• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial charge redistribution to promote the catalytic activity of Vs-CoP-CoS2/C n-n heterojunction for oxygen evolution

    2024-04-05 02:28:58JiawenSunHuiXueJingSunNiankunGuoTianshanSongYiRuHaoQinWang
    Chinese Chemical Letters 2024年2期

    Jiawen Sun,Hui Xue ,Jing Sun,Niankun Guo,Tianshan Song,Yi-Ru Hao,Qin Wang

    College of Chemistry and Chemical Engineering,Inner Mongolia University,Hohhot 010021,China

    Keywords: Charge redistribution n-n Heterojunction Built-in electric field Sulfur vacancy Oxygen evolution reaction

    ABSTRACT Modulating surface charge redistribution based on interface and defect engineering has been considered as a resultful means to boost electrocatalytic activity.However,the mechanism of synergistic regulation of heterojunction and vacancy defects remains unclear.Herein,a Vs-CoP-CoS2/C n-n heterojunction with sulfur vacancies is successfully constructed,which manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV to reach 10 mA/cm2.The experimental results and density functional theory calculations testify that the outstanding OER performance of Vs-CoP-CoS2/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at n-n heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and in-depth explores the synergistic mechanisms of n-n heterojunction and vacancies.

    The accelerated consumption of fossil fuels has led to energy crisis and environmental pollution,and the pursuit of environmentally-friendly and renewable energy has become a top priority [1-3].Electrochemical water splitting provides a promising and sustainable method for large-scale production of clean and efficient hydrogen energy without environmental cost [4-6].As a significant half-reaction,the oxygen evolution reaction (OER) plays a crucial role in various renewable energy storage and conversion devices,such as hydrogen-producing water splitting,regenerative fuel cells,and metal-air batteries [7,8].Nevertheless,the complex four-electron coupled proton reaction kinetics of OER is slow and requires a high overpotential,which is a major factor limiting the efficiency of water electrolysis [9,10].Up to now,noble metals oxides like IrO2and RuO2have been considered as the first-rank OER catalysts,while their commercial application on a large scale is severely limited by the high cost and scarcity [11-13].Therefore,developing OER electrocatalysts with superior activity,good chemical stability and cost-effective is urgent.

    Over the past few years,efforts have been devoted to investigating terrestrially abundant transition metal compounds such as oxides,sulfides,selenides,and phosphides as efficient OER electrocatalysts [14-16].Transition metal phosphides (TMPs) are known for their low kinetic energy barrier and excellent electrical conductivity [17-20].Many studies have shown that TMPs tend to exhibit excellent hydrogen evolution reaction (HER) activity,while the OER performance of these TMPs catalysts is often unsatisfactory [21-23].As a consequence,the enhancement of the OER electrocatalytic performance of TMPs is still a research hotspot.The efficient integration of single-component catalysts to synthesize heterojunctions is a valid method to boost the catalytic activity of transition metal-based catalysts [24,25].The formation of heterogeneous interfaces can effectively promote the interfacial electron transport,tailor the electronic structure,and regulate the adsorption free energy of the reaction species,thereby significantly improve the electrocatalytic activity [26,27].Accordingly,as a typical type of heterojunction,n-n heterojunction catalysts have made significant progress in the field of batteries due to their ability to accelerate charge transfer and excellent performance [28].Moreover,from the perspective of semiconductor physics,two n-type semiconductors with different energy structures coming into contact and reaching thermodynamic equilibrium will induce the formation of a built-in electric field and two opposite charge distribution regions at the interface [29,30],which is beneficial to the rapid transfer of electrons between n-n type semiconductors in the catalytic process,and improving the catalytic activity [30].Based on this,n-type semiconductor TMPs are combined with another ntype semiconductor to form n-n type heterojunctions,and the interfacial electronic regulation based on the built-in electric field is expected to significantly improve their electrocatalytic activity for OER.

    In addition to constructing heterostructures,the fabrication of defects in the crystal structure is also a valid method to improve the electrocatalytic performance [31].The effect of vacancy defects in electrocatalysts on OER performance has been extensively studied [32].In general,the introduction of defects can tailor the electronic structure and charge distribution of atoms,increase the active sites for the reaction,and thus enhancing the intrinsic activity of the catalysts [33,34].Among them,anion vacancies,as an important solid defect,can promote the OER performance by improving the electrical conductivity and surface activity of the electrocatalysts [35,36].For instance,Kang and co-workers proposed that sulfur (S) vacancies can modulate the electronic structure of CuCo2S4and promote the intrinsic conductivity,thus enhancing the electrocatalytic activity [37].Therefore,combining the advantages of vacancy defects to construct an n-n type semiconductor heterojunction system is expected to further boost the electrochemical OER performance of TMPs.

