• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid ionic/electronic interphase enabling uniform nucleation and fast diffusion kinetics for stable lithium metal anode

    2024-04-05 02:29:02LunLiPengxiJiMengHungZixinZhngHongWngFrncisVerpoortJinlongYngDpingHe
    Chinese Chemical Letters 2024年2期

    Lun Li ,Pengxi Ji ,Meng Hung ,Zixin Zhng ,Hong Wng ,Frncis Verpoort ,Jinlong Yng,*,Dping He

    a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China

    b Guangdong Research Center for Interfacial Engineering of Functional Materials,College of Materials Science and Engineering,Shenzhen University,Shenzhen 518060,China

    c Sanya Science and Education Innovation Park of Wuhan University of Technology,Sanya 572000,China

    d Hubei Engineering Research Center of RF-Microwave Technology and Application,Wuhan University of Technology,Wuhan 430070,China

    e State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China

    Keywords: Lithium metal anode Hybrid ionic/electronic interphase Solid electrolyte interphase Fast diffusion kinetics Dendritic growth of lithium

    ABSTRACT Lithium (Li) dendrite issue,which is usually caused by inhomogeneous Li nucleation and fragile solid electrolyte interphase (SEI),impedes the further development of high-energy Li metal batteries.However,the integrated construction of a high-stable SEI layer that can regulate uniform nucleation and facilitate fast Li-ion diffusion kinetics for Li metal anode still falls short.Herein,we designed an artificial SEI with hybrid ionic/electronic interphase to regulate Li deposition by in-situ constructing metal Co clusters embedded in LiF matrix.The generated Co and LiF both enable fast Li-ion diffusion kinetics,meanwhile,the lithiophilic properties of Co clusters can serve as Li-ion nucleation sites,thereby contributing to uniform Li nucleation and non-dendritic growth.As a result,a dendrite-free Li deposition with a low overpotential (16.1 mV) is achieved,which enables an extended lifespan over 750 h under strict conditions.The full cells with high-mass-loading LiFePO4 (11.5 mg/cm2) as cathodes exhibit a remarkable rate capacity of 84.1 mAh/g at 5 C and an improved cycling performance with a capacity retention of 96.4% after undergoing 180 cycles.

    Lithium-metal batteries (LMBs) are highly demanded in highenergy-density storage systems,owing to the ultra-high theoretical capacity (3860 mAh/g) and low reduction potential (-3.04 Vvs.standard hydrogen electrode) of metallic Li [1,2].However,the undesired Li dendrites are still challenging the safety issues and durability of as-built LMBs,hindering the practical implementation of LMBs [3,4].The underlying causes are the infinite volume expansion and the violent reactivity of Li metal with electrolyte during cycling,resulting in the fracture of unstable solid electrolyte interphase (SEI) layer [5,6].

    Numerous substantial solutions,such as using solid-state electrolytes [7-9],adding electrolyte additives [10,11],and constructing artificial interface layer [12,13],have been developed to build a stable and sturdy Li-electrolyte interface.Despite electrolyte component optimization and high-concentration electrolytes are proven to effectively alleviate the dendrite formation and increase the Coulombic efficiency (CE),the persistent consumption of additives or salts may aggravate the SEI structural evolution and results in unstable Li plating/stripping,leading to the decline in CE and capacity.Notably,artificial interface layer engineering,especially thein-situformed LiF-rich SEI,shows great promise in accelerating Liion transport and stabilizing Li/electrolyte interface [14-17].The main reasons are as follows: (1) LiF has a high ionic conductivity which ensures fast Li-ion diffusion kinetics;(2) LiF shows low Li-ion diffusion energy barriers and high surface energy,thus allowing sufficient Li-ion diffusion in a lateral manner;(3) LiF has a high mechanical strength,which is beneficial to suppressing large volume expansion and dendrite formation during repeated cycling[18,19].

    It is generally accepted that uniform Li deposition involves fast Li-ion transport,strong adsorption,uniform nucleation,and controlled growth [20-22].The first two steps of fast diffusion and strong adsorption of Li ions are prerequisite to achieve uniform nucleation and determine final growth morphology.One of the most effective methods for constructing strong Li-ion adsorption is homogeneously coating lithiophilic seeds,such as Ag [23,24],Au [25,26],and Co [27-29] nanoparticles on copper (Cu) substrate to regulate nucleation behaviors and realize stable Li deposition.Considering the high cost of precious metals,researchers have focused on transition metallic Co and Ni nanoparticles as uniform Li nucleation sites.For example,Louetal.introduced highly dispersed Ni and Co particles on the N-doped carbon fibers as nucleation sites,which enabled the uniform Li nucleation and nondendritic growth as well as a long lifespan of LMB [28].Yuetal.stabilized the Li metal anode by using Co nanoparticles and doped N atoms as active sites to regulate uniform Li nucleation and reduce the nucleation overpotential.These transition metals (e.g.,Co or Ni) serve as lithiophilic adsorption sites for Li nucleus landing[29].One can expect that combining the advantages of lithiophilic nucleation sites and high-ionic conductive LiF matrix can control uniform and highly stable Li deposition.

    Herein,a hybrid ionic/electronic interphase composed of Co clusters and LiF matrix is constructed by anin-situelectrochemical reduction of cobalt fluoride (CoF2).Uniformly distributed Co clusters in the LiF matrix cannot only provide abundant adsorption sites for Li ions,but also prompt fast Li-ion diffusion.Additionally,the LiF matrix can also provide fast Li-ion diffusion path and strong mechanical strength to limit dendrite growth.As a result,the multi-functional artificial SEI decorated anode achieves dendrite-free Li deposition at 4 mA/cm2,6 mAh/cm2.Co-LiF@Cu||Li half cells manifest an ultralow nucleation overpotential of 16.1 mV and a high CE of 98.0%.When coupled with LiFePO4(LFP) cathode with a high mass loading of 11.5 mg/cm2,the full cell shows significantly enhanced rate performance and cycling stability.This novel anode design enables superior durability and feasibility of the high-energy-density LMBs for practical application.

