• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Copper-induced formation of heterostructured Co3O4/CuO hollow nanospheres towards greatly enhanced lithium storage performance

    2024-04-05 02:28:58JunjunZhngHuiyingLuTinhoYoXinJiQingmioZhngLingjieMengJinminFengHongkngWng
    Chinese Chemical Letters 2024年2期

    Junjun Zhng ,Huiying Lu ,Tinho Yo ,Xin Ji ,Qingmio Zhng ,Lingjie Meng ,Jinmin Feng,Hongkng Wng,*

    a College of Geography & Environment,Xianyang Normal University,Xianyang 712000,China

    b State Key Lab of Electrical Insulation and Power Equipment,Center of Nanomaterials for Renewable Energy (CNRE),School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    c School of Chemistry,Xi’an Key Laboratory of Sustainable Energy Material Chemistry,and Instrumental Analysis Center,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: Lithium-ion batteries Co/Cu-glycerate Hollow nanospheres Co3O4/CuO heterostructure Electrochemical properties

    ABSTRACT We report a facile template-free fabrication of heterostructured Co3O4/CuO hollow nanospheres using pre-synthesized Co/Cu-glycerate as conformal precursor.The introduction of copper nitrate in the solvothermal reaction system of glycerol/isopropanol/cobalt nitrate readily induces the conversion from solid Co-glycerate to hollow Co/Cu-glycerate nanospheres,and the effect of the Co/Cu atomic ratio on the structure evolution of the metal glycerates as well as their corresponding oxides were investigated.When examined as anode materials for lithium-ion batteries,the well-defined Co3O4/CuO hollow nanospheres with Co/Cu molar ratio of 2.0 demonstrate excellent lithium storage performance,delivering a high reversible capacity of 930 mAh/g after 300 cycles at a current density of 0.5 A/g and a stable capacity of 650 mAh/g after 500 cycles even at a higher current density of 2.0 A/g,which are much better than their counterparts of bare CuO and Co3O4.The enhanced lithium storage performance can be attributed to the synergistic effect of the CuO and Co3O4 heterostructure with hollow spherical morphology,which greatly enhances the charge/electrolyte transfer and effectively buffers the volume changes upon lithiation/delithiation cycling.

    Lithium-ion batteries (LIBs) have been considered as one of the most promising electrochemical energy storage devices owing to their high energy/power density,environmental friendliness and long lifespan [1-7].However,with the increasing demand for higher energy density and better safety in large-scale energy storage fields such as electric vehicles and smart-grid,the current graphite anode of commercial LIBs could not meet these requirements due to its lower theoretical capacity (372 mAh/g) and the safety problem arising from the lithium dendrite in the low working potential (vs.Li/Li+) [8-12].Therefore,it is highly desired to explore high-performance anode materials for next-generation LIBs.

    As a kind of promising alternative anode for LIBs,transition metal oxides (TMOs) have received considerable attention owing to their high theoretical capacities,abundant reserve,high safety and affordable cost [13-15].Especially,Co3O4(890 mAh/g) and CuO (674 mAh/g) have attracted many interests because of their high theoretical capacities,easy preparation and wide availability[16-19].Nevertheless,the poor electrical conductivity and large volume expansion hinder their practical application,as the large volume changes upon lithiation/delithiation processes usually lead to electrode pulverization and thus resulting in fast capacity fading with poor cycling stability,while the poor electrical conductivity would result in the unsatisfied rate capability [20].To address these drawbacks,nanostructure engineering with dimensional/morphological control and heterostructure construction has been widely adopted,as the well-designed nanostructures,such as nanofibers,nanosheets and nanospheres with hollow/porous interiors,could efficiently shorten the lithium-ion diffusion paths,expose more ion storage sites,and facilitate the fast electron/ion transport [21,22].For instance,Wangetal.fabricated hollow Co3O4nanoparticle-assembled nanofibersviaelectrospinning and subsequent annealing,which displayed excellent cycle stability of~871.5 mAh/g after 500 cycles at 0.2 A/g [23].Jietal.developed a porous hollow carbon scaffold to anchor ultrafine Co3O4nanoparticles,which showed enhanced cycling stability and lithium storage capacity compared to bare Co3O4[24].

