• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studying the variable energy band structure for energy storage materials in charge/discharge process

    2024-04-05 02:28:56XunchengChenYuHunNingqingSunYunhuiSuXuesongShenGuoqingLiJiqiZhngToWei
    Chinese Chemical Letters 2024年2期

    Xuncheng Chen ,Yu Hun,* ,Ningqing Sun ,Yunhui Su ,Xuesong Shen ,Guoqing Li ,Jiqi Zhng,To Wei,*

    a University of Jinan,Ji’nan 250022,China

    b Weichai Power Co.,Ltd.,Weifang 261061,China

    Keywords: Variable energy band structure Energy storage materials Charge-discharge process Optical spectroscopy Supercapacitors

    ABSTRACT So far,a clear understanding about the relationship of variable energy band structure with the corresponding charge-discharge process of energy storage materials is still lacking.Here,using optical spectroscopy (red-green-blue (RGB) value,reflectivity,transmittance,UV-vis,XPS,UPS) to study α-Co(OH)2 electrode working in KOH electrolyte as the research object,we provide direct experimental evidence that: (1) The intercalation of OH- ions will reduce the valence/conduction band (VB and CB) and band gap energy (Eg) values;(2) The deintercalation of OH- ions corresponds with the reversion of VB,CB and Eg to the initial values;(3) The color of Co(OH)2 electrode also exhibit regular variations in RGB value during the charge-discharge process.

    Nowadays,with the rapid development of human society,the exploration of green,economic and sustainable energy storage devices has become an indispensable demand.At present,the most studied energy storage devices mainly include various batteries and capacitors,such as lithium-ion batteries,sodium-ion batteries,zinc-ion batteries,electric double-layer capacitors,and pseudocapacitors [1-9].For energy storage devices,one of the most important components is their various energy storage materials.Such as for lithium-ion batteries,the energy storage materials include the widely studied LiCoO2-or LiFePO4-based cathode materials and the graphite or silicon-based anode materials [10-12].For supercapacitors,the electrode materials mainly include carbon material,metal oxide,and conductive polymer [13-15].To pursue energy storage materials with greater capacity,high power,better safety and non-pollution,it is also necessary to develop various testing techniques to systematically evaluate the energy storage materials/devices.For example,the cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) testing techniques can be used to characterize the charge-discharge voltage,capacity,rate,cycle and other properties of energy storage materials.The variations of morphology and volume of energy storage materials before,during and after charging and discharging process can be intuitively described by scanning electron microscope (SEM) and atomic force microscope (AFM).Parketal.clearly characterized the volume increase and shrinkage,and the damage of the silicon-based lithium-ion battery anode particles during the charging and discharging process by SEM technology [16].The change of aliovalent cation valence state and the oxygen vacancy concentration in energy storage materials can be (semi-)quantitatively evaluated by XPS,EPR and chemical titration methods [17,18].For different charge carriers charging/discharging in energy storage materials,the possible insertion site,transport route and activation energy can be calculated by theoretical computation.For example,the voltage profile for the discharge/charge curves can be described by the densityof-state diagram,which is mainly based on the corresponding positions of the bottom/top band gap and the aliovalent cation redox couples relative to the Fermi energy of lithium [19].The possible changes in the crystal structure,bond length/angle,phase transition,etc.of energy storage materials during the charge and discharge process also can be characterized by XRD,TEM and Raman testing techniques [20-22].Despite much progress,as mentioned above,has been made in the past decades to get a more accurate assessment for energy storage materials,however,a clear understanding of the relationship between the charge-discharge process of energy storage materials and the corresponding changes of energy band structure is still lacking.

    In this work,an energy storage electrode cobalt hydroxideα-Co(OH)2with low cost,environmentally benign and high theoretical specific capacitance was chosen as research object.We studied the charge-discharge process of energy storage materials by first revealing the regular variations of colors,optical spectrum and energy band structure.Their corresponding relationships provide a new perspective to study the insertion and removal of charge carriers in energy storage materials during the charge and discharge process.

    The electrochemical properties ofα-Co(OH)2electrode material are tested by forming a three-electrode configuration with Pt foil as the auxiliary electrode,Ag/AgCl as the reference electrode and 2 mol/L KOH solution as the electrolyte.Here,the initial Co(OH)2electrode is fabricated with 90 wt% pristine Co(OH)2powders+10 wt% poly(vinylidene fluoride) (PVDF) coating on nickel foam.In charge-discharge process,the Co(OH)2electrode is discharged and charged to 0 V and 0.45 V respectively in a 2 mol/L KOH solution.In order to study the changes of Co(OH)2during discharging and discharging process,the pristine,discharged and charged Co(OH)2powders are collected and analyzed,respectively.As shown in Figs.1a-c,the crystal structure and morphology of the three samples are characterized clearly.X-ray diffraction (XRD) evaluation results prove that all of the pristine,discharged and charged Co(OH)2samples appear in pure phase with characteristic peaks of Co(OH)2.And the morphologies of the three Co(OH)2samples,as observed by field-emission scanning electron microscopy (FE-SEM),all show in hexagonal sheet structure,which is consistent with other reports [23].No apparent XRD and SEM variations were observed from pristine to discharged and charged Co(OH)2.All the GCD profiles are nonlinear and show obvious potential plateau (Fig.1d),indicating that the charge storage ofα-Co(OH)2electrode with(de)intercalating OH-ions originated predominantly from Faradaic reaction [24].The device exhibits a specific capacitance of 475 F/g at 1 A/g in accordance with Eq.1 [25].

