• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Copper-induced formation of heterostructured Co3O4/CuO hollow nanospheres towards greatly enhanced lithium storage performance

    2024-04-05 02:28:58JunjunZhngHuiyingLuTinhoYoXinJiQingmioZhngLingjieMengJinminFengHongkngWng
    Chinese Chemical Letters 2024年2期

    Junjun Zhng ,Huiying Lu ,Tinho Yo ,Xin Ji ,Qingmio Zhng ,Lingjie Meng ,Jinmin Feng,Hongkng Wng,*

    a College of Geography & Environment,Xianyang Normal University,Xianyang 712000,China

    b State Key Lab of Electrical Insulation and Power Equipment,Center of Nanomaterials for Renewable Energy (CNRE),School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    c School of Chemistry,Xi’an Key Laboratory of Sustainable Energy Material Chemistry,and Instrumental Analysis Center,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: Lithium-ion batteries Co/Cu-glycerate Hollow nanospheres Co3O4/CuO heterostructure Electrochemical properties

    ABSTRACT We report a facile template-free fabrication of heterostructured Co3O4/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal reaction system of glycerol/isopropanol/cobalt nitrate readily induces the conversion from solid Co-glycerate to hollow Co/Cu-glycerate nanospheres,and the effect of the Co/Cu atomic ratio on the structure evolution of the metal glycerates as well as their corresponding oxides were investigated.When examined as anode materials for lithium-ion batteries,the well-defined Co3O4/CuO hollow nanospheres with Co/Cu molar ratio of 2.0 demonstrate excellent lithium storage performance,delivering a high reversible capacity of 930 mAh/g after 300 cycles at a current density of 0.5 A/g and a stable capacity of 650 mAh/g after 500 cycles even at a higher current density of 2.0 A/g,which are much better than their counterparts of bare CuO and Co3O4.The enhanced lithium storage performance can be attributed to the synergistic effect of the CuO and Co3O4 heterostructure with hollow spherical morphology,which greatly enhances the charge/electrolyte transfer and effectively buffers the volume changes upon lithiation/delithiation cycling.

    Lithium-ion batteries (LIBs) have been considered as one of the most promising electrochemical energy storage devices owing to their high energy/power density,environmental friendliness and long lifespan [1-7].However,with the increasing demand for higher energy density and better safety in large-scale energy storage fields such as electric vehicles and smart-grid,the current graphite anode of commercial LIBs could not meet these requirements due to its lower theoretical capacity (372 mAh/g) and the safety problem arising from the lithium dendrite in the low working potential (vs.Li/Li+) [8-12].Therefore,it is highly desired to explore high-performance anode materials for next-generation LIBs.

    As a kind of promising alternative anode for LIBs,transition metal oxides (TMOs) have received considerable attention owing to their high theoretical capacities,abundant reserve,high safety and affordable cost [13-15].Especially,Co3O4(890 mAh/g) and CuO (674 mAh/g) have attracted many interests because of their high theoretical capacities,easy preparation and wide availability[16-19].Nevertheless,the poor electrical conductivity and large volume expansion hinder their practical application,as the large volume changes upon lithiation/delithiation processes usually lead to electrode pulverization and thus resulting in fast capacity fading with poor cycling stability,while the poor electrical conductivity would result in the unsatisfied rate capability [20].To address these drawbacks,nanostructure engineering with dimensional/morphological control and heterostructure construction has been widely adopted,as the well-designed nanostructures,such as nanofibers,nanosheets and nanospheres with hollow/porous interiors,could efficiently shorten the lithium-ion diffusion paths,expose more ion storage sites,and facilitate the fast electron/ion transport [21,22].For instance,Wangetal.fabricated hollow Co3O4nanoparticle-assembled nanofibersviaelectrospinning and subsequent annealing,which displayed excellent cycle stability of~871.5 mAh/g after 500 cycles at 0.2 A/g [23].Jietal.developed a porous hollow carbon scaffold to anchor ultrafine Co3O4nanoparticles,which showed enhanced cycling stability and lithium storage capacity compared to bare Co3O4[24].