    We first employed density functional theory (DFT) calculations to deeply understand the function mechanism of the Co-LiF hybrid ionic/electronic interphase.The surface models of Cu (111),Co (002),and LiF (100) were considered for investigating the Liion adsorption due to their lowest surface energies,respectively[14,30,31].As shown in Fig.1a,LiF has weak affinity to Li ions with a lower adsorption energy of -0.4 eV,indicating that LiF has low lithiophilicity.While the adsorption energy of Co to Li ions(-2.9 eV) is much higher,which suggests that Co species can serve as adsorption sites to anchor Li ions.Although Cu has an adsorption energy of -2.5 eV,its uneven local electric field caused by the rough surfaces inevitably leads to randomly oriented Li nucleus[31-33],which finally evolves into dendritic morphology (Fig.1d).Moreover,the diffusion energy barriers of Li ion on the (110),(100),and (111) facets of Li2O are 0.65,0.56,and 0.39 eV,respectively.By contrast,LiF has lower values of 0.36,0.12,and 0.2 eV along the corresponding migration paths,respectively,and Co has the lowest value of 0.02 eV on the (002) crystal planes (Fig.1b).The related Li diffusion paths are shown in Fig.1c and Fig.S1 (Supporting information).The high adsorption energy of Co to Li ions,and fast diffusion kinetics of Li ions on both Co and LiF raise a propose that thein-situconstructing Co-LiF hybrid SEI can effectively suppress the dendrite formation,during which Co and LiF can disperse Li-ion flux and enable uniform diffusion within the hybrid layers,and Co species provide abundant nucleation sites for Li deposition.Thereafter,the artificial Co-LiF hybrid SEI is designed to guide homogenous Li nucleation and further growth (Fig.1e).First,a mixed layer composed of CoF2was coated on the Cu foil (Fig.S2 in Supporting information).Second,the nano-size Co clusters embedded LiF matrix are generated by electrochemical reduction of CoF2.During the Li deposition,Li ions turn into Li-ion flux with the help of LiF layers,then adsorb on the lithiophilic Co clusters,and finally are reduced to form abundant Li nucleus under small nucleation energy barriers.These fresh Li nuclei further grow in a lateral pattern guided by LiF matrix.More importantly,the hybrid Co-LiF SEI with low ion migration energy barrier favors the migration of Li ions through the Li-SEI interface,realizing dense and uniform Li deposition.

    Fig.1.Design principles of hybrid ionic/electronic interphase for stable Li metal anode.(a) Adsorption energy toward Li ion from different species.(b) Diffusion energy barriers of Li ion on different crystal planes of Co,LiF and Li2O,respectively.(c) The corresponding diffusion pathways of Li ions for Co and LiF species.Design and functioning mechanism of (d) bare Cu foil and (e) Co-LiF@Cu electrode.

    The initial CoF2shows a hexagonal octahedral shape with a lateral diameter of~6 μm and a thickness of~2 μm,showing element homogeneity of Co and F (Fig.S3 in Supporting information).This structure is composed of orderly stacked nanorods with diameter of~15 nm,presenting a polycrystalline nature (Fig.S4 in Supporting information).As illustrated in Fig.2a,coin cells were assembled using the CoF2@Cu as working electrode and Li foil as counter electrode,and then discharged to 0 V to obtain a hybrid Co-LiF interphase on Cu.A distinct and long plateau at 1.4 V appears in the first discharge profiles (Fig.S5 in Supporting information),which can be attributed to the conversion reaction:CoF2+2Li++2e-→2LiF+Co [15,34-36].Fig.2b displays the Xray diffraction (XRD) patterns of the initial CoF2and its reduction products of Co-LiF hybrid layer.CoF2exhibits clear and sharp XRD diffraction peaks (PDF#70-4977),suggesting its high purity and high crystallinity.After reduction,the peaks of CoF2disappear and new peaks indexed to hexagonal Co (PDF#65-9722) and cubic LiF (PDF#70-1934) are observed,confirming the successful construction of metallic Co and LiF hybrid composite.The wide and dispersed XRD peaks indicate the nanocrystalline nature of the Co and LiF products [35].Scanning electron microscopy (SEM) images of CoF2@Cu electrode and its surface after electrochemical reduction are presented in Figs.2c and d and Fig.S6 (Supporting information).It is noticed that numerous cracks were developed in the CoF2@Cu electrodes,while they were self-repaired after discharged to 0 V,which can be attributed to the redispersion of Co and LiF during the phase change process [15,35].F and Co elements are homogeneously dispersed through the Co-LiF layer (Fig.2d inset and Fig.S6b).Transmission electron microscopy (TEM) and highresolution TEM (HR-TEM) were further applied to analyze the microstructure of Co and LiF.The homogeneous distributed Co and F elements (Fig.2e) indicate the nanoscale mixing of LiF and Co.Figs.2f and g show that Co and LiF exist in the form of clusters,and Co(red circle) is uniformly embedded in the LiF (yellow circle) matrix.The Co and LiF nanoparticles with a diameter of~3 nm have lattice spacings of 5.26 and 2.04 ?A,corresponding to (002) crystal plane of hexagonal Co and (200) of cubic LiF,respectively.

    Fig.2.Preparation and characterization of Co-LiF hybrid SEI by in-situ electrochemical reduction of CoF2.(a) Synthesis route for a Co-LiF@Cu electrode.(b) XRD patterns of CoF2 and the obtained Co-LiF hybrid layer by in-situ reduction.SEM images of (c) the CoF2 electrode and (d) Co-LiF@Cu electrode.(e) TEM images and the related elemental mapping of Co-LiF nanocomposite.(f) STEM images and (g) HRTEM images of Co cluster and LiF matrix.XPS etching analysis of the Co-LiF@Cu electrode for (h) Co 2p,(i) F 1s,and (j) Li 1s after discharging to 0 V.

