• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis

    2024-04-05 02:28:56ZhngjieGuZhenShnYulnWngJinjinWngTongtongLiuXiomingLiZhiyngYuJinSuGenZhng
    Chinese Chemical Letters 2024年2期

    Zhngjie Gu ,Zhen Shn ,Yuln Wng ,Jinjin Wng ,Tongtong Liu ,Xioming Li ,Zhiyng Yu,Jin Su,*,Gen Zhng,d,*

    a Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b State Key Laboratory of Photocatalysis on Energy and Environment,College of Chemistry,Fuzhou University,Fuzhou 350002,China

    c MIIT Key Laboratory of Advanced Display Material and Devices,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    d Key Laboratory of Preclinical Study for New Drugs of Gansu Province,School of Basic Medical Sciences,Lanzhou University,Lanzhou 730000,China

    Keywords: Covalent organic frameworks Exciton binding energy Atom substitution Extended conjugation Photocatalysis

    ABSTRACT Owing to the large exciton binding energy (>100 meV) of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic system.In this study,a series of chalcogen (S,Se)-substituted mesoporous covalent organic frameworks (COFs) have been synthesized for enhanced photocatalytic organic transformations.Photoelectrochemical measurements indicate that the introduction of semi-metallic Se atom and the enlargement of conjugation degree can not only reduce the exciton binding energy accelerating the charge separation,but also reduce the band gap of COFs.As a result,the COF-NUST-36 with the lowest exciton binding energy(39.5 meV) shows the highest photocatalytic performance for selective oxidation of amines (up to 98%Conv.and 97.5% Sel.).This work provides a feasible method for designing COFs with high photocatalytic activity by adjusting exciton binding energy.

    Solar energy is the main source of many energies on the earth,featuring the advantage of clean and renewable.Converting solar energy into chemical energy in the form of higher-value chemicals has aroused intensive interest [1-4].The key to successful implementation of this process lies in the use of light and rationally design of photocatalysts [5-7].During the past decades,various advanced photocatalysts,such as TiO2,BiVO4,g-C3N4and COFs [8,9] have been designed and prepared.Among them,the limited structural designability and narrow visible light absorption range of TiO2,BiVO4and g-C3N4impede their further applications.COFs are a completely designed crystalline material with low density,excellent stability,functional diversity,and tunable electric structures [10-14].With these features,COFs have emerged as a promising platform for potential applications in photocatalytic hydrogen evolution [15-17],carbon dioxide reduction [18,19],degradation of pollutants [20,21] and organic transformations [22-26].Unfortunately,owing to the partial crystallinity,inefficient charge separation and limited electron transport capability,the photocatalytic performance of COFs is undesirable.In particular,the charge separation is a crucial factor in photocatalytic process.However,the generation and separation efficiency of charge carriers is directly related to exciton binding energy (Eb) in strong exciton system [27].The Coulomb interactions that stabilize the exciton with regard to electrons and holes referred to as theEb[28] and the evaluation ofEbis based on an investigation of the quenching of the integrated photoluminescence (PL) intensity with the temperature [29].In fact,most of the COFs belong to strong exciton system,and they possess a highEb(typicallyEb>100 meV) [30].It means that the COFs will firstly generate electron-hole pairs bound by Coulomb interactions,namely the Frenkel exciton [28,31],in the process of photocatalysis.The strong Coulomb interactions of the Frenkel exciton will lead to exciton annihilation,seriously hampering the generation of electrons and holes [32-34].Hence,minimizing theEbof the COFs to obtain high photocatalytic activity is very attractive but remains a challenge.

    To date,many efforts have been dedicated to minimizing the value ofEbin organic photocatalysts [35,36].Wang and co-authors had realized the reduction ofEb(88 meV) by regulating chargetransfer pathway in linear conjugated polymers [37].Yin and coauthors had proposed an effective approach to reduce theEb(338 meV) of carbon nitrides (PCN)viaa method of regulating spin-polarized electrons for photocatalysis hydrogen production[38].Although these photocatalysts can effectively reduce the value ofEbin amorphous polymers,it is difficult to understand the relationship between tailor-made structure and exciton behaviors.Recently,inspired by the lowEbof solar cells with donor (D)-acceptor(A) structure,Gu and colleagues had built four D-A COFs to minimize theEb(50.4 ± 1.8 meV) [27].Unfortunately,the unique structure will lead to rapid reverse charge recombination concurrently[39].Therefore,it is imperative to propose a new strategy to design photocatalysts with long-range ordering and lowEb.

    As a proof-of-concept,we propose a strategy of single atom substitution and increasing conjugation degree to reduceEbof COFs for the first time.As well known,thiophene and selenophene-based materials have excellent photoelectric properties,which are widely used in organic field-effect transistors[40] and solar cells [41,42].Compared with thiophene,selenophene has stronger ability of electron supplication.In addition,intermolecular Se···Se interaction is conducive to charge transfer.Herein,three chalcogen (S,Se)-contained mesoporous COFs (COFNUST) were synthesized starting from a planar conjugated pyrene moity [43].Photoelectrochemical measurements reveal that theEbvalues and band gaps of COF-NUST were gradually decreased with the substitution of S atoms by Se atoms and the conjugation degree increased.Impressively,the COF-NUST-36 shows a quite lowEb(39.5 meV) among reported pristine COFs [27,44,45],which is even close to some inorganic semiconductors,such as MoS2[46],GaN [47] and metal-halide perovskites [29,48].Consequently,the rare example of selenophene-based COF [49],COF-NUST-36 shows effective exciton splitting and the highest photocatalytic activity in the selective oxidation of amines.

