• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning the exciton binding energy of covalent organic frameworks for efficient photocatalysis

    2024-04-05 02:28:56ZhngjieGuZhenShnYulnWngJinjinWngTongtongLiuXiomingLiZhiyngYuJinSuGenZhng
    Chinese Chemical Letters 2024年2期

    Zhngjie Gu ,Zhen Shn ,Yuln Wng ,Jinjin Wng ,Tongtong Liu ,Xioming Li ,Zhiyng Yu,Jin Su,*,Gen Zhng,d,*

    a Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education,School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    b State Key Laboratory of Photocatalysis on Energy and Environment,College of Chemistry,Fuzhou University,Fuzhou 350002,China

    c MIIT Key Laboratory of Advanced Display Material and Devices,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    d Key Laboratory of Preclinical Study for New Drugs of Gansu Province,School of Basic Medical Sciences,Lanzhou University,Lanzhou 730000,China

    Keywords: Covalent organic frameworks Exciton binding energy Atom substitution Extended conjugation Photocatalysis

    ABSTRACT Owing to the large exciton binding energy (>100 meV) of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic system.In this study,a series of chalcogen (S,Se)-substituted mesoporous covalent organic frameworks (COFs) have been synthesized for enhanced photocatalytic organic transformations.Photoelectrochemical measurements indicate that the introduction of semi-metallic Se atom and the enlargement of conjugation degree can not only reduce the exciton binding energy accelerating the charge separation,but also reduce the band gap of COFs.As a result,the COF-NUST-36 with the lowest exciton binding energy(39.5 meV) shows the highest photocatalytic performance for selective oxidation of amines (up to 98%Conv.and 97.5% Sel.).This work provides a feasible method for designing COFs with high photocatalytic activity by adjusting exciton binding energy.

    Solar energy is the main source of many energies on the earth,featuring the advantage of clean and renewable.Converting solar energy into chemical energy in the form of higher-value chemicals has aroused intensive interest [1-4].The key to successful implementation of this process lies in the use of light and rationally design of photocatalysts [5-7].During the past decades,various advanced photocatalysts,such as TiO2,BiVO4,g-C3N4and COFs [8,9] have been designed and prepared.Among them,the limited structural designability and narrow visible light absorption range of TiO2,BiVO4and g-C3N4impede their further applications.COFs are a completely designed crystalline material with low density,excellent stability,functional diversity,and tunable electric structures [10-14].With these features,COFs have emerged as a promising platform for potential applications in photocatalytic hydrogen evolution [15-17],carbon dioxide reduction [18,19],degradation of pollutants [20,21] and organic transformations [22-26].Unfortunately,owing to the partial crystallinity,inefficient charge separation and limited electron transport capability,the photocatalytic performance of COFs is undesirable.In particular,the charge separation is a crucial factor in photocatalytic process.However,the generation and separation efficiency of charge carriers is directly related to exciton binding energy (Eb) in strong exciton system [27].The Coulomb interactions that stabilize the exciton with regard to electrons and holes referred to as theEb[28] and the evaluation ofEbis based on an investigation of the quenching of the integrated photoluminescence (PL) intensity with the temperature [29].In fact,most of the COFs belong to strong exciton system,and they possess a highEb(typicallyEb>100 meV) [30].It means that the COFs will firstly generate electron-hole pairs bound by Coulomb interactions,namely the Frenkel exciton [28,31],in the process of photocatalysis.The strong Coulomb interactions of the Frenkel exciton will lead to exciton annihilation,seriously hampering the generation of electrons and holes [32-34].Hence,minimizing theEbof the COFs to obtain high photocatalytic activity is very attractive but remains a challenge.

