 2265-2274.
YU J L, XU Y N, HAN L, MA Q M, WU X L, DENG G C. Role of fatty acid binding protein 4 in regulating macrophage autophagy induced by BCG infection. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(9): 2265-2274. (in Chinese)
[3] 畢秀欣, 韓鵬宇, 馬吉雪, 李發(fā). 新冠肺炎疫情對(duì)全球結(jié)核病防治的影響. 口岸衛(wèi)生控制, 2022, 27(2): 48-51.
BI X X, HAN P Y, MA J X, LI F. Impact of COVID-19 on global tuberculosis prevention. Port Health Control, 2022, 27(2): 48-51. (in Chinese)
[4] PEPPERELL C S. Evolution of tuberculosis pathogenesis. Annual Review of Microbiology, 2022, 76: 661-680.
[5] YANG J S, REN B, YANG G, WANG H Y, CHEN G Y, YOU L, ZHANG T P, ZHAO Y P. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and Molecular Life Sciences, 2020, 77(2): 305-321.
[6] MENDONCA L E, PERNET E, KHAN N, SANZ J, KAUFMANN E, DOWNEY J, GRANT A, ORLOVA M, SCHURR E, KRAWCZYK C, JONES R G, BARREIRO L B, DIVANGAHI M. Human alveolar macrophage metabolism is compromised duringinfection. Frontiers in Immunology, 2022, 13: 1044592.
[7] GLEESON L E, O’LEARY S M, RYAN D, MCLAUGHLIN A M, SHEEDY F J, KEANE J. Cigarette smoking impairs the bioenergetic immune response toinfection. American Journal of Respiratory Cell and Molecular Biology, 2018, 59(5): 572-579.
[8] HUANG L, NAZAROVA E V, TAN S M, LIU Y C, RUSSELL D G. Growth ofsegregates with host macrophage metabolism and ontogeny. The Journal of Experimental Medicine, 2018, 215(4): 1135-1152.
[9] HACKETT E E, CHARLES-MESSANCE H, O’LEARY S M, GLEESON L E, MU?OZ-WOLF N, CASE S, WEDDERBURN A, JOHNSTON D G W, WILLIAMS M A, SMYTH A, OUIMET M, MOORE K J, LAVELLE E C, CORR S C, GORDON S V, KEANE J, SHEEDY F J.limits host glycolysis and IL-1β by restriction of PFK-M via microRNA-21. Cell Reports, 2020, 30(1): 124-136.e4.
[10] BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function. The Journal of Cell Biology, 2021, 220(2): e202009045.
[11] 于志瑞, 張旭, 牛莎莎, 鄧光存, 吳曉玲. LncRNA NR003508通過海綿吸附miR-483-3p并靶向MLKL調(diào)控BCG感染小鼠巨噬細(xì)胞壞死. 畜牧獸醫(yī)學(xué)報(bào), 2022, 53(9): 3149-3159.
YU Z R, ZHANG X, NIU S S, DENG G C, WU X L. LncRNA NR003508 regulates BCG-infected mouse macrophages necrosis by the sponge adsorption of miR-483-3p and targeting MLKL. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3149-3159. (in Chinese)
[12] YAO Q L, XIE Y, XU D D, QU Z L, WU J, ZHOU Y Y, WEI Y Y, XIONG H, ZHANG X L. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cellular & Molecular Immunology, 2022, 19(8): 883-897.
[13] LIU L, YU Z R, MA Q M, YU J L, GONG Z Q, DENG G C, WU X L. LncRNA NR_003508 suppresses- induced programmed necrosis via sponging miR-346-3p to regulate RIPK1. International Journal of Molecular Sciences, 2023, 24(9): 8016.
[14] ROBINSON E K, WORTHINGTON A, POSCABLO D, SHAPLEIGH B, SALIH M M, HALASZ H, SENINGE L, MOSQUEIRA B, SMALIY V, FORSBERG E C, CARPENTER S. lincRNA-Cox2 functions to regulate inflammation in alveolar macrophages during acute lung injury. Journal of Immunology, 2022, 208(8): 1886-1900.
[15] LIU Q, JIANG J W, FU Y, LIU T, YU Y, ZHANG X F. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomedicine & Pharmacotherapy, 2018, 105: 420-427.
[16] GAO B, WANG L J, ZHANG N, HAN M M, ZHANG Y B, LIU H C, SUN D L, XIAO X L, LIU Y F. MiR-129-5p inhibits clear cell renal cell carcinoma cell proliferation, migration and invasion by targeting SPN. Cancer Cell International, 2021, 21(1): 263.
[17] SEN K, PATI R, JHA A, MISHRA G P, PRUSTY S, CHAUDHARY S, SWETALIKA S, PODDER S, SEN A, SWAIN M, NANDA R K, RAGHAV S K. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biology, 2023, 59: 102575.