    Heterostructured hybrid electrodes consisting of different active materials usually exhibit enhanced reaction kinetics,which could efficiently improve the electrochemical performance [25,26].To date,various Co3O4/CuO hybrids with well-defined microstructures have been developed to enhance their lithium storage performance by virtue of their synergistic enhancement effect of the two components.For example,Wuetal.designed and prepared graphene quantum dots modified yolk-shell Co3O4@CuO microspheres,which displayed a high reversible capacity of 1054 mAh/g after 200 cycles at 0.1 A/g [27].Wangetal.prepared heterostructured core/shell arrays of Co3O4nanosheets decorated CuO nanowire on nickel foam,which demonstrated good cycle performance and high reversible capacity (1191 mAh/g with 90.9% capacity retention after 200 cycles at 0.2 A/g) and excellent rate capability (810 mAh/g after 500 cycles at 1 A/g) [28].Even though greatly enhanced lithium storage performances have been achieved,these fabrication processes are complicated and not easy for scale-up production.Herein,we developed a facile one-pot route to synthesize hollow Co3O4/CuO nanospheres by using solvothermally prepared Co/Cu-glycerate as conformal precursor and studied the effect of Co/Cu atomic ratio on the microstructure evolution of the metal glycerates and their derivate oxides obtained by calcination method.When investigated as an anode material for LIBs,the hollow Co3O4/CuO nanospheres displayed excellent lithium storage performance including high reversible capacity,outstanding cycling stability and superior rate capability (930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g),which is owing to the unique hollow heterogeneous nanostructure.

    Fig.1 illustrates the formation of hollow Co/Cu-glycerate and the derivate Co3O4/CuO nanospheres,which are preparedviasolvothermal method with subsequent calcination treatment (see more details in Supporting information).Typically,Co(NO3)2·6H2O and Cu(NO3)2·2.5H2O are dissolved in the mixture solution of isopropanol and glycerol,serving as precursor solution which is encapsulated in a Teflon vessel and reacted at 180 °C for 6 h.In this process,the Cu2+/Co2+metal ions are complexed with organic ligands through metal-hydroxyl interaction,forming uniform Co/Cu glycerate hollow nanospheres.As revealed by the thermogravimetric analysis (TGA),the Co/Cu-glycerate is thermally unstable and shows abrupt decomposition at around 260 °C with a total weight loss of~36.3 wt% (Fig.S1a in Supporting information),suggesting the organic component undergoes complete and fast combustion into gaseous species.Even further increasing the testing temperature,the weight still keeps constant and the residual is confirmed as Co3O4/CuO hybrid (Fig.S1b in Supporting information).

    Fig.1.Schematic illustration of the fabrication processes of the Co/Cu-glycerate and the resulting Co3O4/CuO hybrid with conformal hollow spherical morphology.

    To verify the effect of Cu ions on the formation of the hollow spherical structure,pure Co and Co/Cu ions were reacted with glycerol under solvothermal condition,forming spherical Co-glycerate with solid interiors and Co/Cu glycerate with hollow interiors,suggesting the introduction of Cu ions induce the formation of welldefined hollow nanospheres,which will be in favor of enhanced charge transferability and cycling stability.Fig.2a shows the scanning electron microscope (SEM) image of the Co-glycerate spheres,which display an average diameter of around 500 nm with smooth surface.Fig.2b shows the high-angle annular dark field (HAADF)scanning transmission electron microscopy (STEM) image of a single Co-glycerate sphere with solid structure,in which the Co and O elements are well distributed and overlapped within the sphere(Figs.2c and d).Interestingly,when substituting part of Co ions with Cu ions,the solid-to-hollow evolution is observed.As shown in Figs.2e and f,the as-prepared Co/Cu glycerate with Co/Cu molar ratio of 2.0 shows well-defined monodispersed hollow spherical morphology,and the hollow Co/Cu glycerate spheres show an average diameter of around 500 nm and a shell thickness of around 100 nm but with rough surface,which is composed of downy species.In addition,the corresponding elemental energydispersive X-ray spectrometer (EDS) maps of the single Cu/Coglycerate sphere intuitively illustrate the well-overlapped distribution of Cu and Co,indicating the uniform formation of the Co/Cuglycerol complex (Figs.2g and h).Moreover,Table S1 (Supporting information) compares the structure evolution upon varying the molar ratio of Co/Cu.Note that the pure Cu-glycerate displays irregular aggregate morphology,which consists of randomly packed nanoparticles.With increasing the Co/Cu molar ratio from 0.5 to 1.0,the as-prepared Co/Cu-glycerates show hollow spherical morphology but with poor uniformity and broken/opened structure.These results demonstrate that the Co-glycerol complex is prone to form spherical aggregation,while the Cu-glycerol complex would preferentially aggregate loosely,thus the synergistic interaction of Co-Cu ions and glycerol induces the hollowing of the Co/Cu-glycerate.

