• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial charge redistribution to promote the catalytic activity of Vs-CoP-CoS2/C n-n heterojunction for oxygen evolution

    2024-04-05 02:28:58JiawenSunHuiXueJingSunNiankunGuoTianshanSongYiRuHaoQinWang
    Chinese Chemical Letters 2024年2期

    Jiawen Sun,Hui Xue ,Jing Sun,Niankun Guo,Tianshan Song,Yi-Ru Hao,Qin Wang

    College of Chemistry and Chemical Engineering,Inner Mongolia University,Hohhot 010021,China

    Keywords: Charge redistribution n-n Heterojunction Built-in electric field Sulfur vacancy Oxygen evolution reaction

    ABSTRACT Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heterojunction and vacancy defects remains unclear.Herein,a Vs-CoP-CoS2/C n-n heterojunction with sulfur vacancies is successfully constructed,which manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV to reach 10 mA/cm2.The experimental results and density functional theory calculations testify that the outstanding OER performance of Vs-CoP-CoS2/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at n-n heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and in-depth explores the synergistic mechanisms of n-n heterojunction and vacancies.

    The accelerated consumption of fossil fuels has led to energy crisis and environmental pollution,and the pursuit of environmentally-friendly and renewable energy has become a top priority [1-3].Electrochemical water splitting provides a promising and sustainable method for large-scale production of clean and efficient hydrogen energy without environmental cost [4-6].As a significant half-reaction,the oxygen evolution reaction (OER) plays a crucial role in various renewable energy storage and conversion devices,such as hydrogen-producing water splitting,regenerative fuel cells,and metal-air batteries [7,8].Nevertheless,the complex four-electron coupled proton reaction kinetics of OER is slow and requires a high overpotential,which is a major factor limiting the efficiency of water electrolysis [9,10].Up to now,noble metals oxides like IrO2and RuO2have been considered as the first-rank OER catalysts,while their commercial application on a large scale is severely limited by the high cost and scarcity [11-13].Therefore,developing OER electrocatalysts with superior activity,good chemical stability and cost-effective is urgent.

    Over the past few years,efforts have been devoted to investigating terrestrially abundant transition metal compounds such as oxides,sulfides,selenides,and phosphides as efficient OER electrocatalysts [14-16].Transition metal phosphides (TMPs) are known for their low kinetic energy barrier and excellent electrical conductivity [17-20].Many studies have shown that TMPs tend to exhibit excellent hydrogen evolution reaction (HER) activity,while the OER performance of these TMPs catalysts is often unsatisfactory [21-23].As a consequence,the enhancement of the OER electrocatalytic performance of TMPs is still a research hotspot.The efficient integration of single-component catalysts to synthesize heterojunctions is a valid method to boost the catalytic activity of transition metal-based catalysts [24,25].The formation of heterogeneous interfaces can effectively promote the interfacial electron transport,tailor the electronic structure,and regulate the adsorption free energy of the reaction species,thereby significantly improve the electrocatalytic activity [26,27].Accordingly,as a typical type of heterojunction,n-n heterojunction catalysts have made significant progress in the field of batteries due to their ability to accelerate charge transfer and excellent performance [28].Moreover,from the perspective of semiconductor physics,two n-type semiconductors with different energy structures coming into contact and reaching thermodynamic equilibrium will induce the formation of a built-in electric field and two opposite charge distribution regions at the interface [29,30],which is beneficial to the rapid transfer of electrons between n-n type semiconductors in the catalytic process,and improving the catalytic activity [30].Based on this,n-type semiconductor TMPs are combined with another ntype semiconductor to form n-n type heterojunctions,and the interfacial electronic regulation based on the built-in electric field is expected to significantly improve their electrocatalytic activity for OER.

    In addition to constructing heterostructures,the fabrication of defects in the crystal structure is also a valid method to improve the electrocatalytic performance [31].The effect of vacancy defects in electrocatalysts on OER performance has been extensively studied [32].In general,the introduction of defects can tailor the electronic structure and charge distribution of atoms,increase the active sites for the reaction,and thus enhancing the intrinsic activity of the catalysts [33,34].Among them,anion vacancies,as an important solid defect,can promote the OER performance by improving the electrical conductivity and surface activity of the electrocatalysts [35,36].For instance,Kang and co-workers proposed that sulfur (S) vacancies can modulate the electronic structure of CuCo2S4and promote the intrinsic conductivity,thus enhancing the electrocatalytic activity [37].Therefore,combining the advantages of vacancy defects to construct an n-n type semiconductor heterojunction system is expected to further boost the electrochemical OER performance of TMPs.

    Herein,a Vs-CoP-CoS2/C n-n heterojunction nanorods with abundant sulfur vacancies has been successfully constructed.Notably,the as-prepared Vs-CoP-CoS2/C heterojunction manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV and a minor Tafel slope of 39 mV/dec to reach 10 mA/cm2.Combined with experimental results and density functional theory calculations,the outstanding OER performance of Vs-CoP-CoS2/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at nn heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and indepth explores the synergistic mechanisms of n-n heterojunction and vacancies.