    To further clarify the chemical composition of the SEI in depth,we proceeded X-ray photoelectron spectroscopy (XPS) with Ar+sputter etching (Figs.2h-j).Compared with the XPS results of the initial CoF2(Fig.S7 in Supporting information),the artificial SEI shows two major peaks at lower energy of 780.7 and 796.2 eV on the upper surface,which are assigned to Co 2p of metallic Co (Fig.2h) [35,37].Slight doublet peaks at 782.1 and 798.4 eV belong to Co2+2p3/2and Co2+2p1/2[38,39],respectively,which may originate from the partially oxidized surface of the Co clusters.After etching for 30 s,the obviously increased peak intensity and area of metallic Co confirm that Co0dominates inside the SEI bulk.The high-resolution F 1s and Li 1s XPS results confirm the presence of LiF at 684.8 (Fig.2i) and 55.0 eV (Fig.2j) on the upper surface of the electrode,respectively [40-43].After etching over 30 s,the LiF content significantly increase,whereas the C-Fxcontent is reduced,which indicates that the C-Fxis derived from the residual electrolyte [40].However,an extremely weak signal of LiF emerges on the F 1s spectrum for bare Cu after reduction,implying that the content of LiF produced by the electrolyte decomposition is negligible (Fig.S8 in Supporting information).Therefore,the expected Co-LiF hybrid ionic/electronic interphase is successfully constructed.

    To elucidate the stability of the hybrid Co-LiF interphase after Li plating,the composition of Li-deposited Co-LiF@Cu electrode was analyzed at different depth by Ar+sputter etching.The disappearance of Co2+can be attributed to the reduction by the deposited metallic Li.For metallic Co,the absence of signal for at 0 s and 30 s and the appearance at 90 s (778.4 and 794.2 eV) and 150 s (Fig.3a) indicates that the Co clusters were covered by the deposited Li metal on the surface,suggesting that the Co preferentially serves as initial nucleation site.Noted that LiF XPS peaks are clearly identified on the upper surface (Fig.3b),and the contents of the LiF change little after etching from 30 s to 150 s,which suggests that the components of the inner LiF are stable and uniform.Beside,a weak peak at 683.1 eV emerges after etching for 30 s,indicating the existence of ionic fluorine atom in Cx-F [44].The special formation of Cx-F component may occur in the presence of initially plated Li[45].For Li 1s pattern,two peaks at 54.4 and 55.1 eV are assigned to Li-O-R and LiF,respectively,however,XPS peak of metallic Li is not observed on the outermost surface.With etching time increasing over 30 s,independent Li0peak located at 52.9 eV is observed,indicating metallic Li [46] is deposited underneath the SEI layer(Fig.3c).The top-view EDS images also show the homogenous F and slight absence of Co distribution on the surface after Li deposition (Fig.3d),implying the coverage of metallic Li on the Co surface and the conformal protection of LiF on deposited Li.

    Fig.3.Characterization of the Li-deposited Co-LiF@Cu electrode.(a) Co 2p,(b) F 1s,and (c) Li 1s XPS etching analysis of the Co-LiF@Cu electrode after depositing Li with 1 mAh/cm2.(d) The corresponding element mapping.SEM images of (e-h) bare Cu and (i-l) Co-LiF@Cu electrode after 1st Li plating/stripping at 1 mA/cm2,1 mAh/cm2 and further depositing Li with increased capacity to 2 and 4 mAh/cm2.(m) Top-view and (n) cross-sectional images of Co-LiF@Cu electrode with plated Li at 4 mA/cm2,6 mAh/cm2.

    To verify the optimized Li plating/stripping behaviors regulated by the lithiophilic Co sites and LiF matrix,we assembled asymmetric cells to reveal the morphology evolution for Li deposition at different deposition capacity.1.0 mol/L LiTFSI in a liquid mixture of 1,2-dimethoxyethane and 1,3-dioxolane (1:1,v/v) with 1 wt% LiNO3additive was used as the electrolyte.At 1 mA/cm2,1 mAh/cm2,plenty irregular Li particles appear on the Cu surface (Fig.3e and Fig.S9a in Supporting information),and a large amount of ‘dead’Li and cavities are produced after stripping (Fig.3f),leading to a disordered and rough morphology.With the capacity increased to 2 and 4 mAh/cm2,Li particles gradually grow into large Li lumps and finally evolved into randomly oriented Li dendrites (Figs.3g and h),showing high risk to penetrating the separator.In contrast,the uniform Li deposition is guaranteed for the Co-LiF@Cu electrode.As presented in Fig.S10a (Supporting information),when the Li deposition capacity is 1 mAh/cm2,some pancake-like Li metal with different sizes covered on the surface Co-LiF@Cu electrode.The magnified SEM suggests that the surface of pancake-like Li is relatively flat and smooth (Fig.3i).Cross-sectional SEM images show a dense Li filled Co-LiF layer which is tightly attached to the Cu substrate (Fig.S9b in Supporting information).As shown in Figs.S9c and d (Supporting information),a large area of Li sheets deposit underneath and in the inner pores of Co-LiF layer.The elemental mapping results show the absence of Co and uniform distribution of F (Fig.S9e and f in Supporting information),indicating that Co are completely covered by the plated Li,while LiF layer acts as a protective layer.After 1ststripping (Fig.3j),the Co-LiF@Cu electrode can be restored to the original surface shown in Fig.2d,demonstrating a good reversibility of Li plating/stripping.As the Li amount increases to 2 mAh/cm2,pancaked-like and smooth-faced Li gradually connected (Fig.3k and Fig.S10b in Supporting information),and the surface gets more compact and smoother when the plating capacity reaches to 4 mAh/cm2(Fig.3l).Furthermore,when the current density and deposition capacity are increased to 4 mA/cm2and 6 mAh/cm2,the Li deposited Co-LiF@Cu electrode is seamlessly contacted,leading to a flat and dendrite-free plating surface (Fig.3m).In addition,cross-sectional SEM image clearly shows a dense deposition structure with a thickness of~36.3 μm,corresponding to a~26.3 μm thick Li deposition on the electrode surface (Fig.3n and Fig.S6b).The dendrite-free and reversible Li plating/stripping on Co-LiF@Cu indicates the validity of abundant nucleation sites,fast diffusion kinetics,and effective protection endowed by Co-LiF ionic/electronic interphase.