    Heterostructured hybrid electrodes consisting of different active materials usually exhibit enhanced reaction kinetics,which could efficiently improve the electrochemical performance [25,26].To date,various Co3O4/CuO hybrids with well-defined microstructures have been developed to enhance their lithium storage performance by virtue of their synergistic enhancement effect of the two components.For example,Wuetal.designed and prepared graphene quantum dots modified yolk-shell Co3O4@CuO microspheres,which displayed a high reversible capacity of 1054 mAh/g after 200 cycles at 0.1 A/g [27].Wangetal.prepared heterostructured core/shell arrays of Co3O4nanosheets decorated CuO nanowire on nickel foam,which demonstrated good cycle performance and high reversible capacity (1191 mAh/g with 90.9% capacity retention after 200 cycles at 0.2 A/g) and excellent rate capability (810 mAh/g after 500 cycles at 1 A/g) [28].Even though greatly enhanced lithium storage performances have been achieved,these fabrication processes are complicated and not easy for scale-up production.Herein,we developed a facile one-pot route to synthesize hollow Co3O4/CuO nanospheres by using solvothermally prepared Co/Cu-glycerate as conformal precursor and studied the effect of Co/Cu atomic ratio on the microstructure evolution of the metal glycerates and their derivate oxides obtained by calcination method.When investigated as an anode material for LIBs,the hollow Co3O4/CuO nanospheres displayed excellent lithium storage performance including high reversible capacity,outstanding cycling stability and superior rate capability (930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g),which is owing to the unique hollow heterogeneous nanostructure.

    Fig.1 illustrates the formation of hollow Co/Cu-glycerate and the derivate Co3O4/CuO nanospheres,which are preparedviasolvothermal method with subsequent calcination treatment (see more details in Supporting information).Typically,Co(NO3)2·6H2O and Cu(NO3)2·2.5H2O are dissolved in the mixture solution of isopropanol and glycerol,serving as precursor solution which is encapsulated in a Teflon vessel and reacted at 180 °C for 6 h.In this process,the Cu2+/Co2+metal ions are complexed with organic ligands through metal-hydroxyl interaction,forming uniform Co/Cu glycerate hollow nanospheres.As revealed by the thermogravimetric analysis (TGA),the Co/Cu-glycerate is thermally unstable and shows abrupt decomposition at around 260 °C with a total weight loss of~36.3 wt% (Fig.S1a in Supporting information),suggesting the organic component undergoes complete and fast combustion into gaseous species.Even further increasing the testing temperature,the weight still keeps constant and the residual is confirmed as Co3O4/CuO hybrid (Fig.S1b in Supporting information).

    Fig.1.Schematic illustration of the fabrication processes of the Co/Cu-glycerate and the resulting Co3O4/CuO hybrid with conformal hollow spherical morphology.

    To verify the effect of Cu ions on the formation of the hollow spherical structure,pure Co and Co/Cu ions were reacted with glycerol under solvothermal condition,forming spherical Co-glycerate with solid interiors and Co/Cu glycerate with hollow interiors,suggesting the introduction of Cu ions induce the formation of welldefined hollow nanospheres,which will be in favor of enhanced charge transferability and cycling stability.Fig.2a shows the scanning electron microscope (SEM) image of the Co-glycerate spheres,which display an average diameter of around 500 nm with smooth surface.Fig.2b shows the high-angle annular dark field (HAADF)scanning transmission electron microscopy (STEM) image of a single Co-glycerate sphere with solid structure,in which the Co and O elements are well distributed and overlapped within the sphere(Figs.2c and d).Interestingly,when substituting part of Co ions with Cu ions,the solid-to-hollow evolution is observed.As shown in Figs.2e and f,the as-prepared Co/Cu glycerate with Co/Cu molar ratio of 2.0 shows well-defined monodispersed hollow spherical morphology,and the hollow Co/Cu glycerate spheres show an average diameter of around 500 nm and a shell thickness of around 100 nm but with rough surface,which is composed of downy species.In addition,the corresponding elemental energydispersive X-ray spectrometer (EDS) maps of the single Cu/Coglycerate sphere intuitively illustrate the well-overlapped distribution of Cu and Co,indicating the uniform formation of the Co/Cuglycerol complex (Figs.2g and h).Moreover,Table S1 (Supporting information) compares the structure evolution upon varying the molar ratio of Co/Cu.Note that the pure Cu-glycerate displays irregular aggregate morphology,which consists of randomly packed nanoparticles.With increasing the Co/Cu molar ratio from 0.5 to 1.0,the as-prepared Co/Cu-glycerates show hollow spherical morphology but with poor uniformity and broken/opened structure.These results demonstrate that the Co-glycerol complex is prone to form spherical aggregation,while the Cu-glycerol complex would preferentially aggregate loosely,thus the synergistic interaction of Co-Cu ions and glycerol induces the hollowing of the Co/Cu-glycerate.