    The COF-NUST were synthesized by linking TAPP to different building blocks,BTDC,BSDC and EBSDC in the solvothermal condition (Fig.1).In detail,COF-NUST-34 and COF-NUST-35 were synthesized by the Schiff-base reaction of TAPP and BTDC or BSDC in the presence of 6 mol/L acetic acid usingo-dichlorobenzene (o-DCB) andn-butyl alcohol (n-BuOH) as solvent at 120 °C for 72 h.COF-NUST-36 was synthesized similar to COF-NUST-34 except that EBSDC,mesitylene and benzyl alcohol were used.

    Fig.1.(a) Synthetic routes of COF-NUST-34,COF-NUST-35 and COF-NUST-36.Top and side views of (b,e) COF-NUST-34,(c,f) COF-NUST-35 and (d,g) COF-NUST-36.

    The formation of COF-NUST were evidenced by various analytical methods.Fourier transform infrared (FT-IR) spectra (Figs.S6-S8 in Supporting information) revealed the -C=N-stretching vibrations of COF-NUST-34,COF-NUST-35 and COF-NUST-36 were located at 1610,1646 and 1648 cm-1,respectively,while the amino stretching vibration peak (~3335 cm-1) and the carbonyl stretching vibration peak (~1688 cm-1) from the building blocks were almost disappeared,indicating the conversion of aldehyde and amino groups.The solid-state13C NMR spectra (Figs.S9-S11 in Supporting information) also confirmed the formation of -C=Nbond,which at 152,158,159 ppm corresponding to COF-NUST-34,COF-NUST-35 and COF-NUST-36,respectively.The element compositions of COF-NUST were confirmed by X-ray photoelectron spectroscopy (XPS).From the total spectra,we can clearly observe the characteristic peaks of C 1s,N 1s and S 2p for COF-NUST-34 (Fig.S12 in Supporting information).For COF-NUST-35 and 36 (Figs.S13 and S14 in Supporting Information),the characteristic peaks of C 1s,N 1s and Se 3d were observed.The N 1s spectra of all COF showed typical peaks,located at 398.8,399.4 and 399.2 eV,which is ascribed to -C=N-bond in COF-NUST-34,COF-NUST-35 and COF-NUST-36,respectively.All these results manifest the successful synthesis of COF-NUST.

    The precise periodical structures of COF-NUST-34,COF-NUST-35,and COF-NUST-36 were verified by powder X-ray diffraction(PXRD) together with structural simulations.The intensive peaks were observed in Figs.2a-c,indicating the high crystallinity of COF-NUST.The PXRD pattern of COF-NUST-34 exhibited distinguishable peaks at 2θ=3.29°,4.84°,6.59°,9.89°,13.49°,which are assigned to the (110),(200),(220),(330) and (060) planes.COF-NUST-35 exhibited similar distinguishable peaks at 2θ=3.27°,4.40°,4.84°,6.54°,9.82°,corresponding to the (110),(200),(020),(220) and (330) planes.The diffraction peaks of COF-NUST-36 at 2θ=3.12°,4.62°,6.26°,9.39° were assigned to the (110),(200),(220) and (330) planes.According to the similar structure reported in the previous literature,the AA and AB stacking crystal models were generated,the experimental diffraction patterns of COFNUST matched well with AA stacking (Fig.S15 in Supporting information).Pawley refinement was conducted to obtain the unit cell parameters (a=41.96 ?A,b=39.32 ?A,c=3.29 ?A,α=90°,β=60.77°,γ=90°,Rwp=7.66%,Rp=5.94% for COF-NUST-34;a=44.80 ?A,b=36.46 ?A,c=3.16 ?A,α=90°,β=63.46°,γ=90°,Rwp=7.33%,Rp=5.37% for COF-NUST-35;a=44.00 ?A,b=41.90 ?A,c=3.53 ?A,α=90°,β=60.12°,γ=90°,Rwp=6.13%,Rp=4.53% for COF-NUST-36).

    The porosity of COF-NUST-34,COF-NUST-35 and COF-NUST-36 was assessed by N2sorption isotherm at 77 K (Figs.2d-f).The type IV pattern of COF-NUST indicated that COF-NUST are mesoporous material.The Brunauer-Emmett-Teller surface areas were 1098.7,1163.1 and 677.7 m2/g for COF-NUST-34,COF-NUST-35 and COFNUST-36,respectively.Although the skeleton structures of COFNUST were similar,the crystallinity and framework integrity of COF-NUST-36 obtained by EBSDC were inferior to those of COFNUST-34 and COF-NUST-35,resulting in a lower specific surface area.Based on the adsorption curve and the nonlocal density functional theory model (NLDFT),the pore-size distribution was calculated to be 2.56,2.56 and 2.45 nm for COF-NUST-34,COF-NUST-35 and COF-NUST-36,which was identical to the simulated values.Thermogravimetric analysis (TGA) (Fig.S16 in Supporting information) indicated that the three COFs possessed excellent thermal stability and were thermally stable up to 400 °C under N2atmosphere.The good chemical stability of COF-NUST-36 was evidenced by the retained PXRD patterns (Fig.S17 in Supporting information) after immersed in tetrahydrofuran,N,N-dimethylformamide,1 mol/L HCl,1 mol/L NaOH,and visible light irradiation at 25 °C for 24 h.Scanning electron microscopy (SEM) (Figs.S18-S20 in Supporting information) showed that the morphology of COF-NUST-34,COF-NUST-35,and COF-NUST-36 are both lamellar.High-resolution transmission electron microscopy (HRTEM) (Figs.2g and h) evidenced the excellent crystallinity and indicated the spacing of the lattice fringe (~1.80 nm,~2.00 nm) corresponded to the lattice planes of (200) for COF-NUST-34,COF-NUST-35,respectively.The spacing of the lattice fringe (~1.37 nm) (Fig.2i) corresponded to the lattice planes of (220) for COF-NUST-36.