    To further evaluate the sustainability and practicality of Li plating/stripping,four types of asymmetrical cells using different electrodes were assembled to test their CEs.The Co-LiF@Cu electrode exhibits superior cyclability and longer cycling life compared with Co@Cu,LiF@Cu,and bare Cu electrodes (Fig.4a).Specifically,the Co-LiF@Cu electrode manifests a more stable CE around 98.0% over 160 cycles under 1 mA/cm2,1 mAh/cm2.By contrast,the CEs of Co@Cu,LiF@Cu,and bare Cu electrodes decrease to 73.9%,78.0%and 79.6% after 74,127,and 112 cycles,respectively.Fig.4b shows that the Co-LiF@Cu electrode has the lowest nucleation overpotential of 16.1 mV,which is much lower than that of bare Cu(75.9 mV),Co@Cu (21.1 mV),and LiF@Cu (27.6 mV).The ultralow nucleation overpotential of Co-LiF@Cu verifies the improved nucleation thermodynamics and fast Li-ion diffusion kinetics driven by the synergistic effect of the lithiophilic sites and fast Li-ion diffusion.Correspondingly,the plating/striping plateaus of Co-LiF@Cu at different cycles are steady and overlapped (Fig.4c),indicating a highly stable and reversible Li plating/stripping behavior.Consequently,when the plating capacity increases to 2 mAh/cm2,the CE of Co-LiF@Cu can still be held at 98.0% after 120 cycles (Fig.4d),which is greatly enhanced compared with other three electrodes.Even the current and deposition capacity is increased to 2 mA/cm2and 4 mAh/cm2,the Co-LiF@Cu still enables a uniform Li plating/stripping (Fig.S11 in Supporting information).The unstable CEs and Li deposition behavior of the mixed electrode of acetylene black and PVDF (Fig.S12 in Supporting information) again confirms the critical and positive effect of Co-LiF hybrid ionic/electronic interphase on Li plating/stripping.Figs.4e-g show the electrochemical impedance spectroscopy (EIS) of different electrodes.All the fresh electrodes have single semicircle (Fig.S13 in Supporting information),which corresponds to the charge transfer resistance(Rct) between the original electrode and electrolyte [19].After discharging to 0 V,new semicircle emerges in the Nyquist plot of Co@Cu,LiF@Cu,and Co-LiF@Cu electrodes (Fig.4e),suggesting a new interfacial resistance (Rsei) induced by thein-situformed SEI.As expected,the Co-LiF@Cu electrode shows the lowestRseiin high frequency range,indicates that the formed Co and LiF species enable better electrolyte wettability and fast Li-ion diffusion.After Li plating/stripping 20 and 100 cycles,Co-LiF@Cu electrode not only exhibits the smallestRseifor Li-ion migration,but also demonstrates the lowestRctbetween the artificial SEI and electrolyte(Figs.4f and g),validating the fast Li-ion diffusion kinetics and confirming the high structural stability of Li@Co-LiF@Cu anode.The Tafel curves and activation energy of pristine Li and Li@Co-LiF@Cu symmetric cells are shown in Figs.S14a and b (Supporting information).Compared with pristine Li anode,Li@Co-LiF@Cu anode illustrates a higher exchange current density and a lowerEa,demonstrating that Li ion diffusion through the SEI is accelerated due to the introduction of the introduction of Co-LiF hybrid interphase.Therefore,this hybrid ionic/electronic interphase can effectively promote the adsorption/diffusion of Li ions,thereby improving the cyclability of Li metal anodes.

    Fig.4.Electrochemical performance of half cells with different substrates.(a) CEs of bare Cu,LiF@Cu,Co@Cu,and Co-LiF@Cu at 1 mA/cm2,1 mAh/cm2.(b) Nucleation overpotentials of different anodes at 1 mA/cm2,1 mAh/cm2.(c) The corresponding Li plating/stripping curves after different cycles.(d) CEs of different anodes at 1 mA/cm2,2 mAh/cm2.Nyquist plot of half cells based on different substrates after (e) 1st discharging to 0 V,(f) 20 cycles,and (g) 100 cycles at 1 mA/cm2,1 mAh/cm2,respectively.

    Furthermore,we investigated the superiority of the Co-LiF bifunctional modification strategy for Li metal anode by using symmetrical cells.Before assembly,metallic Li with an area capacity of 3 mAh/cm2was deposited on bare Cu,Co@Cu,LiF@Cu,and Co-LiF@Cu.As illustrated in Fig.5a,the Li@Cu cell suffers from a dendritic short circuit at 2 mA/cm2,1 mAh/cm2after cycling for 276 h.The voltage polarizations of Li@Co@Cu and Li@LiF@Cu symmetrical cells drastically increase to exceeding 300 mV within 60 h,which suggests that the fragile/unstable SEI structure or highly porous Li dendrite can cause the severe side reaction,leading to the depletion of electrolyte and early death of the Li metal anode [47,48].By comparison,the Li@Co-LiF@Cu symmetrical cell shows a remarkably long cycle life and a steady voltage hysteresis about 37 mV for more than 1400 h.As the current and capacity increase to 5 mA/cm2and 10 mAh/cm2,the symmetric Li@Co-LiF@Cu cell still holds excellent stability for over 370 h with a moderate rise in voltage hysteresis (Fig.5b).The rate performance shows that the symmetric cell with Li@Cu exhibits a severe voltage fluctuation and suffers from electrode failure after cycling for 13 h (Fig.5c).With regard to Li@Co-LiF@Cu symmetrical cell,the voltage hysteresis steadily increases from 35 mV to 41 and 88 mV with the current densities varying from 1 mA/cm2to 2 and 5 mA/cm2.Particularly,this cell can stably cycle with an overpotential of 23 mV after suffering from high-rate Li plating/stripping,indicating a good rate capability and reversibility.Such superior electrochemical properties can be ascribed to the unobstructed electronic/ionic transport paths,which can induce uniform and stable Li plating/stripping even at high current densities and capacities.

    Fig.5.Cycling stability of composited Li metal anodes in symmetrical cells.(a) The voltage profiles of Li@Cu,Li@LiF@Cu,Li@Co@Cu,and Li@Co-LiF@Cu anodes in symmetrical cells at 2 mA/cm2,1 mAh/cm2.(b) The voltage profiles of Li@Co-LiF@Cu anode in symmetrical cell at 5 mA/cm2,10 mAh/cm2.(c) The voltage profiles of Li@Co-LiF@Cu and Li@Cu anodes in symmetrical cells at 1,2,5 mA/cm2 for 1 mAh/cm2.Top-view and cross-sectional SEM images of (d,f,h) Li@Cu and (e,g,i) Li@Co-LiF@Cu anodes after 20 and 80 cycles,respectively.