    The metal-glycerol complex can be an ideal conformal template to synthesize the oxide counterpart,and the bare Co,Cu and various Co/Cu glycerates readily converted into oxide phases with almost the same morphology (Table S1 and Fig.3).Fig.3a shows the SEM image of the well-defined Co3O4/CuO hollow spheres with uniform diameter and monodispersing.The transmission electron microscope (TEM) image reveals the hollow spheres show a shell thickness of~80 nm,which is composed of densely packed nanoparticles (Figs.3b and c).Figs.3d and e show the high-resolution TEM (HRTEM) images with different lattice fringes,which can be ascribed to the Co3O4and the CuO,respectively.In Fig.3d,two sets of lattice fringes showd-spacings of 0.47 and 0.28 nm,which are correspondingly indexed to the (111) and(ˉ220) planes of cubic Co3O4(JCPDS No.43-1003) with an angle of 90° [29,30],consistent with the theoretical value.Fig.3e shows another two sets of lattice fringes with the same d spacing of 0.30 nm and an angle of around 120°,which can be well ascribed to the (113)1/2and (11ˉ3)1/2of monoclinic CuO (JCPDS No.48-1548)[31].Note that the (113)1/2and (11ˉ3)1/2reflect the 1/2 positions of (113) and (11ˉ3) which is two times as much as that of (113)plane [32].Fig.3f shows the HAADF STEM image of a single hollow sphere,whose EDS maps are correspondingly shown in Figs.3g-j.It is noteworthy that the Co and O elements are well overlapped,while accumulation of Cu element can be observed,suggesting the phase separation of Co3O4and CuO to some extent.

    Fig.3.(a) SEM,(b) TEM and (c) STEM images of the Co3O4/CuO hollow spheres.HRTEM images taken at different areas showing the lattice fringes of (d) Co3O4 and (e)CuO.(f) HAADF STEM image of a single hollow sphere with corresponding EDS maps of (g) Co,(h) Cu,(i) O and (j) the overlapping map of Co/Cu elements.

    X-ray diffraction (XRD) measurements were also conducted to verify the phase structure of the products.As shown in Fig.S2a(Supporting information),the products prepared with single metal source show typical diffraction peaks of Co3O4(JCPDS No.43-1003) and CuO (JCPDS No.48-1548),respectively,suggesting their pure phase.Fig.S2b (Supporting information) depicts the XRD patterns of Co3O4/CuO with different molar ratios,where the typical peaks for both Co3O4and CuO can be detected,suggesting their hybrid structure.As the Co/Cu molar ratio gradually decreases from 2/1 to 1/2,the peaks at 31.3° and 36.8° (Co3O4) become weaker,and the typical peaks for CuO (35.5° and 38.7°) become much more prominent,which is in good agreement with the content ratio in preparation.

    The chemical compositions and oxidation states of the asprepared Co3O4/CuO hollow spheres were revealed by X-ray photoelectron spectroscopy (XPS) analysis,and the survey spectrum clearly indicates the presence of Co,Cu and O elements (Fig.S3a in Supporting information).As shown in the high-resolution Co 2p XPS spectrum (Fig.S3b in Supporting information),two prominent peaks at 779.7 and 794.6 eV are typically assigned to the Co 2p3/2and Co 2p1/2of the Co3O4phase,respectively.In addition,two shake-up satellite peaks (“Sat”) appear at 789.4 and 803.6 eV.The Co 2p spectrum can be further fitted into two spin-orbit doublets,in which the peaks at around 779.7 and 794.6 eV are ascribed to Co3+,while the peaks at 781.9 and 796.6 eV relate to Co2+[33-36].Fig.S3c (Supporting information) shows the Cu 2p XPS spectrum,in which the two peaks at 933.9 and 953.5 eV are correspondingly assigned to the Cu 2p3/2and Cu 2p1/2,while three fitted satellite peaks appear at 941.0,943.4 and 961.8 eV,indicating the oxidation state of Cu2+as CuO in the hybrid [37,38].In the O 1s XPS spectrum (Fig.S3d in Supporting information),three characteristic peaks can be fitted and located at 529.6,531.2 and 532.9 eV,which can be ascribed to metal-oxygen bonds,the lattice oxygen,and the surface oxygen originated from the physically/chemically adsorbed water,respectively [39].

    To verify the efficacy of the Co3O4/CuO heterostructure as anode for LIBs,the lithium storage properties of Co3O4,CuO and various Co3O4/CuO were examined in half-cells using lithium metal as counter/reference electrode.Cyclic voltammograms (CV) were performed to investigate the lithium storage mechanism,and Fig.4a shows the typical CV curves of Co3O4/CuO for the first five cycles at 0.2 mV/s.In the first cathodic scan,three peaks are observed,and the minor cathodic peaks at 1.64 V can be attributed to the reduction of CuO into Cu2O [40],while the prominent peak at 0.96 V accompanied by a minor peak at 0.70 V can be ascribed to the reduction of Co3O4into Co and reduction of Cu2O into Cu,as well as the formation of solid electrolyte interface (SEI) film [41,42],in which the prominent peak at 0.96 V disappears in the following cycles,indicating the irreversible capacity loss owing to the structure destruction and the formation of SEI film [43,44].In the following four cycles,two newly merged cathodic peaks steadily appear at 0.92/1.16 V,corresponding to the highly reversible reduction of the Co/Cu oxides.In the anodic sweep,a broad peak at 2.07 V can be attributed to the oxidation of the metallic Cu and Co to CuO and Co3O4,respectively [45,46].The anodic peak in the following cycles remains similar,suggesting good reversibility for the redox reaction.Moreover,the CV curves for the bare Co3O4and CuO are provided in Fig.S4 (Supporting information),and the Co3O4/CuO electrode displays a smaller potential difference (0.94 V) between the anodic/cathodic peaks (ΔE) than those for the bare Co3O4(1.07 V) and the bare CuO (1.34 V) electrodes(Fig.4b),suggesting the faster kinetics of Co3O4/CuO [47].