    The metal-glycerol complex can be an ideal conformal template to synthesize the oxide counterpart,and the bare Co,Cu and various Co/Cu glycerates readily converted into oxide phases with almost the same morphology (Table S1 and Fig.3).Fig.3a shows the SEM image of the well-defined Co3O4/CuO hollow spheres with uniform diameter and monodispersing.The transmission electron microscope (TEM) image reveals the hollow spheres show a shell thickness of~80 nm,which is composed of densely packed nanoparticles (Figs.3b and c).Figs.3d and e show the high-resolution TEM (HRTEM) images with different lattice fringes,which can be ascribed to the Co3O4and the CuO,respectively.In Fig.3d,two sets of lattice fringes showd-spacings of 0.47 and 0.28 nm,which are correspondingly indexed to the (111) and(ˉ220) planes of cubic Co3O4(JCPDS No.43-1003) with an angle of 90° [29,30],consistent with the theoretical value.Fig.3e shows another two sets of lattice fringes with the same d spacing of 0.30 nm and an angle of around 120°,which can be well ascribed to the (113)1/2and (11ˉ3)1/2of monoclinic CuO (JCPDS No.48-1548)[31].Note that the (113)1/2and (11ˉ3)1/2reflect the 1/2 positions of (113) and (11ˉ3) which is two times as much as that of (113)plane [32].Fig.3f shows the HAADF STEM image of a single hollow sphere,whose EDS maps are correspondingly shown in Figs.3g-j.It is noteworthy that the Co and O elements are well overlapped,while accumulation of Cu element can be observed,suggesting the phase separation of Co3O4and CuO to some extent.

    Fig.3.(a) SEM,(b) TEM and (c) STEM images of the Co3O4/CuO hollow spheres.HRTEM images taken at different areas showing the lattice fringes of (d) Co3O4 and (e)CuO.(f) HAADF STEM image of a single hollow sphere with corresponding EDS maps of (g) Co,(h) Cu,(i) O and (j) the overlapping map of Co/Cu elements.

    X-ray diffraction (XRD) measurements were also conducted to verify the phase structure of the products.As shown in Fig.S2a(Supporting information),the products prepared with single metal source show typical diffraction peaks of Co3O4(JCPDS No.43-1003) and CuO (JCPDS No.48-1548),respectively,suggesting their pure phase.Fig.S2b (Supporting information) depicts the XRD patterns of Co3O4/CuO with different molar ratios,where the typical peaks for both Co3O4and CuO can be detected,suggesting their hybrid structure.As the Co/Cu molar ratio gradually decreases from 2/1 to 1/2,the peaks at 31.3° and 36.8° (Co3O4) become weaker,and the typical peaks for CuO (35.5° and 38.7°) become much more prominent,which is in good agreement with the content ratio in preparation.

    The chemical compositions and oxidation states of the asprepared Co3O4/CuO hollow spheres were revealed by X-ray photoelectron spectroscopy (XPS) analysis,and the survey spectrum clearly indicates the presence of Co,Cu and O elements (Fig.S3a in Supporting information).As shown in the high-resolution Co 2p XPS spectrum (Fig.S3b in Supporting information),two prominent peaks at 779.7 and 794.6 eV are typically assigned to the Co 2p3/2and Co 2p1/2of the Co3O4phase,respectively.In addition,two shake-up satellite peaks (“Sat”) appear at 789.4 and 803.6 eV.The Co 2p spectrum can be further fitted into two spin-orbit doublets,in which the peaks at around 779.7 and 794.6 eV are ascribed to Co3+,while the peaks at 781.9 and 796.6 eV relate to Co2+[33-36].Fig.S3c (Supporting information) shows the Cu 2p XPS spectrum,in which the two peaks at 933.9 and 953.5 eV are correspondingly assigned to the Cu 2p3/2and Cu 2p1/2,while three fitted satellite peaks appear at 941.0,943.4 and 961.8 eV,indicating the oxidation state of Cu2+as CuO in the hybrid [37,38].In the O 1s XPS spectrum (Fig.S3d in Supporting information),three characteristic peaks can be fitted and located at 529.6,531.2 and 532.9 eV,which can be ascribed to metal-oxygen bonds,the lattice oxygen,and the surface oxygen originated from the physically/chemically adsorbed water,respectively [39].