    The Li deposition morphologies after 20thand 80thplating at 1 mA/cm2,1 mAh/cm2are shown in Figs.5d-i.The Li@Cu exhibits a rough surface with randomly oriented Li chunks,numerous Li dendrites and ‘dead’Li with the increase of plating numbers (Figs.5d,f and h),indicating uneven Li deposition and uncontrolled dendrites growth.This undesired Li deposition can lead to the increase of voltage polarization and resistance.Needle-like dendrites inevitably cause the short circuit of batteries,thus threatening battery safety.After decorated with Co clusters and LiF matrix,the Li@Co-LiF@Cu exhibits a smooth and compact Li deposition without any Li dendrites and blocks after cycling for 20 and 80 times(Figs.5e and g).At the enlarged view,it can be clearly observed that deposited Li fills the pores in the of Co-LiF/Cu electrode and develops in a lateral growth pattern,thus forming an integrated and flat surface (Fig.S15 in Supporting information).The thickness of the deposited layer at 80thcycle is 8.7 μm (Fig.5i),which is in accordance with the initial plating morphology (Fig.S9b in Supporting information).Even after 80thplating,clear LiF signal and absence of metal Li are detected,which suggests that LiF stably covers on the surface of plated Li (Fig.S16 in Supporting information).The robust LiF layer as a physical protective barrier can avoid severe side reaction between electrolyte and highly reactive Li,enabling highly reversible Li plating/stripping behavior.As a result,the Li@Co-LiF@Cu symmetrical cell can achieve an extended cycling lifespan.

    To further assess the application possibility of Li@Co-LiF@Cu anode in practical LMBs,we assembled full cells paired with highmass-loading LFP cathode (11.5 mg/cm2,N/P ratio is 3:1) (Fig.6a).After charging to 4 V,the LFP||Li@Cu pouch cell can stably power a light emitting diode (LED) without attenuation of brightness (Fig.6b),demonstrating the practicality and durability of the Li@Co-LiF@Cu anode.Fig.6c exhibits the discharge/charge curves of LFP||Li@Co-LiF@Cu full cell at different rates.Compared with LFP||Li@Cu (Fig.S17 in Supporting information),the LFP||Li@Co-LiF@Cu full cell demonstrates a stable voltage plateaus and enhanced rate capability.The specific capacities of LFP||Li@Co-LiF@Cu full cell are 157.8,146.3,132.8,113.2,and 84.1 mAh/g at 0.2,0.5,1,2,and 5 C,respectively (Fig.6d).As the current density turns back to 0.2 C,the specific capacity returns to 153.5 mAh/g,demonstrating an excellent stability of the Li@Co-LiF@Cu anode in full cells.However,full cell of LFP||Li@Cu shows a distinctly lower capacity starting from 1 C.When tested at 5 C,the discharge capacity deteriorates to almost zero,indicating the high-rate failure of LFP||Li@Cu battery.Furthermore,the LFP||Li@Co-LiF@Cu full cell shows much smaller polarization voltage at all current densities(Fig.6e),and when the current density is back to 0.2 C,the polarization voltage (52.1 mV) almost recovers to the initial levels(51.7 mV).The full cells with Li@Co-LiF@Cu anodes demonstrate better cycling stability than that with Li@Cu anodes (Fig.6f).As illustrated in Fig.6g,LFP||Li@Co-LiF@Cu manifests a higher initial capacity of 137.4 mAh/g,93.4% of which is maintained at 180thcycle.Comparatively,the capacity of LFP||Li@Cu full cell severely decays from 127.5 mAh/g to 77.2 mAh/g after 180 cycles,with a much lower capacity retention of 60.5%.Beside,the initial CE of LFP||Li@Co-LiF@Cu battery (88.7%) is higher than that of LFP||Li@Cu battery (86.7%),and maintains stably at~99.2% during the cycling,while serious CE fluctuation appears after 130 cycles for LFP||Li@Cu full cell.The better rate capability,longer cycling life,and lower polarization of LFP||Li@Co-LiF@Cu full cells are benefited from the fast Li-ion diffusion kinetics,preferred deposition thermodynamics,and protective function enabled by Co-LiF interphase layer.These advanced performances evident the superiority of Li@Co-LiF@Cu anode and confirm its feasibility for practical Li batteries.

    Fig.6.Electrochemical performance of full cells.(a) Schematic illustration of the LFP||Li@Co-LiF@Cu full cell.(b) The LED lightened by the LFP||Li@Co-LiF@Cu pouch cell.(c)Discharge/charge profiles of the LFP||Li@Co-LiF@Cu full cell at different current densities.(d) Rate capability and (e) the polarization voltage of LFP||Li@Cu and LFP||Li@Co-LiF@Cu full cells.(f) Discharge/charge profiles of LFP||Li@Cu and LFP||Li@Co-LiF@Cu full cells at different cycles.(g) Long-term cycling stability of the two types of full cells.

    In summary,a novel Co-LiF hybrid ionic/electronic interphase of on Cu substrate for Li metal anode has been successfully designed and fabricated.The lithiophilic Co seeds exhibit strong absorption to Li ions,thus can effectively guide uniform Li nucleation.Meanwhile,both the Co clusters and LiF matrix enable fast Li-ion transport effect,providing abundant transport paths to boost Li diffusion kinetics and stabilizing the Li/electrolyte interface.With this strategy,the Co-Li@Cu can achieve a dendrite-free Li deposition even under high current and high plating capacity.Consequently,Co-Li@Cu||Li half cells could stably undergo plating/stripping with a high CE of~98.0%.The symmetric cells achieve a long-term cycling life beyond 1400 h and 370 h under 2 mA/cm2,1 mAh/cm2and 5 mA/cm2,10 mAh/cm2,respectively.When paired with LFP cathodes with mass loading of 11.5 mg/cm2,the full cells with a N/P ratio of 3 exhibit a high rate performance (84.1 mAh/g at 5 C) and can be cycled for 180 cycles with a high capacity retention of 93.4%.The rationally designed Co-LiF hybrid ionic/electronic structure with lithiophilic nucleation sites,high ionic conductivity and protective function shows great promise for constructing highperformance LMBs.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.22279097,52172217),Natural Science Foundation of Guangdong Province (No.2021A1515010144),and Shenzhen Science and Technology Program(No.JCYJ20210324120400002).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109144.