    Fig.2.PXRD patterns of (a) COF-NUST-34,(b) COF-NUST-35 and (c) COF-NUST-36.The N2 adsorption-desorption isotherms at 77 K and pore size distribution of (d) COFNUST-34,(e) COF-NUST-35 and (f) COF-NUST-36.High-resolution transmission electron microscopy (HRTEM) of (g) COF-NUST-34,(h) COF-NUST-35 and (i) COF-NUST-36.The Pawley refined pattern in black,experimental profiles are in yellow,simulated pattern for AA stacking in blue,Bragg position in green and difference plot in gray.

    UV-vis diffuse reflectance spectroscopy (Fig.3a) shows the broad absorption of COF-NUST in the visible region,which originating from theπ-conjugated structure of COFs and the building blocks of excellent light absorption capacity (Fig.S21 in Supporting information).Notably,the trend of light absorption in the linkers (absorption region: EBSDC>BSDC>BTDC) is similar in COFs(absorption region: COF-NUST-36>COF-NUST-35>COF-NUST-34).By using the Kubelka-Munk function (αhv)2=A(hv-Eg),whereαis the absorption coefficient,his the Planck constant,vis the frequency andAis the constant,the optical band gaps (Eg) of COF-NUST-34,35 and 36 were determined to be 1.98,1.90 and 1.80 eV,respectively (Fig.3b).Obviously,theEgof COF-NUST-36 is the narrowest,which is mainly due to the extended conjugation and the semimetal Se atoms with a lower ionization potential [50].Mott-Schottky (M-S) (Fig.S22 in Supporting information)plot was used to estimate the conduction band value (ECB).The positive slops of MS plots indicated that the COF-NUST are n-type semiconductors.Typically,theECBis equal to flat band potentials for n-type semiconductors.Accordingly,theECBof COF-NUST-34,COF-NUST-35 and COF-NUST-36 are estimated to be -1.02,-1.08 and -1.11 V (vs.Ag/AgCl),respectively (Fig.3c).According to the formulaECB=EVB-Eg,the valence band values (EVB) of COF-NUST-34,COF-NUST-35,and COF-NUST-36 are 0.96,0.82 and 0.69 V (vs.Ag/AgCl),respectively.Theoretically the lowest occupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO)levels of COF-NUST have sufficient potentials to reduce O2to superoxide anion O2·-(Ered=-0.48 Vvs.Ag/AgCl) [51] and oxidize benzylamine into a cation free radical (Eoxi=+0.56 Vvs.Ag/AgCl)[52,53].Hence,all COF-NUST can be latent photocatalyst for oxidative coupling of amines.

    Fig.3.(a) UV-vis diffuse reflectance spectra of COF-NUST.(b) Tauc plot for estimating the band gap energies of COF-NUST.(c) Band alignment.(d-f) HOMO of COF-NUST-34,COF-NUST-35 and COF-NUST-36.(g-i) Integrated PL emission intensity as a function of temperature of COF-NUST-34,COF-NUST-35 and COF-NUST-36.

    The molecular orbital diagrams of COF-NUST were obtained by density functional theory (DFT) calculation.The charge distributions of HOMO (Fig.3d) and LUMO (Fig.S23 in Supporting information) in COF-NUST-34 are simultaneously located at BTDC and TAPP.The high levels overlap of HOMO and LUMO will lead to rapid recombination of charge carriers in COF-NUST-34.The charge distribution of HOMO in COF-NUST-35 (Fig.3e) is only located at BSDC,while the charge of LUMO (Fig.S24 in Supporting information) is mainly distributed TAPP and BSDC.For COF-NUST-36,the charge distribution of HOMO (Fig.3f) is only located at EBSDC,while the charge of LUMO (Fig.S25 in Supporting Information)is mainly distributed TAPP and EBSDC.Although partial overlap of HOMO and LUMO,electron-hole pairs can be separated effectively in COF-NUST-35 and 36.These results imply that COF-NUST-35 and 36 may have better photocatalytic performance.

    To unveil the charge recombination and separation kinetics of COF-NUST,the temperature-dependent photoluminescence (TDPL) (Figs.S26-S28 in Supporting information) spectra were measured.The value ofEbwas estimated by fitting the integrated PL intensity with the temperature according to Arrhenius equation,I(T)=I0/(1+Aexp(-Eb/kBT)) [54].Accordingly,theEbvalues for COF-NUST-34,COF-NUST-35 and COF-NUST-36 were estimated to be 89.9 meV,55.1 meV and 39.5 meV (Figs.3g-i),respectively.Notably,theEbof COF-NUST-36 is significantly lower than COF-NUST-34 and COF-NUST-35,which means that excitons can be more easily dissociated into free carriers.It is worth noting that such lowEb(39.5 meV) is rare observed in COFs [27,44,45] or even inorganic materials such as MoS2,GaN and metal-halide perovskites (Table S4 in Supporting information) [29,46-48].Meanwhile,these results indicate that theEbcan be reduced by single atom substitution and enlarging conjugation degree.

