• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ti3C2Tx MXene wrapped,carbon-coated porous Si sheets for improved lithium storage performance

    2024-04-05 02:29:00HuiChengYuemingLiuZhonglingChengXinyingWngHungHijioZhng
    Chinese Chemical Letters 2024年2期

    Hui Cheng ,Yueming Liu ,Zhongling Cheng ,Xinying Wng ,N Hung ,Hijio Zhng,*

    a Institute of Nanochemistry and Nanobiology,School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China

    b Shanghai Key Laboratory of Green Chemistry and Chemical Processes,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China

    c Energy Materials Research Center AG Hydrogen Materials & Devices,CAS Key Laboratory of Materials for Energy Conversion,Shanghai Institute of Ceramics,Chinese Academy of Sciences (SICCAS),Shanghai 200050,China

    Keywords: Si anodes Ti3C2Tix MXene Porous structure Interfacial assembly Lithium-ion batteries

    ABSTRACT Si-based materials have shown great potential as lithium-ion batteries (LIBs) anodes due to their natural reserves and high theoretical capacity.However,the large volume changes during cycles and poor conductivity of Si lead to rapid capacity decay and poor cycling stability,ultimately limiting their commercial applications.Herein,we have skillfully utilized the microporous MCM-22 zeolite as the unique silicon source to produce porous Si (pSi) sheets by a simple magnesiothermic reduction,followed by a carbon coating and further Ti3C2Tx MXene assembly,obtaining the ternary pSi@NC@TNSs composite.In the design,porous Si sheets provide more active sites and shorten Li-ion transport paths for electrochemical reactions.The N-doped carbon (NC) layer serves as a bonding layer to couple pSi and Ti3C2Tx.The conductive network formed by 2D Ti3C2Tx and medium NC layer effectively enhances the overall charge transport of the electrode material,and helps to stabilize the electrode structure.Therefore,the as-made pSi@NC@TNSs anode delivers an improved lithium storage performance,exhibiting a high reversible capacity of 925 mAh/g at 0.5 A/g after 100 cycles.This present strategy provides an effective way towards high-performance Si-based anodes for LIBs.

    Lithium-ion batteries (LIBs) as the primary battery technology need to consistently surpass the energy limit in order to better satisfy ever-growing demand for electric vehicles and smart grid,etc.In the development of LIBs anodes,Si has attracted widespread attention owing to its abundant sources,low electrochemical potential,and high theoretical specific capacity (≈3579 mAh/g for Li3.75Si,4200 mAh/g for Li4.4Si) [1,2].However,the enormous volume expansion generated during the process of lithiation/delithiation from Si anodes results in a series of problems such as electrode crushing,electrical isolation,and ultimately the rapid decay of capacity [3,4].Additionally,the low conductivity and Li+diffusion coefficient of Si are also key issues,which greatly limit their commercial applications [5,6].

    To address the above problems,various approaches have been proposed including decreasing the particle size,the engineering of the cavity,and the construction of composites [7].Especially,porous Si (pSi) has been widely studied because of its high porosity,which can not only accommodate the large volume change and alleviate structural stress,but also promote the electrons/ions transport [8].In addition,the carbon coating can also promote charge transfer and reduce the volume change of Si,and further improving the lithium storage capability [9].Nevertheless,it is still challenging for the carbon interface to maintain long-term stability during deep cycles.So,there are still a strong demand to gain the high conductivity and structural stability of Si-based anodes[10,11].In recent years,two-dimensional (2D) Ti3C2TxMXene has attracted more and more attention because of its good conductivity,rich surface chemical groups,and excellent Li+transport ability [12].The electrochemical performance of Si anodes can be effectively improved by coupling with Ti3C2Tx[13,14].For instance,Zhang and co-workers assembled a sandwich structure of Si and MXene for LIBs anode,showing an excellent electrochemical property with a capacity of 643.8 mAh/g after 100 cycles at 0.3 A/g[15].The above results indicate that Ti3C2TxMXene can compensate for the defects of Si anodes to some extent.Consequently,how to effectively cooperate pSi with the carbon coating and MXene to improve electrochemical performance is very meaningful.

    In this work,porous Si is firstly prepared by a simple magnesiothermic reduction,subsequently encapsulated in the conductive network formed by the N-doped carbon (NC) layer and Ti3C2Txnanosheets (TNSs).The design of pSi can adapt the large volume changes during cycles.The NC layer provides a good conductivity and promotes the bonding between pSi and Ti3C2Tx.Meanwhile,TNSs can accelerate reaction kinetics and further enhance structural stability.When employed as the LIBs anode,the resulting pSi@NC@TNSs composite achieves an enhanced electrochemical performance.