    The synthesis process of Vs-CoP-CoS2/C heterojunction is shown in Fig.1a.Briefly,the Co(OH)2/C precursor was prepared by hydrothermal method on nickel foam and then treated with phosphating and sulfidation to obtain Vs-CoP-CoS2/C heterojunction.Fig.S1 (Supporting information) displays the results of X-ray diffraction (XRD) on the crystal phase structure and composition of the Vs-CoP-CoS2/C heterojunction.The diffraction peaks located at 36.3°,48.1°,52.2°,and 56.1° are attributed to the (111),(211),(103),and (020) planes of CoP (JCPDS No.65-2593),respectively.In addition,the diffraction peaks at 32.3°,36.3°,39.9°,and 46.4°belong to (200),(210),(211),and (220) facets of CoS2(JCPDS No.65-3322).The XRD results demonstrate that CoP and CoS2phases have been successfully synthesized.The morphology of the electrocatalysts was analyzed by SEM.The nanorods morphology of Vs-CoP-CoS2/C has been clearly observed in Fig.1b,and the morphologies of contrast samples,such as Co(OH)2,Co(OH)2/C,CoP/C,and CoS2/C are also provided in Fig.S2 (Supporting information).The results show that phosphating and sulfurization have great influence on the lamellar morphology of Co(OH)2/C precursor.Many pores on the surface of Vs-CoP-CoS2/C heterojunction can be detected from the TEM image (Fig.1c),which can increase the specific surface area,facilitate the exposure of the active site inside the Vs-CoP-CoS2/C and direct contact with the reactants,thus significantly improving the catalytic activity.The HRTEM image (Fig.1d) clearly discloses the carbon layer structure in the Vs-CoPCoS2/C heterojunction.The presence of carbon layer on the surface can effectively enhance the electron conduction of the electrocatalysts.Moreover,the lattice distance of 0.28 nm matches well with the (011) plane of CoP and 0.25 nm is ascribed to the (210) plane of CoS2,respectively.Importantly,a clear heterojunction interface can be observed,confirming the Vs-CoP-CoS2/C n-n heterojunction is successfully obtained.The formation of heterojunctions can facilitate the charge transfer and accelerate the reaction kinetics.Meanwhile,many atomic discontinuities can be detected in the CoS2lattice of Vs-CoP-CoS2/C heterojunction,which may result from the formation of S vacancies during sulfide synthesis (Fig.1e).Besides,the HAADF-STEM images (Fig.1f) and the corresponding elemental mapping reveal that the elements of Co,P,S,and C are uniformly dispersed in the Vs-CoP-CoS2/C nanorods.

    Fig.1.(a) Schematic illustration of the formation of Vs-CoP-CoS2/C.(b) SEM,(c)TEM,(d,e) HRTEM,(f) STEM (inset: the EDS spectrum) and the corresponding elemental mappings of Co,P,S and C of Vs-CoP-CoS2/C.

    The electron effect between CoP/C and CoS2/C and surface element valence states of catalysts was studied through X-ray photoelectron spectroscopy (XPS).As depicted in Fig.2a,the survey spectrum shows the presence of Co,P,S,C,and O elements in Vs-CoP-CoS2/C catalyst.The Co 2p core level spectrum(Fig.2b) can be deconvoluted into six peaks,corresponding to Co3+(779.2/794.1 eV),Co2+(782.1/797.9 eV),and satellite peaks(786.6/803.5 eV) of Co 2p3/2and Co 2p1/2,respectively [38-40].Interestingly,the binding energy of Co 2p in Vs-CoP-CoS2/C heterostructure is positively shifted by 0.6 eV relative to CoP/C and negatively shifted by 0.5 eV relative to CoS2/C.The results indicate that there is a strong electron interaction between CoP/C and CoS2/C,and continuous electron transfer between them is beneficial to significantly tailor the electronic structure of metal Co center [41].In the P 2p spectrum (Fig.2c),the P-Co bond with the binding energies of 129.7 eV and 130.5 eV and P-O bond located at 134.2 eV can be deconvoluted [42,43].It is also observed that the peak of P-Co is positively shifted by 0.3 eV compared to CoP/C.In Fig.2d,the S 2p spectrum of Vs-CoP-CoS2/C displays the S 2p3/2(161.9 eV) and S 2p1/2(163.0 eV) [44],which are negatively shifted by 0.6 eV compared to CoS2/C.In addition,the presence of the S2-peak may be due to the generation of S vacancies as reported in the literatures [45].The remaining two peaks,168.9 eV and 170.1 eV belong to the S-O bond [46].The O 1s spectrum of Vs-CoP-CoS2/C can be deconvoluted into two peaks located at 531.9 eV and 533.0 eV,which are ascribed to O-H and water adsorption,respectively (Fig.S3a in Supporting information) [47].The C 1s spectrum of Vs-CoP-CoS2/C exhibits three peaks of C-C,C-O,and C=O (Fig.S3b in Supporting information) [48].Based on the above analysis,the change in binding energy reveals a redistribution of charge in the Vs-CoP-CoS2/C heterogeneous interface,and the spontaneous transfer of electrons from CoP/C to CoS2/C,resulting in hole accumulation on the CoP/C side,which in turn significantly promotes the OER reaction [27].Furthermore,the electron paramagnetic resonance (EPR) provides strong evidence for the existence of S vacancies in the CoP-CoS2/C.As depicted in Fig.2e,the EPR signal is observed atg=1.997,which is attributed to the unpaired electrons [45].Compared with CoS2/C,the signal intensity of Vs-CoP-CoS2/C is significantly enhanced,indicating an increase in S vacancies.Therefore,according to the results of EPR,XPS,and TEM,there are a large number of S vacancy defects in Vs-CoPCoS2/C catalyst.The Raman spectroscopy was further performed to analyze the structure of the Vs-CoP-CoS2/C catalyst.It can be seen from Fig.2f that the intensity ratio of D band and G band (ID/IG)of Vs-CoP-CoS2/C is 0.968,showing a high degree of graphitization and electrical conductivity,which is conducive to the improvement of catalytic activity [49].