    Fig.4.(a) CV curves of the Co3O4/CuO electrode for the first five cycles at 0.2 mV/s,and (b) comparison of the 5th CV curves for the CuO,Co3O4 and Co3O4/CuO electrodes.(c) Galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at 0.2 A/g.(d) Rate performance at different current densities for the CuO,Co3O4 and Co3O4/CuO electrodes with different Co/Cu molar ratios.(e) Cycle performances of the optimized Co3O4/CuO electrode at 0.5 and 2.0 A/g.

    Fig.4c shows the galvanostatic discharge/charge profiles of the Co3O4/CuO electrode at different cycles at 0.2 A/g.The first discharge/charge capacities are 1900/1058 mAh/g with an initial Coulombic efficiency (CE) of 55.7%.The capacity loss in the first cycle is due to the reversible formation of SEI film [48].In the 2nd/3rdcycles,the CEs increase to 93.0%/95.0%,indicating the gradually increased reversibility of the redox reaction.With further increasing the cycling to the 50thand 100thcycles,the charge/discharge capacities increase,which is consistent with the rate test.Fig.4d displays the rate performance of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios with current densities ranging from 0.2 A/g to 5.0 A/g,among which the Co3O4/CuO(Co/Cu=2/1) demonstrates the highest lithium storage capacity,delivering high reversible capacities of 1023,974,930,870 and 760 mAh/g each after 5 cycles at 0.2,0.5,1.0,2.0 and 5.0 A/g,respectively.When cycling again at 0.2 A/g,the Co3O4/CuO (Co/Cu=2/1)electrode shows steadily increased reversible capacity,delivering a high discharge capacity of 1156 mAh/g after another 20 cycles.However,the pure Co3O4and Co3O4/CuO (Co/Cu=1/1 and 1/2)electrodes suffer from capacity fading as the current increases,suggesting their poor rate capability.It is worth noting that the initial capacity of the Co3O4/CuO electrodes shows a downward trend as the Co concentration decreases,as the Co3O4counterpart would offer more theoretical capacity than that for CuO.Interestingly,the Co3O4/CuO (Co/Cu=2/1 and 1/1) almost show similar initial capacity compared to pure Co3O4electrode,which suggests that the heterostructured Co3O4/CuO with hollow structure would provide more lithium storage sites.In contrast,the pure CuO electrode displays the worst cycle and rate performances with the lowest discharge capacity of 390 mAh/g at 0.2 A/g and only 50 mAh/g at 5.0 A/g.Furthermore,Fig.S5 (Supporting information) compares the cycling performances of the CuO,Co3O4and Co3O4/CuO electrodes with different Co/Cu molar ratios at high current density,displaying the trend of descending in the initial cycles and then ascending,which can be seen in most transition metal oxide electrodes.The phenomena with continuous capacity increase can be widely observed in the transition metal-based anodes,which was generally attributed to the continuous activation of the electrode materials and the reversible formation/decomposition of electrolytederived surface layer,thus bringing additional charge storage capacity [49,50].When cycling at 0.5 A/g (Fig.4e),the Co3O4/CuO electrode exhibits a high reversible capacity of 883.5 mAh/g in the 2ndcycle and then the lowest capacity of 797.5 mAh/g at the 57thcycle,which may be due to the formation of thick SEI layer that retards electron transport and extends the diffusion length for lithium ions [31,51,52].In the subsequent cycles,the capacity increases to 938.6 mAh/g with a capacity retention of 106.2% after 300 cycles.Even cycling at 2.0 A/g (Fig.4e),the discharge capacity retains 693.4 mAh/g after 500 cycles,which is higher than most of other previously reported Co3O4or CuO-based anodes (Table S2 in Supporting information).Electrochemical impedance spectroscopy (EIS) measurements were also conducted to reveal the charge transfer kinetics of these electrodes,which clearly reveals that the Co3O4/CuO electrode exhibits the smallest charge transfer resistance (Rct) of 71.4Ω(Fig.S6 and Table S3 Supporting information),as compared with the CuO (109.1Ω) and Co3O4(267.4Ω) electrodes.