    Furtherly,the shapes of GCD curves remain unchanged and keep symmetric with current densities increasing from 1 A/g to 5 A/g,which proves the good reversibility and rate capability of Co(OH)2electrode.The CV curve ofα-Co(OH)2electrode with scan voltage from -0.3 V to +0.5 V and scan rate at 10 mV/s also shows obvious redox peaks (Fig.1e),which corresponds to the potential of charge-discharge behavior in GCD curves.By comparing the cycled capacity for more than 2000 cycles,the excellent long-term stability means the good redox reversibility while Co(OH)2using as energy storage electrode (Fig.S2 in Supporting information).In addition,adding 10 wt% super P carbon black (SP) as conductor,the composite electrode demonstrates superior electrochemical performance (Figs.S3-S6 in Supporting information).As shown in Fig.1f,the Co(OH)2coated on nickel foam is tested by electrochemical Mott-Schottky plots in 2 mol/L KOH solution.The result shows that theEfbvalues of the pristine,discharged and charged samples are 0.2,0.05 and 0.1 V,respectively.The measured flat-band voltage reflects the change of valence state of the three samples,which also proves that Co(OH)2undergoes the redox reactions during the charging and discharging process.

    Furtherly,during the charging-discharging process,the color variation of Co(OH)2samples was recorded by Spectrophotometric colorimeter.As shown in Fig.2a,its red-green-blue (RGB) value varies regularly with the corresponding GCD curves (presented by the black dots linked with broken black lines).For the pristine Co(OH)2powders,its RGB value is in (147,186,139).The initial Co(OH)2electrode (90 wt% Co(OH)2+10 wt% PVDF coating on nickel foam) was infiltrated into 2 mol/L KOH solution electrolyte for 2 h,and its RGB value is in (75,70,62).Furtherly,the discharged Co(OH)2electrode (with voltage at 0 V) with saturated KOH solution shows the color in RGB value (79,79,76).For Co(OH)2electrode charged to 0.45 V,OH-as charge carriers were inserted into the interlayer structure ofα-Co(OH)2.The redox reaction is as follows (Eq.2) [26].

    Fig.2.Color change,reflection and transmissivity spectrum of cobalt hydroxide during the charging and discharging process.(a) Evaluation of Co(OH)2 electrode by Galvanostatic charge/discharge curves testing at a current density of 1 A/g and the corresponding regular variations of color RGB value of discharged and charged Co(OH)2 powders.The insertion is the optical images of pristine,discharged and charged Co(OH)2 powders.(b) The reflectivity of pristine,discharged and charged Co(OH)2 samples in relation to emitted wavelength.(c,d) The transmissivity of pristine Co(OH)2,discharged Co(OH)2 and charged Co(OH)2 samples in relation to emitted wavelength.

    With the introduction of OH-ions,Co(OH)2was oxidized to CoOOH,which leads the color of charged Co(OH)2electrode varying to the RGB value (78,78,76).For Co(OH)2electrode discharging to 0 V,the OH-ions were taken off from the interlayer.The corresponding RGB value of the discharged Co(OH)2electrode was recovered to (79,79,76) again.And the corresponding RGB values of Co(OH)2electrode also were recorded for 20 cycles.As shown in Fig.2a,the changes of the obtained color vary regularly during the charge-discharge process,which is consistent with the excellent capacitance stability.

    In addition,the optical images for pristine Co(OH)2powders,discharged and charged Co(OH)2electrode powders (Fig.S1 in Supporting information) are inserted into Fig.2a to compare the color variation.The color of pristine Co(OH)2powders is green,corresponding with its RGB value.In the macroscopic view,the color of discharged/charged Co(OH)2electrode powders is obviously different from pristine powder,both showing in black gray,which is consistent with their RGB values.For Co(OH)2+PVDF+SP electrode,its RGB values and optical images also vary regularly with the GCD curves (Fig.S7 in Supporting information).

    The varied colors of Co(OH)2samples under the chargedischarge process can be reflected by detecting their varied optical properties,such as reflection,refraction and transmission [27].For pristine Co(OH)2,the powder is pressed into circular flakes with a certain diameter and thickness to test its reflectance,and the reflectance is obtained by the Spectrophotometer colorimeter.As shown in Fig.2b,the reflectance of pristine green Co(OH)2powder varies from 20% to 70% with the test wavelength switching from 400 nm to 780 nm.For Co(OH)2electrodes,with the electrode sheet (Co(OH)2powder coated on nickel foam) discharging/charging to 0/0.45 V,the corresponding reflectance can be recorded.The Co(OH)2electrode in black gray absorbed most of the exciting light,herein,its reflectivity is significantly lower than pristine Co(OH)2,less than 10%.Moreover,for semiconductors,the wider band gap corresponds with less absorbance for white exciting light [28,29].Herein,the higher reflection coefficient for discharged Co(OH)2electrode (than charged electrode) means bigger band gap.