    To date,many efforts have been dedicated to minimizing the value ofEbin organic photocatalysts [35,36].Wang and co-authors had realized the reduction ofEb(88 meV) by regulating chargetransfer pathway in linear conjugated polymers [37].Yin and coauthors had proposed an effective approach to reduce theEb(338 meV) of carbon nitrides (PCN)viaa method of regulating spin-polarized electrons for photocatalysis hydrogen production[38].Although these photocatalysts can effectively reduce the value ofEbin amorphous polymers,it is difficult to understand the relationship between tailor-made structure and exciton behaviors.Recently,inspired by the lowEbof solar cells with donor (D)-acceptor(A) structure,Gu and colleagues had built four D-A COFs to minimize theEb(50.4 ± 1.8 meV) [27].Unfortunately,the unique structure will lead to rapid reverse charge recombination concurrently[39].Therefore,it is imperative to propose a new strategy to design photocatalysts with long-range ordering and lowEb.

    As a proof-of-concept,we propose a strategy of single atom substitution and increasing conjugation degree to reduceEbof COFs for the first time.As well known,thiophene and selenophene-based materials have excellent photoelectric properties,which are widely used in organic field-effect transistors[40] and solar cells [41,42].Compared with thiophene,selenophene has stronger ability of electron supplication.In addition,intermolecular Se···Se interaction is conducive to charge transfer.Herein,three chalcogen (S,Se)-contained mesoporous COFs (COFNUST) were synthesized starting from a planar conjugated pyrene moity [43].Photoelectrochemical measurements reveal that theEbvalues and band gaps of COF-NUST were gradually decreased with the substitution of S atoms by Se atoms and the conjugation degree increased.Impressively,the COF-NUST-36 shows a quite lowEb(39.5 meV) among reported pristine COFs [27,44,45],which is even close to some inorganic semiconductors,such as MoS2[46],GaN [47] and metal-halide perovskites [29,48].Consequently,the rare example of selenophene-based COF [49],COF-NUST-36 shows effective exciton splitting and the highest photocatalytic activity in the selective oxidation of amines.

    The COF-NUST were synthesized by linking TAPP to different building blocks,BTDC,BSDC and EBSDC in the solvothermal condition (Fig.1).In detail,COF-NUST-34 and COF-NUST-35 were synthesized by the Schiff-base reaction of TAPP and BTDC or BSDC in the presence of 6 mol/L acetic acid usingo-dichlorobenzene (o-DCB) andn-butyl alcohol (n-BuOH) as solvent at 120 °C for 72 h.COF-NUST-36 was synthesized similar to COF-NUST-34 except that EBSDC,mesitylene and benzyl alcohol were used.

    Fig.1.(a) Synthetic routes of COF-NUST-34,COF-NUST-35 and COF-NUST-36.Top and side views of (b,e) COF-NUST-34,(c,f) COF-NUST-35 and (d,g) COF-NUST-36.

    The formation of COF-NUST were evidenced by various analytical methods.Fourier transform infrared (FT-IR) spectra (Figs.S6-S8 in Supporting information) revealed the -C=N-stretching vibrations of COF-NUST-34,COF-NUST-35 and COF-NUST-36 were located at 1610,1646 and 1648 cm-1,respectively,while the amino stretching vibration peak (~3335 cm-1) and the carbonyl stretching vibration peak (~1688 cm-1) from the building blocks were almost disappeared,indicating the conversion of aldehyde and amino groups.The solid-state13C NMR spectra (Figs.S9-S11 in Supporting information) also confirmed the formation of -C=Nbond,which at 152,158,159 ppm corresponding to COF-NUST-34,COF-NUST-35 and COF-NUST-36,respectively.The element compositions of COF-NUST were confirmed by X-ray photoelectron spectroscopy (XPS).From the total spectra,we can clearly observe the characteristic peaks of C 1s,N 1s and S 2p for COF-NUST-34 (Fig.S12 in Supporting information).For COF-NUST-35 and 36 (Figs.S13 and S14 in Supporting Information),the characteristic peaks of C 1s,N 1s and Se 3d were observed.The N 1s spectra of all COF showed typical peaks,located at 398.8,399.4 and 399.2 eV,which is ascribed to -C=N-bond in COF-NUST-34,COF-NUST-35 and COF-NUST-36,respectively.All these results manifest the successful synthesis of COF-NUST.