    To verify the efficacy of the Co3O4/CuO heterostructure as anode for LIBs,the lithium storage properties of Co3O4,CuO and various Co3O4/CuO were examined in half-cells using lithium metal as counter/reference electrode.Cyclic voltammograms (CV) were performed to investigate the lithium storage mechanism,and Fig.4a shows the typical CV curves of Co3O4/CuO for the first five cycles at 0.2 mV/s.In the first cathodic scan,three peaks are observed,and the minor cathodic peaks at 1.64 V can be attributed to the reduction of CuO into Cu2O [40],while the prominent peak at 0.96 V accompanied by a minor peak at 0.70 V can be ascribed to the reduction of Co3O4into Co and reduction of Cu2O into Cu,as well as the formation of solid electrolyte interface (SEI) film [41,42],in which the prominent peak at 0.96 V disappears in the following cycles,indicating the irreversible capacity loss owing to the structure destruction and the formation of SEI film [43,44].In the following four cycles,two newly merged cathodic peaks steadily appear at 0.92/1.16 V,corresponding to the highly reversible reduction of the Co/Cu oxides.In the anodic sweep,a broad peak at 2.07 V can be attributed to the oxidation of the metallic Cu and Co to CuO and Co3O4,respectively [45,46].The anodic peak in the following cycles remains similar,suggesting good reversibility for the redox reaction.Moreover,the CV curves for the bare Co3O4and CuO are provided in Fig.S4 (Supporting information),and the Co3O4/CuO electrode displays a smaller potential difference (0.94 V) between the anodic/cathodic peaks (ΔE) than those for the bare Co3O4(1.07 V) and the bare CuO (1.34 V) electrodes(Fig.4b),suggesting the faster kinetics of Co3O4/CuO [47].

    Fig.4.(a) CV curves of the Co3O4/CuO electrode for the first five cycles at 0.2 mV/s,and (b) comparison of the 5th CV curves for the CuO,Co3O4 and Co3O4/CuO electrodes.(c) Galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at 0.2 A/g.(d) Rate performance at different current densities for the CuO,Co3O4 and Co3O4/CuO electrodes with different Co/Cu molar ratios.(e) Cycle performances of the optimized Co3O4/CuO electrode at 0.5 and 2.0 A/g.

    Fig.4c shows the galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at different cycles at 0.2 A/g.The first discharge/charge capacities are 1900/1058 mAh/g with an initial Coulombic efficiency (CE) of 55.7%.The capacity loss in the first cycle is due to the reversible formation of SEI film [48].In the 2nd/3rdcycles,the CEs increase to 93.0%/95.0%,indicating the gradually increased reversibility of the redox reaction.With further increasing the cycling to the 50thand 100thcycles,the charge/discharge capacities increase,which is consistent with the rate test.Fig.4d displays the rate performance of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios with current densities ranging from 0.2 A/g to 5.0 A/g,among which the Co3O4/CuO(Co/Cu=2/1) demonstrates the highest lithium storage capacity,delivering high reversible capacities of 1023,974,930,870 and 760 mAh/g each after 5 cycles at 0.2,0.5,1.0,2.0 and 5.0 A/g,respectively.When cycling again at 0.2 A/g,the Co3O4/CuO (Co/Cu=2/1)electrode shows steadily increased reversible capacity,delivering a high discharge capacity of 1156 mAh/g after another 20 cycles.However,the pure Co3O4and Co3O4/CuO (Co/Cu=1/1 and 1/2)electrodes suffer from capacity fading as the current increases,suggesting their poor rate capability.It is worth noting that the initial capacity of the Co3O4/CuO electrodes shows a downward trend as the Co concentration decreases,as the Co3O4counterpart would offer more theoretical capacity than that for CuO.Interestingly,the Co3O4/CuO (Co/Cu=2/1 and 1/1) almost show similar initial capacity compared to pure Co3O4electrode,which suggests that the heterostructured Co3O4/CuO with hollow structure would provide more lithium storage sites.In contrast,the pure CuO electrode displays the worst cycle and rate performances with the lowest discharge capacity of 390 mAh/g at 0.2 A/g and only 50 mAh/g at 5.0 A/g.Furthermore,Fig.S5 (Supporting information) compares the cycling performances of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios at high current density,displaying the trend of descending in the initial cycles and then ascending,which can be seen in most transition metal oxide electrodes.The phenomena with continuous capacity increase can be widely observed in the transition metal-based anodes,which was generally attributed to the continuous activation of the electrode materials and the reversible formation/decomposition of electrolytederived surface layer,thus bringing additional charge storage capacity [49,50].When cycling at 0.5 A/g (Fig.4e),the Co3O4/CuO electrode exhibits a high reversible capacity of 883.5 mAh/g in the 2ndcycle and then the lowest capacity of 797.5 mAh/g at the 57thcycle,which may be due to the formation of thick SEI layer that retards electron transport and extends the diffusion length for lithium ions [31,51,52].In the subsequent cycles,the capacity increases to 938.6 mAh/g with a capacity retention of 106.2% after 300 cycles.Even cycling at 2.0 A/g (Fig.4e),the discharge capacity retains 693.4 mAh/g after 500 cycles,which is higher than most of other previously reported Co3O4or CuO-based anodes (Table S2 in Supporting information).Electrochemical impedance spectroscopy (EIS) measurements were also conducted to reveal the charge transfer kinetics of these electrodes,which clearly reveals that the Co3O4/CuO electrode exhibits the smallest charge transfer resistance (Rct) of 71.4Ω(Fig.S6 and Table S3 Supporting information),as compared with the CuO (109.1Ω) and Co3O4(267.4Ω) electrodes.