    Fig.2.XPS spectra of the obtained electrocatalysts: (a) Survey spectra,(b) Co 2p,(c) P 2p and (d) S 2p,(e) EPR spectra of the CoS2/C and Vs-CoP-CoS2/C.(f) Raman spectrum of Vs-CoP-CoS2/C.

    The OER catalytic activity of the samples was detailedly studied in 1 mol/L KOH solution using a typical three-electrode electrochemical system.The influence of sulfurization degree on the OER activity was explored by adjusting the sulfurization time.The results indicate that the optimal OER activity of Vs-CoP-CoS2/C catalyst was achieved when the sulfurization time was 60 min (Figs.S4 and S5 in Supporting information).Specifically,the LSV curves show that the overpotentials for Vs-CoP-CoS2/C,CoS2/C,CoP/C,and the commercial IrO2/NF are 170,190,230,and 330 mV,respectively(Fig.3a).Obviously,the Vs-CoP-CoS2/C catalyst possesses the optimal OER activity.Besides,the OER overpotential (193 mV) of Vs-CoP-CoS2catalyst (without carbon layer) is also lower than Vs-CoPCoS2/C,indicating that graphitic carbon could enhance the conductivity and improve the OER catalytic performance (Fig.S6 in Supporting information).In addition,the Tafel slope of 39 mV/dec for Vs-CoP-CoS2/C catalyst,lower than those of CoS2/C (45 mV/dec),CoP/C (50 mV/dec),and IrO2/NF (62 mV/dec),indicating a fast OER kinetics for the Vs-CoP-CoS2/C catalyst (Figs.3b and c).Furthermore,at the overpotential of 350 mV,the turnover frequency (TOF)value of 0.72 s-1for Vs-CoP-CoS2/C catalyst is also higher than that of CoS2/C (0.25 s-1) and CoP/C (0.18 s-1) in Fig.S7a (Supporting information).The charge-transfer properties of the obtained samples were further investigated by measuring the electrochemical impedance spectroscopy (EIS).The smallest charge transfer resistance (Rct) for Vs-CoP-CoS2/C indicates the fastest kinetic rate of OER (Fig.3d).The excellent OER electrocatalytic activity of Vs-CoPCoS2/C was further demonstrated by measuring theCdlof the catalyst through cyclic voltammetry (CV) in the non-Faraday region.According to the CV curve (Fig.S8 in Supporting information),theCdlvalue of the Vs-CoP-CoS2/C is 28 mF/cm2,which is larger than that of CoS2/C (26 mF/cm2) and CoP/C (16 mF/cm2) (Fig.3e).In addition,the electrochemically active surface area (ECSA) of the samples can be reflected by theCdl,and the highest ECSA of 700 cm2for the Vs-CoP-CoS2/C catalyst indicates more active sites are exposed on the catalyst surface (Fig.S7b in Supporting information).These results shows that the construction of heterojunction and S vacancies are beneficial to improve the OER electrocatalytic activity.On the other hand,stability is another important indicator for estimating the performance of electrocatalysts.The OER stability of Vs-CoP-CoS2/C was tested byi-tchronoamperometry and CV cycles.It can be seen from Fig.3f that thei-tcurve has no obvious current density loss after 20 h.Besides,the polarization curves after 1000 CV cycles also show negligible loss of activity(inset in Fig.3f),which further confirms its excellent electrochemical stability.Moreover,comparison with recently reported OER catalysts further demonstrates the excellent OER catalytic activity of the Vs-CoP-CoS2/C (Fig.3g and Table S1 in Supporting information).The electrochemical test of overall water splitting is shown in Fig.S9 (Supporting information),the overpotential of the Vs-CoPCoS2/C||Vs-CoP-CoS2/C system in 1 mol/L KOH solution is 287 mV at 10 mA/cm2,and it can be maintained for 24 h without performance attenuation.