    Herein,a Vs-CoP-CoS2/C n-n heterojunction nanorods with abundant sulfur vacancies has been successfully constructed.Notably,the as-prepared Vs-CoP-CoS2/C heterojunction manifests superior electrocatalytic activity for oxygen evolution,as demonstrated by a low overpotential of 170 mV and a minor Tafel slope of 39 mV/dec to reach 10 mA/cm2.Combined with experimental results and density functional theory calculations,the outstanding OER performance of Vs-CoP-CoS2/C heterojunction is owed to the synergistic effect of sulfur vacancies and built-in electric field at nn heterogeneous interface,which accelerates the electron transfer,induces the charge redistribution,and regulates the adsorption energy of active intermediates during the reaction.This study affords a promising means to regulate the electrocatalytic performance by the construction of heterogeneous interfaces and defects,and indepth explores the synergistic mechanisms of n-n heterojunction and vacancies.

    The synthesis process of Vs-CoP-CoS2/C heterojunction is shown in Fig.1a.Briefly,the Co(OH)2/C precursor was prepared by hydrothermal method on nickel foam and then treated with phosphating and sulfidation to obtain Vs-CoP-CoS2/C heterojunction.Fig.S1 (Supporting information) displays the results of X-ray diffraction (XRD) on the crystal phase structure and composition of the Vs-CoP-CoS2/C heterojunction.The diffraction peaks located at 36.3°,48.1°,52.2°,and 56.1° are attributed to the (111),(211),(103),and (020) planes of CoP (JCPDS No.65-2593),respectively.In addition,the diffraction peaks at 32.3°,36.3°,39.9°,and 46.4°belong to (200),(210),(211),and (220) facets of CoS2(JCPDS No.65-3322).The XRD results demonstrate that CoP and CoS2phases have been successfully synthesized.The morphology of the electrocatalysts was analyzed by SEM.The nanorods morphology of Vs-CoP-CoS2/C has been clearly observed in Fig.1b,and the morphologies of contrast samples,such as Co(OH)2,Co(OH)2/C,CoP/C,and CoS2/C are also provided in Fig.S2 (Supporting information).The results show that phosphating and sulfurization have great influence on the lamellar morphology of Co(OH)2/C precursor.Many pores on the surface of Vs-CoP-CoS2/C heterojunction can be detected from the TEM image (Fig.1c),which can increase the specific surface area,facilitate the exposure of the active site inside the Vs-CoP-CoS2/C and direct contact with the reactants,thus significantly improving the catalytic activity.The HRTEM image (Fig.1d) clearly discloses the carbon layer structure in the Vs-CoPCoS2/C heterojunction.The presence of carbon layer on the surface can effectively enhance the electron conduction of the electrocatalysts.Moreover,the lattice distance of 0.28 nm matches well with the (011) plane of CoP and 0.25 nm is ascribed to the (210) plane of CoS2,respectively.Importantly,a clear heterojunction interface can be observed,confirming the Vs-CoP-CoS2/C n-n heterojunction is successfully obtained.The formation of heterojunctions can facilitate the charge transfer and accelerate the reaction kinetics.Meanwhile,many atomic discontinuities can be detected in the CoS2lattice of Vs-CoP-CoS2/C heterojunction,which may result from the formation of S vacancies during sulfide synthesis (Fig.1e).Besides,the HAADF-STEM images (Fig.1f) and the corresponding elemental mapping reveal that the elements of Co,P,S,and C are uniformly dispersed in the Vs-CoP-CoS2/C nanorods.

    Fig.1.(a) Schematic illustration of the formation of Vs-CoP-CoS2/C.(b) SEM,(c)TEM,(d,e) HRTEM,(f) STEM (inset: the EDS spectrum) and the corresponding elemental mappings of Co,P,S and C of Vs-CoP-CoS2/C.