    The structural stability of the hollow Co3O4/CuO nanospheres upon lithiation/delithiation cycling was also examined byex-situTEM analysis (Fig.S7 in Supporting information),revealing that the hollow spherical shape of the discharged and charged Co3O4/CuO electrode in the initial cycle is well preserved,even after 300 cycles at 0.5 A/g.In addition,EDS maps clearly display that the Co and Cu elements are uniformly distributed and well overlapped with the discharged/charged Co3O4/CuO.These results demonstrate that the hollow Co3O4/CuO heterostructure can efficiently buffer the volume changes upon cycling,indicating its robust structure stability as an anode material for LIBs.

    In summary,we demonstrated a facile way to construct heterostructured Co3O4/CuO with well-defined hollow spherical morphology,using the solvothermally pre-synthesized Co/Cu-glycerate as the conformal template.The introduction of Cu species not only induced the formation of hollow Co/Cu-glycerate nanospheres from solid Co-glycerate nanospheres but also greatly enhanced the lithium storage performance of the Co/Cu-glycerate derived Co3O4/CuO.When examined as LIB anode,the optimized Co3O4/CuO hollow heterostructure displayed excellent lithium storage performance with high specific capacity (1156 mAh/g at 0.2 A/g),superior rate performance and outstanding cycling stability(930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g).Electrochemical analyses revealed that the Co3O4/CuO heterostructure demonstrated the synergistic enhancement effect with higher charge transfer rate and faster reaction kinetics as compared with the bare Co3O4and CuO counterparts,while the unique hollow spherical structure exhibited robust structural stability and effectively buffered the volume changes upon lithiation/delithiation cycling.More importantly,we developed a novel synthetic strategy to fabricate well-defined hollow spherical metal glycerates/oxides,which can be promising for the development of high-performance electrode materials for energy-related applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (No.52077175).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108450.