    The synthetic process of the ternary pSi@NC@TNSs composite is shown in Fig.1a.Microporous MCM-22 zeolite (Fig.S1a in Supporting information) with layered structure is chosen as the Si precursor [16].The microporous structure can provide a short channel for the rapid diffusion of magnesium vapor into the interior.Meanwhile,it promotes heat dispersion and minimizes the harm caused by the heat accumulation effect [17,18].As shown in Fig.S1b (Supporting information),the as-prepared product has a uniform morphology similar to pristine MCM-22 after reduction.Differently,a large number of pores appear onto the surface of sheets,suggesting the formation of pSi.Next,the polydopamine-coated pSi(pSi@PDA) is prepared and further annealed at in Ar atmosphere,where the PDA layer is converted into the N-doped carbon layer,resulting in the formation of pSi@NC.It can be clearly seen from Fig.S2 (Supporting information),the thickness of carbon layer is about 10 nm.Then,pSi@PDA is modified by polymethyl methacrylate (PMMA) with positive charge,and TNSs is uniformly encapsulated onto the surface of PMMA-treated pSi@PDAviaan electrostatic assembly [19].Finally,the ternary pSi@NC@TNSs composite is successfully achieved after carbonization in inert atmosphere.

    Fig.1.(a) Schematic illustration of the typical preparation procedure of pSi@NC@TNSs.(b) SEM image,(c,d) TEM images,(e-g) HRTEM images,and (h) SAED pattern of pSi@NC@TNSs.

    Fig.1b shows the SEM image of the composite.Clearly,pSi@NC@TNSs exhibits a lamellar stacked structure with uniform morphology,and there are some crumpled nanosheets on its surface,suggesting the presence of Ti3C2Tx.TEM observations further confirm that the entire Si sheets are uniformly encapsulated by ultrathin TNSs (Fig.1c).Moreover,the magnified TEM image (Fig.1d) clearly reveals the appearance of a few layers of Ti3C2Txat the edge and internal porous structure of Si.The few-layer Ti3C2Txcan provide more reversibly redox sites for Li+,thereby enhancing the electrochemical properties [20,21].Figs.1e-g show the HRTEM images of pSi@NC@TNSs.In Fig.1e,the lattice spacing of about 1.27 nm is ascribed to the (002) crystal plane of Ti3C2Tx[22].The lattice spacing of 0.31 nm is measured at the middle position in Fig.1g,consisting with the (111) plane of crystal Si [23].The (111),(220) and (311) planes of Si are shown in the SAED pattern (Fig.1h).The results indicate that the MCM-22 zeolite has been successfully reduced to porous Si with high crystallinity.The EDS analysis of pSi@NC@TNSs (Fig.S3 in Supporting information) confirms the uniform distribution of Ti3C2Txand carbon on the pSi.

    The principle of interface assembly is analyzed by FT-IR spectroscopy.As shown in Fig.S4 (Supporting information),the peak at 1486 cm-1in pSi@PDA belongs to -NH2,whereas the corresponding site absorption peak in the PMMA-modified pSi@PDA(pSi@PDA-PMMA) is clearly weakened and a distinct C-H bond absorption peak appears at 2950 cm-1[24].Furthermore,a new broad peak around 1660 cm-1is caused by the amidation reaction between -NH2and -COOH,suggesting that PMMA has grafted onto the pSi@PDA [25].And absorption peaks at 2950 cm-1and 1660 cm-1disappear in pSi@NC@TNSs,indicating that the PMMA has been removed after annealing [26].Additionally,unmodified pSi@PDA cannot spontaneously assemble with TNSs under the same conditions (Fig.S5 in Supporting information),verifying the importance of grafting PMMA in the fabrication of pSi@NC@TNSs[24,27].

    Fig.2a presents the XRD patterns of different products.The sharp diffraction peaks at 28.4°,47.2°,55.9° and 69.2° correspond to the (111),(220),and (311) crystal faces of cubic Si (JCPDS No.27-1402) [28].The Ti3C2Txlamination peak at 7.9° is very weak in the XRD curve of pSi@NC@TNSs,because only a few layers of TNSs are formed in the composite [29,30].Fig.2b displays Raman spectra of pSi@NC@TNSs and pSi@NC withID/IGvalues of 1.21 and 1.25,respectively,demonstrating the formation of amorphous carbon layer during heat treatment [31,32].

    Fig.2.(a) XRD patterns of pSi@NC@TNSs,pSi@NC and pSi.(b) Raman spectra of pSi@NC@TNSs and pSi@NC.(c) N2 sorption isotherms and pore size distribution curves of pSi@NC@TNSs and pSi.(d) XPS survey scanning spectrum of pSi@NC@TNSs.High-resolution energy spectra of (e) Si 2p (f) Ti 2p (g) C 1s,(h) N 1s,(i) O 1s.