    For polycrystalline semiconductor materials,their optical properties are mainly affected by scattering and reflection,and are almost opaque to exciting light.However,evaluating the variation of transmittance is still an effective way to reveal the changed band gap from pristine to discharged and charged Co(OH)2.To measure the light transmittance,90 wt% Co(OH)2and 10 wt% PVDF are coated on FTO conductive glass to form a thin and uniform film as working electrode,which ensures the transmission of light.The electrode is charged and discharged to 0.45 and 0 V,and then the transmittance is measured after drying.As shown in Figs.2c and d,the transmittance of pristine Co(OH)2varies between 1 and 10%,while discharged Co(OH)2and charged Co(OH)2transmissivity is less than 0.1%.The significantly higher transmittance for pristine Co(OH)2means larger band gap (for exciting light passing through)than discharged and charged Co(OH)2.Furtherly,the comparison of transmittance in Fig.2d represents that discharged Co(OH)2has the larger band gap than charged Co(OH)2,which can be explained by the higher transmittance.

    For semiconductors,the color variation corresponds to the variation of band gap energy (Eg) value.Herein,the changed color (or RGB value) of Co(OH)2samples can be evaluated by the ultravioletvisible spectroscopy,which can give the variation ofEgvalue.Fig.3 is the UV-vis spectra of Co(OH)2samples with the absorption wavelength ranging from 300 nm to 800 nm.For pristine Co(OH)2powders (Fig.3a),the strong absorption wavelength ranges from 560 nm to 680 nm,and the absorption peak at around 550 nm results in the dominant green color [30].Then,theEgvalue can be calculated by Tauc’s plot and expressed using the following Eq.3 [31].

    Fig.3.(a,b) UV-vis diffuse reflectance spectra of pristine and PVDF powders and the corresponding plot of transformed Kubelka-Munk function versus the varied energy of emitting light.(c) UV-vis diffuse reflectance spectra of Co(OH)2 and Co(OH)2+PVDF powders.(d) Tauc plots of Co(OH)2+PVDF powders.(e,f) UV-vis diffuse reflectance spectra of discharged and charged Co(OH)2 powders and the corresponding plot of transformed Kubelka-Munk function versus the varied energy of emitting light.

    Fig.4.(a-c) Valence band potential of pristine,discharged and charged Co(OH)2 samples evaluated by X-ray photoelectron spectroscopy.(d-f) Low-band energy slope of the ultraviolet photon electron spectroscopy spectra of pristine,discharged and charged Co(OH)2 samples.

    The calculatedEgvalue for pristine Co(OH)2is 2.85 eV,shown in the insert chart of Fig.3a.For PVDF binder,the calculatedEgvalue is 3.54 eV (Fig.3b).For Co(OH)2+PVDF electrode,the calculated UV-vis spectra shows two individualEgvalues at 3.54 and 2.85 eV,which means theEgvalues of Co(OH)2samples are unaffected by the introduction of PVDF binder (Figs.3c and d).For Co(OH)2+PVDF+SP electrode,the absorption peaks of Co(OH)2and PVDF are covered by the introduced SP carbon black (Fig.S8 in Supporting information).Herein,the optical spectroscopy was conducted with Co(OH)2+PVDF as the working electrode.

    To obtain theEgvalue of discharged and charged Co(OH)2powders,the initial Co(OH)2sample was coated on FTO conductive glass as a working electrode and then the electrode was charged/discharged in 2 mol/L KOH solution electrolyte.After the electrode was charged and discharged to 0.45 and 0 V individually,the corresponding Co(OH)2electrode sheet is rinsed gently with deionized water,subsequently dried in an oven at 75°C.The dried charged/discharged Co(OH)2powders are scraped from conductive glass to test theEgvalue.Figs.3e and f show the absorption peaks and the corresponding Tauc plot of discharged and charged Co(OH)2powders.It is observed that the range of strong absorption peaks of the two samples is much different with pristine Co(OH)2powders.We think the main reason is the adsorption (or chemical reaction) of OH-ions with Co(OH)2particles.The strong absorption peaks of the two samples both appear around 680 nm,corresponding with the gray-black color.Furtherly,the calculatedEgfor discharged Co(OH)2electrode powders is 1.94 eV.For charged Co(OH)2electrode powders,the calculatedEgwas reduced furtherly to 1.75 eV.This means the intercalation/deintercalation of OH-ions during the charge and discharge process causes further change ofEgof Co(OH)2electrode.From discharged to charged Co(OH)2,the smallerEgwas explained: for p-type Co(OH)2semiconductor,we think the intercalation of OH-ions will produce impurity level near the VB,which causes the further reduction ofEg.

    In order to construct the schematic diagram of energy band structure,the valence band potential (EVB,XPS) of pristine,discharged and charged Co(OH)2samples were measuredviaX-ray photoelectron spectroscopy (XPS) analysis.And the XPS absorption spectra of the three samples as a function of binding energy were shown in Figs.4a-c.The VB positions of the Co(OH)2samples are calculated by linear extrapolation of the valence band leading edge with the corresponding baseline of the background signal [32].