    Fig.3.(a) OER polarization curves.(b) Tafel slopes.(c) Histogram of the overpotentials and Tafel slopes.(d) Nyquist plots.(e) Cdl. (f) Chronopotentiometric durability test(inset: LSV curves of Vs-CoP-CoS2/C before and after 1000 cycles).(g) A recently reported comparison of OER electrocatalysts at 10 mA/cm2.

    In order to reveal the underlying reason for the enhanced OER electrocatalytic activity of the Vs-CoP-CoS2/C heterojunction,and in-depth explore the interaction between CoP/C and CoS2/C,ultraviolet photoemission spectroscopy (UPS) tests were performed to establish the corresponding energy level diagrams.In Figs.4a and b,the Mott-Schottky plots of CoP/C and CoS2/C exhibit positive slopes,which are typical for n-type semiconductors [28,50].It is demonstrated that an n-n heterojunction between CoP/C and CoS2/C has been formed.The synthesis of multicomponent heterostructures can implement the regulation of the d-band center,which can be calculated based on the UPS results.In Fig.4c,the obtained d-band center of CoP/C,CoS2/C,and Vs-CoP-CoS2/C are-4.98,-4.94,and -4.92 eV,respectively,indicating the Vs-CoPCoS2/C sample shifts up closer to Fermi level than those of CoP/C and CoS2/C.In general,the d-band center with relation to the binding strength of the reaction intermediates.The upward shift of dband center indicates that the binding strength between catalyst and intermediate is enhanced,which is beneficial to reducing the potential barrier and boosting the OER catalytic activity [51].The interfacial charge polarization and band structure alteration were further analyzed by using UPS in Fig.S10 (Supporting information).The equation:Φ=hν-ECutoff+EFcan be used to calculate the work function (Φ),where hνandEFare 21.2 eV and 0 eV.Thus,theΦvalues of CoP/C and CoS2/C are 5.45 eV and 5.70 eV,respectively.Besides,the valence band (VB) values of CoP/C and CoS2/C are 1.84 eV and 1.88 eV (inset in Fig.S10),respectively.In order to study charge transfer between CoP/C and CoS2/C,the energy band diagrams before and after contact are provided (Fig.4d).Because of the difference in Fermi levels,electrons flow from CoP/C to CoS2/C until they reach a Fermi equilibrium,resulting in the formation of the built in electric field and a space charge region.Importantly,the built-in electric field facilitates interfacial electron transport and enhances electrical conductivity [52].In addition,the formation of positively charged active centers on the surface of CoP/C promotes the migration of OH-in alkaline electrolytes and improves the adsorption capacity of CoP/C to OH-,thus promoting the OER process.

    DFT calculations were used to further study the OER catalytic performance enhancement of n-n heterojunction and sulfur vacancy.We first calculate four models including two single components,sulfur vacancy-free heterojunction,and sulfur vacancycontaining heterojunction,which are represented by CoP/C,CoS2/C,CoP-CoS2/C,and Vs-CoP-CoS2/C,respectively (Figs.5a-c and Fig.S11 in Supporting information).The OER performance of electrocatalyst is strongly correlated with the chemisorption energy of the surface oxygen-containing intermediates,such as*OH,*O,and*OOH [35,53].Therefore,we studied the configuration and Gibbs free energy changes of oxygen-containing intermediates on the catalyst surface.As can be seen from Fig.5d and Fig.S12 (Supporting information),the rate-determining step during the OER process of CoP/C,CoS2/C,CoP-CoS2/C,and Vs-CoP-CoS2/C is*OOH adsorption with free energies of 2.12,1.97,1.86,and 1.74 eV,respectively.It is well known that lower variations in the free energy of ratedetermining steps favor OER thermodynamics.Therefore,the construction of heterojunction and sulfur vacancies can provide abundant active sites,reduce the energy barrier,and promote OER kinetics.Since the OER activity is concerned with the d-orbital of the transition metal active center,the corresponding projected density of state of the 3d-band of Co is calculated [54,55].As shown in Fig.5e and Fig.S13 (Supporting information),the 3d-band center of Vs-CoP-CoS2/C shifts obviously to a higher energy level comparing with CoP/C,CoS2/C,and CoP-CoS2/C,indicating that*OH,*O,and*OOH have stronger binding strength with the catalyst,which is in good agreement with the experimental results.The work functions of CoP/C and CoS2/C surfaces are 5.34 eV and 5.59 eV,respectively,and the electrons will be transferred from CoP/C to CoS2/C until the two Fermi energies are aligned (Fig.S14 in Supporting information).The electron density difference of CoP-CoS2/C is shown in Fig.S15 (Supporting information).It can be observed that charged active centers are generated at the n-n heterogeneous interface,further manifesting the rapid and continuous charge transfers from CoP/C to CoS2/C [56,57].While the electron aggregation and dissipation of Vs-CoP-CoS2/C (Fig.5f) increased in the n-n junction region,indicating that the introduction of sulfur vacancy can enhance electron transfer more effectively.From the above calculation results,the n-n junction and S vacancies formed in Vs-CoP-CoS2/C sample can accelerate the electron transfer,induce the charge redistribution [58],regulate the adsorption/desorption energy of intermediates,thereby significantly enhancing the electrocatalytic activity for OER.