    综合色av麻豆| 哪里可以看免费的av片| 网址你懂的国产日韩在线| 人妻丰满熟妇av一区二区三区| 99热6这里只有精品| 免费av不卡在线播放| 欧美成人一区二区免费高清观看| 性色avwww在线观看| 美女 人体艺术 gogo| 午夜福利成人在线免费观看| 国产久久久一区二区三区| 国产激情偷乱视频一区二区| 国产毛片a区久久久久| 国产精品亚洲一级av第二区| 国产精品无大码| 高清日韩中文字幕在线| 亚州av有码| 亚洲国产欧洲综合997久久,| 亚洲无线在线观看| 日本欧美国产在线视频| 日韩精品中文字幕看吧| 国内精品美女久久久久久| 亚洲电影在线观看av| 免费人成在线观看视频色| 亚州av有码| 欧美+亚洲+日韩+国产| 国内精品一区二区在线观看| 在线国产一区二区在线| 窝窝影院91人妻| 十八禁国产超污无遮挡网站| 特大巨黑吊av在线直播| 级片在线观看| 免费在线观看成人毛片| 在线免费观看不下载黄p国产 | 最近最新免费中文字幕在线| 亚洲人与动物交配视频| 久久精品影院6| 久久热精品热| 国产蜜桃级精品一区二区三区| 中文字幕精品亚洲无线码一区| 99热这里只有是精品在线观看| 久久99热6这里只有精品| 99久久成人亚洲精品观看| 在线播放国产精品三级| 内射极品少妇av片p| 国内精品美女久久久久久| 亚洲美女黄片视频| 国产欧美日韩精品亚洲av| 日本a在线网址| 最近在线观看免费完整版| 午夜福利成人在线免费观看| 91在线观看av| 99久久久亚洲精品蜜臀av| 91av网一区二区| 波多野结衣高清作品| 午夜亚洲福利在线播放| 麻豆国产av国片精品| 午夜福利成人在线免费观看| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 99热6这里只有精品| 国产探花在线观看一区二区| 又爽又黄无遮挡网站| 极品教师在线视频| 欧美极品一区二区三区四区| 国产精品伦人一区二区| 精品午夜福利视频在线观看一区| 精品久久久久久成人av| 色av中文字幕| 国产精品久久电影中文字幕| 国产精品永久免费网站| 亚洲精品久久国产高清桃花| 观看美女的网站| www日本黄色视频网| 午夜影院日韩av| av在线观看视频网站免费| 国产三级中文精品| 国产高清视频在线播放一区| 99热这里只有是精品50| 亚洲在线自拍视频| 欧美一级a爱片免费观看看| 欧美最黄视频在线播放免费| 日韩欧美国产在线观看| 国产大屁股一区二区在线视频| 色视频www国产| 日本黄色片子视频| 久久久久久久久中文| 天堂av国产一区二区熟女人妻| .国产精品久久| 国产精品无大码| 欧美日韩中文字幕国产精品一区二区三区| 人妻少妇偷人精品九色| 午夜久久久久精精品| 久久久久久久久中文| 波野结衣二区三区在线| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站| 国产精品一区www在线观看 | 人人妻人人澡欧美一区二区| 18禁在线播放成人免费| 特大巨黑吊av在线直播| 亚洲色图av天堂| 国产主播在线观看一区二区| 亚洲精品影视一区二区三区av| 黄色丝袜av网址大全| 国产高清三级在线| 国产精品乱码一区二三区的特点| 九九爱精品视频在线观看| 国产蜜桃级精品一区二区三区| 免费看a级黄色片| 男女啪啪激烈高潮av片| 亚洲精品一区av在线观看| 成人国产一区最新在线观看| 欧美+亚洲+日韩+国产| 国产av在哪里看| 欧美日韩精品成人综合77777| 97人妻精品一区二区三区麻豆| 热99在线观看视频| 国产精品免费一区二区三区在线| 午夜影院日韩av| 国产精品av视频在线免费观看| 亚洲七黄色美女视频| xxxwww97欧美| 熟妇人妻久久中文字幕3abv| 国产一区二区三区av在线 | 国产精品一区二区免费欧美| 国产熟女欧美一区二区| 丰满人妻一区二区三区视频av| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 一区二区三区激情视频| 18禁在线播放成人免费| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费| 日本a在线网址| 直男gayav资源| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 国产v大片淫在线免费观看| 一个人看的www免费观看视频| 亚洲av美国av| 国产精品伦人一区二区| av在线蜜桃| 成人特级av手机在线观看| 色视频www国产| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 男女之事视频高清在线观看| 亚洲av电影不卡..在线观看| 白带黄色成豆腐渣| 国产伦精品一区二区三区视频9| 亚洲七黄色美女视频| 91狼人影院| 此物有八面人人有两片| 久久精品综合一区二区三区| 久9热在线精品视频| 午夜精品一区二区三区免费看| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 日韩大尺度精品在线看网址| 国产老妇女一区| 欧美一区二区精品小视频在线| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 国产大屁股一区二区在线视频| 国产精品亚洲一级av第二区| 欧美日韩中文字幕国产精品一区二区三区| 老司机福利观看| 欧美+日韩+精品| 国产探花在线观看一区二区| 国产精品女同一区二区软件 | 欧美3d第一页| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 国产精品一区二区免费欧美| 成年版毛片免费区| 日韩中字成人| 毛片一级片免费看久久久久 | 亚洲av第一区精品v没综合| 国产单亲对白刺激| 亚洲国产精品合色在线| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 又爽又黄a免费视频| .