    Since charge migration is directly related toEb[55,56],we also systematically studied the charge mobility.As shown in roomtemperature PL (Fig.4a),COF-NUST-36 showed obvious PL quenching compared with COF-NUST-34 and COF-NUST-35,it indicated that the recombination of photogenerated carrier was suppressed.Time-resolved photoluminescence (TRPL) (Figs.S29-S32 in Supporting information) revealed the fluorescence lifetime of COFNUST-36 (0.57 ns) is the shortest among the three materials(0.80 ns for COF-NUST-34,0.75 ns for COF-NUST-35),suggesting that electron transport was accelerated in COF-NUST-36.

    Fig.4.(a) Room-temperature PL spectra of COF-NUST.(b) EIS spectra of COF-NUST.(c) Linear sweep voltammetry curves of COF-NUST under light irradiation.(d) Effect of scavengers on the photocatalytic oxidation of benzylamine.(e) In situ EPR signals labeled by DMPO for O2·- in dispersions.(f) In situ EPR signals labeled by TEMPO for 1O2 in dispersions.

    To further confirm the modulation of charge mobility in COFNUST,we conducted a series of photoelectrochemical measurements.The transient photocurrent spectra indicated the photocurrent density (Fig.S33 in Supporting information) increases gradually from COF-NUST-34 to COF-NUST-36,implying that the Se atom and extended conjugation are conductive to the separation of charges.Electrochemical impedance spectroscopy (EIS) (Fig.4b)also proves this result,the semicircular radius of COF-NUST-34 is the largest among three COFs,suggesting that the slowest charge transport [57].Moreover,Linear sweep voltammetry (LSV) curves showed that the COF-NUST-36 has the highest cathodic photocurrent,whether under visible light illumination (Fig.4c) or in the dark (Fig.S34 in Supporting information).Thus,we conclude that the lower ofEbcan improve charge separation and mobility.

    Imines,also known as Schiff bases,are widely used in various organic reactions,pharmaceutical intermediates,and fine chemicals.The traditional synthesis of imines often require acid as catalyst,which inevitably leads to waste of resources and environmental pollution.Photocatalytic selective oxidation provides a convenient and environmentally friendly method for the preparation of imines [58,59].Accordingly,we used the oxidative coupling of amines to imines under blue light irradiation to evaluate the photocatalytic activity of these COFs.As shown in Table 1,entries 1-3,COF-NUST-36 clearly exhibited the highest conversion (97%) compared with COF-NUST-34 (40%) and COF-NUST-35 (82%) under optimal conditions.It can be accessible to the lowestEbof COF-NUST-36,the excitons can effectively dissociate into charge carriers.Notably,with a prolonged reaction time (Table 1,entries 4 and 5),the conversion increased,while the selectivity decreased.So,the reaction time must be strictly controlled.We also conducted control experiments (Table 1,entries 6-8) to study the effects of catalyst,visible light irradiation and oxygen atmosphere on photocatalytic efficiency.With the absence of catalyst,the reaction will not take place.Without visible light irradiation or under N2atmosphere,only trace product was obtained.Furthermore,air was used instead of oxygen (Table 1,entry 9),the reaction proceeded smoothly with a conversion of 84% realized in 2.5 h,which shows that COF-NUST-36 has high photocatalytic activity.

    Table 1Photocatalytic selective aerobic oxidation of benzylamine under blue lighta.

    To explore the general applicability of the COF-NUST-36 photocatalysis for selective aerobic oxidation,benzylamine derivatives bearing different substituents were selected as substrates.All substrates can be transformed into the corresponding imines within 5 h (Scheme 1).In detail,the reaction of benzylamines bearing with electron-donating groups to afford marginally higher conversion and lower reaction time than benzylamines bearing with electron-withdrawing groups.For example,the2d(-OCH3) can obtain a conversion of 97% in 2 h,however,the conversion of2kis 94% in 4.5 h (-CF3),which is the electron-donating groups can better stabilize the cationic radical intermediate.Besides,the steric hindrance also has an obvious influence on the conversion.Such as piperonylamine (Scheme 1,2l) or substituents in the adjacent position (Scheme 1,2i) could slow down the reaction processed compared to benzylamine (Scheme 1,2b).As a result,transforming into the corresponding imines with slightly prolonged time.Interestingly,The COF-NUST-36 also shows a high conversion (96%)for the oxidative coupling of heterocyclic amine (Scheme 1,2a).At last,COF-NUST-36 shows high efficiency and general applicability in oxidation of benzylamine derivatives with difference size.This can be ascribed to the meso-pores in COF-NUST-36.

    Scheme 1.Photocatalytic selective oxidative of diverse amines .Reaction conditions: substate (0.1 mmol),photocatalyst (4.0 mg),O2 (1 atm),CH3CN (1.5 mL),30 W blue light (λ=455-460 nm),room temperature.Determined by 1H NMR.For details,see the Experimental section in Supporting information.

    The good durability of the COF-NUST-36 photocatalyst was confirmed by cycling experiment (Fig.S35 in Supporting Information).The photocatalytic efficiency of COF-NUST-36 can be well remained after being reused for three cycles.The crystallinity of COF-NUST-36 was essentially retained from the PXRD patterns and FTIR spectra after 3 runs,the lamellar morphology was also kept in SEM image.