    The precise periodical structures of COF-NUST-34,COF-NUST-35,and COF-NUST-36 were verified by powder X-ray diffraction(PXRD) together with structural simulations.The intensive peaks were observed in Figs.2a-c,indicating the high crystallinity of COF-NUST.The PXRD pattern of COF-NUST-34 exhibited distinguishable peaks at 2θ=3.29°,4.84°,6.59°,9.89°,13.49°,which are assigned to the (110),(200),(220),(330) and (060) planes.COF-NUST-35 exhibited similar distinguishable peaks at 2θ=3.27°,4.40°,4.84°,6.54°,9.82°,corresponding to the (110),(200),(020),(220) and (330) planes.The diffraction peaks of COF-NUST-36 at 2θ=3.12°,4.62°,6.26°,9.39° were assigned to the (110),(200),(220) and (330) planes.According to the similar structure reported in the previous literature,the AA and AB stacking crystal models were generated,the experimental diffraction patterns of COFNUST matched well with AA stacking (Fig.S15 in Supporting information).Pawley refinement was conducted to obtain the unit cell parameters (a=41.96 ?A,b=39.32 ?A,c=3.29 ?A,α=90°,β=60.77°,γ=90°,Rwp=7.66%,Rp=5.94% for COF-NUST-34;a=44.80 ?A,b=36.46 ?A,c=3.16 ?A,α=90°,β=63.46°,γ=90°,Rwp=7.33%,Rp=5.37% for COF-NUST-35;a=44.00 ?A,b=41.90 ?A,c=3.53 ?A,α=90°,β=60.12°,γ=90°,Rwp=6.13%,Rp=4.53% for COF-NUST-36).

    The porosity of COF-NUST-34,COF-NUST-35 and COF-NUST-36 was assessed by N2sorption isotherm at 77 K (Figs.2d-f).The type IV pattern of COF-NUST indicated that COF-NUST are mesoporous material.The Brunauer-Emmett-Teller surface areas were 1098.7,1163.1 and 677.7 m2/g for COF-NUST-34,COF-NUST-35 and COFNUST-36,respectively.Although the skeleton structures of COFNUST were similar,the crystallinity and framework integrity of COF-NUST-36 obtained by EBSDC were inferior to those of COFNUST-34 and COF-NUST-35,resulting in a lower specific surface area.Based on the adsorption curve and the nonlocal density functional theory model (NLDFT),the pore-size distribution was calculated to be 2.56,2.56 and 2.45 nm for COF-NUST-34,COF-NUST-35 and COF-NUST-36,which was identical to the simulated values.Thermogravimetric analysis (TGA) (Fig.S16 in Supporting information) indicated that the three COFs possessed excellent thermal stability and were thermally stable up to 400 °C under N2atmosphere.The good chemical stability of COF-NUST-36 was evidenced by the retained PXRD patterns (Fig.S17 in Supporting information) after immersed in tetrahydrofuran,N,N-dimethylformamide,1 mol/L HCl,1 mol/L NaOH,and visible light irradiation at 25 °C for 24 h.Scanning electron microscopy (SEM) (Figs.S18-S20 in Supporting information) showed that the morphology of COF-NUST-34,COF-NUST-35,and COF-NUST-36 are both lamellar.High-resolution transmission electron microscopy (HRTEM) (Figs.2g and h) evidenced the excellent crystallinity and indicated the spacing of the lattice fringe (~1.80 nm,~2.00 nm) corresponded to the lattice planes of (200) for COF-NUST-34,COF-NUST-35,respectively.The spacing of the lattice fringe (~1.37 nm) (Fig.2i) corresponded to the lattice planes of (220) for COF-NUST-36.

    Fig.2.PXRD patterns of (a) COF-NUST-34,(b) COF-NUST-35 and (c) COF-NUST-36.The N2 adsorption-desorption isotherms at 77 K and pore size distribution of (d) COFNUST-34,(e) COF-NUST-35 and (f) COF-NUST-36.High-resolution transmission electron microscopy (HRTEM) of (g) COF-NUST-34,(h) COF-NUST-35 and (i) COF-NUST-36.The Pawley refined pattern in black,experimental profiles are in yellow,simulated pattern for AA stacking in blue,Bragg position in green and difference plot in gray.