国产精品久久| 男女做爰动态图高潮gif福利片| 欧美黑人巨大hd| 九九爱精品视频在线观看| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 熟妇人妻久久中文字幕3abv| 精品一区二区免费观看| 久久久久国内视频| 亚洲第一电影网av| 又紧又爽又黄一区二区| 88av欧美| 国产人妻一区二区三区在| 国产久久久一区二区三区| 亚洲国产精品合色在线| 国产精品,欧美在线| 男人的好看免费观看在线视频| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 国产国拍精品亚洲av在线观看| 毛片女人毛片| 观看免费一级毛片| 欧美精品啪啪一区二区三区| 18+在线观看网站| 久久人妻av系列| 欧美一级a爱片免费观看看| 国产精品人妻久久久久久| 看免费成人av毛片| 黄色日韩在线| 3wmmmm亚洲av在线观看| 99在线人妻在线中文字幕| 在线免费观看的www视频| 久久精品久久久久久噜噜老黄 | 精品午夜福利视频在线观看一区| 亚洲电影在线观看av| 亚洲内射少妇av| 精品无人区乱码1区二区| 久久久久久久久久成人| 午夜a级毛片| 亚洲va在线va天堂va国产| 啦啦啦观看免费观看视频高清| 欧美日韩中文字幕国产精品一区二区三区| 又爽又黄无遮挡网站| 自拍偷自拍亚洲精品老妇| 制服丝袜大香蕉在线| 精品日产1卡2卡| 欧美不卡视频在线免费观看| 精品一区二区免费观看| 国产成人aa在线观看| 搡老熟女国产l中国老女人| 性插视频无遮挡在线免费观看| 99热这里只有是精品50| 日本与韩国留学比较| 欧美在线一区亚洲| 真实男女啪啪啪动态图| 国产高潮美女av| 国产精品精品国产色婷婷| 成熟少妇高潮喷水视频| 在线天堂最新版资源| 国产黄a三级三级三级人| 久久久久性生活片| 白带黄色成豆腐渣| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 一级黄色大片毛片| 在线免费观看的www视频| 国产麻豆成人av免费视频| 在线播放无遮挡| 国产男靠女视频免费网站| 欧美成人性av电影在线观看| 中文字幕人妻熟人妻熟丝袜美| 色哟哟哟哟哟哟| 乱人视频在线观看| 免费黄网站久久成人精品| 国产精品亚洲一级av第二区| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 免费人成在线观看视频色| 日本与韩国留学比较| 国产精品久久久久久av不卡| 啦啦啦观看免费观看视频高清| 免费看a级黄色片| 亚洲av第一区精品v没综合| x7x7x7水蜜桃| 亚洲aⅴ乱码一区二区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 在线观看一区二区三区| 亚洲国产欧美人成| 在线观看午夜福利视频| 很黄的视频免费| 国产日本99.免费观看| 亚洲人成网站高清观看| 国产精品98久久久久久宅男小说| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 一卡2卡三卡四卡精品乱码亚洲| 小蜜桃在线观看免费完整版高清| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 免费av不卡在线播放| 天堂动漫精品| 国产精品一区二区免费欧美| 我的女老师完整版在线观看| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 久久久久性生活片| 久久久午夜欧美精品| 一本一本综合久久| 国产一级毛片七仙女欲春2| 久久亚洲真实| 国产乱人伦免费视频| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 国产精品国产三级国产av玫瑰| 色av中文字幕| 少妇丰满av| 免费在线观看成人毛片| 国产一级毛片七仙女欲春2| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 超碰av人人做人人爽久久| 美女被艹到高潮喷水动态| 亚洲av.av天堂| 免费黄网站久久成人精品| 成人三级黄色视频| 91精品国产九色| 男人舔奶头视频| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 亚洲18禁久久av| 乱码一卡2卡4卡精品| 国产不卡一卡二| 成人二区视频| 精华霜和精华液先用哪个| 亚洲人成伊人成综合网2020| 嫩草影视91久久| 久久九九热精品免费| 白带黄色成豆腐渣| 免费观看人在逋| 99热精品在线国产| 男女边吃奶边做爰视频| 日本一本二区三区精品| 久久久久久久久久黄片| 亚洲在线观看片| 国产私拍福利视频在线观看| 日本一本二区三区精品| 不卡视频在线观看欧美| 国产精品自产拍在线观看55亚洲| 久久久久免费精品人妻一区二区| 深爱激情五月婷婷| 尾随美女入室| 制服丝袜大香蕉在线| 亚洲无线观看免费| 国产一区二区在线av高清观看| 色av中文字幕| 亚洲中文字幕一区二区三区有码在线看| 久久久精品欧美日韩精品| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 内地一区二区视频在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 搞女人的毛片| 久久久久久久精品吃奶| 欧美最新免费一区二区三区| 久久天躁狠狠躁夜夜2o2o| 伦理电影大哥的女人| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 午夜影院日韩av| 麻豆精品久久久久久蜜桃| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 欧美日韩精品成人综合77777| 老司机午夜福利在线观看视频| 深夜a级毛片| 国产69精品久久久久777片| 人人妻,人人澡人人爽秒播| 在线免费观看不下载黄p国产 | 亚洲avbb在线观看| www.