    The electron effect between CoP/C and CoS2/C and surface element valence states of catalysts was studied through X-ray photoelectron spectroscopy (XPS).As depicted in Fig.2a,the survey spectrum shows the presence of Co,P,S,C,and O elements in Vs-CoP-CoS2/C catalyst.The Co 2p core level spectrum(Fig.2b) can be deconvoluted into six peaks,corresponding to Co3+(779.2/794.1 eV),Co2+(782.1/797.9 eV),and satellite peaks(786.6/803.5 eV) of Co 2p3/2and Co 2p1/2,respectively [38-40].Interestingly,the binding energy of Co 2p in Vs-CoP-CoS2/C heterostructure is positively shifted by 0.6 eV relative to CoP/C and negatively shifted by 0.5 eV relative to CoS2/C.The results indicate that there is a strong electron interaction between CoP/C and CoS2/C,and continuous electron transfer between them is beneficial to significantly tailor the electronic structure of metal Co center [41].In the P 2p spectrum (Fig.2c),the P-Co bond with the binding energies of 129.7 eV and 130.5 eV and P-O bond located at 134.2 eV can be deconvoluted [42,43].It is also observed that the peak of P-Co is positively shifted by 0.3 eV compared to CoP/C.In Fig.2d,the S 2p spectrum of Vs-CoP-CoS2/C displays the S 2p3/2(161.9 eV) and S 2p1/2(163.0 eV) [44],which are negatively shifted by 0.6 eV compared to CoS2/C.In addition,the presence of the S2-peak may be due to the generation of S vacancies as reported in the literatures [45].The remaining two peaks,168.9 eV and 170.1 eV belong to the S-O bond [46].The O 1s spectrum of Vs-CoP-CoS2/C can be deconvoluted into two peaks located at 531.9 eV and 533.0 eV,which are ascribed to O-H and water adsorption,respectively (Fig.S3a in Supporting information) [47].The C 1s spectrum of Vs-CoP-CoS2/C exhibits three peaks of C-C,C-O,and C=O (Fig.S3b in Supporting information) [48].Based on the above analysis,the change in binding energy reveals a redistribution of charge in the Vs-CoP-CoS2/C heterogeneous interface,and the spontaneous transfer of electrons from CoP/C to CoS2/C,resulting in hole accumulation on the CoP/C side,which in turn significantly promotes the OER reaction [27].Furthermore,the electron paramagnetic resonance (EPR) provides strong evidence for the existence of S vacancies in the CoP-CoS2/C.As depicted in Fig.2e,the EPR signal is observed atg=1.997,which is attributed to the unpaired electrons [45].Compared with CoS2/C,the signal intensity of Vs-CoP-CoS2/C is significantly enhanced,indicating an increase in S vacancies.Therefore,according to the results of EPR,XPS,and TEM,there are a large number of S vacancy defects in Vs-CoPCoS2/C catalyst.The Raman spectroscopy was further performed to analyze the structure of the Vs-CoP-CoS2/C catalyst.It can be seen from Fig.2f that the intensity ratio of D band and G band (ID/IG)of Vs-CoP-CoS2/C is 0.968,showing a high degree of graphitization and electrical conductivity,which is conducive to the improvement of catalytic activity [49].

    Fig.2.XPS spectra of the obtained electrocatalysts: (a) Survey spectra,(b) Co 2p,(c) P 2p and (d) S 2p,(e) EPR spectra of the CoS2/C and Vs-CoP-CoS2/C.(f) Raman spectrum of Vs-CoP-CoS2/C.

    The OER catalytic activity of the samples was detailedly studied in 1 mol/L KOH solution using a typical three-electrode electrochemical system.The influence of sulfurization degree on the OER activity was explored by adjusting the sulfurization time.The results indicate that the optimal OER activity of Vs-CoP-CoS2/C catalyst was achieved when the sulfurization time was 60 min (Figs.S4 and S5 in Supporting information).Specifically,the LSV curves show that the overpotentials for Vs-CoP-CoS2/C,CoS2/C,CoP/C,and the commercial IrO2/NF are 170,190,230,and 330 mV,respectively(Fig.3a).Obviously,the Vs-CoP-CoS2/C catalyst possesses the optimal OER activity.Besides,the OER overpotential (193 mV) of Vs-CoP-CoS2catalyst (without carbon layer) is also lower than Vs-CoPCoS2/C,indicating that graphitic carbon could enhance the conductivity and improve the OER catalytic performance (Fig.S6 in Supporting information).In addition,the Tafel slope of 39 mV/dec for Vs-CoP-CoS2/C catalyst,lower than those of CoS2/C (45 mV/dec),CoP/C (50 mV/dec),and IrO2/NF (62 mV/dec),indicating a fast OER kinetics for the Vs-CoP-CoS2/C catalyst (Figs.3b and c).Furthermore,at the overpotential of 350 mV,the turnover frequency (TOF)value of 0.72 s-1for Vs-CoP-CoS2/C catalyst is also higher than that of CoS2/C (0.25 s-1) and CoP/C (0.18 s-1) in Fig.S7a (Supporting information).The charge-transfer properties of the obtained samples were further investigated by measuring the electrochemical impedance spectroscopy (EIS).The smallest charge transfer resistance (Rct) for Vs-CoP-CoS2/C indicates the fastest kinetic rate of OER (Fig.3d).The excellent OER electrocatalytic activity of Vs-CoPCoS2/C was further demonstrated by measuring theCdlof the catalyst through cyclic voltammetry (CV) in the non-Faraday region.According to the CV curve (Fig.S8 in Supporting information),theCdlvalue of the Vs-CoP-CoS2/C is 28 mF/cm2,which is larger than that of CoS2/C (26 mF/cm2) and CoP/C (16 mF/cm2) (Fig.3e).In addition,the electrochemically active surface area (ECSA) of the samples can be reflected by theCdl,and the highest ECSA of 700 cm2for the Vs-CoP-CoS2/C catalyst indicates more active sites are exposed on the catalyst surface (Fig.S7b in Supporting information).These results shows that the construction of heterojunction and S vacancies are beneficial to improve the OER electrocatalytic activity.On the other hand,stability is another important indicator for estimating the performance of electrocatalysts.The OER stability of Vs-CoP-CoS2/C was tested byi-tchronoamperometry and CV cycles.It can be seen from Fig.3f that thei-tcurve has no obvious current density loss after 20 h.Besides,the polarization curves after 1000 CV cycles also show negligible loss of activity(inset in Fig.3f),which further confirms its excellent electrochemical stability.Moreover,comparison with recently reported OER catalysts further demonstrates the excellent OER catalytic activity of the Vs-CoP-CoS2/C (Fig.3g and Table S1 in Supporting information).The electrochemical test of overall water splitting is shown in Fig.S9 (Supporting information),the overpotential of the Vs-CoPCoS2/C||Vs-CoP-CoS2/C system in 1 mol/L KOH solution is 287 mV at 10 mA/cm2,and it can be maintained for 24 h without performance attenuation.