    The porosity of the samples is then determined by N2sorption analysis.As shown in Fig.2c,two samples both exhibit the distinct hysteresis at high pressure,indicating the existence of mesoporous structure.As evaluated by the pore size distribution curve(inset of Fig.2c),there are two types of mesoporous,where the small pore size is centered at about 5 nm and the large pore size ranges from 20 nm to 40 nm.These abundant pores can provide rapid transport channels for Li ions and accommodate large volume expansion during deep cycles.Additionally,pSi@NC@TNSs has a smaller BET surface area of 176.5 m2/g than that of pSi (409.2 m2/g),which is beneficial for reducing some side reactions during the discharging-charging processes.

    The surface element valence states of pSi@NC@TNSs are characterized by XPS technique.As displayed in Fig.2d,strong characteristic peaks of Si 2p,O 1s,Ti 2p,C 1s and N 1s appear in the survey spectra of pSi@NC@TNSs.In the Si 2p XPS spectrum(Fig.2e),the peaks of 103.2,101.1 and 99.2 eV are attributed to Si-O-Si,Si-O-C,Si-Si.The pSi and NC layer are covalently connected through Si-O-C bonds,providing a tight interface to promote the transport of Li+and structural stability [33,34].The peaks at 459.2/465.1,458.2/463.8 and 457.5/462.8 eV in the Ti 2p spectrum (Fig.2f) are corresponding to Ti-O,Ti2+and Ti-C bonds,respectively [35,36].The C 1s spectrum (Fig.2g) displays peaks of C=O,C-N,and C-C [37].Fig.2h shows the N 1s spectrum,the peaks at 397.4 eV,398.2 eV and 400.2 eV are corresponding to Si/Ti-N,pyrrole nitrogen,pyridine nitrogen,respectively [38],which can provide more defects and enhance the chemical bond sum between Si and Ti3C2Txduring heat treatment [39].In the highresolution O 1s spectrum (Fig 2i),the peaks center at 529.8,531.8 and 532.7 eV belong to Ti-O-C,Si-O-C and C=O,respectively [40].The results show that the covalent bond connects Si,N-doped carbon and Ti3C2Txto form a strong coupling interface.

    To evaluate the electrochemical behavior of three samples as anodes for LIBs,cyclic voltammetry (CV) curves of pSi@NC@TNSs(Fig.3a),pSi@NC (Fig.S6a in Supporting information) and pSi electrodes (Fig.S6c in Supporting information) are performed.A wide irreversible cathode peak at about 0.4-1.7 V for three samples,which is attributed to the formation of solid electrolyte interphase (SEI) film.In particular,the irreversible cathode peak area of pSi@NC@TNSs is minimal,implying a reduced loss of irreversible lithium and a superior structural stability [41].The cathode peak at 0.01-0.3 V corresponds to the alloying of Si,and the anodic peak at about 0.36 and 0.53 V is related to the delithiation process of LixSi[42].The CV curves of pSi@NC and pSi display similar anodic and cathodic peaks.

    Fig.3.(a) CV curves at a scan rate of 0.1 mV/s and (b) galvanostatic charge/discharge profiles of pSi@NC@TNSs at 0.2 A/g.(c) Cycling performances and coulombic efficiency at 0.5 A/g,(d) rate capabilities,and (e) capacity retention rates of pSi@NC@TNSs,pSi@NC and pSi electrodes.(f) Comparison of cycling performances between previously reported LIBs anode materials with this study.The details were listed in Table S1 (Supporting information).

    Fig.3b displays the galvanostatic charge/discharge profiles of pSi@NC@TNSs at 0.2 A/g.The initial coulomb efficiency (ICE) of pSi@NC@TNSs is 65%,higher than those of pSi@NC (59%) and pSi(34%) (Figs.S6b and d in Supporting information).The gradually declining ICE is due to the large exposed surface area and the formation of thick SEI layer.The galvanostatic charge-discharge curves platform of three electrodes are consistent with their CV peaks and the polarization decreases with the increase of cycling,indicating a continuous activation process [43].Fig.3c shows the cycling performances of three electrodes.The reversible capacity is 925 mAh/g after 100 cycles of pSi@NC@TNSs at 0.5 A/g,which is much better than pSi@NC (688 mAh/g) and pSi (450 mAh/g).Furthermore,it also shows a good long-term cycling performance (Fig.S7 in Supporting information),maintaining a specific capacity of 726.3 mAh/g even after 500 cycles at 1 A/g.The TEM image (Fig.S8 in Supporting information) indicates that no serious cracking or pulverization can be seen after cycling,and the whole structure remains well,indicating an excellent structural stability of the pSi@NC@TNSs electrode.Their rate capabilities are presented in Fig.3d.The specific capacities of pSi@NC@TNSs electrode are 1292.3,1009.2,750.8,605.9 and 365.5 mAh/g at different current densities of 0.2,0.5,1,2 and 5 A/g,respectively.When the current density is restored to 0.2 A/g,the capacity of pSi@NC@TNSs recovers to 1029 mAh/g with a capacity retention rate of 78%.Moreover,the pSi@NC@TNSs electrode exhibits much higher capacity retention rate than other two electrodes (Fig.3e).Besides,the cycling properties of the pSi@NC@TNSs electrode are also compared with previously reported Si/MXene composites anodes (Fig.3f and Table S1 in Supporting information),showing a significant advantage for lithium-ion storage.The enhanced reason in electrochemical performance of pSi@NC@TNSs is mainly due to the synergistic effect among porous Si,N-doped carbon layer,and Ti3C2Txnanosheets.