    UV-vis diffuse reflectance spectroscopy (Fig.3a) shows the broad absorption of COF-NUST in the visible region,which originating from theπ-conjugated structure of COFs and the building blocks of excellent light absorption capacity (Fig.S21 in Supporting information).Notably,the trend of light absorption in the linkers (absorption region: EBSDC>BSDC>BTDC) is similar in COFs(absorption region: COF-NUST-36>COF-NUST-35>COF-NUST-34).By using the Kubelka-Munk function (αhv)2=A(hv-Eg),whereαis the absorption coefficient,his the Planck constant,vis the frequency andAis the constant,the optical band gaps (Eg) of COF-NUST-34,35 and 36 were determined to be 1.98,1.90 and 1.80 eV,respectively (Fig.3b).Obviously,theEgof COF-NUST-36 is the narrowest,which is mainly due to the extended conjugation and the semimetal Se atoms with a lower ionization potential [50].Mott-Schottky (M-S) (Fig.S22 in Supporting information)plot was used to estimate the conduction band value (ECB).The positive slops of MS plots indicated that the COF-NUST are n-type semiconductors.Typically,theECBis equal to flat band potentials for n-type semiconductors.Accordingly,theECBof COF-NUST-34,COF-NUST-35 and COF-NUST-36 are estimated to be -1.02,-1.08 and -1.11 V (vs.Ag/AgCl),respectively (Fig.3c).According to the formulaECB=EVB-Eg,the valence band values (EVB) of COF-NUST-34,COF-NUST-35,and COF-NUST-36 are 0.96,0.82 and 0.69 V (vs.Ag/AgCl),respectively.Theoretically the lowest occupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO)levels of COF-NUST have sufficient potentials to reduce O2to superoxide anion O2·-(Ered=-0.48 Vvs.Ag/AgCl) [51] and oxidize benzylamine into a cation free radical (Eoxi=+0.56 Vvs.Ag/AgCl)[52,53].Hence,all COF-NUST can be latent photocatalyst for oxidative coupling of amines.

    Fig.3.(a) UV-vis diffuse reflectance spectra of COF-NUST.(b) Tauc plot for estimating the band gap energies of COF-NUST.(c) Band alignment.(d-f) HOMO of COF-NUST-34,COF-NUST-35 and COF-NUST-36.(g-i) Integrated PL emission intensity as a function of temperature of COF-NUST-34,COF-NUST-35 and COF-NUST-36.

    The molecular orbital diagrams of COF-NUST were obtained by density functional theory (DFT) calculation.The charge distributions of HOMO (Fig.3d) and LUMO (Fig.S23 in Supporting information) in COF-NUST-34 are simultaneously located at BTDC and TAPP.The high levels overlap of HOMO and LUMO will lead to rapid recombination of charge carriers in COF-NUST-34.The charge distribution of HOMO in COF-NUST-35 (Fig.3e) is only located at BSDC,while the charge of LUMO (Fig.S24 in Supporting information) is mainly distributed TAPP and BSDC.For COF-NUST-36,the charge distribution of HOMO (Fig.3f) is only located at EBSDC,while the charge of LUMO (Fig.S25 in Supporting Information)is mainly distributed TAPP and EBSDC.Although partial overlap of HOMO and LUMO,electron-hole pairs can be separated effectively in COF-NUST-35 and 36.These results imply that COF-NUST-35 and 36 may have better photocatalytic performance.