    亚洲人成网站高清观看| 精品少妇黑人巨大在线播放| .国产精品久久| 精品人妻偷拍中文字幕| 国产欧美另类精品又又久久亚洲欧美| 精品久久久精品久久久| 天堂俺去俺来也www色官网| tube8黄色片| 亚洲色图av天堂| 中文字幕av成人在线电影| 18禁裸乳无遮挡动漫免费视频 | 九草在线视频观看| 97人妻精品一区二区三区麻豆| 男女国产视频网站| 秋霞在线观看毛片| 午夜精品一区二区三区免费看| 亚洲欧美日韩东京热| 蜜臀久久99精品久久宅男| xxx大片免费视频| 亚洲aⅴ乱码一区二区在线播放| 久久人人爽人人片av| 中文字幕久久专区| 肉色欧美久久久久久久蜜桃 | 国产探花在线观看一区二区| 国产午夜福利久久久久久| 亚洲欧洲国产日韩| 美女内射精品一级片tv| 亚洲天堂国产精品一区在线| 熟女电影av网| 亚洲自偷自拍三级| 男人和女人高潮做爰伦理| av黄色大香蕉| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 亚洲高清免费不卡视频| 亚洲天堂国产精品一区在线| 肉色欧美久久久久久久蜜桃 | 亚洲人成网站在线观看播放| 成人毛片a级毛片在线播放| 久久久成人免费电影| 欧美zozozo另类| 91精品国产九色| 国产毛片在线视频| 日本与韩国留学比较| 日本午夜av视频| 午夜视频国产福利| 校园人妻丝袜中文字幕| 国产高清有码在线观看视频| 国产精品久久久久久久久免| 日本熟妇午夜| 日本wwww免费看| 国产成人a∨麻豆精品| 国产欧美日韩一区二区三区在线 | 久久影院123| 少妇人妻精品综合一区二区| 免费看不卡的av| 亚洲精品自拍成人| 国产综合精华液| 女人被狂操c到高潮| 亚洲国产精品999| 中文天堂在线官网| 深爱激情五月婷婷| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 一区二区av电影网| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 中文字幕av成人在线电影| 男女国产视频网站| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 日韩制服骚丝袜av| 在线免费十八禁| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区大全| 99九九线精品视频在线观看视频| 在线亚洲精品国产二区图片欧美 | 国产亚洲av嫩草精品影院| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 欧美另类一区| 热re99久久精品国产66热6| 麻豆成人av视频| 久久99蜜桃精品久久| 一级毛片久久久久久久久女| 欧美极品一区二区三区四区| 全区人妻精品视频| 欧美少妇被猛烈插入视频| 少妇人妻精品综合一区二区| 国产精品一区二区三区四区免费观看| 国产精品一及| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 国产极品天堂在线| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 午夜福利高清视频| 国产亚洲最大av| 建设人人有责人人尽责人人享有的 | 亚洲精品日本国产第一区| 一级爰片在线观看| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂 | 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 天天躁日日操中文字幕| 国产 一区 欧美 日韩| 麻豆久久精品国产亚洲av| 国产成人福利小说| 久久精品久久久久久久性| 特级一级黄色大片| 少妇人妻久久综合中文| 在线免费十八禁| 两个人的视频大全免费| 午夜福利在线在线| 久久韩国三级中文字幕| 亚洲三级黄色毛片| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| 国产免费一区二区三区四区乱码| 夜夜爽夜夜爽视频| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 青春草亚洲视频在线观看| 晚上一个人看的免费电影| 成年版毛片免费区| 18禁裸乳无遮挡动漫免费视频 | eeuss影院久久| 美女内射精品一级片tv| 大又大粗又爽又黄少妇毛片口| 亚洲精品自拍成人| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 久久热精品热| 大片免费播放器 马上看| 天堂网av新在线| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 国产探花在线观看一区二区| 国产亚洲5aaaaa淫片| 久久6这里有精品| 精品亚洲乱码少妇综合久久| 91久久精品电影网| 亚洲色图综合在线观看| 欧美潮喷喷水| 最新中文字幕久久久久| 亚洲精品日本国产第一区| 熟女av电影| 少妇丰满av| 国产亚洲精品久久久com| 久热这里只有精品99| 亚洲欧美日韩无卡精品| 久久久色成人| 人妻一区二区av| 国产精品av视频在线免费观看| 亚洲四区av| 小蜜桃在线观看免费完整版高清| 日韩伦理黄色片| 免费观看的影片在线观看| 国产免费又黄又爽又色| 色网站视频免费| 欧美日韩精品成人综合77777| 亚洲综合精品二区| 一个人看视频在线观看www免费| 少妇丰满av| 老司机影院成人| 午夜福利在线观看免费完整高清在| 精品久久久久久久久av| 亚洲欧美中文字幕日韩二区| 秋霞在线观看毛片| 18禁动态无遮挡网站| 真实男女啪啪啪动态图| 亚洲色图av天堂| 日本色播在线视频| 18禁在线播放成人免费| 简卡轻食公司| 丝袜喷水一区| 成人亚洲精品一区在线观看 | 亚洲欧美一区二区三区黑人 | 国产爽快片一区二区三区| 一个人看视频在线观看www免费| 亚洲成人精品中文字幕电影| 六月丁香七月| 欧美老熟妇乱子伦牲交| 黑人高潮一二区| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 我要看日韩黄色一级片| 三级国产精品片| 亚洲,欧美,日韩| 亚洲精品乱码久久久久久按摩| 久久久精品94久久精品| 亚洲综合精品二区| 伊人久久国产一区二区| 看十八女毛片水多多多| 日本午夜av视频| 久久久久久久精品精品| 99热这里只有是精品在线观看| 