    Fig.5.Optimized models (a) CoP/C,(b) CoS2/C,and (c) Vs-CoP-CoS2/C.(d) Gibbs free energy changes diagram of CoP/C,CoS2/C and Vs-CoP-CoS2/C.(e) Calculated DOS of CoP/C,CoS2/C,and Vs-CoP-CoS2/C.(f) Charge density difference in the interface of Vs-CoP-CoS2/C (The bule and red represent charge dissipation and aggregation in the space,respectively).

    Based on the above experimental results and theoretical analysis,the prepared Vs-CoP-CoS2/C n-n heterojunction has superior OER activity,which is mainly attributed to the following aspects:(1) The formed built-in electric field at the interface of CoP/C and CoS2/C can boost electron transfer and tailor the electronic structure of metal Co;(2) The abundant S vacancies not only enhance the adsorption capacity of the catalyst to the reaction intermediates,but also further boost electron transfer,thus significantly improving the catalytic activity;(3) The highly graphitized carbon layer in Vs-CoP-CoS2/C n-n heterojunction can increase the electrical conductivity,which is conducive to the electrocatalytic OER(Scheme 1).

    Scheme 1.Illustration of catalytic mechanism for Vs-CoP-CoS2/C.

    In summary,we successfully synthesized an efficient Vs-CoPCoS2/C n-n heterojunction.Benefiting from the charge redistribution and S vacancies,the Vs-CoP-CoS2/C catalyst exhibits excellent OER electrocatalytic activity with an overpotential low to 170 mV at 10 mA/cm2.DFT calculations prove that n-n heterogeneous interface and S vacancies are beneficial to accelerate the electron transfer,induce the charge redistribution,and regulate the Gibbs free energy of reactive species.This study affords a promising method to optimize the electrocatalytic activity by the construction of heterogeneous interfaces and vacancy defects.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This project was financially supported by the National Natural Science Foundation of China (NSFC,Nos.22269015,U22A20107,22205119) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (Nos.2021ZD11,2019BS02015).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109002.