    The structural stability of the hollow Co3O4/CuO nanospheres upon lithiation/delithiation cycling was also examined byex-situTEM analysis (Fig.S7 in Supporting information),revealing that the hollow spherical shape of the discharged and charged Co3O4/CuO electrode in the initial cycle is well preserved,even after 300 cycles at 0.5 A/g.In addition,EDS maps clearly display that the Co and Cu elements are uniformly distributed and well overlapped with the discharged/charged Co3O4/CuO.These results demonstrate that the hollow Co3O4/CuO heterostructure can efficiently buffer the volume changes upon cycling,indicating its robust structure stability as an anode material for LIBs.

    In summary,we demonstrated a facile way to construct heterostructured Co3O4/CuO with well-defined hollow spherical morphology,using the solvothermally pre-synthesized Co/Cu-glycerate as the conformal template.The introduction of Cu species not only induced the formation of hollow Co/Cu-glycerate nanospheres from solid Co-glycerate nanospheres but also greatly enhanced the lithium storage performance of the Co/Cu-glycerate derived Co3O4/CuO.When examined as LIB anode,the optimized Co3O4/CuO hollow heterostructure displayed excellent lithium storage performance with high specific capacity (1156 mAh/g at 0.2 A/g),superior rate performance and outstanding cycling stability(930 mAh/g after 300 cycles at 0.5 A/g and 650 mAh/g after 500 cycles even at 2.0 A/g).Electrochemical analyses revealed that the Co3O4/CuO heterostructure demonstrated the synergistic enhancement effect with higher charge transfer rate and faster reaction kinetics as compared with the bare Co3O4and CuO counterparts,while the unique hollow spherical structure exhibited robust structural stability and effectively buffered the volume changes upon lithiation/delithiation cycling.More importantly,we developed a novel synthetic strategy to fabricate well-defined hollow spherical metal glycerates/oxides,which can be promising for the development of high-performance electrode materials for energy-related applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (No.52077175).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108450.