久久久欧美国产精品| 久久精品人妻少妇| 国国产精品蜜臀av免费| 国产 精品1| 国产淫语在线视频| 91久久精品电影网| 男女边吃奶边做爰视频| 久久精品夜色国产| 97超碰精品成人国产| 国产精品福利在线免费观看| 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 免费观看av网站的网址| 毛片一级片免费看久久久久| 久久久欧美国产精品| 免费av毛片视频| 久久精品国产亚洲网站| 两个人的视频大全免费| 亚洲综合精品二区| 天天一区二区日本电影三级| 97在线视频观看| 欧美高清性xxxxhd video| 日韩av在线免费看完整版不卡| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 自拍欧美九色日韩亚洲蝌蚪91 | 国产男人的电影天堂91| 欧美成人一区二区免费高清观看| 国产在线一区二区三区精| 欧美激情久久久久久爽电影| 一区二区三区精品91| 青春草亚洲视频在线观看| 色视频www国产| 在线精品无人区一区二区三 | 草草在线视频免费看| 18禁在线无遮挡免费观看视频| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| 最近最新中文字幕免费大全7| 大陆偷拍与自拍| 亚洲精品色激情综合| 亚洲欧美一区二区三区国产| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 欧美极品一区二区三区四区| 免费看a级黄色片| 亚洲综合精品二区| 特级一级黄色大片| a级毛片免费高清观看在线播放| 国产视频内射| 亚洲色图av天堂| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| 亚洲激情五月婷婷啪啪| 热99国产精品久久久久久7| 国产探花极品一区二区| 免费观看a级毛片全部| 国产黄频视频在线观看| 国产爱豆传媒在线观看| 久久久成人免费电影| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 69人妻影院| 美女高潮的动态| 久久韩国三级中文字幕| 亚洲av在线观看美女高潮| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 夫妻午夜视频| 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看| 中文天堂在线官网| 国产男人的电影天堂91| 国产人妻一区二区三区在| 成人综合一区亚洲| 午夜日本视频在线| 欧美性猛交╳xxx乱大交人| 成人鲁丝片一二三区免费| 成年版毛片免费区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 精品人妻视频免费看| 好男人视频免费观看在线| 青春草视频在线免费观看| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 欧美 日韩 精品 国产| 久久精品人妻少妇| 狂野欧美激情性bbbbbb| 91久久精品电影网| 国产精品一区www在线观看| 亚洲最大成人中文| 成人国产麻豆网| 最近手机中文字幕大全| 在线播放无遮挡| 一区二区av电影网| 久久久久国产精品人妻一区二区| av在线亚洲专区| 久久久久久久久大av| 乱系列少妇在线播放| 不卡视频在线观看欧美| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 亚州av有码| 亚洲最大成人av| 97热精品久久久久久| 免费黄网站久久成人精品| 欧美三级亚洲精品| 久久久精品94久久精品| 亚洲图色成人| 1000部很黄的大片| 综合色丁香网| 新久久久久国产一级毛片| 中文字幕av成人在线电影| 啦啦啦中文免费视频观看日本| 国产一区有黄有色的免费视频| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频 | 美女主播在线视频| 日韩亚洲欧美综合| 十八禁网站网址无遮挡 | 国产白丝娇喘喷水9色精品| 亚洲av福利一区| 免费看日本二区| 永久免费av网站大全| 亚洲,一卡二卡三卡| 精品视频人人做人人爽| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 国产精品精品国产色婷婷| 日韩欧美一区视频在线观看 | 少妇人妻久久综合中文| 在线观看人妻少妇| 精品午夜福利在线看| 老女人水多毛片| 国产精品一及| 99热这里只有是精品50| 自拍欧美九色日韩亚洲蝌蚪91 | 日本三级黄在线观看| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 少妇人妻 视频| 亚洲久久久久久中文字幕| 99热国产这里只有精品6| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 亚洲久久久久久中文字幕| 日韩欧美精品v在线| 在线 av 中文字幕| 国产精品一区二区三区四区免费观看| www.色视频.com| 蜜桃亚洲精品一区二区三区| 精品国产一区二区三区久久久樱花 | 国产女主播在线喷水免费视频网站| 男插女下体视频免费在线播放| 久久久久久久久久人人人人人人| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站| 亚洲精品国产av成人精品| 国产淫语在线视频| 3wmmmm亚洲av在线观看| 如何舔出高潮| 久久99热这里只有精品18| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| 中文在线观看免费www的网站| 免费电影在线观看免费观看| 老女人水多毛片| 亚洲精品色激情综合| 精品久久久噜噜| av又黄又爽大尺度在线免费看| av国产久精品久网站免费入址| 精品酒店卫生间| 性插视频无遮挡在线免费观看| 亚洲经典国产精华液单| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产| 黄色视频在线播放观看不卡| 久久热精品热| 秋霞在线观看毛片| 精华霜和精华液先用哪个| 久久久久久久国产电影| av免费在线看不卡| 夜夜爽夜夜爽视频| 国产视频首页在线观看| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 不卡视频在线观看欧美| 久久午夜福利片| 欧美日韩一区二区视频在线观看视频在线 | 欧美高清性xxxxhd video| 久久99热这里只有精品18| 国产亚洲av片在线观看秒播厂| 亚州av有码| 国产淫语在线视频| 一级二级三级毛片免费看| 国产探花极品一区二区| 久久午夜福利片| 成年女人看的毛片在线观看| 狂野欧美激情性bbbbbb| 久久国产乱子免费精品| av线在线观看网站| 黑人高潮一二区| 可以在线观看毛片的网站| 久久久精品94久久精品| 国产成人freesex在线| 国产精品久久久久久av不卡| 亚洲欧美一区二区三区黑人 | 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 国产中年淑女户外野战色| 欧美日韩在线观看h| 狠狠精品人妻久久久久久综合| www.