    亚洲精品视频女| 午夜福利在线观看免费完整高清在| 久久国产精品大桥未久av| 精品福利永久在线观看| 国产一区亚洲一区在线观看| 一二三四中文在线观看免费高清| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久久久| 国产有黄有色有爽视频| 一区二区av电影网| 丰满少妇做爰视频| 老女人水多毛片| 亚洲人成77777在线视频| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 老司机影院成人| 久久久久网色| 只有这里有精品99| 波多野结衣一区麻豆| 汤姆久久久久久久影院中文字幕| 国产不卡av网站在线观看| 日韩欧美一区视频在线观看| 国产淫语在线视频| 欧美老熟妇乱子伦牲交| 91精品三级在线观看| av有码第一页| 亚洲欧美精品自产自拍| 亚洲国产精品专区欧美| 大片免费播放器 马上看| 香蕉精品网在线| 80岁老熟妇乱子伦牲交| 边亲边吃奶的免费视频| 久久久久人妻精品一区果冻| 另类精品久久| 国产精品不卡视频一区二区| 如日韩欧美国产精品一区二区三区| 中国国产av一级| 免费黄色在线免费观看| 国产精品熟女久久久久浪| 18禁观看日本| 国产成人精品福利久久| 成人国产麻豆网| 国产av国产精品国产| 亚洲av综合色区一区| 日韩在线高清观看一区二区三区| 国产精品一国产av| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 成人免费观看视频高清| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 又黄又爽又刺激的免费视频.| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码 | 亚洲国产欧美日韩在线播放| 免费大片黄手机在线观看| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 三级国产精品片| a级片在线免费高清观看视频| 午夜日本视频在线| 国产成人av激情在线播放| 国产亚洲一区二区精品| 少妇高潮的动态图| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 久久久久久久久久成人| 日韩中字成人| 国产成人免费无遮挡视频| 免费看av在线观看网站| 欧美激情极品国产一区二区三区 | 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 欧美国产精品一级二级三级| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 夫妻午夜视频| 少妇 在线观看| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 高清不卡的av网站| 亚洲美女搞黄在线观看| 精品熟女少妇av免费看| 亚洲精品国产色婷婷电影| 国产日韩欧美视频二区| 久久鲁丝午夜福利片| 成人国产麻豆网| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 男女边摸边吃奶| 国产精品一区二区在线不卡| 中文字幕免费在线视频6| 国产男女超爽视频在线观看| 亚洲内射少妇av| 51国产日韩欧美| 免费看不卡的av| 国产精品成人在线| 中文字幕av电影在线播放| 九色亚洲精品在线播放| 97人妻天天添夜夜摸| 黄片无遮挡物在线观看| 国产一区二区三区av在线| 国产麻豆69| 有码 亚洲区| 亚洲 欧美一区二区三区| 97人妻天天添夜夜摸| 久久久久久久亚洲中文字幕| 在线观看免费日韩欧美大片| 丝袜美足系列| 极品少妇高潮喷水抽搐| 中文天堂在线官网| 亚洲 欧美一区二区三区| 久久人人97超碰香蕉20202| 成人亚洲欧美一区二区av| 色吧在线观看| 在线 av 中文字幕| 日本黄色日本黄色录像| 各种免费的搞黄视频| 9热在线视频观看99| 国产精品国产av在线观看| 成人手机av| 国产av国产精品国产| 伊人久久国产一区二区| 视频在线观看一区二区三区| 毛片一级片免费看久久久久| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 美女中出高潮动态图| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 日韩精品免费视频一区二区三区 | av在线播放精品| 男人舔女人的私密视频| 久久久久久久久久久久大奶| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 亚洲精品,欧美精品| 免费观看无遮挡的男女| 久久婷婷青草| 如日韩欧美国产精品一区二区三区| 国产成人a∨麻豆精品| av在线老鸭窝| 丝袜人妻中文字幕| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 亚洲一区二区三区欧美精品| 久久这里有精品视频免费| 国产高清不卡午夜福利| 亚洲精品自拍成人| 亚洲av国产av综合av卡| 视频区图区小说| 亚洲综合色网址| 精品少妇久久久久久888优播| av不卡在线播放| 熟妇人妻不卡中文字幕| 亚洲,欧美精品.| 亚洲av日韩在线播放| 亚洲av成人精品一二三区| 一级a做视频免费观看| 9色porny在线观看| 999精品在线视频| 免费av不卡在线播放| 成人黄色视频免费在线看| 色吧在线观看| 亚洲综合精品二区| 婷婷色av中文字幕| a级毛色黄片| 国产亚洲av片在线观看秒播厂| 久久人妻熟女aⅴ| 欧美国产精品一级二级三级| 日日啪夜夜爽| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 欧美精品人与动牲交sv欧美| av国产久精品久网站免费入址| 一区二区日韩欧美中文字幕 | 欧美少妇被猛烈插入视频| 在线亚洲精品国产二区图片欧美| 亚洲激情五月婷婷啪啪| 久久精品国产综合久久久 | 久久精品久久精品一区二区三区| 亚洲国产看品久久| 日韩精品有码人妻一区| 久久久久网色| 成年人免费黄色播放视频| 日韩中文字幕视频在线看片| 久热久热在线精品观看| av网站免费在线观看视频| 视频中文字幕在线观看| 午夜影院在线不卡| 99热国产这里只有精品6| 在线 av 中文字幕| 国产成人精品在线电影| 免费大片18禁| 午夜影院在线不卡| 亚洲美女视频黄频| 另类精品久久| 日本黄大片高清| 欧美性感艳星| 乱码一卡2卡4卡精品| 