    The dynamical behavior of pSi@NC@TNSs is then analyzed by collecting a series of CV curves at different scan rates of 0.2-1.0 mV/s.As shown in Fig.4a,all CV curves have similar shape at different scan rates,and peak currents increase with increase of scanning rates,indicating a fast storage of Li-ion and low polarization.The relationship between peak current (i) and scan rate (v) is as follows:

    Fig.4.(a) CV curves of the pSi@NC@TNSs electrode at different scan rates,(b) Plot of the relationship between log peak current and log scan rate,(c) Contributions of capacitance and diffusion control at 0.6 mV/s,(d) Percentage of capacitance and diffusion-controlled capacity at different scan rates.(e) Electrochemical impedance profiles and corresponding equivalent circuits of pSi@NC@TNSs,pSi@NC and pSi electrodes.(f) Li+ chemical diffusion coefficients calculated from GITT results of pSi@NC@TNSs and pSi@NC electrodes.(g) Structural advantages of the pSi@NC@TNSs electrode for lithium-ion storage.

    Thebvalue can be used to examine the capacitance and diffusion control process of the electrode.As shown in Fig.4b,the values of the cathode peak and anode peak are 0.74 and 0.67,respectively,which are close to 1,indicating a capacitive-dominated process for pSi@NC@TNSs.The contribution of capacitance and diffusion control to capacity is analyzed by the following equations:

    In the equation,k1andk2are constants,andk1v,k2v1/2represent capacitive dominant effect and diffusion dominant effect [44].The capacitance contribution rates gradually increase with the scan rates,and reach 78.1% at 0.6 mV/s (Figs.4c and d),which are obviously higher than those of the pSi@NC (Fig.S9 in Supporting information),demonstrating that pSi@NC@TNSs can provide more active sites and further enhance the pseudo-capacitance energy storage.

    Fig.4e shows the Nyquist diagrams and the corresponding equivalent circuits of three electrodes.Obviously,the charge transfers impedance (Rct) of pSi@NC@TNSs is significantly lower than pSi@NC and pSi electrodes,meaning a faster electron transfer.In addition,pSi@NC@TNSs electrode shows the lowest diffusion impedance (Zw),indicating the rapid Li+diffusion.The low resistance of pSi@NC@TNSs is assigned to well-constructed conductive backbone by Ti3C2Txand carbon and intimate interface contact,leading top referable reversible capacity and excellent cycling stability [43].The Li-ion diffusion coefficients is calculated by the following formula:

    τis the relaxation time andSis the contact area between electrode and electrolyte.nm,MBandVmcorrespond to the molar mass,mass and volume of the electrode material,respectively,ΔESandΔEτcorrespond to the voltage changes caused by pulse and constant current charging and discharging,respectively.Fig.4f shows the calculated Li-ion diffusion coefficients of pSi@NC@TNSs and pSi@NC electrodes from galvanostatic intermittent titration technique (GITT) tests performed in the voltage range of 0.01-3.0 V,and the Li-ion diffusion coefficients of pSi@NC@TNSs is higher than that of pSi@NC,further indicating pSi@NC@TNSs has better Li-ion transport kinetics.

    The structural advantages of the ternary pSi@NC@TNSs composite electrode for lithium-ion storage are briefly illustrated in Fig.4g.In such a design,on one hand,the high surface area enables the Si active material and electrolyte full contact,and rich pore structure is more effective in alleviating the volume expansion during deep cycles.On the other hand,the superior conductivity and chemical flexibility of ultrathin Ti3C2Txnanosheets provide pseudo capacitance to contribute more storage capacity and a good protection for inner pSi.Meanwhile,the medium N-doped carbon layer serves as a bonding layer for strong coupling of pSi and Ti3C2Tx,as well as offers more defects for lithium storage.Therefore,the above synergistic effect in the pSi@NC@TNSs composite together contributes to the boosted electrochemical storage performance for LIBs.