    To investigate the possible mechanism for the oxidative coupling of amines,we chose different scavengers to trap reactive oxygen species (ROS) (Fig.4d).With the introduction of electron scavenger AgNO3and hole scavenger KI,the conversion dramatically decreased to 16% and 41%,which indicated that the oxidative coupling of amines is associated with photogenerated electrons and holes.The superoxide radical anions (O2·-) scavenger benzoquinone (BQ) and singlet oxygen (1O2) scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was added to photocatalysis system,a decrease in conversion was observed,illustrating that active species O2·-and1O2both play important roles in the reaction.Moreover,when the radical scavenger hydroquinone (HQ)was added,the conversion dropped to 70%,proved that the oxidation coupling involved a radical process.The addition oft-BuOH led to a slight decrease in conversion (95%),which implied that the hydroxyl radical (·OH) play a minor role in photocatalytic process.

    Electron paramagnetic resonance (EPR) spectroscopy was conducted to confirm the presence of O2·-and1O2.In general,5,5-dimethyl-pyridine-N-oxide (DMPO) and TEMPO as sensitive trapping agent to selectively capture O2·-and1O2.As shown in Figs.4e and f,the EPR intensity of O2·-and1O2in COF-NUST-36 were detected under light irradiation.When the illumination time is prolonged,the EPR intensities of O2·-and1O2become stronger,which may be attributed to the accumulation of O2·-and1O2.However,no EPR signal is observed in the dark.Hence,O2·-and1O2can be generated under light irradiation over COF-NUST-36.

    Given the above experimental results and literature reports,a tentative reaction mechanism for the photocatalytic oxidation of benzylamine (BAN) over COF-NUST-36 was proposed (Fig.5).This photocatalytic process is involved in both electron and energy transfer path.The ground state COF-NUST-36 is photoexcited to the excited state COF-NUST-36*(electron-hole pairs) under blue light irradiation,the electron can reduce O2to generate O2·-in electron transfer path.At the same time,the BAN is oxidized to amine radical cation by COF-NUST-36+.O2·-immediate react with amine radical cation to generate hydroperoxy(phenyl)methanamine.The hydroperoxy(phenyl)methanamine is extremely unstable,which can convert into PhCH=NH with the removal of H2O2.The intermediate PhCH=NH and H2O2also can be obtained by extracting hydrogen atoms from the substrate directly through1O2in an energy transfer path.The H2O2can be dissociated into·OH under blue light irradiation,which is in favor for substrate to generate PhCH=NH.In the end,the PhCH=NH combine with BAN to obtain final productN-benzyl-1-phenylmethanimine.Furthermore,PhCH=NH is hydrolyzed to give benzaldehyde,which subsequently condensed with substrate to give the final product.

    Fig.5.Plausible mechanism for the photocatalytic selective oxidative coupling of benzylamine.

    In summary,we proposed for the first time that theEbof COF materials can be optimized by single atom substitution and extending conjugation strategy.A combination of temperaturedependent photoluminescence and electrochemical measurements reveals that the mesoporous COF-NUST-36 with less electronegativity of Se atoms and enhanced conjugation degree possesses the lowestEb.The reducedEbis helpful for the improvement of light capture and release of free charge carriers.Consequently,mesoporous COF-NUST-36 exhibited excellent photocatalytic performance for selective oxidation of amines under blue light.We believe that this work is not only benefit to understanding the relationship between exciton and photocatalytic activity at the atomic level,but also provides a new tactics for the design of advanced porous organic photocatalysts.

    Declaration of competing interest

    The authors have no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.22171136),the Natural Science Foundation of Jiangsu Province (Nos.BK20220928,BK20220079),the Fundamental Research Funds for the Central Universities (Nos.30921011102,30922010902),the Medical Innovation and Development Project of Lanzhou University (No.lzuyxcx-2022-156),CAMS Innovation Fund for Medical Sciences (CIFMS,Nos.2019-I2M-5-074,2021-I2M-1-026,2021-I2M-3-001),and the Startup Funding from Nanjing University of Science and Technology (Nos.AE89990,AE89991/376).G.Zhang acknowledges the support of the Thousand Young Talent Plan.