    To unveil the charge recombination and separation kinetics of COF-NUST,the temperature-dependent photoluminescence (TDPL) (Figs.S26-S28 in Supporting information) spectra were measured.The value ofEbwas estimated by fitting the integrated PL intensity with the temperature according to Arrhenius equation,I(T)=I0/(1+Aexp(-Eb/kBT)) [54].Accordingly,theEbvalues for COF-NUST-34,COF-NUST-35 and COF-NUST-36 were estimated to be 89.9 meV,55.1 meV and 39.5 meV (Figs.3g-i),respectively.Notably,theEbof COF-NUST-36 is significantly lower than COF-NUST-34 and COF-NUST-35,which means that excitons can be more easily dissociated into free carriers.It is worth noting that such lowEb(39.5 meV) is rare observed in COFs [27,44,45] or even inorganic materials such as MoS2,GaN and metal-halide perovskites (Table S4 in Supporting information) [29,46-48].Meanwhile,these results indicate that theEbcan be reduced by single atom substitution and enlarging conjugation degree.

    Since charge migration is directly related toEb[55,56],we also systematically studied the charge mobility.As shown in roomtemperature PL (Fig.4a),COF-NUST-36 showed obvious PL quenching compared with COF-NUST-34 and COF-NUST-35,it indicated that the recombination of photogenerated carrier was suppressed.Time-resolved photoluminescence (TRPL) (Figs.S29-S32 in Supporting information) revealed the fluorescence lifetime of COFNUST-36 (0.57 ns) is the shortest among the three materials(0.80 ns for COF-NUST-34,0.75 ns for COF-NUST-35),suggesting that electron transport was accelerated in COF-NUST-36.

    Fig.4.(a) Room-temperature PL spectra of COF-NUST.(b) EIS spectra of COF-NUST.(c) Linear sweep voltammetry curves of COF-NUST under light irradiation.(d) Effect of scavengers on the photocatalytic oxidation of benzylamine.(e) In situ EPR signals labeled by DMPO for O2·- in dispersions.(f) In situ EPR signals labeled by TEMPO for 1O2 in dispersions.

    To further confirm the modulation of charge mobility in COFNUST,we conducted a series of photoelectrochemical measurements.The transient photocurrent spectra indicated the photocurrent density (Fig.S33 in Supporting information) increases gradually from COF-NUST-34 to COF-NUST-36,implying that the Se atom and extended conjugation are conductive to the separation of charges.Electrochemical impedance spectroscopy (EIS) (Fig.4b)also proves this result,the semicircular radius of COF-NUST-34 is the largest among three COFs,suggesting that the slowest charge transport [57].Moreover,Linear sweep voltammetry (LSV) curves showed that the COF-NUST-36 has the highest cathodic photocurrent,whether under visible light illumination (Fig.4c) or in the dark (Fig.S34 in Supporting information).Thus,we conclude that the lower ofEbcan improve charge separation and mobility.

    Imines,also known as Schiff bases,are widely used in various organic reactions,pharmaceutical intermediates,and fine chemicals.The traditional synthesis of imines often require acid as catalyst,which inevitably leads to waste of resources and environmental pollution.Photocatalytic selective oxidation provides a convenient and environmentally friendly method for the preparation of imines [58,59].Accordingly,we used the oxidative coupling of amines to imines under blue light irradiation to evaluate the photocatalytic activity of these COFs.As shown in Table 1,entries 1-3,COF-NUST-36 clearly exhibited the highest conversion (97%) compared with COF-NUST-34 (40%) and COF-NUST-35 (82%) under optimal conditions.It can be accessible to the lowestEbof COF-NUST-36,the excitons can effectively dissociate into charge carriers.Notably,with a prolonged reaction time (Table 1,entries 4 and 5),the conversion increased,while the selectivity decreased.So,the reaction time must be strictly controlled.We also conducted control experiments (Table 1,entries 6-8) to study the effects of catalyst,visible light irradiation and oxygen atmosphere on photocatalytic efficiency.With the absence of catalyst,the reaction will not take place.Without visible light irradiation or under N2atmosphere,only trace product was obtained.Furthermore,air was used instead of oxygen (Table 1,entry 9),the reaction proceeded smoothly with a conversion of 84% realized in 2.5 h,which shows that COF-NUST-36 has high photocatalytic activity.

    Table 1Photocatalytic selective aerobic oxidation of benzylamine under blue lighta.