    In short,we develop a new ternary pSi@NC@TNSs composite with robust interface couplingviacombining a simple magnesiothermic reduction with electrostatic assembly process.In the configuration,porous Si sheets derived from microporous MCM-22 zeolite effectively buffer the large volume changes,and the robust network constructed by Ti3C2Txand NC layer significantly enhances the conductivity and structural stability of the whole electrode material.In virtue of these benefits,the resulting pSi@NC@TNSs anode shows improved lithium-ion storage capability,delivering a high invertible discharge capacity of 925 mAh/g at 0.5 A/g and a good rate capability of 365.5 mAh/g at 5 A/g.The results provide an innovative idea for the preparation of porous Si materials and reasonable design of Si-based composites for advanced energy storage.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work was financially supported by the Natural Science Foundation of Shanghai (No.23ZR1423800),Shuguang Program from Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No.18SG35),and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),Nankai University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108923.

    久久久久性生活片| 日本与韩国留学比较| 免费一级毛片在线播放高清视频| 欧美丝袜亚洲另类 | 禁无遮挡网站| 性色avwww在线观看| 嫩草影院新地址| 亚洲精品粉嫩美女一区| 日韩一本色道免费dvd| 夜夜看夜夜爽夜夜摸| 国产色爽女视频免费观看| 嫁个100分男人电影在线观看| 五月伊人婷婷丁香| 亚洲精品一区av在线观看| 国产爱豆传媒在线观看| 免费观看在线日韩| 在线a可以看的网站| 黄色配什么色好看| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频| 久久人妻av系列| 亚洲不卡免费看| 一级av片app| 久久精品国产亚洲网站| 久久久国产成人免费| 久久午夜福利片| 久久6这里有精品| 日韩强制内射视频| 成年女人永久免费观看视频| 美女高潮喷水抽搐中文字幕| 欧美bdsm另类| 久久人人精品亚洲av| 成人av一区二区三区在线看| 一进一出抽搐gif免费好疼| 国产极品精品免费视频能看的| 欧美不卡视频在线免费观看| 熟妇人妻久久中文字幕3abv| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久久久亚洲 | 国产精品久久久久久av不卡| 男女之事视频高清在线观看| 国产黄a三级三级三级人| 色噜噜av男人的天堂激情| 亚洲av中文av极速乱 | 国模一区二区三区四区视频| 制服丝袜大香蕉在线| 亚洲国产欧美人成| 国产精品免费一区二区三区在线| 黄片wwwwww| 美女免费视频网站| 久久精品国产自在天天线| 国产真实伦视频高清在线观看 | 亚洲av免费高清在线观看| 色综合站精品国产| 91麻豆精品激情在线观看国产| 久久国产乱子免费精品| 日本五十路高清| ponron亚洲| 一进一出抽搐gif免费好疼| 12—13女人毛片做爰片一| 精品一区二区三区视频在线观看免费| 欧美日本视频| 美女被艹到高潮喷水动态| 天堂网av新在线| 色综合婷婷激情| 国产精品电影一区二区三区| 中文字幕免费在线视频6| 国内精品久久久久久久电影| 三级毛片av免费| 久久精品国产亚洲网站| 国产亚洲欧美98| 啦啦啦啦在线视频资源| 免费看av在线观看网站| 国产精品久久久久久久久免| 欧美丝袜亚洲另类 | 国产高潮美女av| 99久久久亚洲精品蜜臀av| 在线a可以看的网站| av天堂中文字幕网| 成年版毛片免费区| 变态另类成人亚洲欧美熟女| 欧美最新免费一区二区三区| videossex国产| 91av网一区二区| 午夜影院日韩av| 一级a爱片免费观看的视频| 一a级毛片在线观看| 精品久久久久久久久亚洲 | 国产日本99.