    午夜免费男女啪啪视频观看| 少妇 在线观看| 中文精品一卡2卡3卡4更新| 777米奇影视久久| 狂野欧美激情性xxxx在线观看| 亚洲天堂av无毛| 草草在线视频免费看| 在线观看三级黄色| 激情 狠狠 欧美| 天美传媒精品一区二区| 国产高清有码在线观看视频| 欧美激情在线99| 大香蕉97超碰在线| 一级av片app| 人人妻人人看人人澡| 我的老师免费观看完整版| 亚洲综合色惰| 亚洲婷婷狠狠爱综合网| 亚洲精品一区蜜桃| 99久久九九国产精品国产免费| 我的老师免费观看完整版| 2021天堂中文幕一二区在线观| 99热国产这里只有精品6| 精品久久久久久电影网| 亚洲精品乱久久久久久| 国产高清有码在线观看视频| 国产男人的电影天堂91| 国产成人福利小说| 久久韩国三级中文字幕| 亚洲国产成人一精品久久久| 伦理电影大哥的女人| 91aial.com中文字幕在线观看| 男女国产视频网站| 国产乱来视频区| 日韩欧美一区视频在线观看 | 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 久久国产乱子免费精品| 一级二级三级毛片免费看| 乱系列少妇在线播放| 成人美女网站在线观看视频| 国产永久视频网站| xxx大片免费视频| 最近中文字幕高清免费大全6| 2021少妇久久久久久久久久久| 男人狂女人下面高潮的视频| 国产欧美日韩精品一区二区| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 亚洲天堂av无毛| 男女边吃奶边做爰视频| 精品久久久久久久末码| 精品国产露脸久久av麻豆| 国产极品天堂在线| 国产精品一及| a级毛片免费高清观看在线播放| 最近中文字幕高清免费大全6| 热99国产精品久久久久久7| a级毛色黄片| 国产色爽女视频免费观看| 伦精品一区二区三区| 不卡视频在线观看欧美| 免费观看av网站的网址| 免费观看在线日韩| 午夜福利在线在线| 日本wwww免费看| a级毛片免费高清观看在线播放| 亚洲国产精品成人综合色| 黄色视频在线播放观看不卡| 国产一级毛片在线| 国产免费又黄又爽又色| 成人高潮视频无遮挡免费网站| 亚洲国产高清在线一区二区三| av在线观看视频网站免费| 国产精品久久久久久精品电影| 99九九线精品视频在线观看视频| 精品久久久精品久久久| 久久99热6这里只有精品| videos熟女内射| 精品久久久噜噜| 五月开心婷婷网| 日韩精品有码人妻一区| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 99精国产麻豆久久婷婷| 国产精品久久久久久精品电影| 性色avwww在线观看| 国产 一区 欧美 日韩| 肉色欧美久久久久久久蜜桃 | 秋霞伦理黄片| 精品人妻视频免费看| 亚洲精品久久午夜乱码| 成年av动漫网址| 夫妻性生交免费视频一级片| 亚洲av男天堂| 亚洲人与动物交配视频| 国产精品国产av在线观看| 亚洲真实伦在线观看| 久久综合国产亚洲精品| 伊人久久国产一区二区| 1000部很黄的大片| 综合色av麻豆| 99热这里只有精品一区| 天堂中文最新版在线下载 | 九九爱精品视频在线观看| 久久女婷五月综合色啪小说 | 久热久热在线精品观看| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频 | 亚洲成人精品中文字幕电影| 18禁在线无遮挡免费观看视频| 中文在线观看免费www的网站| 日本黄大片高清| 久久精品综合一区二区三区| 狂野欧美激情性bbbbbb| av在线老鸭窝| 午夜福利视频精品| av在线app专区| av.在线天堂| 又粗又硬又长又爽又黄的视频| 久久国内精品自在自线图片| 免费看不卡的av| av播播在线观看一区| 啦啦啦中文免费视频观看日本| 蜜桃久久精品国产亚洲av| 美女脱内裤让男人舔精品视频| 色吧在线观看| 一区二区三区四区激情视频| 久久精品久久久久久噜噜老黄| 国产永久视频网站| 深夜a级毛片| 黑人高潮一二区| 亚洲婷婷狠狠爱综合网| 久久久色成人| 国产精品蜜桃在线观看| 亚洲在线观看片| 精品视频人人做人人爽| 精品视频人人做人人爽| 夜夜爽夜夜爽视频| 久久久欧美国产精品| 日韩中字成人| 3wmmmm亚洲av在线观看| 国产一区二区在线观看日韩| 色吧在线观看| 少妇裸体淫交视频免费看高清| 亚洲av一区综合| 激情 狠狠 欧美| 日韩三级伦理在线观看| 午夜亚洲福利在线播放| 亚洲精品影视一区二区三区av| 午夜激情福利司机影院| 又爽又黄a免费视频| 欧美+日韩+精品| 欧美精品人与动牲交sv欧美| 91午夜精品亚洲一区二区三区| 久久久久久伊人网av| 久久久久久久精品精品| 亚洲精品日本国产第一区| 欧美极品一区二区三区四区| 18+在线观看网站| 纵有疾风起免费观看全集完整版| 99久久中文字幕三级久久日本| 精品少妇久久久久久888优播| 国产 精品1| 国产高清三级在线| 国产黄片美女视频| 日本午夜av视频| 青春草亚洲视频在线观看| 麻豆成人午夜福利视频| 中文字幕人妻熟人妻熟丝袜美| 黄色一级大片看看| 亚洲av成人精品一二三区| 男人和女人高潮做爰伦理| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 午夜精品国产一区二区电影 | 亚洲精品色激情综合| 秋霞在线观看毛片| 三级经典国产精品| 欧美性感艳星| 亚洲三级黄色毛片| 日韩不卡一区二区三区视频在线| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 欧美少妇被猛烈插入视频| 国产精品久久久久久久久免| 免费观看av网站的网址| 嫩草影院精品99| 亚洲久久久久久中文字幕| 国产免费一级a男人的天堂| 久久人人爽av亚洲精品天堂 | 九九在线视频观看精品| 综合色丁香网| 午夜视频国产福利| 黑人高潮一二区| 又爽又黄无遮挡网站| 久久久久久久久久成人| 欧美亚洲 丝袜 人妻 在线| 听说在线观看完整版免费高清| 建设人人有责人人尽责人人享有的 | 一区二区三区精品91| 综合色av麻豆| 水蜜桃什么品种好| 免费看不卡的av| 亚洲欧美日韩无卡精品| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 久久久久久久亚洲中文字幕| 天堂中文最新版在线下载 | 好男人在线观看高清免费视频| 久久久a久久爽久久v久久| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 别揉我奶头 嗯啊视频| 成人亚洲精品一区在线观看 | 22中文网久久字幕| 欧美另类一区| 最近最新中文字幕大全电影3| 久久99精品国语久久久| 国产老妇伦熟女老妇高清| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 国产亚洲av片在线观看秒播厂| 国产极品天堂在线| 一本久久精品| 国产精品.