    To explore the general applicability of the COF-NUST-36 photocatalysis for selective aerobic oxidation,benzylamine derivatives bearing different substituents were selected as substrates.All substrates can be transformed into the corresponding imines within 5 h (Scheme 1).In detail,the reaction of benzylamines bearing with electron-donating groups to afford marginally higher conversion and lower reaction time than benzylamines bearing with electron-withdrawing groups.For example,the2d(-OCH3) can obtain a conversion of 97% in 2 h,however,the conversion of2kis 94% in 4.5 h (-CF3),which is the electron-donating groups can better stabilize the cationic radical intermediate.Besides,the steric hindrance also has an obvious influence on the conversion.Such as piperonylamine (Scheme 1,2l) or substituents in the adjacent position (Scheme 1,2i) could slow down the reaction processed compared to benzylamine (Scheme 1,2b).As a result,transforming into the corresponding imines with slightly prolonged time.Interestingly,The COF-NUST-36 also shows a high conversion (96%)for the oxidative coupling of heterocyclic amine (Scheme 1,2a).At last,COF-NUST-36 shows high efficiency and general applicability in oxidation of benzylamine derivatives with difference size.This can be ascribed to the meso-pores in COF-NUST-36.

    Scheme 1.Photocatalytic selective oxidative of diverse amines .Reaction conditions: substate (0.1 mmol),photocatalyst (4.0 mg),O2 (1 atm),CH3CN (1.5 mL),30 W blue light (λ=455-460 nm),room temperature.Determined by 1H NMR.For details,see the Experimental section in Supporting information.

    The good durability of the COF-NUST-36 photocatalyst was confirmed by cycling experiment (Fig.S35 in Supporting Information).The photocatalytic efficiency of COF-NUST-36 can be well remained after being reused for three cycles.The crystallinity of COF-NUST-36 was essentially retained from the PXRD patterns and FTIR spectra after 3 runs,the lamellar morphology was also kept in SEM image.

    To investigate the possible mechanism for the oxidative coupling of amines,we chose different scavengers to trap reactive oxygen species (ROS) (Fig.4d).With the introduction of electron scavenger AgNO3and hole scavenger KI,the conversion dramatically decreased to 16% and 41%,which indicated that the oxidative coupling of amines is associated with photogenerated electrons and holes.The superoxide radical anions (O2·-) scavenger benzoquinone (BQ) and singlet oxygen (1O2) scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was added to photocatalysis system,a decrease in conversion was observed,illustrating that active species O2·-and1O2both play important roles in the reaction.Moreover,when the radical scavenger hydroquinone (HQ)was added,the conversion dropped to 70%,proved that the oxidation coupling involved a radical process.The addition oft-BuOH led to a slight decrease in conversion (95%),which implied that the hydroxyl radical (·OH) play a minor role in photocatalytic process.

    Electron paramagnetic resonance (EPR) spectroscopy was conducted to confirm the presence of O2·-and1O2.In general,5,5-dimethyl-pyridine-N-oxide (DMPO) and TEMPO as sensitive trapping agent to selectively capture O2·-and1O2.As shown in Figs.4e and f,the EPR intensity of O2·-and1O2in COF-NUST-36 were detected under light irradiation.When the illumination time is prolonged,the EPR intensities of O2·-and1O2become stronger,which may be attributed to the accumulation of O2·-and1O2.However,no EPR signal is observed in the dark.Hence,O2·-and1O2can be generated under light irradiation over COF-NUST-36.

    Given the above experimental results and literature reports,a tentative reaction mechanism for the photocatalytic oxidation of benzylamine (BAN) over COF-NUST-36 was proposed (Fig.5).This photocatalytic process is involved in both electron and energy transfer path.The ground state COF-NUST-36 is photoexcited to the excited state COF-NUST-36*(electron-hole pairs) under blue light irradiation,the electron can reduce O2to generate O2·-in electron transfer path.At the same time,the BAN is oxidized to amine radical cation by COF-NUST-36+.O2·-immediate react with amine radical cation to generate hydroperoxy(phenyl)methanamine.The hydroperoxy(phenyl)methanamine is extremely unstable,which can convert into PhCH=NH with the removal of H2O2.The intermediate PhCH=NH and H2O2also can be obtained by extracting hydrogen atoms from the substrate directly through1O2in an energy transfer path.The H2O2can be dissociated into·OH under blue light irradiation,which is in favor for substrate to generate PhCH=NH.In the end,the PhCH=NH combine with BAN to obtain final productN-benzyl-1-phenylmethanimine.Furthermore,PhCH=NH is hydrolyzed to give benzaldehyde,which subsequently condensed with substrate to give the final product.