免费观看| 少妇人妻精品综合一区二区 | 老司机深夜福利视频在线观看| 看片在线看免费视频| 亚洲无线观看免费| 国产伦在线观看视频一区| 久久久精品大字幕| 国产精品不卡视频一区二区| 亚洲欧美日韩高清专用| 日本 欧美在线| 欧美zozozo另类| 丝袜美腿在线中文| 欧美日韩乱码在线| 国产精品女同一区二区软件 | 特大巨黑吊av在线直播| 在线看三级毛片| 成人性生交大片免费视频hd| 欧美xxxx性猛交bbbb| 日本撒尿小便嘘嘘汇集6| 久久久久性生活片| 亚洲精品456在线播放app | 男女啪啪激烈高潮av片| 免费在线观看影片大全网站| 嫩草影视91久久| 精品久久久久久久久亚洲 | 午夜福利成人在线免费观看| 女人被狂操c到高潮| 成人鲁丝片一二三区免费| 校园春色视频在线观看| 高清在线国产一区| 国产色婷婷99| 午夜视频国产福利| 国产精品99久久久久久久久| 亚洲欧美日韩东京热| 伦理电影大哥的女人| 欧美日韩综合久久久久久 | av在线观看视频网站免费| 欧美日本亚洲视频在线播放| 联通29元200g的流量卡| 我要搜黄色片| 亚洲,欧美,日韩| 国产精品国产高清国产av| 日日夜夜操网爽| 日韩欧美在线乱码| 日韩,欧美,国产一区二区三区 | 国产高清不卡午夜福利| 国产免费一级a男人的天堂| 欧美日本亚洲视频在线播放| 免费av毛片视频| 乱人视频在线观看| 啪啪无遮挡十八禁网站| 国产精华一区二区三区| 精品人妻熟女av久视频| 极品教师在线视频| av黄色大香蕉| 亚洲无线观看免费| 国产视频一区二区在线看| 国产爱豆传媒在线观看| 黄色女人牲交| 乱人视频在线观看| 91久久精品国产一区二区成人| 久久九九热精品免费| 欧美丝袜亚洲另类 | 国产真实伦视频高清在线观看 | 亚洲图色成人| 国产av麻豆久久久久久久| 91在线精品国自产拍蜜月| 十八禁网站免费在线| 国产精品三级大全| 最近中文字幕高清免费大全6 | 久久久久精品国产欧美久久久| 精品久久久久久久人妻蜜臀av| 国产黄片美女视频| 成人毛片a级毛片在线播放| www.色视频.com| 18禁在线播放成人免费| 一本一本综合久久| 国产精品久久电影中文字幕| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 日本黄色视频三级网站网址| 精品久久久久久久久亚洲 | 成人美女网站在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区视频在线观看免费| 国产真实伦视频高清在线观看 | 老女人水多毛片| 欧美日韩国产亚洲二区| 国内少妇人妻偷人精品xxx网站| 久久久久久久久大av| 精品久久国产蜜桃| 日本 欧美在线| 成年免费大片在线观看| 男女那种视频在线观看| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久久电影| 91av网一区二区| 日本欧美国产在线视频| 99riav亚洲国产免费| 麻豆精品久久久久久蜜桃| 色尼玛亚洲综合影院| 18+在线观看网站| 在线观看免费视频日本深夜| 国产男靠女视频免费网站| 久久久久久久久大av| 欧美性感艳星| 国内精品宾馆在线| 亚洲精品456在线播放app | 人人妻,人人澡人人爽秒播| 亚洲成人精品中文字幕电影| 波多野结衣高清作品| 搡老妇女老女人老熟妇| 国产男人的电影天堂91| 国产一区二区三区在线臀色熟女| 波多野结衣高清作品| 18禁在线播放成人免费| 毛片女人毛片| 桃色一区二区三区在线观看| 国产久久久一区二区三区| 搡老熟女国产l中国老女人| 色哟哟哟哟哟哟| 搡女人真爽免费视频火全软件 | 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影| 偷拍熟女少妇极品色| 国产亚洲av嫩草精品影院| 一卡2卡三卡四卡精品乱码亚洲| 免费观看精品视频网站| 内射极品少妇av片p| 日本黄大片高清| 久久久成人免费电影| 日韩强制内射视频| 亚洲欧美清纯卡通| 欧美另类亚洲清纯唯美| 欧美高清成人免费视频www| 国产精品久久久久久久电影| 婷婷色综合大香蕉| 亚洲最大成人av| 18禁裸乳无遮挡免费网站照片| 特大巨黑吊av在线直播| 看黄色毛片网站| 99视频精品全部免费 在线| 日韩大尺度精品在线看网址| 日韩一区二区视频免费看| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av在线| 欧美黑人欧美精品刺激| 性色avwww在线观看| 成人亚洲精品av一区二区| 久久精品国产亚洲av涩爱 | 校园人妻丝袜中文字幕| 干丝袜人妻中文字幕| 亚洲欧美日韩高清在线视频| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线| 久久久久久国产a免费观看| 午夜爱爱视频在线播放| 日日夜夜操网爽| 日本黄色视频三级网站网址| 国产精品国产三级国产av玫瑰| videossex国产| 亚洲av不卡在线观看| 欧美+日韩+精品| 久久精品人妻少妇| 亚洲精品色激情综合| 嫁个100分男人电影在线观看| 国产精品久久久久久久久免| 亚洲性久久影院| 国产三级在线视频| 综合色av麻豆| 午夜爱爱视频在线播放| 99在线视频只有这里精品首页| 女的被弄到高潮叫床怎么办 | 免费不卡的大黄色大毛片视频在线观看 | 69av精品久久久久久| 在线免费十八禁| 精品国内亚洲2022精品成人| 动漫黄色视频在线观看| 色综合亚洲欧美另类图片| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 51国产日韩欧美| av在线老鸭窝| 夜夜看夜夜爽夜夜摸| 久久精品国产清高在天天线| 最近最新免费中文字幕在线| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 一a级毛片在线观看| 观看美女的网站| 干丝袜人妻中文字幕| 尾随美女入室| 日韩精品青青久久久久久| 久久精品综合一区二区三区| 麻豆成人午夜福利视频| 