    According to the test results,the correspondingEVB,XPSof pristine,discharged and charged Co(OH)2samples is measured to be 0.97,0.09 and 0.23 eV.Then,theEVBvalues of the corresponding standard hydrogen electrode (EVB,NHE) can be obtained by to the following Eq.4.

    φis the work function of the instrument (4.72 eV) [33].As a result,theEVB,NHEof the three samples is calculated to be 1.25,0.37 and 0.51 eV,respectively.For the sake of unity with band gap,theEVB,NHEis converted into solid physical energy level scales (vacuum level) for comparison.Finally,the valence band value of the pristine,discharged and charged Co(OH)2is calculated to be -5.69,-4.81 and -4.95 eV,respectively,according to the conversion Eq.5 [34].

    First,the valence band value of discharged/charged Co(OH)2electrodes is more positive than pristine Co(OH)2,which was also attributed to the adsorption (or chemical reaction) of OH-ions with Co(OH)2particles.Second,the intercalation/deintercalation of OH-ions in Co(OH)2electrode will introduce new filled/empty electronic states at or around the VB maximum,which sheds light on the change of valence band values.Here,from the discharged to charged electrode,the intercalation of OH-ions will oxidize Co2+(OH)2to Co3+OOH.So the further spillover of electrons from Co3+ions of Co3+OOH needs higher energy (work function,WF),which explains the more negativeEvacof charged Co(OH)2than discharged Co(OH)2(Figs.4b and c).

    To further verify the accuracy of changedEVB,XPSas evaluated by XPS technology,we also use the ultraviolet photon electron spectroscopy (UPS) and electrochemical Mott-Schottky equation to further determine the band edges of Co(OH)2electrode under charging and discharging process.UPS is a widely used way which probes the electronic VB [35].It measures the kinetic energy of photoelectrons emitted by solid surfaces under the irradiation of ultraviolet light,which provides the distribution of electron density in the VB as well as on theWF.The UPS test was prepared by coating Co(OH)2on FTO conductive glass to form a thin and uniform film electrode [36].The charge-discharge process of the thin film electrode is carried out in a 2 mol/L KOH solution by a three-electrode test device.Figs.4d-f show the low binding energy slopes of pristine,discharged and charged Co(OH)2samples.The intersection of the slope curve is the VB maximum below Femi level.It is calculated that the VB of the three samples is 0.49,0.1 and 0.26 eV,respectively.TheWFis defined as the energy difference from the Fermi level to the vacuum energy level.In the UPS spectrum,it can be calculated from the difference between the energy of the UV photons and the secondary electron cutoff (highbinding energy (BE) cutoff) [37].The cut-off energy of the three samples is 16.01,15.96 and 15.98 eV (Fig.S9 in Supporting information).Furthermore,theWFcan be calculated by the following Eq.6.

    hνis the energy of theHeIultraviolet photon source (21.22 eV),BEmax=Ecutoff.It can be assumed thatEF=0 by calibrating the energy spectrum scale of the spectrum.Therefore,theWFof the three materials can be calculated as 5.21,5.26 and 5.24 eV.Herein,the energy band structure relative to the energy level of the solid physical scale can be obtained according to theWFandEVB,UPS.The valence band positions relative to the vacuum level can be obtained as -5.70,-5.36 and -5.50 eV,respectively.

    For semiconductor-like materials,the Mott-Schottky equation can be used to measure the flat band potential (Efb) at the electrode-electrolyte interface,which then was used to reflect the valence/conduction band values.Herein,the testing system forEfbwas prepared with Co(OH)2coating on nickel foam as working electrode with Ag/AgCl as reference electrode and with 2 mol/L KOH solution as electrolyte.In the Mott-Schottky test,the voltage range is -0.45 V to 0.5 V and the frequency is 1000 Hz.As shown in Fig.1f,theEfbis determined by the x-intercept (potential axis) of the tangent line of the Mott-Schottky plot.The result shows that theEfbvalues of the pristine,discharged and charged samples are 0.2,0.05 and 0.1 V,respectively.It is evident that the slope of the tangent line is negative,suggestingα-Co(OH)2a p-type semiconductor [38-40].There is a certain relationship between the valence band value and the varied flat band voltage (Eq.7).

    Efbis the flat band potential,NAis the volume carrier density,NVis the valence band effective state density,kis the Boltzmann constant andTis the temperature in absolute scale.The second term depends on the doping concentration,which for semiconductors is usually 0.1-0.2 eV and is negligible.Herein,we ignore the second term to compare the change of valence band values.

    Then,we convert the valence bands into the solid physical level scale (vacuum level) according to Eqs.5 and 8 [34,41].

    pH value is 14.3 for 2 mol/L KOH electrolyte.The calculated final valence band value of the three samples is -5.68,-5.53 and-5.58 eV,respectively.Herein,in the process of the Mott-Schottky test,Co(OH)2may react with KOH solution with the increase of testing voltage,which would affect the flat band potential (valance band) in a certain state.For example,although the trend of the obtained valence band position by the Mott-Schottky equation is still upward from pristine to charged/discharged Co(OH)2samples,the concrete data does not change much as compared with XPS and UPS results.