色视频.com| 免费少妇av软件| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 天天躁日日操中文字幕| 国产精品一区二区性色av| 亚洲欧美日韩另类电影网站 | 最近最新中文字幕免费大全7| 成人综合一区亚洲| 欧美性感艳星| 白带黄色成豆腐渣| 亚洲精品成人久久久久久| 天堂中文最新版在线下载 | 亚洲内射少妇av| 国产大屁股一区二区在线视频| 亚洲怡红院男人天堂| 欧美成人午夜免费资源| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 亚洲欧美成人精品一区二区| 欧美国产精品一级二级三级 | 日本猛色少妇xxxxx猛交久久| 嘟嘟电影网在线观看| 男人舔奶头视频| 精品久久久精品久久久| 欧美日韩综合久久久久久| 午夜老司机福利剧场| 亚洲无线观看免费| 一级毛片电影观看| 老师上课跳d突然被开到最大视频| 国产一区二区在线观看日韩| 青春草国产在线视频| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 亚洲最大成人中文| 大码成人一级视频| 日韩视频在线欧美| 九色成人免费人妻av| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 乱系列少妇在线播放| 午夜福利网站1000一区二区三区| 简卡轻食公司| 欧美三级亚洲精品| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 啦啦啦在线观看免费高清www| 成人一区二区视频在线观看| 亚洲欧洲日产国产| 青春草视频在线免费观看| xxx大片免费视频| 在线观看一区二区三区激情| 高清日韩中文字幕在线| 亚洲不卡免费看| 99久久精品热视频| 欧美极品一区二区三区四区| 男女啪啪激烈高潮av片| 99热这里只有是精品在线观看| 婷婷色麻豆天堂久久| 插阴视频在线观看视频| .国产精品久久| 亚洲av一区综合| 免费看光身美女| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线观看播放| 精品久久国产蜜桃| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 真实男女啪啪啪动态图| 亚洲国产精品专区欧美| 亚洲久久久久久中文字幕| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 久久久久性生活片| 亚洲第一区二区三区不卡| 日韩欧美精品免费久久| 成年版毛片免费区| 午夜福利视频精品| 国产白丝娇喘喷水9色精品| 久久6这里有精品| 精品酒店卫生间| 校园人妻丝袜中文字幕| .国产精品久久| 亚洲精品国产av成人精品| 亚洲成人av在线免费| 一级毛片我不卡| 成人亚洲精品一区在线观看 | 五月伊人婷婷丁香| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 偷拍熟女少妇极品色| 久热这里只有精品99| 偷拍熟女少妇极品色| 黄色一级大片看看| 搡老乐熟女国产| 国产久久久一区二区三区| av国产免费在线观看| 国产乱来视频区| av.在线天堂| 日日摸夜夜添夜夜爱| 五月开心婷婷网| 六月丁香七月| 国产熟女欧美一区二区| 国语对白做爰xxxⅹ性视频网站| 在线a可以看的网站| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 久久99热这里只频精品6学生| 国产精品不卡视频一区二区| 97在线视频观看| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 中文资源天堂在线| 国产免费视频播放在线视频| 亚洲成色77777| 天天躁日日操中文字幕| 成年版毛片免费区| 91久久精品国产一区二区成人| 成人高潮视频无遮挡免费网站| 一个人看视频在线观看www免费| 亚洲国产欧美人成| 亚洲三级黄色毛片| 久久久国产一区二区| 熟女av电影| 高清欧美精品videossex| 国产真实伦视频高清在线观看| 夜夜爽夜夜爽视频| 一二三四中文在线观看免费高清| 久久久亚洲精品成人影院| 直男gayav资源| 在线观看国产h片| 亚洲国产高清在线一区二区三| 免费看日本二区| 高清av免费在线| 久久久久久久久久久免费av| 亚洲精品第二区| 免费电影在线观看免费观看| 搞女人的毛片| 在线免费十八禁| 一区二区av电影网| 国产精品不卡视频一区二区| 国产亚洲av嫩草精品影院| 日本午夜av视频| 久热这里只有精品99| 国模一区二区三区四区视频| 国产午夜精品久久久久久一区二区三区| 真实男女啪啪啪动态图| 啦啦啦中文免费视频观看日本| 22中文网久久字幕| 又爽又黄a免费视频| 欧美日韩视频高清一区二区三区二| 国产免费福利视频在线观看| 国产爽快片一区二区三区| 日韩强制内射视频| 熟女电影av网| 欧美日韩亚洲高清精品| 久久久久久国产a免费观看| 欧美区成人在线视频| 亚洲精品456在线播放app| 麻豆国产97在线/欧美| 成人亚洲欧美一区二区av| 欧美丝袜亚洲另类| 中国三级夫妇交换| 十八禁网站网址无遮挡 | 亚洲婷婷狠狠爱综合网| 亚洲自拍偷在线| 秋霞伦理黄片| 一本久久精品| 久久99精品国语久久久| 亚洲三级黄色毛片| 国产免费一区二区三区四区乱码| 黄片无遮挡物在线观看| 美女被艹到高潮喷水动态| 日韩欧美精品免费久久| 免费观看a级毛片全部| 另类亚洲欧美激情| 国内精品宾馆在线| 一区二区av电影网|