亚洲av国产av综合av卡| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲国产精品一区二区三区在线| 卡戴珊不雅视频在线播放| 日韩电影二区| 看非洲黑人一级黄片| www日本在线高清视频| 91精品三级在线观看| xxx大片免费视频| 另类精品久久| 永久免费av网站大全| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 99热6这里只有精品| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 热re99久久精品国产66热6| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 中国美白少妇内射xxxbb| 99热网站在线观看| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 丰满少妇做爰视频| 九草在线视频观看| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| kizo精华| 久久久久国产精品人妻一区二区| 在线亚洲精品国产二区图片欧美| 亚洲欧美成人精品一区二区| 久久久久久久久久久久大奶| 激情五月婷婷亚洲| 熟女人妻精品中文字幕| 老女人水多毛片| 亚洲欧美精品自产自拍| 午夜91福利影院| 深夜精品福利| 国产成人精品婷婷| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 欧美成人精品欧美一级黄| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 欧美日本中文国产一区发布| www.熟女人妻精品国产 | 日本vs欧美在线观看视频| 在线观看www视频免费| 国产免费一级a男人的天堂| 国产免费视频播放在线视频| 欧美激情 高清一区二区三区| 国产男人的电影天堂91| 少妇精品久久久久久久| 亚洲av男天堂| 建设人人有责人人尽责人人享有的| 亚洲第一区二区三区不卡| av在线播放精品| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 午夜影院在线不卡| 一本色道久久久久久精品综合| 亚洲精品456在线播放app| 母亲3免费完整高清在线观看 | 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| av不卡在线播放| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 亚洲人成网站在线观看播放| 久久久久视频综合| 成年av动漫网址| 两性夫妻黄色片 | 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 在线精品无人区一区二区三| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 国产乱来视频区| 国产成人精品无人区| 亚洲高清免费不卡视频| 色94色欧美一区二区| 综合色丁香网| 国产不卡av网站在线观看| 午夜激情久久久久久久| 国产一区有黄有色的免费视频| 草草在线视频免费看| 婷婷色av中文字幕| 午夜av观看不卡| 在线免费观看不下载黄p国产| 亚洲国产精品一区二区三区在线| 亚洲四区av| 性高湖久久久久久久久免费观看| 久久精品久久精品一区二区三区| 捣出白浆h1v1| 人人澡人人妻人| 另类亚洲欧美激情| 黑人猛操日本美女一级片| 亚洲伊人色综图| 伊人亚洲综合成人网| 久久久久精品久久久久真实原创| av播播在线观看一区| xxxhd国产人妻xxx| 晚上一个人看的免费电影| 色网站视频免费| 美女xxoo啪啪120秒动态图| 一个人免费看片子| 丝袜人妻中文字幕| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 美女主播在线视频| 9色porny在线观看| av不卡在线播放| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 午夜福利视频精品| 日本91视频免费播放| 久久久久久久久久久久大奶| 日本爱情动作片www.在线观看| h视频一区二区三区| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 一边亲一边摸免费视频| 日韩电影二区| 一边亲一边摸免费视频| 久久精品aⅴ一区二区三区四区 | 国产一区亚洲一区在线观看| 巨乳人妻的诱惑在线观看| 美女国产视频在线观看| 91成人精品电影| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 视频区图区小说| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 青春草国产在线视频| 久久免费观看电影| 韩国av在线不卡| 日韩人妻精品一区2区三区| 久久久久精品性色| 欧美精品人与动牲交sv欧美| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 欧美日韩av久久| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| a级毛片黄视频| 久久99一区二区三区| 欧美人与性动交α欧美软件 | 侵犯人妻中文字幕一二三四区| 日韩人妻精品一区2区三区| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 日韩av不卡免费在线播放| 黄色视频在线播放观看不卡| 日韩人妻精品一区2区三区| 51国产日韩欧美| 1024视频免费在线观看| 国产精品国产三级国产专区5o| 视频在线观看一区二区三区| 激情视频va一区二区三区| 在线天堂最新版资源| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 伦理电影免费视频| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 国产日韩欧美在线精品| √禁漫天堂资源中文www| 成人午夜精彩视频在线观看| 久久热在线av| 久久久久久久久久成人| 国产免费视频播放在线视频| 插逼视频在线观看| 五月天丁香电影| 亚洲av欧美aⅴ国产| 一二三四在线观看免费中文在 | 大香蕉97超碰在线| 一级片免费观看大全| 一二三四在线观看免费中文在 | a级毛片黄视频| 伊人亚洲综合成人网| 侵犯人妻中文字幕一二三四区| 