[18] DE JESUS A, KEYHANI-NEJAD F, PUSEC C M, GOODMAN L, GEIER J A, STOOLMAN J S, STANCZYK P J, NGUYEN T, XU K, SURESH K V, CHEN Y H, RODRIGUEZ A E, SHAPIRO J S, CHANG H C, CHEN C L, SHAH K P, BEN-SAHRA I, LAYDEN B T, CHANDEL N S, WEINBERG S E, ARDEHALI H. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82(7): 1261-1277.e9.
[19] WIESE E K, HITOSUGI S, LOA S T, SREEDHAR A, ANDRES-BECK L G, KURMI K, PANG Y P, KARNITZ L M, GONSALVES W I, HITOSUGI T. Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect. Nature Metabolism, 2021, 3(7): 954-968.
[20] DING J, KARP J E, EMADI A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers, 2017, 19(4): 353-363.
[21] MURALEEDHARAN R, DASGUPTA B. AMPK in the brain: its roles in glucose and neural metabolism. The FEBS Journal, 2022, 289(8): 2247-2262.
[22] 楊舟, 林書典, 詹宇威, 肖璐, 符克英, 黃小蝶. LncRNA MIR22HG 通過海綿吸附miR-22-5p對(duì)類風(fēng)濕關(guān)節(jié)炎成纖維樣滑膜細(xì)胞增殖、凋亡和炎性反應(yīng)的影響. 安徽醫(yī)科大學(xué)學(xué)報(bào), 2023, 58(3): 405-412.
YANG Z, LIN S D, ZHAN Y W, XIAO L, FU K Y, HUANG X D. Effects of lncRNA MIR22HG on proliferation, apoptosis and inflammatory response of rheumatoid arthritis fibroblast-like synoviocytes by sponge adsorption of miR-22-5p. Acta Universitatis Medicinalis Anhui, 2023, 58(3): 405-412. (in Chinese)
[23] BOSEDASGUPTA S, PIETERS J. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathogens, 2014, 10(1): e1003879.
[24] HOWARD N C, KHADER S A. Immunometabolism duringinfection. Trends in Microbiology, 2020, 28(10): 832-850.
[25] RANSOHOFF J D, WEI Y N, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 2018, 19(3): 143-157.
[26] NELSON B R, MAKAREWICH C A, ANDERSON D M, WINDERS B R, TROUPES C D, WU F F, REESE A L, MCANALLY J R, CHEN X W, KAVALALI E T, CANNON S C, HOUSER S R, BASSEL- DUBY R, OLSON E N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270): 271-275.
[27] WEI L, LIU K, JIA Q Z, ZHANG H, BIE Q L, ZHANG B. The roles of host noncoding RNAs ininfection. Frontiers in Immunology, 2021, 12: 664787.
[28] 冉宏標(biāo), 趙麗玲, 王會(huì), 柴志欣, 王吉坤, 王嘉博, 武志娟, 鐘金城. LncFAM200B對(duì)牦牛肌內(nèi)前體脂肪細(xì)胞脂質(zhì)沉積的影響. 中國農(nóng)業(yè)科學(xué), 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022. 13.014.
RAN H B, ZHAO L L, WANG H, CHAI Z X, WANG J K, WANG J B, WU Z J, ZHONG J C. Effects of lnc FAM200B on the lipid deposition in intramuscular preadipocytes of yak. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666. doi: 10.3864/j.issn.0578-1752.2022.13.014.(in Chinese)
[29] 禹保軍, 鄧占釗, 辛國省, 蔡正云, 顧亞玲, 張娟. 靜原雞肌肉組織肌苷酸特異性沉積相關(guān)LNC_003828-gga-miR-107-3p-MINPP1的關(guān)聯(lián)分析. 中國農(nóng)業(yè)科學(xué), 2021, 54(19): 4229-4242. doi: 10.3864/ j.issn.0578-1752.2021.19.017.
YU B J, DENG Z Z, XIN G S, CAI Z Y, GU Y L, ZHANG J. Correlation analysis of inosine monophosphate specific deposition related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan chicken muscle tissue. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. doi: 10.3864/j.issn.0578-1752.2021.19.017.(in Chinese)
[30] JIANG F, LOU J, ZHENG X M, YANG X Y. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected bythrough the miR-665/ULK1 signaling axis. Molecular Immunology, 2021, 139: 42-49.
[31] LI D Y, GAO C Y, ZHAO L, ZHANG Y M. Inflammatory response is modulated by lincRNACox2 via the NF-κB pathway in macrophages infected by. Molecular Medicine Reports, 2020, 21(6): 2513-2521.
[32] HE Y N, WANG Y T, JIA X B, LI Y X, YANG Y, PAN L F, ZHAO R, HAN Y, WANG F, GUAN X Y, HOU T Z. Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosisAMPK/ SIRT1/NF-κB signaling pathway. International Immunopharmacology, 2023, 119: 110192.