亚洲人成网站高清观看| 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 亚洲va在线va天堂va国产| 精品人妻一区二区三区麻豆 | 亚洲av成人精品一区久久| 在线天堂最新版资源| 美女免费视频网站| 免费搜索国产男女视频| 99久国产av精品| 午夜视频国产福利| 亚洲精品一区av在线观看| 免费看美女性在线毛片视频| 麻豆av噜噜一区二区三区| netflix在线观看网站| 国产男靠女视频免费网站| 免费观看人在逋| 成人性生交大片免费视频hd| 中文字幕久久专区| 小说图片视频综合网站| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 国产色婷婷99| 国产午夜福利久久久久久| 天堂动漫精品| 亚洲国产色片| 天堂av国产一区二区熟女人妻| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 在线看三级毛片| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| 一个人免费在线观看电影| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 欧美bdsm另类| 天天躁日日操中文字幕| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| www.色视频.com| 在线免费十八禁| 老司机深夜福利视频在线观看| 亚洲av.av天堂| 国产美女午夜福利| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 精品不卡国产一区二区三区| 亚洲自偷自拍三级| 三级毛片av免费| 欧美潮喷喷水| 国产三级中文精品| 一个人免费在线观看电影| 精品99又大又爽又粗少妇毛片 | 免费看美女性在线毛片视频| 丰满的人妻完整版| 嫩草影院入口| 黄色欧美视频在线观看| 此物有八面人人有两片| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 亚洲18禁久久av| 少妇人妻精品综合一区二区 | 日韩一本色道免费dvd| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 国产蜜桃级精品一区二区三区| 男人和女人高潮做爰伦理| 午夜日韩欧美国产| 深夜a级毛片| 天天躁日日操中文字幕| 欧美国产日韩亚洲一区| 在线观看66精品国产| 久久久久久久久久黄片| av女优亚洲男人天堂| av在线亚洲专区| 久久精品国产亚洲av香蕉五月| 给我免费播放毛片高清在线观看| 欧美最黄视频在线播放免费| ponron亚洲| 丰满乱子伦码专区| 乱系列少妇在线播放| 亚洲性久久影院| 丰满的人妻完整版| 国产淫片久久久久久久久| 欧美日本视频| 午夜a级毛片| 国内精品宾馆在线| 亚洲无线观看免费| 久久久成人免费电影| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| avwww免费| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久久久久久久| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 欧美最黄视频在线播放免费| 色在线成人网| 嫁个100分男人电影在线观看| 中文字幕av成人在线电影| 九色成人免费人妻av| 精品一区二区三区视频在线| 免费av观看视频| 午夜福利欧美成人| 成年人黄色毛片网站| 久久久久久久久中文| 久久精品久久久久久噜噜老黄 | 丝袜美腿在线中文| 国产色爽女视频免费观看| 午夜福利高清视频| 超碰av人人做人人爽久久| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 一本精品99久久精品77| 日韩欧美国产一区二区入口| 少妇猛男粗大的猛烈进出视频 | 国产老妇女一区| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| av在线蜜桃| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 欧美日本亚洲视频在线播放| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 国产精品一区二区三区四区久久| 久久久久性生活片| 国产精品98久久久久久宅男小说| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 日韩大尺度精品在线看网址| 国产一区二区三区av在线 | 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 欧美国产日韩亚洲一区| 日本五十路高清| 成人无遮挡网站| 久久久久久久久久成人| 国产精品免费一区二区三区在线| 色视频www国产| 99久久久亚洲精品蜜臀av| 一区二区三区四区激情视频 | 日韩欧美免费精品| 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 真人一进一出gif抽搐免费| 亚洲va日本ⅴa欧美va伊人久久| 久久精品影院6| 内地一区二区视频在线| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添av毛片 | 亚洲av成人精品一区久久| 搡老岳熟女国产| 51国产日韩欧美| 小说图片视频综合网站| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 