    Fig.5 draws a comparison of the band diagrams for pristine,discharged and charged Co(OH)2samples based on the results of UV-vis spectrum,XPS,UPS and Mott-Schottky plot.And the calculating formula is as follows (Eq.9) [28].

    Fig.5.Band structure diagram.Position of ECB (blue) and EVB (orange) for pristine,discharged and charged Co(OH)2 samples calculated from the optical band gap and the (a) VB-XPS,(b) UPS and (c) Mott-Schottky plots.

    Fig.5a is a schematic diagram of the energy bands obtained by XPS and UV-vis tests.The calculated VB,CB andEgof pristine Co(OH)2are -5.69,-2.84 and 2.85 eV,which are in line with the existing research results [42,43].For discharged Co(OH)2electrode,with the adsorption (or chemical reaction) of OH-ions with Co(OH)2particles,the calculated VB increased to -4.81 eV.At the same time,the CB andEgvalues were reduced to -2.87 and 1.94 eV.

    For charged Co(OH)2electrode,the present study has demonstrated that the charging process ofα-Co(OH)2is processed by OH-intercalation [44].The intercalation of OH-ions further reduces the VB,CB andEgvalues of charged Co(OH)2electrode to-4.95,-3.20 and 1.75 eV (compared with -4.81,-2.87 and 1.94 eV of discharged Co(OH)2).Figs.5b and c are the schematic band diagrams of VB,CB andEgvalues obtained by UPS/UV-vis and Mott-Schottky/UV-vis tests.The calculated results for pristine,discharged and charged Co(OH)2samples are basically same with the XPS/UV-vis results.As discussed above,the apparent variation of Co(OH)2energy band structure from pristine powders to charged/discharged electrodes was attributed to the adsorption (or chemical reaction) of OH-ions with Co(OH)2particles.The varied energy band structure from discharged to charged Co(OH)2can be explained by the reversible Faradaic reaction.As shown in Table S1(Supporting information),the XPS results reveal the coexistence of Co2+and Co3+ions in discharged and charged Co(OH)2.The calculated Co2+/Co3+ratios are 2.07 and 0.53 in discharged and charged samples.During the charging and discharging process,the intercalation/deintercalation of OH-ions from the interlayers of Co(OH)2electrode will oxidize/reduce more Co2/3+to Co3/2+,which causes changes in the energy band structure.Recently,Gabrelianetal.have studied the valence-band electronic structure and main optical properties of Cu2HgGeTe4materials by theoretical simulation within a DFT framework and experimental XPS [45],and the obtained trend is consistent with the varied VB and CB of Co ion as studied in this work.

    In this work,by combining optical spectroscopy characterization with electrochemical studies,we have demonstrated that the charge-carrier intercalation/deintercalation in energy storage materials not only governs the variations of color RGB values but also the energy band structure.Specifically,with Co(OH)2electrode working in KOH electrolyte as an example,the VB,CB andEgvalues show apparent reduction/increment with OH-ions intercalating or taking off from its interlayer structure.In addition,the intercalation/deintercalation of OH-ions also triggered the redox reaction of Co2+and Co3+ions,resulting in the regular variation of RGB values.This work provides a feasible way to characterize the changes of energy band structure during the charge-discharge process by optical spectroscopy,which is helpful for the design of high-performance energy storage materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (Nos.51972146,52072150).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108380.