国产极品天堂在线| 亚洲精品中文字幕在线视频| 最新中文字幕久久久久| 国产亚洲av片在线观看秒播厂| 日韩三级伦理在线观看| 久热这里只有精品99| 中文字幕最新亚洲高清| 国产在线视频一区二区| 男男h啪啪无遮挡| 久久国产精品大桥未久av| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 亚洲精品美女久久av网站| 亚洲熟女精品中文字幕| 大香蕉97超碰在线| 九草在线视频观看| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 国产一区二区三区av在线| 曰老女人黄片| 国产高清不卡午夜福利| 成人漫画全彩无遮挡| 久热这里只有精品99| 国产日韩一区二区三区精品不卡| 岛国毛片在线播放| 9191精品国产免费久久| 久久99一区二区三区| 久久精品夜色国产| 日本av免费视频播放| 欧美 日韩 精品 国产| 色婷婷av一区二区三区视频| 韩国精品一区二区三区 | 999精品在线视频| 日韩不卡一区二区三区视频在线| 91成人精品电影| 一级片'在线观看视频| 热99久久久久精品小说推荐| 一区二区三区四区激情视频| 全区人妻精品视频| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 涩涩av久久男人的天堂| 国产精品三级大全| 久久精品国产亚洲av涩爱| 男男h啪啪无遮挡| 精品熟女少妇av免费看| 久久人人爽人人片av| 日本午夜av视频| 亚洲av在线观看美女高潮| 精品午夜福利在线看| 精品人妻在线不人妻| 天堂8中文在线网| 国产精品.久久久| 最后的刺客免费高清国语| 国产免费福利视频在线观看| 青春草国产在线视频| 26uuu在线亚洲综合色| 午夜福利视频在线观看免费| 男女边吃奶边做爰视频| 国产在线视频一区二区| 一本大道久久a久久精品| 欧美精品一区二区大全| 建设人人有责人人尽责人人享有的| freevideosex欧美| 18禁观看日本| xxx大片免费视频| 亚洲精华国产精华液的使用体验| 亚洲色图综合在线观看| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| 哪个播放器可以免费观看大片| 亚洲av在线观看美女高潮| 大片电影免费在线观看免费| 中国美白少妇内射xxxbb| 卡戴珊不雅视频在线播放| 成年美女黄网站色视频大全免费| 人妻系列 视频| 26uuu在线亚洲综合色| 又黄又爽又刺激的免费视频.| 男女国产视频网站| 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 日韩av在线免费看完整版不卡| 国产成人欧美| 中国三级夫妇交换| 午夜视频国产福利| 在线观看免费高清a一片| 国产免费福利视频在线观看| 另类精品久久| 十分钟在线观看高清视频www| 国产午夜精品一二区理论片| 国产成人免费无遮挡视频| 寂寞人妻少妇视频99o| 天堂俺去俺来也www色官网| 精品国产一区二区久久| 精品人妻在线不人妻| 一区二区三区四区激情视频| 在线看a的网站| 亚洲成人一二三区av| 十分钟在线观看高清视频www| 久久久欧美国产精品| 国产成人免费无遮挡视频| 在线看a的网站| 超碰97精品在线观看| 极品人妻少妇av视频| 亚洲丝袜综合中文字幕| 日日摸夜夜添夜夜爱| 亚洲一码二码三码区别大吗| 国产精品久久久久久久久免| 777米奇影视久久| 99re6热这里在线精品视频| 丰满少妇做爰视频| 国产精品久久久久久久电影| 美女脱内裤让男人舔精品视频| 黄色毛片三级朝国网站| 久久久精品免费免费高清| 国产成人一区二区在线| 国产片内射在线| 亚洲成av片中文字幕在线观看 | 母亲3免费完整高清在线观看 | 高清不卡的av网站| 少妇高潮的动态图| 亚洲高清免费不卡视频| 九九在线视频观看精品| 亚洲 欧美一区二区三区| 熟女av电影| 国产视频首页在线观看| 丝袜喷水一区| 观看av在线不卡| 久热久热在线精品观看| 日本色播在线视频| 国产精品久久久久久精品古装| 欧美人与性动交α欧美精品济南到 | 91国产中文字幕| 性色av一级| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| 搡老乐熟女国产| 九九在线视频观看精品| 久久精品久久久久久久性| 一本色道久久久久久精品综合| 午夜福利,免费看| 高清欧美精品videossex| 91aial.com中文字幕在线观看| 国产高清三级在线| 人人妻人人添人人爽欧美一区卜| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 国产在线免费精品| 黄色视频在线播放观看不卡| 国产精品秋霞免费鲁丝片| 少妇的逼水好多| 最后的刺客免费高清国语| 只有这里有精品99| 国产在线一区二区三区精| www.熟女人妻精品国产 | 少妇 在线观看| 久久久久久伊人网av| 人人妻人人爽人人添夜夜欢视频| 欧美 亚洲 国产 日韩一| 国产 一区精品| 国产淫语在线视频| 99久久综合免费| 超色免费av| 在线观看一区二区三区激情| 久久97久久精品| 久久免费观看电影| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 久久久久久久久久久久大奶| 亚洲图色成人| 黄片播放在线免费| 国产女主播在线喷水免费视频网站| 久久久久久人人人人人| 97在线视频观看| 插逼视频在线观看| 黄色 视频免费看| 色哟哟·www| 色网站视频免费| 蜜桃国产av成人99| 精品久久国产蜜桃| 国产男女超爽视频在线观看| 国产69精品久久久久777片| 中文精品一卡2卡3卡4更新| 欧美激情极品国产一区二区三区 | 人人妻人人澡人人看| 97超碰精品成人国产| 一本大道久久a久久精品| 观看av在线不卡| 考比视频在线观看| 一本大道久久a久久精品| 中文字幕人妻熟女乱码| 另类亚洲欧美激情| 欧美人与性动交α欧美软件 | 巨乳人妻的诱惑在线观看| 国产免费视频播放在线视频| 2022亚洲国产成人精品| 丝袜喷水一区| 久久 成人 亚洲| 蜜臀久久99精品久久宅男| 国产xxxxx性猛交| 嫩草影院入口| 国产一区二区三区av在线| 午夜免费观看性视频| 午夜福利影视在线免费观看| 欧美人与性动交α欧美精品济南到 | 99久久人妻综合| 亚洲国产精品一区三区| 国产女主播在线喷水免费视频网站| 亚洲伊人色综图| 青青草视频在线视频观看| 欧美精品一区二区大全| 丁香六月天网| 国产成人免费无遮挡视频| 国产精品偷伦视频观看了|