村上凉子中文字幕在线| 深爱激情五月婷婷| 国产av一区在线观看免费| 久久久久久九九精品二区国产| 国模一区二区三区四区视频| 国产午夜精品论理片| 国产欧美日韩精品亚洲av| 中文字幕免费在线视频6| 国产三级中文精品| 俺也久久电影网| 日韩,欧美,国产一区二区三区 | 91在线精品国自产拍蜜月| 国产在线精品亚洲第一网站| 美女免费视频网站| 久久精品国产亚洲网站| 日本黄色视频三级网站网址| 男女之事视频高清在线观看| 亚洲av中文字字幕乱码综合| 99热网站在线观看| 女的被弄到高潮叫床怎么办 | 日韩亚洲欧美综合| 免费看光身美女| 极品教师在线免费播放| 亚洲三级黄色毛片| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 97碰自拍视频| 亚洲国产色片| 九九在线视频观看精品| 日本a在线网址| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 如何舔出高潮| 此物有八面人人有两片| 禁无遮挡网站| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| 精品人妻一区二区三区麻豆 | 亚洲色图av天堂| 日本免费a在线| 久久久久久久久中文| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| 国产真实伦视频高清在线观看 | 夜夜看夜夜爽夜夜摸| 男女视频在线观看网站免费| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 99精品在免费线老司机午夜| 国产精品,欧美在线| 久久精品国产鲁丝片午夜精品 | 国产亚洲欧美98| 两个人的视频大全免费| videossex国产| 亚洲av二区三区四区| 亚洲av熟女| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 久久这里只有精品中国| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区 | 麻豆久久精品国产亚洲av| 午夜免费激情av| 亚洲色图av天堂| 国产蜜桃级精品一区二区三区| 一级av片app| 国产三级在线视频| 亚洲欧美激情综合另类| 在线观看av片永久免费下载| 给我免费播放毛片高清在线观看| 波野结衣二区三区在线| 一区二区三区四区激情视频 | 狠狠狠狠99中文字幕| 免费av观看视频| 中文字幕熟女人妻在线| 看黄色毛片网站| 色哟哟·www| 九色国产91popny在线| 久久久成人免费电影| 免费黄网站久久成人精品| 久久欧美精品欧美久久欧美| 啪啪无遮挡十八禁网站| 熟妇人妻久久中文字幕3abv| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 久久人人爽人人爽人人片va| 天堂网av新在线| 波多野结衣高清作品| 亚洲在线自拍视频| 美女黄网站色视频| 观看免费一级毛片| 精品一区二区免费观看| 色尼玛亚洲综合影院| 久久婷婷人人爽人人干人人爱| 欧美极品一区二区三区四区| 无遮挡黄片免费观看| 久久草成人影院| 亚洲成人中文字幕在线播放| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 国产精品福利在线免费观看| 欧美3d第一页| 国产精品一区二区三区四区免费观看 | 全区人妻精品视频| 成人无遮挡网站| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 国产精品1区2区在线观看.| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女| 欧美xxxx黑人xx丫x性爽| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 久久精品人妻少妇| 夜夜夜夜夜久久久久| 国产真实伦视频高清在线观看 | 成人三级黄色视频| 欧美极品一区二区三区四区| 精品一区二区免费观看| 国产又黄又爽又无遮挡在线| 精品午夜福利在线看| 99热这里只有是精品50| 波多野结衣高清作品| 99精品在免费线老司机午夜| 琪琪午夜伦伦电影理论片6080| 国产av麻豆久久久久久久| 国产精品自产拍在线观看55亚洲| 国产亚洲精品av在线| 69人妻影院| 看免费成人av毛片| 欧美成人a在线观看| 国产视频一区二区在线看| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 在线免费观看不下载黄p国产 | 在线看三级毛片| 日本色播在线视频| 日本三级黄在线观看| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 精品久久久久久久久av| 亚洲国产日韩欧美精品在线观看| 国产精品精品国产色婷婷| 少妇熟女aⅴ在线视频| 性插视频无遮挡在线免费观看| 亚洲电影在线观看av| 国产成人aa在线观看| 亚洲国产精品sss在线观看| 蜜桃久久精品国产亚洲av| 国产精品国产三级国产av玫瑰| 国产精品电影一区二区三区| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| 一个人观看的视频www高清免费观看| 又紧又爽又黄一区二区| 午夜精品在线福利| 午夜福利在线在线| 一级av片app| 久久久久久久久大av| 精品国内亚洲2022精品成人| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 亚洲va在线va天堂va国产| 国产精品综合久久久久久久免费| 国产视频内射|