[33] CHIN W Y, HE C Y, CHOW T W, YU Q Y, LAI L C, MIAW S C. Adenylate kinase 4 promotes inflammatory gene expression via Hif1α and AMPK in macrophages. Frontiers in Immunology, 2021, 12: 630318.
[34] GAUTHIER T, YAO C, DOWDY T, JIN W W, LIM Y J, PATI?O L C, LIU N, OHLEMACHER S I, BYNUM A, KAZMI R, BEWLEY C A, MITROVIC M, MARTIN D, MORELL R J, ECKHAUS M, LARION M, TUSSIWAND R, O’SHEA J J, CHEN W J. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Science Signaling, 2023, 16(797): eade0385.
[35] ó MAOLDOMHNAIGH C, COX D J, PHELAN J J, MITERMITE M, MURPHY D M, LEISCHING G, THONG L, O’LEARY S M, GOGAN K M, MCQUAID K, COLEMAN A M, GORDON S V, BASDEO S A, KEANE J. Lactate alters metabolism in human macrophages and improves their ability to kill. Frontiers in Immunology, 2021, 12: 663695.
[36] 方舒. LncRNA-Cox2對(duì)BCG誘導(dǎo)RAW264.7細(xì)胞自噬的調(diào)控作用[D]. 西寧:寧夏大學(xué), 2021.
FANG S. Regulation of LncRINA-Cox2 on autophagy of RAW264.7 induced byCalmette-Guérin[D]. Xining: Ningxia University, 2021. (in Chinese)
[37] XU Y N, YU J L, MA C J, GONG Z Q, WU X L, DENG G C. Impact of knockdown LincRNA-Cox2 on apoptosis of macrophage infected withCalmette-Guérin. Molecular Immunology, 2021, 130: 85-95.
lincRNA Cox2 Regulates BCG-infected Macrophages Glycolysis by miR-129-5p/AMPK
XU Lei, YU JiaLin, LIU Li, DENG GuangCun, WU XiaoLing
School of Life Sciences, Ningxia University/Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Yinchuan 750021
【Objective】 The aim of this study was to investigate the regulatory role of lincRNA Cox2 in the glycolysis of RAW264.7 macrophages infected byCalmette-Guerin (BCG), and to elucidate the interaction between Mtb and macrophages, so as to provide a new target for the diagnosis and treatment of tuberculosis.【Method】 RNA interference technique was used to knock down the expression of lincRNA Cox2, and miR-129-5p mimics were used to overexpress miR-129-5p. QPCR was performed to measure the lincRNA Cox2, miR-129-5p and proinflammatory cytokine ( IL-1β, TNF-α, and IL-6 ) expression after BCG infection. The expression of Lactic Acid was detected by Lactic Acid assay kit. The bacterial load was measured bacterial load in BCG-infected macrophages. Dual luciferase reporter gene system validation experiments were carried out on lincRNA Cox2 and miR-129-5p, or miR-129-5p and AMPK relationships. The expression of AMPK (AMP activated protein kinase), HK1 (Hexokinase 1), PKM2 (pyruvate kinase M2), and LDHA (Lactate dehydrogenase A) were detected by Western blotting. 【Result】 The expression of lincRNA Cox2 was significantly upregulated (=0.000013) after BCG infection in RAW264.7 macrophages for 12 h. Compared with the BCG group, the siRNA+BCG group had significantly upregulated the expression of AMPK (=0.000771), HK1 (=0.00323), PKM2 (=0.000135), LDHA (=0.002532), and the secretion of LD (=0.020802), but the expression of IL-1β (=0.000451), TNF-α (=0.000147), IL-6 (=0.0001) was significantly reduced. The lincRNA Cox2 knockdown caused a significant reduce of bacterial load in BCG-infected macrophages (=0.000127). Dual luciferase reporter gene system were performed to the co-localized of lincRNA Cox2 and miR-129-5p, and targeting AMPK. The expression of miR-129-5p was significantly reduced (=0.000156) after BCG infection in RAW264.7 macrophages for 12 h. Compared with the BCG group, the miR-129-5p mimics+BCG group had significantly reduced the expression of AMPK (=0.000262), HK1 (=0.019524), PKM2 (=0.001658), LDHA (=0.000887), and the secretion of LD (=0.044952). 【Conclusion】 lincRNA Cox2 promoted BCG-infected RAW264.7 macrophages glycolysis process by sponging miR-129-5p and targeting AMPK.
lincRNA Cox2; miR-129-5p; AMPK; BCG; macrophages; glycolysis
10.3864/j.issn.0578-1752.2024.08.014
2023-10-27;
2024-01-31
國家自然科學(xué)基金(32060160,32160162)、寧夏自然科學(xué)基金重點(diǎn)項(xiàng)目(2023AAC02015)
徐蕾,E-mail:xvleilearning@163.com。通信作者吳曉玲,E-mail:wuxiaol@nxu.edu.cn
(責(zé)任編輯 林鑒非)