久久久| 亚洲内射少妇av| 狠狠精品人妻久久久久久综合| 国产高潮美女av| 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| 少妇被粗大猛烈的视频| 美女高潮的动态| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 久久精品熟女亚洲av麻豆精品| 国内揄拍国产精品人妻在线| 成人二区视频| 只有这里有精品99| 亚洲四区av| 一个人看视频在线观看www免费| 中文精品一卡2卡3卡4更新| 欧美极品一区二区三区四区| 亚洲真实伦在线观看| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 日本av手机在线免费观看| 欧美97在线视频| 26uuu在线亚洲综合色| 乱系列少妇在线播放| 老司机影院毛片| 18禁在线播放成人免费| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 欧美xxⅹ黑人| 一区二区三区免费毛片| 伦理电影大哥的女人| 国产精品三级大全| 涩涩av久久男人的天堂| 草草在线视频免费看| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 熟女人妻精品中文字幕| 免费观看av网站的网址| 最后的刺客免费高清国语| av在线亚洲专区| 啦啦啦在线观看免费高清www| 中文字幕免费在线视频6| 国产精品国产三级专区第一集| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| av在线天堂中文字幕| 男人添女人高潮全过程视频| 日韩大片免费观看网站| 久久精品国产亚洲av天美| av在线观看视频网站免费| 热99国产精品久久久久久7| 网址你懂的国产日韩在线| av专区在线播放| 久久久成人免费电影| 婷婷色av中文字幕| 日韩人妻高清精品专区| 麻豆成人午夜福利视频| 在线看a的网站| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 久久精品综合一区二区三区| 秋霞伦理黄片| 国产成人福利小说| 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 国产乱人视频| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 少妇猛男粗大的猛烈进出视频 | 天天躁日日操中文字幕| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 国产亚洲最大av| 国产免费又黄又爽又色| 日韩不卡一区二区三区视频在线| 成人亚洲精品av一区二区| 国产精品国产三级专区第一集| 亚洲国产精品成人久久小说| 在线看a的网站| 成人无遮挡网站| 天天一区二区日本电影三级| 视频中文字幕在线观看| 欧美人与善性xxx| 国产精品爽爽va在线观看网站| 免费少妇av软件| 高清日韩中文字幕在线| 涩涩av久久男人的天堂| 我的女老师完整版在线观看| 亚洲国产精品国产精品| 草草在线视频免费看| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站 | 97人妻精品一区二区三区麻豆| 国产乱来视频区| 日韩人妻高清精品专区| 少妇 在线观看| 久久久久久九九精品二区国产| 色婷婷久久久亚洲欧美| 日本黄大片高清| 亚洲精品国产av成人精品| av天堂中文字幕网| 久久午夜福利片| 网址你懂的国产日韩在线| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 精品国产露脸久久av麻豆| 国产高清国产精品国产三级 | 国产在视频线精品| 亚洲人成网站高清观看| 大话2 男鬼变身卡| 在线免费观看不下载黄p国产| 亚洲精品乱码久久久v下载方式| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 丝袜美腿在线中文| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 在线精品无人区一区二区三 | 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 一个人看的www免费观看视频| 午夜福利视频精品| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 亚洲色图av天堂| 一个人观看的视频www高清免费观看| 国产成人精品福利久久| 精品久久久久久久末码| 全区人妻精品视频| 一本一本综合久久| 国产高潮美女av| 简卡轻食公司| 2022亚洲国产成人精品| 成人鲁丝片一二三区免费| 国产精品无大码| 免费看日本二区| 亚洲精品成人久久久久久| 99热全是精品| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 视频区图区小说| 久久久久久久国产电影| 少妇人妻久久综合中文| 精品人妻一区二区三区麻豆| 亚洲国产欧美在线一区| 久久久精品免费免费高清| 日韩三级伦理在线观看| 秋霞伦理黄片| av在线天堂中文字幕| 伦精品一区二区三区| 在线观看美女被高潮喷水网站| 搞女人的毛片| 天天躁日日操中文字幕| 日本免费在线观看一区| 国产片特级美女逼逼视频| 欧美精品人与动牲交sv欧美| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 建设人人有责人人尽责人人享有的 | 老司机影院毛片| 一级毛片我不卡| 精品熟女少妇av免费看| 亚洲成人久久爱视频| 午夜日本视频在线| 国产69精品久久久久777片| 欧美亚洲 丝袜 人妻 在线| 美女高潮的动态| 亚洲成人中文字幕在线播放| 高清毛片免费看| 久久99热这里只有精品18| 伊人久久国产一区二区| 久久人人爽人人爽人人片va| 在线播放无遮挡| 色视频在线一区二区三区| 国产探花极品一区二区| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| av国产免费在线观看| 欧美成人午夜免费资源| 国产成年人精品一区二区| 成人综合一区亚洲| 在线观看国产h片| 内射极品少妇av片p| 国产免费视频播放在线视频| av.