    一个人观看的视频www高清免费观看 | 亚洲av成人一区二区三| 亚洲成a人片在线一区二区| 亚洲人成电影观看| 黄色视频,在线免费观看| 女生性感内裤真人,穿戴方法视频| 啦啦啦 在线观看视频| 在线观看一区二区三区| 久久精品国产清高在天天线| 久久久国产欧美日韩av| 亚洲精品一卡2卡三卡4卡5卡| 国产成+人综合+亚洲专区| 欧美日韩瑟瑟在线播放| 亚洲欧美精品综合一区二区三区| 亚洲欧美激情在线| 久久精品91蜜桃| 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一出视频| 国产精品99久久99久久久不卡| 久热爱精品视频在线9| 黑人操中国人逼视频| 91在线观看av| 午夜福利影视在线免费观看| 在线十欧美十亚洲十日本专区| 女性被躁到高潮视频| 欧美日本视频| 亚洲专区字幕在线| 曰老女人黄片| 不卡av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜两性在线视频| 色老头精品视频在线观看| 精品不卡国产一区二区三区| 精品一区二区三区视频在线观看免费| 侵犯人妻中文字幕一二三四区| 久久久久久免费高清国产稀缺| 麻豆久久精品国产亚洲av| 成人av一区二区三区在线看| 97碰自拍视频| 涩涩av久久男人的天堂| 国产精品久久久久久亚洲av鲁大| 老熟妇仑乱视频hdxx| 日韩欧美国产一区二区入口| 人人妻人人澡欧美一区二区 | 一级作爱视频免费观看| 亚洲熟女毛片儿| 欧美最黄视频在线播放免费| 国产精品野战在线观看| 国产99久久九九免费精品| 麻豆一二三区av精品| 真人做人爱边吃奶动态| 看片在线看免费视频| 在线观看舔阴道视频| 美女国产高潮福利片在线看| 亚洲三区欧美一区| 亚洲 欧美 日韩 在线 免费| 日韩欧美国产一区二区入口| 无遮挡黄片免费观看| 午夜免费成人在线视频| 国产真人三级小视频在线观看| av欧美777| 亚洲熟妇中文字幕五十中出| 午夜久久久久精精品| 非洲黑人性xxxx精品又粗又长| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| 最新美女视频免费是黄的| 99国产精品99久久久久| 国产免费男女视频| 国产精品一区二区精品视频观看| 亚洲中文字幕一区二区三区有码在线看 | 怎么达到女性高潮| 在线国产一区二区在线| 又黄又爽又免费观看的视频| 在线观看免费视频日本深夜| 12—13女人毛片做爰片一| 乱人伦中国视频| 国产精品香港三级国产av潘金莲| 精品乱码久久久久久99久播| 啦啦啦 在线观看视频| 日韩欧美免费精品| 电影成人av| 国产欧美日韩一区二区精品| 日本撒尿小便嘘嘘汇集6| 亚洲avbb在线观看| 正在播放国产对白刺激| 亚洲精品av麻豆狂野| 一本综合久久免费| 亚洲欧美激情在线| 国产精品综合久久久久久久免费 | 国产精品av久久久久免费| 69av精品久久久久久| 久久午夜亚洲精品久久| 美女 人体艺术 gogo| 亚洲精品国产一区二区精华液| 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 亚洲国产精品合色在线| 午夜两性在线视频| 18禁观看日本| 成人三级黄色视频| 精品乱码久久久久久99久播| 欧美日韩亚洲综合一区二区三区_| 久久性视频一级片| 一进一出抽搐动态| 色av中文字幕| 久久国产精品人妻蜜桃| 午夜日韩欧美国产| 久热爱精品视频在线9| 亚洲 国产 在线| 男女下面进入的视频免费午夜 | 老熟妇仑乱视频hdxx| 巨乳人妻的诱惑在线观看| 99精品欧美一区二区三区四区| 久久中文字幕一级| 在线观看免费日韩欧美大片| 性欧美人与动物交配| 久久国产精品人妻蜜桃| 欧美 亚洲 国产 日韩一| 免费在线观看影片大全网站| av中文乱码字幕在线| 1024香蕉在线观看| 亚洲性夜色夜夜综合| 色播亚洲综合网| 热99re8久久精品国产| 精品久久久久久成人av| 成人欧美大片| 亚洲色图av天堂| 天天躁夜夜躁狠狠躁躁| 久久精品国产亚洲av香蕉五月| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全免费视频| 国产av又大| 日本撒尿小便嘘嘘汇集6| svipshipincom国产片| 一区二区三区国产精品乱码| 中文亚洲av片在线观看爽| 91字幕亚洲| 日韩欧美一区二区三区在线观看| 午夜福利免费观看在线| 日韩高清综合在线| 十分钟在线观看高清视频www| 91大片在线观看| 99国产精品一区二区三区| 亚洲熟女毛片儿| 免费少妇av软件| 757午夜福利合集在线观看| 国产亚洲av高清不卡| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 国产一区二区在线av高清观看| 久久精品91无色码中文字幕| 日本撒尿小便嘘嘘汇集6| 久久青草综合色| 亚洲av五月六月丁香网| 亚洲伊人色综图| 国产成年人精品一区二区| 最近最新中文字幕大全免费视频| 久99久视频精品免费| 国产高清videossex| 日韩国内少妇激情av| 亚洲 国产 在线| 国产私拍福利视频在线观看| 午夜亚洲福利在线播放| 国产欧美日韩一区二区精品| 成人18禁在线播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲专区中文字幕在线| 国产精品免费一区二区三区在线| 国产精品日韩av在线免费观看 | 好看av亚洲va欧美ⅴa在| 亚洲国产欧美日韩在线播放| 午夜福利一区二区在线看| 精品久久久久久久毛片微露脸| 久久性视频一级片| 亚洲国产中文字幕在线视频| 久久精品国产综合久久久| 亚洲三区欧美一区| 亚洲国产精品999在线| 99国产精品免费福利视频| 麻豆av在线久日| 中出人妻视频一区二区| 看黄色毛片网站| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 免费观看人在逋| 久久久久九九精品影院| 老司机福利观看| 热re99久久国产66热| 国产午夜福利久久久久久| 欧美黑人精品巨大| 性色av乱码一区二区三区2| 别揉我奶头~嗯~啊~动态视频| 女人被狂操c到高潮| 麻豆一二三区av精品| 亚洲三区欧美一区| 两个人免费观看高清视频| 亚洲av日韩精品久久久久久密| 大香蕉久久成人网| 国产av一区在线观看免费| 色婷婷久久久亚洲欧美| 韩国精品一区二区三区| 亚洲久久久国产精品| 久久精品91无色码中文字幕| 免费在线观看亚洲国产| 两个人看的免费小视频| 老熟妇乱子伦视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟妇熟女久久| 