    Fig.3.(a) OER polarization curves.(b) Tafel slopes.(c) Histogram of the overpotentials and Tafel slopes.(d) Nyquist plots.(e) Cdl. (f) Chronopotentiometric durability test(inset: LSV curves of Vs-CoP-CoS2/C before and after 1000 cycles).(g) A recently reported comparison of OER electrocatalysts at 10 mA/cm2.

    In order to reveal the underlying reason for the enhanced OER electrocatalytic activity of the Vs-CoP-CoS2/C heterojunction,and in-depth explore the interaction between CoP/C and CoS2/C,ultraviolet photoemission spectroscopy (UPS) tests were performed to establish the corresponding energy level diagrams.In Figs.4a and b,the Mott-Schottky plots of CoP/C and CoS2/C exhibit positive slopes,which are typical for n-type semiconductors [28,50].It is demonstrated that an n-n heterojunction between CoP/C and CoS2/C has been formed.The synthesis of multicomponent heterostructures can implement the regulation of the d-band center,which can be calculated based on the UPS results.In Fig.4c,the obtained d-band center of CoP/C,CoS2/C,and Vs-CoP-CoS2/C are-4.98,-4.94,and -4.92 eV,respectively,indicating the Vs-CoPCoS2/C sample shifts up closer to Fermi level than those of CoP/C and CoS2/C.In general,the d-band center with relation to the binding strength of the reaction intermediates.The upward shift of dband center indicates that the binding strength between catalyst and intermediate is enhanced,which is beneficial to reducing the potential barrier and boosting the OER catalytic activity [51].The interfacial charge polarization and band structure alteration were further analyzed by using UPS in Fig.S10 (Supporting information).The equation:Φ=hν-ECutoff+EFcan be used to calculate the work function (Φ),where hνandEFare 21.2 eV and 0 eV.Thus,theΦvalues of CoP/C and CoS2/C are 5.45 eV and 5.70 eV,respectively.Besides,the valence band (VB) values of CoP/C and CoS2/C are 1.84 eV and 1.88 eV (inset in Fig.S10),respectively.In order to study charge transfer between CoP/C and CoS2/C,the energy band diagrams before and after contact are provided (Fig.4d).Because of the difference in Fermi levels,electrons flow from CoP/C to CoS2/C until they reach a Fermi equilibrium,resulting in the formation of the built in electric field and a space charge region.Importantly,the built-in electric field facilitates interfacial electron transport and enhances electrical conductivity [52].In addition,the formation of positively charged active centers on the surface of CoP/C promotes the migration of OH-in alkaline electrolytes and improves the adsorption capacity of CoP/C to OH-,thus promoting the OER process.

    DFT calculations were used to further study the OER catalytic performance enhancement of n-n heterojunction and sulfur vacancy.We first calculate four models including two single components,sulfur vacancy-free heterojunction,and sulfur vacancycontaining heterojunction,which are represented by CoP/C,CoS2/C,CoP-CoS2/C,and Vs-CoP-CoS2/C,respectively (Figs.5a-c and Fig.S11 in Supporting information).The OER performance of electrocatalyst is strongly correlated with the chemisorption energy of the surface oxygen-containing intermediates,such as*OH,*O,and*OOH [35,53].Therefore,we studied the configuration and Gibbs free energy changes of oxygen-containing intermediates on the catalyst surface.As can be seen from Fig.5d and Fig.S12 (Supporting information),the rate-determining step during the OER process of CoP/C,CoS2/C,CoP-CoS2/C,and Vs-CoP-CoS2/C is*OOH adsorption with free energies of 2.12,1.97,1.86,and 1.74 eV,respectively.It is well known that lower variations in the free energy of ratedetermining steps favor OER thermodynamics.Therefore,the construction of heterojunction and sulfur vacancies can provide abundant active sites,reduce the energy barrier,and promote OER kinetics.Since the OER activity is concerned with the d-orbital of the transition metal active center,the corresponding projected density of state of the 3d-band of Co is calculated [54,55].As shown in Fig.5e and Fig.S13 (Supporting information),the 3d-band center of Vs-CoP-CoS2/C shifts obviously to a higher energy level comparing with CoP/C,CoS2/C,and CoP-CoS2/C,indicating that*OH,*O,and*OOH have stronger binding strength with the catalyst,which is in good agreement with the experimental results.The work functions of CoP/C and CoS2/C surfaces are 5.34 eV and 5.59 eV,respectively,and the electrons will be transferred from CoP/C to CoS2/C until the two Fermi energies are aligned (Fig.S14 in Supporting information).The electron density difference of CoP-CoS2/C is shown in Fig.S15 (Supporting information).It can be observed that charged active centers are generated at the n-n heterogeneous interface,further manifesting the rapid and continuous charge transfers from CoP/C to CoS2/C [56,57].While the electron aggregation and dissipation of Vs-CoP-CoS2/C (Fig.5f) increased in the n-n junction region,indicating that the introduction of sulfur vacancy can enhance electron transfer more effectively.From the above calculation results,the n-n junction and S vacancies formed in Vs-CoP-CoS2/C sample can accelerate the electron transfer,induce the charge redistribution [58],regulate the adsorption/desorption energy of intermediates,thereby significantly enhancing the electrocatalytic activity for OER.