    美女免费视频网站| 这个男人来自地球电影免费观看| 首页视频小说图片口味搜索| 久久久久久久久中文| 久久精品91蜜桃| 亚洲国产精品sss在线观看| 丰满的人妻完整版| 亚洲成人国产一区在线观看| 日韩三级视频一区二区三区| 国产激情偷乱视频一区二区| 欧美日韩一级在线毛片| 久久精品成人免费网站| 人成视频在线观看免费观看| 欧美在线一区亚洲| 这个男人来自地球电影免费观看| 最新美女视频免费是黄的| 精品福利观看| 婷婷六月久久综合丁香| 中国美女看黄片| 老司机福利观看| 一本综合久久免费| av中文乱码字幕在线| 国产三级黄色录像| 久久这里只有精品19| 成人欧美大片| 亚洲全国av大片| 99在线人妻在线中文字幕| 在线观看免费日韩欧美大片| 国内精品久久久久精免费| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 老鸭窝网址在线观看| 老司机福利观看| 搞女人的毛片| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 老司机午夜十八禁免费视频| 国产亚洲精品一区二区www| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区在线臀色熟女| 欧美3d第一页| 国内精品一区二区在线观看| av在线播放免费不卡| 搡老妇女老女人老熟妇| 99久久综合精品五月天人人| 手机成人av网站| 色噜噜av男人的天堂激情| 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 国产成人精品久久二区二区免费| 久久久久久九九精品二区国产 | 淫妇啪啪啪对白视频| 黑人巨大精品欧美一区二区mp4| 久久这里只有精品中国| 十八禁人妻一区二区| 高清在线国产一区| 国产视频一区二区在线看| 精品国产美女av久久久久小说| 亚洲精华国产精华精| 黄频高清免费视频| 欧美中文日本在线观看视频| 曰老女人黄片| 色噜噜av男人的天堂激情| 亚洲aⅴ乱码一区二区在线播放 | 亚洲熟妇熟女久久| 麻豆成人午夜福利视频| 一区二区三区国产精品乱码| 国产成人影院久久av| 久久伊人香网站| 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲| 亚洲精品久久国产高清桃花| 男女那种视频在线观看| 亚洲 国产 在线| 欧美性猛交黑人性爽| 国产成人av教育| 精品高清国产在线一区| 无遮挡黄片免费观看| 免费观看人在逋| 老司机午夜福利在线观看视频| 国产成+人综合+亚洲专区| 国产av在哪里看| 亚洲无线在线观看| 久久久久性生活片| 欧美性长视频在线观看| 99re在线观看精品视频| 18美女黄网站色大片免费观看| www.熟女人妻精品国产| 国产精品久久久久久久电影 | 人人妻人人澡欧美一区二区| 99re在线观看精品视频| 在线观看66精品国产| 欧美日韩福利视频一区二区| 欧美日韩福利视频一区二区| 亚洲欧美精品综合久久99| 亚洲一卡2卡3卡4卡5卡精品中文| 毛片女人毛片| 国产av又大| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精华一区二区三区| 十八禁人妻一区二区| 午夜激情福利司机影院| 少妇的丰满在线观看| 精品久久久久久成人av| 国产在线精品亚洲第一网站| 亚洲国产日韩欧美精品在线观看 | 亚洲熟妇熟女久久| 午夜福利在线观看吧| 在线看三级毛片| 欧美丝袜亚洲另类 | 91九色精品人成在线观看| 亚洲成a人片在线一区二区| 国产日本99.免费观看| www国产在线视频色| 一本精品99久久精品77| www国产在线视频色| 色av中文字幕| 美女扒开内裤让男人捅视频| 制服人妻中文乱码| 亚洲va日本ⅴa欧美va伊人久久| 午夜激情av网站| 激情在线观看视频在线高清| 国产熟女xx| 最近最新中文字幕大全电影3| 国内精品久久久久精免费| 午夜日韩欧美国产| 亚洲专区字幕在线| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡欧美一区二区| 一进一出好大好爽视频| 最近最新中文字幕大全免费视频| 热99re8久久精品国产| 一卡2卡三卡四卡精品乱码亚洲| 人妻久久中文字幕网| 成熟少妇高潮喷水视频| 精品熟女少妇八av免费久了| av片东京热男人的天堂| 亚洲avbb在线观看| 一级毛片高清免费大全| 一二三四在线观看免费中文在| 精品人妻1区二区| 美女高潮喷水抽搐中文字幕| 国产高清有码在线观看视频 | 欧美中文综合在线视频| 丁香六月欧美| 在线国产一区二区在线| 少妇熟女aⅴ在线视频| 日本熟妇午夜| 小说图片视频综合网站| av中文乱码字幕在线| 99精品欧美一区二区三区四区| 舔av片在线| 一本久久中文字幕| 校园春色视频在线观看| 免费一级毛片在线播放高清视频| 国产精品久久久久久久电影 | 18禁黄网站禁片午夜丰满| 久99久视频精品免费| 欧美色欧美亚洲另类二区| 婷婷丁香在线五月| 国产av麻豆久久久久久久| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线观看免费| xxx96com| 亚洲色图av天堂| 亚洲成人精品中文字幕电影| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 国产精品美女特级片免费视频播放器 | 国产精品乱码一区二三区的特点| 欧美精品啪啪一区二区三区| 亚洲av成人不卡在线观看播放网| 午夜免费观看网址| 天天添夜夜摸| 麻豆成人午夜福利视频| 国产1区2区3区精品| 悠悠久久av| 女警被强在线播放| 两个人视频免费观看高清| 大型av网站在线播放| 久久久久国内视频| 免费在线观看成人毛片| 99国产精品99久久久久| 国产亚洲精品久久久久久毛片| 巨乳人妻的诱惑在线观看| 国产精品一区二区三区四区久久| 大型av网站在线播放| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 欧美日韩黄片免| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 一二三四在线观看免费中文在| 久久久水蜜桃国产精品网| 狂野欧美激情性xxxx| 全区人妻精品视频| 最近最新中文字幕大全免费视频| 看黄色毛片网站| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 无限看片的www在线观看| 国产精品免费一区二区三区在线| xxxwww97欧美| 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 18禁国产床啪视频网站| 中出人妻视频一区二区| 大型黄色视频在线免费观看| 国产精品 国内视频| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 精品国产乱子伦一区二区三区| 男男h啪啪无遮挡| 在线a可以看的网站| 久久久久亚洲av毛片大全| 男女下面进入的视频免费午夜| 叶爱在线成人免费视频播放| 国产成人影院久久av| 成人亚洲精品av一区二区| 91九色精品人成在线观看| 91字幕亚洲| 久久中文看片网| 国产精品久久久久久人妻精品电影| av片东京热男人的天堂| 波多野结衣巨乳人妻| www.