色视频.com| 天堂影院成人在线观看| 国产精品一区二区三区四区久久| 99久久精品一区二区三区| АⅤ资源中文在线天堂| 麻豆一二三区av精品| 成年女人永久免费观看视频| 国产亚洲精品av在线| 亚洲精品国产成人久久av| 国产亚洲精品综合一区在线观看| 欧美一区二区亚洲| 搡老熟女国产l中国老女人| 超碰av人人做人人爽久久| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 伦理电影大哥的女人| 欧美成人a在线观看| 国产黄片美女视频| 最后的刺客免费高清国语| 亚洲中文字幕日韩| 日本欧美国产在线视频| 又粗又爽又猛毛片免费看| 美女 人体艺术 gogo| 人人妻人人澡欧美一区二区| 人妻久久中文字幕网| 亚洲美女视频黄频| 亚洲人成网站高清观看| 国产精品日韩av在线免费观看| 亚洲国产精品合色在线| 国产精品久久久久久av不卡| 日韩中文字幕欧美一区二区| 国产精品一区www在线观看 | 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 淫妇啪啪啪对白视频| 久久精品影院6| 亚洲av中文字字幕乱码综合| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 午夜福利在线观看吧| 一区二区三区激情视频| 一进一出抽搐动态| 少妇人妻一区二区三区视频| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 两性午夜刺激爽爽歪歪视频在线观看| 日本 欧美在线| 久久香蕉精品热| 亚洲最大成人手机在线| 免费在线观看影片大全网站| 午夜激情福利司机影院| www日本黄色视频网| 一本久久中文字幕| 永久网站在线| 欧美xxxx性猛交bbbb| 波多野结衣高清无吗| 成人美女网站在线观看视频| 波多野结衣高清作品| 天堂av国产一区二区熟女人妻| 黄色视频,在线免费观看| 久久久久久久久久成人| 夜夜爽天天搞| 永久网站在线| x7x7x7水蜜桃| 日韩中字成人| 亚洲美女搞黄在线观看 | 久久亚洲真实| 午夜福利在线观看免费完整高清在 | 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 久久久久久久久大av| 99热精品在线国产| 黄色视频,在线免费观看| 天天一区二区日本电影三级| 特级一级黄色大片| 毛片一级片免费看久久久久 | 色播亚洲综合网| 一区二区三区激情视频| 51国产日韩欧美| 久久人人精品亚洲av| 亚洲男人的天堂狠狠| 久久久久久久久大av| 99精品在免费线老司机午夜| 日本免费a在线| 少妇高潮的动态图| 日韩亚洲欧美综合| 色在线成人网| 久久精品国产亚洲av天美| 国产精品免费一区二区三区在线| 午夜视频国产福利| 亚洲av熟女| 日本黄色视频三级网站网址| 国产成人av教育| 色在线成人网| 又爽又黄a免费视频| 国产老妇女一区| 精品一区二区三区视频在线| 亚洲自拍偷在线| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 欧美激情国产日韩精品一区| 中亚洲国语对白在线视频| 免费在线观看影片大全网站| 国产单亲对白刺激| 国产精品国产三级国产av玫瑰| 国内精品久久久久精免费| 亚洲最大成人av| 婷婷亚洲欧美| 麻豆国产av国片精品| 国产精品福利在线免费观看| 精品人妻一区二区三区麻豆 | 69av精品久久久久久| 在线观看免费视频日本深夜| 51国产日韩欧美| 无遮挡黄片免费观看| 午夜久久久久精精品| 亚洲熟妇熟女久久| 亚洲三级黄色毛片| 国产精品人妻久久久影院| 国产在线男女| 欧美zozozo另类| 特级一级黄色大片| 日韩欧美免费精品| 婷婷精品国产亚洲av| 人妻少妇偷人精品九色| 少妇被粗大猛烈的视频| 免费观看精品视频网站| а√天堂www在线а√下载| 全区人妻精品视频| 两人在一起打扑克的视频| 久久精品国产亚洲av香蕉五月| 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 国产午夜福利久久久久久| 夜夜夜夜夜久久久久| 黄色女人牲交| 国产亚洲精品综合一区在线观看| 嫩草影院入口| 国产三级中文精品| 别揉我奶头 嗯啊视频| 男女边吃奶边做爰视频| 99久久九九国产精品国产免费| 99riav亚洲国产免费| 成人国产一区最新在线观看| 欧洲精品卡2卡3卡4卡5卡区| 有码 亚洲区| 欧美激情久久久久久爽电影| 午夜爱爱视频在线播放| 少妇丰满av| 国产欧美日韩精品一区二区| 69人妻影院| 我的老师免费观看完整版| 美女高潮的动态| 香蕉av资源在线| 午夜免费男女啪啪视频观看 | 乱码一卡2卡4卡精品| or卡值多少钱| 久久香蕉精品热| 日本撒尿小便嘘嘘汇集6| 亚洲av.av天堂| 在线观看舔阴道视频| 国产精品久久久久久亚洲av鲁大| 九九爱精品视频在线观看| 成年女人永久免费观看视频| 婷婷精品国产亚洲av| 无人区码免费观看不卡| 久久久久久伊人网av| 日日摸夜夜添夜夜添av毛片 | 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 亚洲国产欧美人成| 亚洲专区国产一区二区| 免费在线观看成人毛片| 亚洲一级一片aⅴ在线观看| 色综合婷婷激情| 中国美女看黄片| 亚洲真实伦在线观看| 一本精品99久久精品77| 一级毛片久久久久久久久女| 日本黄大片高清| 精品日产1卡2卡| 麻豆国产97在线/欧美| 免费无遮挡裸体视频| 51国产日韩欧美| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 男插女下体视频免费在线播放| 深夜a级毛片| 人妻丰满熟妇av一区二区三区| 精品免费久久久久久久清纯| 国产精品综合久久久久久久免费| 内地一区二区视频在线| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 如何舔出高潮| 欧美日韩中文字幕国产精品一区二区三区| 在线观看66精品国产| 国产亚洲欧美98| 国产高清视频在线观看网站| 欧美不卡视频在线免费观看| 99热6这里只有精品| 久久中文看片网| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 国产一区二区在线观看日韩| 亚洲av中文字字幕乱码综合| 99riav亚洲国产免费| 亚洲精品日韩av片在线观看| 日日夜夜操网爽| 国产精品久久视频播放| 2021天堂中文幕一二区在线观| 国内精品久久久久精免费| 国产精品久久久久久av不卡| av中文乱码字幕在线| 午夜精品一区二区三区免费看| 少妇猛男粗大的猛烈进出视频 | 动漫黄色视频在线观看| 特大巨黑吊av在线直播| 久久久久久大精品| 成人特级黄色片久久久久久久| 老司机福利观看| 综合色av麻豆| 精品一区二区三区视频在线观看免费| 亚洲avbb在线观看| 国产精品自产拍在线观看55亚洲| 色哟哟哟哟哟哟| 别揉我奶头 嗯啊视频| 欧美一区二区亚洲| 91久久精品电影网| 尤物成人国产欧美一区二区三区| 国产精品女同一区二区软件 | 欧美3d第一页| 床上黄色一级片| 在线观看免费视频日本深夜| 极品教师在线视频| 日韩强制内射视频| 永久网站在线| 亚洲精品色激情综合|