在线天堂| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 美女视频免费永久观看网站| 久久99热这里只有精品18| 男女那种视频在线观看| av一本久久久久| 欧美+日韩+精品| 在线观看免费高清a一片| 插逼视频在线观看| 国产精品99久久99久久久不卡 | 亚洲av在线观看美女高潮| 亚洲综合色惰| 中文字幕久久专区| 18禁在线播放成人免费| 人人妻人人澡人人爽人人夜夜| 亚洲va在线va天堂va国产| 国产精品一区二区性色av| 亚洲欧美日韩另类电影网站 | 免费不卡的大黄色大毛片视频在线观看| 一级爰片在线观看| 亚洲最大成人av| 日韩,欧美,国产一区二区三区| 久久午夜福利片| av在线蜜桃| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 亚洲国产精品国产精品| 亚洲内射少妇av| av在线亚洲专区| 一个人观看的视频www高清免费观看| 在线天堂最新版资源| 亚洲成色77777| 一二三四中文在线观看免费高清| 欧美三级亚洲精品| 亚洲人与动物交配视频| 美女主播在线视频| 中文在线观看免费www的网站| 亚洲内射少妇av| 色5月婷婷丁香| 欧美激情在线99| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站高清观看| 国产高清国产精品国产三级 | 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 久久久久久久午夜电影| 国产成人freesex在线| 亚洲国产最新在线播放| 男女边摸边吃奶| 简卡轻食公司| av国产免费在线观看| 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| 国产欧美亚洲国产| 在现免费观看毛片| 黄片无遮挡物在线观看| 中文字幕人妻熟人妻熟丝袜美| 精品久久国产蜜桃| 久久久久国产网址| 久久久久九九精品影院| 汤姆久久久久久久影院中文字幕| 丝瓜视频免费看黄片| 国产国拍精品亚洲av在线观看| 亚洲国产精品999| 午夜福利视频精品| 欧美精品一区二区大全| 晚上一个人看的免费电影| 成人国产av品久久久| 少妇人妻一区二区三区视频| 新久久久久国产一级毛片| 九色成人免费人妻av| 欧美人与善性xxx| 午夜老司机福利剧场| 91午夜精品亚洲一区二区三区| 中文字幕亚洲精品专区| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 午夜老司机福利剧场| 91午夜精品亚洲一区二区三区| 成人亚洲精品av一区二区| 在线观看三级黄色| 一个人看视频在线观看www免费| av在线播放精品| 女人久久www免费人成看片| 久久6这里有精品| 国产毛片a区久久久久| 卡戴珊不雅视频在线播放| .国产精品久久| 亚洲成人久久爱视频| eeuss影院久久| 日韩视频在线欧美| 久久精品久久精品一区二区三区| 国产精品久久久久久久电影| 国产亚洲一区二区精品| 亚洲一级一片aⅴ在线观看| 国产午夜精品一二区理论片| 六月丁香七月| 亚洲一区二区三区欧美精品 | 国产男女内射视频| 国产毛片a区久久久久| 男人爽女人下面视频在线观看| av免费观看日本| 国产免费又黄又爽又色| 69人妻影院| 亚洲第一区二区三区不卡| 久久久久性生活片| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 插阴视频在线观看视频| 国产精品福利在线免费观看| 国产精品麻豆人妻色哟哟久久| 一级二级三级毛片免费看| 国产熟女欧美一区二区| 欧美3d第一页| 各种免费的搞黄视频| 国产成人一区二区在线| 亚洲四区av| 亚洲精品日韩av片在线观看| 中文字幕久久专区| 一二三四中文在线观看免费高清| 在线观看av片永久免费下载| 亚洲久久久久久中文字幕| 夫妻午夜视频| 三级经典国产精品| 久久人人爽人人片av| 亚洲av.av天堂| 色5月婷婷丁香| 2021少妇久久久久久久久久久| 少妇人妻一区二区三区视频| 男人添女人高潮全过程视频| 亚洲最大成人av| 亚洲性久久影院| 国产高清有码在线观看视频| 女人久久www免费人成看片| 熟女人妻精品中文字幕| 久久99热这里只有精品18| 91精品一卡2卡3卡4卡| 日韩免费高清中文字幕av| 久久99精品国语久久久| 亚洲av成人精品一区久久| 久久精品久久精品一区二区三区| 男的添女的下面高潮视频| 亚洲精品乱码久久久v下载方式| 亚洲精品国产成人久久av| 在线a可以看的网站| 国产亚洲一区二区精品| 中文精品一卡2卡3卡4更新| 欧美激情久久久久久爽电影| 狂野欧美激情性bbbbbb| 亚洲av男天堂| 搞女人的毛片| 黄色视频在线播放观看不卡| 久久久成人免费电影| 国产毛片在线视频| 成年人午夜在线观看视频| 又大又黄又爽视频免费| 免费av观看视频| 免费观看的影片在线观看| 五月伊人婷婷丁香| 国产欧美日韩精品一区二区| 97热精品久久久久久| 亚洲欧美日韩无卡精品| 美女被艹到高潮喷水动态| av卡一久久| 日本与韩国留学比较| 欧美97在线视频| 欧美成人a在线观看| 亚洲精品,欧美精品| 国产色婷婷99| 国产免费视频播放在线视频| 国产精品国产三级专区第一集| 亚洲人成网站高清观看| 一二三四中文在线观看免费高清| freevideosex欧美| 国产成人a区在线观看| 国产免费视频播放在线视频| 亚洲精品久久久久久婷婷小说| 在线观看一区二区三区激情| 色播亚洲综合网| 亚洲精品久久久久久婷婷小说| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 日产精品乱码卡一卡2卡三| 免费少妇av软件| 六月丁香七月| 深夜a级毛片| 小蜜桃在线观看免费完整版高清| 春色校园在线视频观看| 99热国产这里只有精品6| 欧美老熟妇乱子伦牲交| 男人爽女人下面视频在线观看|