自偷自拍.com| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久精免费| 精品久久久久久,| 欧美成狂野欧美在线观看| 99国产精品一区二区三区| 亚洲18禁久久av| 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 中文字幕人妻丝袜一区二区| 久久久国产精品麻豆| 深夜精品福利| 99国产综合亚洲精品| 亚洲人成电影免费在线| 日韩欧美国产在线观看| 日本成人三级电影网站| 岛国视频午夜一区免费看| www国产在线视频色| 亚洲精品中文字幕在线视频| 又大又爽又粗| 日韩精品中文字幕看吧| 国产精品精品国产色婷婷| 欧美久久黑人一区二区| av欧美777| bbb黄色大片| 不卡av一区二区三区| 美女午夜性视频免费| 听说在线观看完整版免费高清| 国产成人影院久久av| 18美女黄网站色大片免费观看| 免费看美女性在线毛片视频| 99精品欧美一区二区三区四区| av有码第一页| 91国产中文字幕| 亚洲精品国产一区二区精华液| 久久久久免费精品人妻一区二区| 一二三四在线观看免费中文在| 波多野结衣高清无吗| 两个人免费观看高清视频| 18禁美女被吸乳视频| 国产区一区二久久| 成人欧美大片| av欧美777| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av高清一级| 一级毛片高清免费大全| 女人高潮潮喷娇喘18禁视频| 一个人免费在线观看的高清视频| 国产亚洲av嫩草精品影院| 欧美人与性动交α欧美精品济南到| e午夜精品久久久久久久| 91大片在线观看| 一二三四在线观看免费中文在| 欧美黑人精品巨大| 性色av乱码一区二区三区2| 免费看日本二区| 色哟哟哟哟哟哟| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| 久久久精品欧美日韩精品| 精品久久久久久久久久免费视频| 亚洲激情在线av| 老司机午夜十八禁免费视频| 成人高潮视频无遮挡免费网站| 一区福利在线观看| 日韩欧美免费精品| 久久亚洲真实| 真人一进一出gif抽搐免费| 国产视频内射| 国产激情偷乱视频一区二区| 国产精品综合久久久久久久免费| 黄色女人牲交| 俺也久久电影网| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 午夜日韩欧美国产| a级毛片a级免费在线| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 精品不卡国产一区二区三区| 国产精品香港三级国产av潘金莲| 黄色视频,在线免费观看| 中亚洲国语对白在线视频| 久久久精品国产亚洲av高清涩受| 国产在线精品亚洲第一网站| 999久久久精品免费观看国产| 草草在线视频免费看| 久久香蕉激情| 欧美日韩精品网址| 九色成人免费人妻av| 三级毛片av免费| 91大片在线观看| 国产亚洲精品综合一区在线观看 | 久久精品国产清高在天天线| 亚洲黑人精品在线| 欧美国产日韩亚洲一区| 欧美精品啪啪一区二区三区| 色综合亚洲欧美另类图片| 亚洲人成电影免费在线| 亚洲成人久久性| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| 99久久综合精品五月天人人| 一本大道久久a久久精品| 18禁观看日本| 久久精品国产清高在天天线| cao死你这个sao货| 老司机福利观看| 激情在线观看视频在线高清| avwww免费| 久久精品91无色码中文字幕| 一本精品99久久精品77| 男人舔奶头视频| 母亲3免费完整高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲国产看品久久| 丝袜人妻中文字幕| 黄色毛片三级朝国网站| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 69av精品久久久久久| 最近最新免费中文字幕在线| 国产真实乱freesex| √禁漫天堂资源中文www| 国产精品亚洲美女久久久| 在线a可以看的网站| 国产爱豆传媒在线观看 | 一个人免费在线观看电影 | 中文字幕人妻丝袜一区二区| 亚洲av第一区精品v没综合| 国产精品美女特级片免费视频播放器 | 国产精品久久久久久亚洲av鲁大| 亚洲精华国产精华精| 亚洲欧美日韩东京热| 国产一区二区三区在线臀色熟女| 99国产精品99久久久久| 久久久久久国产a免费观看| 国产又黄又爽又无遮挡在线| 国产免费av片在线观看野外av| 99久久综合精品五月天人人| 丁香欧美五月| 性欧美人与动物交配| 成人国产一区最新在线观看| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡| 一级作爱视频免费观看| 一区二区三区高清视频在线| 麻豆国产av国片精品| 亚洲电影在线观看av| 岛国在线免费视频观看| 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 亚洲乱码一区二区免费版| 美女免费视频网站| 国产精品久久久久久人妻精品电影| xxx96com| 日本免费一区二区三区高清不卡| 日本免费a在线| 制服人妻中文乱码| 国产精品一及| 国产精品 欧美亚洲| 一a级毛片在线观看| 久久久国产成人精品二区| 2021天堂中文幕一二区在线观| aaaaa片日本免费| 嫩草影视91久久| 麻豆国产av国片精品| 国产99白浆流出| 青草久久国产| 老熟妇仑乱视频hdxx| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 一本一本综合久久| 99久久久亚洲精品蜜臀av| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 国产精品av久久久久免费| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 