    Fig.5.Optimized models (a) CoP/C,(b) CoS2/C,and (c) Vs-CoP-CoS2/C.(d) Gibbs free energy changes diagram of CoP/C,CoS2/C and Vs-CoP-CoS2/C.(e) Calculated DOS of CoP/C,CoS2/C,and Vs-CoP-CoS2/C.(f) Charge density difference in the interface of Vs-CoP-CoS2/C (The bule and red represent charge dissipation and aggregation in the space,respectively).

    Based on the above experimental results and theoretical analysis,the prepared Vs-CoP-CoS2/C n-n heterojunction has superior OER activity,which is mainly attributed to the following aspects:(1) The formed built-in electric field at the interface of CoP/C and CoS2/C can boost electron transfer and tailor the electronic structure of metal Co;(2) The abundant S vacancies not only enhance the adsorption capacity of the catalyst to the reaction intermediates,but also further boost electron transfer,thus significantly improving the catalytic activity;(3) The highly graphitized carbon layer in Vs-CoP-CoS2/C n-n heterojunction can increase the electrical conductivity,which is conducive to the electrocatalytic OER(Scheme 1).

    Scheme 1.Illustration of catalytic mechanism for Vs-CoP-CoS2/C.

    In summary,we successfully synthesized an efficient Vs-CoPCoS2/C n-n heterojunction.Benefiting from the charge redistribution and S vacancies,the Vs-CoP-CoS2/C catalyst exhibits excellent OER electrocatalytic activity with an overpotential low to 170 mV at 10 mA/cm2.DFT calculations prove that n-n heterogeneous interface and S vacancies are beneficial to accelerate the electron transfer,induce the charge redistribution,and regulate the Gibbs free energy of reactive species.This study affords a promising method to optimize the electrocatalytic activity by the construction of heterogeneous interfaces and vacancy defects.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgments

    This project was financially supported by the National Natural Science Foundation of China (NSFC,Nos.22269015,U22A20107,22205119) and Natural Science Foundation of Inner Mongolia Autonomous Region of China (Nos.2021ZD11,2019BS02015).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109002.

    黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 成人国产麻豆网| 又粗又硬又长又爽又黄的视频| 亚洲成人手机| 午夜精品国产一区二区电影| 久久久久精品人妻al黑| 欧美人与性动交α欧美精品济南到| 2018国产大陆天天弄谢| 日本欧美国产在线视频| 一级爰片在线观看| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美精品济南到| 久久青草综合色| 咕卡用的链子| 18禁动态无遮挡网站| 久久狼人影院| 欧美激情高清一区二区三区 | 欧美另类一区| 天天躁日日躁夜夜躁夜夜| 日韩中文字幕欧美一区二区 | 青春草视频在线免费观看| 亚洲国产成人一精品久久久| 90打野战视频偷拍视频| 成人毛片60女人毛片免费| 男女下面插进去视频免费观看| 女性生殖器流出的白浆| 精品福利永久在线观看| 日韩一本色道免费dvd| 18在线观看网站| 欧美精品人与动牲交sv欧美| 99re6热这里在线精品视频| 一区二区日韩欧美中文字幕| 悠悠久久av| 欧美成人午夜精品| 亚洲成人一二三区av| 欧美国产精品va在线观看不卡| 中文字幕高清在线视频| 卡戴珊不雅视频在线播放| 中文字幕高清在线视频| 日韩欧美精品免费久久| 咕卡用的链子| 国产成人免费无遮挡视频| 免费日韩欧美在线观看| 亚洲成人免费av在线播放| 久久精品人人爽人人爽视色| 欧美日韩一级在线毛片| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 亚洲四区av| 一个人免费看片子| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站 | 日韩大片免费观看网站| av卡一久久| 免费黄网站久久成人精品| 国产一区二区激情短视频 | 日韩av不卡免费在线播放| 久久久国产一区二区| 午夜91福利影院| 亚洲精品在线美女| 久久久国产精品麻豆| 成人国产麻豆网| av卡一久久| 人人妻,人人澡人人爽秒播 | 18在线观看网站| 久久午夜综合久久蜜桃| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩视频高清一区二区三区二| 韩国av在线不卡| 久久久精品免费免费高清| 美女大奶头黄色视频| 午夜久久久在线观看| 97人妻天天添夜夜摸| 另类亚洲欧美激情| 亚洲天堂av无毛| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 精品一区二区免费观看| 曰老女人黄片| 亚洲精品一二三| 青草久久国产| 国产免费视频播放在线视频| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 黄色怎么调成土黄色| 另类精品久久| av有码第一页| 大码成人一级视频| 亚洲熟女毛片儿| 国产毛片在线视频| 久久久精品国产亚洲av高清涩受| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 黄色 视频免费看| 大香蕉久久网| 操美女的视频在线观看| 久久久久精品性色| 18禁国产床啪视频网站| 亚洲欧美成人综合另类久久久| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 51午夜福利影视在线观看| 青草久久国产| 2018国产大陆天天弄谢| 国产激情久久老熟女| 多毛熟女@视频| 亚洲av福利一区| 久久天躁狠狠躁夜夜2o2o | 波多野结衣一区麻豆| 日日爽夜夜爽网站| 午夜日韩欧美国产| 在现免费观看毛片| 自线自在国产av| 国产精品.久久久| 婷婷色麻豆天堂久久| 国产精品 欧美亚洲| 最近的中文字幕免费完整| 精品人妻在线不人妻| 19禁男女啪啪无遮挡网站| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 中文乱码字字幕精品一区二区三区| 久久久久久人妻| 天天躁狠狠躁夜夜躁狠狠躁| 大香蕉久久网| 久久性视频一级片| 可以免费在线观看a视频的电影网站 | 亚洲熟女毛片儿| 日韩视频在线欧美| 国产精品.久久久| 91aial.com中文字幕在线观看| 日韩av免费高清视频| 免费日韩欧美在线观看| 亚洲av在线观看美女高潮| 尾随美女入室| 狠狠婷婷综合久久久久久88av| 99香蕉大伊视频| 91老司机精品| 亚洲精品中文字幕在线视频| 人人妻,人人澡人人爽秒播 | 欧美激情 高清一区二区三区| 久久性视频一级片| 日日摸夜夜添夜夜爱| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 下体分泌物呈黄色| 亚洲欧美成人精品一区二区| 国产精品一国产av| 热re99久久国产66热| 免费黄频网站在线观看国产| 51午夜福利影视在线观看| 国产精品 欧美亚洲| 久久久精品区二区三区| 黄色视频不卡| 日韩制服骚丝袜av| 无限看片的www在线观看| 日韩 欧美 亚洲 中文字幕| 人成视频在线观看免费观看| 男女国产视频网站| 老司机靠b影院| 欧美激情 高清一区二区三区| 中文字幕人妻丝袜制服| 七月丁香在线播放| 午夜91福利影院| a级毛片黄视频| 亚洲,欧美精品.| 亚洲精品自拍成人| 黄片播放在线免费| 亚洲精品国产区一区二| 精品酒店卫生间| 看非洲黑人一级黄片| 黄片播放在线免费| 国产乱来视频区| 一本一本久久a久久精品综合妖精| 大话2 男鬼变身卡| 汤姆久久久久久久影院中文字幕| 国产麻豆69| 久久久久国产一级毛片高清牌| 中文字幕色久视频| 久久久久人妻精品一区果冻| 免费日韩欧美在线观看| 亚洲伊人色综图| 精品视频人人做人人爽| 欧美变态另类bdsm刘玥| 色精品久久人妻99蜜桃| 久久影院123| 欧美日韩国产mv在线观看视频| 国产日韩欧美视频二区| 九九爱精品视频在线观看| 午夜福利乱码中文字幕| 19禁男女啪啪无遮挡网站| 亚洲欧美精品自产自拍| 亚洲天堂av无毛| 亚洲国产中文字幕在线视频| 久久精品国产综合久久久| 亚洲熟女毛片儿| 欧美黑人精品巨大| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 国产精品 欧美亚洲| 五月天丁香电影| 97在线人人人人妻| 欧美日韩亚洲综合一区二区三区_| 91aial.com中文字幕在线观看| 又黄又粗又硬又大视频| 亚洲精品美女久久久久99蜜臀 | 热re99久久国产66热| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 777米奇影视久久| 老汉色∧v一级毛片| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 国产成人精品久久久久久| 人人澡人人妻人| 天天躁狠狠躁夜夜躁狠狠躁| 午夜老司机福利片| 韩国av在线不卡| 欧美日韩亚洲综合一区二区三区_| 久久久久人妻精品一区果冻| 日韩电影二区| 国产97色在线日韩免费| 18禁观看日本| 国产 一区精品| 国产精品嫩草影院av在线观看| 国产一区二区三区综合在线观看| 大片电影免费在线观看免费| 美女视频免费永久观看网站| 久久免费观看电影| 亚洲精品国产av成人精品| 男女床上黄色一级片免费看| 国产精品欧美亚洲77777| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 亚洲视频免费观看视频| 2018国产大陆天天弄谢| 波多野结衣av一区二区av| 国产一区二区三区av在线| 99久国产av精品国产电影| 久久久久精品人妻al黑| 国产亚洲最大av| 午夜福利视频在线观看免费| 成人毛片60女人毛片免费| 午夜福利视频精品| 国产成人一区二区在线| 黑人猛操日本美女一级片| 伊人久久国产一区二区| 婷婷色综合大香蕉| 性色av一级| 精品福利永久在线观看| 我要看黄色一级片免费的| 19禁男女啪啪无遮挡网站| 国产视频首页在线观看| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 天天躁夜夜躁狠狠躁躁| 亚洲美女黄色视频免费看| 女性被躁到高潮视频| 日韩熟女老妇一区二区性免费视频| 欧美国产精品一级二级三级| 巨乳人妻的诱惑在线观看| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 超碰成人久久| 成人免费观看视频高清| 国产av国产精品国产| 国产午夜精品一二区理论片| 男女边吃奶边做爰视频| 国产精品香港三级国产av潘金莲 | 精品久久久精品久久久| 人人妻人人澡人人爽人人夜夜| 久久综合国产亚洲精品| 免费看不卡的av| 精品久久蜜臀av无| 日本91视频免费播放| 一区在线观看完整版| 亚洲精品第二区| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| avwww免费| 男人操女人黄网站| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 美女主播在线视频| 久久影院123| 久久精品久久久久久久性| 免费在线观看完整版高清| 1024视频免费在线观看| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 日本wwww免费看| 一区二区三区乱码不卡18| 日韩 欧美 亚洲 中文字幕| 国产黄色免费在线视频| 激情五月婷婷亚洲| 欧美亚洲日本最大视频资源| 午夜福利免费观看在线| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 中国国产av一级| 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 亚洲熟女精品中文字幕| 悠悠久久av| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| 丝袜人妻中文字幕| 日韩中文字幕欧美一区二区 | 大码成人一级视频| 国产色婷婷99| 亚洲国产中文字幕在线视频| 考比视频在线观看| 国产精品一区二区在线不卡| 久久av网站| 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲av高清不卡| 日韩人妻精品一区2区三区| av女优亚洲男人天堂| 男女之事视频高清在线观看 | 秋霞在线观看毛片| 亚洲av中文av极速乱| 黄色视频在线播放观看不卡| 日韩人妻精品一区2区三区| 日本欧美国产在线视频| 国产成人精品久久久久久| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 我要看黄色一级片免费的| 你懂的网址亚洲精品在线观看| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| a级毛片黄视频| 香蕉丝袜av| 日本爱情动作片www.在线观看| av在线老鸭窝| 天天操日日干夜夜撸| 亚洲国产中文字幕在线视频| 乱人伦中国视频| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| avwww免费| 国产一区二区在线观看av| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 久久久精品国产亚洲av高清涩受| 最近的中文字幕免费完整| 国产精品av久久久久免费| 亚洲欧洲精品一区二区精品久久久 | 亚洲图色成人| 母亲3免费完整高清在线观看| 大片免费播放器 马上看| 久久亚洲国产成人精品v| 亚洲一级一片aⅴ在线观看| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久男人| 91老司机精品| 亚洲国产看品久久| 亚洲欧美成人综合另类久久久| 精品少妇一区二区三区视频日本电影 | 国产高清不卡午夜福利| 一本久久精品| 亚洲第一区二区三区不卡| 色婷婷久久久亚洲欧美| 老鸭窝网址在线观看| 在线免费观看不下载黄p国产| 国产黄色免费在线视频| 999精品在线视频| 国产熟女午夜一区二区三区| 自线自在国产av| 日本wwww免费看| 男女午夜视频在线观看| 亚洲av福利一区| 午夜福利乱码中文字幕| 欧美精品av麻豆av| 99国产精品免费福利视频| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 高清不卡的av网站| 国产精品av久久久久免费| 欧美 亚洲 国产 日韩一| 成人毛片60女人毛片免费| 水蜜桃什么品种好| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 人人妻人人澡人人看| 久久精品国产a三级三级三级| 桃花免费在线播放| 美女中出高潮动态图| www.