青草久久国产| 亚洲第一电影网av| 熟妇人妻久久中文字幕3abv| 黑人巨大精品欧美一区二区蜜桃| 天堂√8在线中文| 午夜精品在线福利| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产三级黄色录像| 精品无人区乱码1区二区| 午夜免费鲁丝| 色老头精品视频在线观看| 男女午夜视频在线观看| or卡值多少钱| 一级作爱视频免费观看| 国产aⅴ精品一区二区三区波| 精品福利观看| 在线观看一区二区三区| 免费看美女性在线毛片视频| 午夜精品久久久久久毛片777| 久久热在线av| 成年版毛片免费区| 国产在线观看jvid| 日本a在线网址| 国产精品亚洲av一区麻豆| 好看av亚洲va欧美ⅴa在| 欧美日本亚洲视频在线播放| av在线天堂中文字幕| 国产精品秋霞免费鲁丝片| 亚洲国产精品久久男人天堂| 国产乱人伦免费视频| 亚洲国产看品久久| 18禁美女被吸乳视频| 可以免费在线观看a视频的电影网站| 香蕉久久夜色| 嫩草影视91久久| 天天添夜夜摸| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 成人国产一区最新在线观看| 日韩三级视频一区二区三区| 午夜精品在线福利| 啦啦啦观看免费观看视频高清 | 夜夜爽天天搞| 国产成人啪精品午夜网站| 国产精品1区2区在线观看.| 国产av一区二区精品久久| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 欧美日韩瑟瑟在线播放| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 欧美丝袜亚洲另类 | 亚洲国产精品成人综合色| 精品久久久久久成人av| av欧美777| 51午夜福利影视在线观看| 精品久久久久久成人av| 9热在线视频观看99| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 法律面前人人平等表现在哪些方面| 女性被躁到高潮视频| 中文字幕人成人乱码亚洲影| 久久天躁狠狠躁夜夜2o2o| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区| 黄色女人牲交| www.www免费av| 最近最新中文字幕大全电影3 | 99国产精品99久久久久| 神马国产精品三级电影在线观看 | 成人国产综合亚洲| 日本 av在线| 亚洲人成电影观看| 午夜免费鲁丝| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 在线av久久热| 激情在线观看视频在线高清| 亚洲激情在线av| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 女人被狂操c到高潮| 777久久人妻少妇嫩草av网站| 宅男免费午夜| 黄色片一级片一级黄色片| 中文字幕精品免费在线观看视频| 精品人妻1区二区| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 亚洲av成人av| 国产区一区二久久| 97人妻天天添夜夜摸| 亚洲男人天堂网一区| 精品无人区乱码1区二区| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 久9热在线精品视频| 亚洲av片天天在线观看| 亚洲国产精品999在线| 亚洲一码二码三码区别大吗| 91麻豆av在线| 窝窝影院91人妻| 亚洲三区欧美一区| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av高清一级| 正在播放国产对白刺激| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| 乱人伦中国视频| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 丝袜在线中文字幕| 欧美日韩乱码在线| av天堂久久9| 精品人妻1区二区| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频| 日本五十路高清| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区| 国产av在哪里看| 丝袜人妻中文字幕| 一级毛片高清免费大全| 国产一区在线观看成人免费| 好男人在线观看高清免费视频 | 亚洲第一欧美日韩一区二区三区| 亚洲专区国产一区二区| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| av免费在线观看网站| 国产一区二区激情短视频| 99久久综合精品五月天人人| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 亚洲成人久久性| 亚洲aⅴ乱码一区二区在线播放 | 国产黄a三级三级三级人| 国产麻豆成人av免费视频| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 国产私拍福利视频在线观看| 18禁黄网站禁片午夜丰满| 欧美日韩精品网址| 亚洲狠狠婷婷综合久久图片| 国产av一区在线观看免费| 亚洲伊人色综图| 亚洲五月天丁香| 久久久久久久久中文| 两个人免费观看高清视频| 亚洲欧美激情综合另类| 亚洲人成网站在线播放欧美日韩| 国产精品日韩av在线免费观看 | 欧美在线黄色| 青草久久国产| 在线国产一区二区在线| 国产欧美日韩一区二区三| 久久久精品国产亚洲av高清涩受| 欧美日韩瑟瑟在线播放| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 亚洲一区二区三区色噜噜| 中文字幕另类日韩欧美亚洲嫩草| 91老司机精品| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 99国产精品99久久久久| 国产精品久久久人人做人人爽| 国产精品美女特级片免费视频播放器 | 成熟少妇高潮喷水视频| 欧美激情久久久久久爽电影 | 91老司机精品| 美女大奶头视频| 99香蕉大伊视频| 欧美精品亚洲一区二区| 亚洲人成77777在线视频| 久久影院123| 在线视频色国产色| 男人操女人黄网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 日韩大尺度精品在线看网址 | 成人三级做爰电影| 99久久久亚洲精品蜜臀av| 一个人观看的视频www高清免费观看 | 69精品国产乱码久久久| 午夜激情av网站| 制服丝袜大香蕉在线| 