亚洲九九香蕉| 午夜成年电影在线免费观看| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 男女视频在线观看网站免费 | 成年版毛片免费区| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 亚洲精华国产精华精| 久久久久久久久中文| 久久久国产精品麻豆| 怎么达到女性高潮| 久久精品国产清高在天天线| av片东京热男人的天堂| 三级国产精品欧美在线观看 | 中文字幕人妻丝袜一区二区| 久久这里只有精品19| 又黄又爽又免费观看的视频| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 日韩大尺度精品在线看网址| 国产在线观看jvid| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 91av网站免费观看| 无限看片的www在线观看| 国产精品亚洲美女久久久| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区精品| 国产男靠女视频免费网站| 少妇的丰满在线观看| 亚洲片人在线观看| 亚洲人成网站高清观看| or卡值多少钱| 欧美乱色亚洲激情| 色精品久久人妻99蜜桃| 国产精品国产高清国产av| 91av网站免费观看| 国产1区2区3区精品| 国产91精品成人一区二区三区| 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 可以在线观看毛片的网站| 久久这里只有精品中国| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 久久精品综合一区二区三区| 在线播放国产精品三级| 亚洲精品一区av在线观看| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 成人午夜高清在线视频| 亚洲一区二区三区不卡视频| 久久久精品欧美日韩精品| 国产成人av激情在线播放| av欧美777| a级毛片在线看网站| 精品久久久久久成人av| 老司机靠b影院| 亚洲熟妇中文字幕五十中出| x7x7x7水蜜桃| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| www日本在线高清视频| a级毛片a级免费在线| 日韩大尺度精品在线看网址| 日本 av在线| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀| 老司机午夜福利在线观看视频| 97碰自拍视频| 麻豆成人午夜福利视频| 亚洲精品在线美女| 国模一区二区三区四区视频 | 精品久久久久久,| 高清在线国产一区| videosex国产| 国语自产精品视频在线第100页| 成人手机av| 神马国产精品三级电影在线观看 | АⅤ资源中文在线天堂| 亚洲专区字幕在线| a在线观看视频网站| 国产爱豆传媒在线观看 | 亚洲18禁久久av| 久久久久免费精品人妻一区二区| 国产精品久久视频播放| 此物有八面人人有两片| 欧美另类亚洲清纯唯美| 19禁男女啪啪无遮挡网站| 搡老熟女国产l中国老女人| 久久人妻福利社区极品人妻图片| 91九色精品人成在线观看| 国产一区二区在线av高清观看| 久久热在线av| av欧美777| 亚洲一区高清亚洲精品| 91字幕亚洲| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 欧美精品啪啪一区二区三区| 亚洲中文av在线| 精品一区二区三区av网在线观看| 黄色女人牲交| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 成人亚洲精品av一区二区| 久久亚洲精品不卡| 亚洲avbb在线观看| 美女午夜性视频免费| av福利片在线| 一级黄色大片毛片| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 午夜福利免费观看在线| 韩国av一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 亚洲av中文字字幕乱码综合| a级毛片a级免费在线| 搡老熟女国产l中国老女人| cao死你这个sao货| 精品不卡国产一区二区三区| 久久久久九九精品影院| 身体一侧抽搐| 嫁个100分男人电影在线观看| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 香蕉久久夜色| 亚洲av日韩精品久久久久久密| 免费在线观看日本一区| 亚洲激情在线av| 亚洲国产精品久久男人天堂| 亚洲激情在线av| 日韩欧美国产在线观看| 久久婷婷人人爽人人干人人爱| 级片在线观看| 国产亚洲精品第一综合不卡| 九色国产91popny在线| 少妇裸体淫交视频免费看高清 | 国产午夜精品久久久久久| 午夜激情av网站| 美女 人体艺术 gogo| 久久精品国产清高在天天线| 欧美乱色亚洲激情| 最近在线观看免费完整版| 色噜噜av男人的天堂激情| 亚洲av中文字字幕乱码综合| 欧美成人一区二区免费高清观看 | 久久中文字幕一级| 欧美日韩黄片免| 特大巨黑吊av在线直播| 国产三级黄色录像| 一级黄色大片毛片| 首页视频小说图片口味搜索| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 香蕉丝袜av| 成人国产综合亚洲| 夜夜爽天天搞| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 成人手机av| 麻豆久久精品国产亚洲av| 欧美人与性动交α欧美精品济南到| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡欧美一区二区| 首页视频小说图片口味搜索| avwww免费| 国产在线精品亚洲第一网站| 亚洲无线在线观看| 亚洲中文字幕日韩| 少妇的丰满在线观看| 亚洲激情在线av| 国产激情欧美一区二区| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 日本一二三区视频观看| 久久久久久免费高清国产稀缺| 后天国语完整版免费观看| 亚洲成人久久性| 久久这里只有精品19| 美女大奶头视频| www.精华液| 亚洲男人天堂网一区| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| 亚洲国产精品sss在线观看| 亚洲av中文字字幕乱码综合| 男人的好看免费观看在线视频 |