熟女人妻精品国产| 不卡视频在线观看欧美| 91精品伊人久久大香线蕉| 亚洲成人av在线免费| 欧美人与性动交α欧美软件| 男的添女的下面高潮视频| 亚洲欧美一区二区三区国产| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 秋霞伦理黄片| 久久人人爽av亚洲精品天堂| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 亚洲美女搞黄在线观看| 亚洲成国产人片在线观看| 亚洲国产看品久久| 两个人看的免费小视频| 国产免费现黄频在线看| 不卡av一区二区三区| 久久久亚洲精品成人影院| 激情视频va一区二区三区| 美女主播在线视频| av在线老鸭窝| 成人影院久久| 黄色一级大片看看| 夜夜骑夜夜射夜夜干| 欧美精品人与动牲交sv欧美| 亚洲精品国产区一区二| 99久久精品国产亚洲精品| 国产xxxxx性猛交| svipshipincom国产片| 免费在线观看完整版高清| 一二三四中文在线观看免费高清| 亚洲图色成人| 亚洲人成网站在线观看播放| 中国三级夫妇交换| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 免费在线观看视频国产中文字幕亚洲 | 18在线观看网站| 精品国产国语对白av| 国产在线免费精品| 青青草视频在线视频观看| 久久天堂一区二区三区四区| 国产男女内射视频| av在线老鸭窝| 最新在线观看一区二区三区 | 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 国语对白做爰xxxⅹ性视频网站| 国产一区二区激情短视频 | 亚洲欧美精品自产自拍| av电影中文网址| 精品国产一区二区三区久久久樱花| 一区二区三区四区激情视频| 人妻一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 9191精品国产免费久久| 国产在线免费精品| 亚洲情色 制服丝袜| 久久天堂一区二区三区四区| 午夜福利影视在线免费观看| 午夜日韩欧美国产| 黄片小视频在线播放| 丰满乱子伦码专区| 在线观看免费视频网站a站| 国产一区亚洲一区在线观看| 久久久国产欧美日韩av| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 制服诱惑二区| 另类精品久久| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| www日本在线高清视频| 久久人妻熟女aⅴ| 不卡av一区二区三区| 久久人妻熟女aⅴ| 99久国产av精品国产电影| 免费观看av网站的网址| 嫩草影院入口| 免费高清在线观看日韩| 咕卡用的链子| 精品国产露脸久久av麻豆| 五月天丁香电影| 黄片无遮挡物在线观看| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 看十八女毛片水多多多| 在线 av 中文字幕| 观看av在线不卡| 日本欧美视频一区| 精品少妇久久久久久888优播| 中文字幕人妻丝袜制服| 热re99久久精品国产66热6| 少妇人妻久久综合中文| 成人午夜精彩视频在线观看| 精品少妇内射三级| av网站免费在线观看视频| 亚洲精品中文字幕在线视频| 爱豆传媒免费全集在线观看| 亚洲成av片中文字幕在线观看| 色播在线永久视频| 亚洲一区二区三区欧美精品| 老熟女久久久| 久久ye,这里只有精品| 夫妻性生交免费视频一级片| 一级黄片播放器| 日韩不卡一区二区三区视频在线| 精品人妻在线不人妻| 在线观看免费高清a一片| 国产成人精品久久二区二区91 | 老汉色av国产亚洲站长工具| 高清欧美精品videossex| 免费人妻精品一区二区三区视频| 精品亚洲乱码少妇综合久久| 搡老乐熟女国产| 国产高清不卡午夜福利| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 亚洲,欧美精品.| av电影中文网址| 国产精品成人在线| 免费少妇av软件| 午夜免费鲁丝| 大话2 男鬼变身卡| 纯流量卡能插随身wifi吗| 亚洲综合色网址| 黄色一级大片看看| 一二三四在线观看免费中文在| 精品一区二区三区四区五区乱码 | 日韩熟女老妇一区二区性免费视频| 久久久久精品性色| 亚洲欧美成人综合另类久久久| 国产av一区二区精品久久| 大片免费播放器 马上看| 亚洲精品日韩在线中文字幕| 涩涩av久久男人的天堂| 精品一区二区三区av网在线观看 | 精品一区二区三卡| av在线播放精品| 欧美精品一区二区大全| 韩国精品一区二区三区| 亚洲精品国产色婷婷电影| 精品国产一区二区三区久久久樱花| 黄网站色视频无遮挡免费观看| 亚洲成国产人片在线观看| 国产淫语在线视频| 搡老乐熟女国产| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 天堂俺去俺来也www色官网| 国产 一区精品| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看| 亚洲视频免费观看视频| 日本av手机在线免费观看| 人体艺术视频欧美日本| 日本欧美国产在线视频| 午夜日本视频在线| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| av视频免费观看在线观看| 黑人欧美特级aaaaaa片| 岛国毛片在线播放| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 久久久久久人人人人人| 日本一区二区免费在线视频| 十八禁高潮呻吟视频| 亚洲av福利一区| 国产成人一区二区在线| 亚洲国产欧美网| 亚洲一码二码三码区别大吗| 欧美成人午夜精品| 成人国产麻豆网| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 啦啦啦 在线观看视频| 老司机深夜福利视频在线观看 | 新久久久久国产一级毛片| av片东京热男人的天堂| 80岁老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 岛国毛片在线播放| 咕卡用的链子| 亚洲国产欧美一区二区综合| 蜜桃国产av成人99| 日本vs欧美在线观看视频| 午夜福利乱码中文字幕| 综合色丁香网| 黑丝袜美女国产一区| 777久久人妻少妇嫩草av网站| 午夜av观看不卡|