精品国内亚洲2022精品成人| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o| 欧美久久黑人一区二区| 午夜两性在线视频| 免费在线观看完整版高清| 69精品国产乱码久久久| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 亚洲国产精品成人综合色| 国产av一区在线观看免费| 每晚都被弄得嗷嗷叫到高潮| 90打野战视频偷拍视频| 女警被强在线播放| 丁香六月欧美| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 伦理电影免费视频| 自线自在国产av| 桃红色精品国产亚洲av| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 免费在线观看黄色视频的| netflix在线观看网站| av欧美777| 免费在线观看亚洲国产| 亚洲情色 制服丝袜| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 在线观看免费视频网站a站| 青草久久国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲男人天堂网一区| 精品久久蜜臀av无| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| tocl精华| 成人国产综合亚洲| 亚洲中文av在线| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 国产欧美日韩一区二区精品| 老司机在亚洲福利影院| 露出奶头的视频| 欧美一级a爱片免费观看看 | www.精华液| 国产男靠女视频免费网站| 好男人在线观看高清免费视频 | 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| www.精华液| 亚洲美女黄片视频| 两性夫妻黄色片| 黄色成人免费大全| 日韩视频一区二区在线观看| 久久人人爽av亚洲精品天堂| 国产xxxxx性猛交| aaaaa片日本免费| 国产午夜福利久久久久久| av视频在线观看入口| 久久精品国产综合久久久| 91精品三级在线观看| 国产精品永久免费网站| 村上凉子中文字幕在线| 久久香蕉激情| 亚洲欧美激情在线| 免费搜索国产男女视频| 超碰成人久久| 淫秽高清视频在线观看| 脱女人内裤的视频| 免费av毛片视频| 精品午夜福利视频在线观看一区| 悠悠久久av| 午夜福利视频1000在线观看 | or卡值多少钱| 看免费av毛片| 国产91精品成人一区二区三区| 熟女少妇亚洲综合色aaa.| 色在线成人网| 国产精品秋霞免费鲁丝片| 在线观看www视频免费| 亚洲精品久久国产高清桃花| 激情在线观看视频在线高清| 精品久久久久久久毛片微露脸| 国内精品久久久久精免费| 1024香蕉在线观看| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2 | 99国产精品一区二区蜜桃av| 精品卡一卡二卡四卡免费| 国产三级黄色录像| 日日夜夜操网爽| 88av欧美| 人人澡人人妻人| 人人妻人人爽人人添夜夜欢视频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久成人aⅴ小说| 大码成人一级视频| 美女大奶头视频| 大码成人一级视频| 美女大奶头视频| 欧美黄色淫秽网站| 日韩免费av在线播放| 成人手机av| 久久香蕉精品热| 色精品久久人妻99蜜桃| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| 一区二区三区国产精品乱码| 久久香蕉国产精品| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 精品午夜福利视频在线观看一区| 成人三级黄色视频| 最新在线观看一区二区三区| 亚洲伊人色综图| 国产麻豆69| 亚洲精品一区av在线观看| 日本vs欧美在线观看视频| 精品电影一区二区在线| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 亚洲一码二码三码区别大吗| 岛国在线观看网站| 狠狠狠狠99中文字幕| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 欧美性长视频在线观看| 高清黄色对白视频在线免费看| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 香蕉久久夜色| 黄频高清免费视频| 欧美日韩瑟瑟在线播放| 色播亚洲综合网| 欧美不卡视频在线免费观看 | 精品国产超薄肉色丝袜足j| tocl精华| 免费在线观看影片大全网站| 国产av又大| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲色图 男人天堂 中文字幕| 纯流量卡能插随身wifi吗| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看 | 精品一品国产午夜福利视频| 午夜久久久在线观看| 黄色女人牲交| av天堂久久9| 99精品欧美一区二区三区四区| 窝窝影院91人妻| 视频区欧美日本亚洲| 好看av亚洲va欧美ⅴa在| 亚洲七黄色美女视频| 777久久人妻少妇嫩草av网站| 夜夜爽天天搞| 亚洲三区欧美一区| 久久香蕉激情| 婷婷精品国产亚洲av在线| 久久草成人影院| 精品人妻在线不人妻| 久久人妻av系列| 国产黄a三级三级三级人| 国产亚洲精品综合一区在线观看 | 欧美绝顶高潮抽搐喷水| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 久久久久久久久久久久大奶| 777久久人妻少妇嫩草av网站| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费 | 久久国产亚洲av麻豆专区| videosex国产| 99国产精品一区二区三区| 亚洲五月天丁香| 国产午夜福利久久久久久| av福利片在线| 免费看a级黄色片| 成人三级做爰电影| 精品一品国产午夜福利视频| 天堂影院成人在线观看| www.999成人在线观看| 午夜日韩欧美国产| 黄频高清免费视频| 欧美日韩精品网址| 香蕉国产在线看| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 国产主播在线观看一区二区| 级片在线观看| av有码第一页| 欧美性长视频在线观看| 国产成人影院久久av|