    Fig.5.Plausible mechanism for the photocatalytic selective oxidative coupling of benzylamine.

    In summary,we proposed for the first time that theEbof COF materials can be optimized by single atom substitution and extending conjugation strategy.A combination of temperaturedependent photoluminescence and electrochemical measurements reveals that the mesoporous COF-NUST-36 with less electronegativity of Se atoms and enhanced conjugation degree possesses the lowestEb.The reducedEbis helpful for the improvement of light capture and release of free charge carriers.Consequently,mesoporous COF-NUST-36 exhibited excellent photocatalytic performance for selective oxidation of amines under blue light.We believe that this work is not only benefit to understanding the relationship between exciton and photocatalytic activity at the atomic level,but also provides a new tactics for the design of advanced porous organic photocatalysts.

    Declaration of competing interest

    The authors have no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.22171136),the Natural Science Foundation of Jiangsu Province (Nos.BK20220928,BK20220079),the Fundamental Research Funds for the Central Universities (Nos.30921011102,30922010902),the Medical Innovation and Development Project of Lanzhou University (No.lzuyxcx-2022-156),CAMS Innovation Fund for Medical Sciences (CIFMS,Nos.2019-I2M-5-074,2021-I2M-1-026,2021-I2M-3-001),and the Startup Funding from Nanjing University of Science and Technology (Nos.AE89990,AE89991/376).G.Zhang acknowledges the support of the Thousand Young Talent Plan.

    精品久久久久久成人av| 91久久精品电影网| 国产一区二区三区av在线| 免费黄色在线免费观看| eeuss影院久久| 国产成人a区在线观看| 日韩欧美三级三区| 如何舔出高潮| 亚洲精品成人久久久久久| 丝瓜视频免费看黄片| 欧美日韩在线观看h| 免费观看精品视频网站| 久久久久性生活片| 欧美精品国产亚洲| 高清毛片免费看| 美女xxoo啪啪120秒动态图| 欧美激情国产日韩精品一区| 韩国高清视频一区二区三区| 1000部很黄的大片| 一级av片app| 精品久久久久久久久av| 全区人妻精品视频| 亚洲欧美清纯卡通| 男人舔女人下体高潮全视频| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 国产精品综合久久久久久久免费| 一个人看的www免费观看视频| 成年av动漫网址| 国产乱来视频区| 最近视频中文字幕2019在线8| 免费无遮挡裸体视频| 亚洲,欧美,日韩| 蜜桃久久精品国产亚洲av| 亚洲成人久久爱视频| 国产人妻一区二区三区在| 熟女人妻精品中文字幕| 天美传媒精品一区二区| 日韩人妻高清精品专区| 欧美激情国产日韩精品一区| 人妻一区二区av| 国产片特级美女逼逼视频| 亚洲美女视频黄频| 国产精品综合久久久久久久免费| 人体艺术视频欧美日本| 国产有黄有色有爽视频| 久久久久久久久久久免费av| 免费黄色在线免费观看| 午夜福利在线在线| 波野结衣二区三区在线| 国产探花在线观看一区二区| 免费少妇av软件| 91在线精品国自产拍蜜月| 国产精品一及| 久久这里只有精品中国| 亚洲精品色激情综合| 亚洲欧美日韩无卡精品| 夫妻性生交免费视频一级片| 精品一区二区三卡| 欧美成人精品欧美一级黄| 国产在视频线精品| 免费观看性生交大片5| 又大又黄又爽视频免费| 国产亚洲5aaaaa淫片| 亚洲精品,欧美精品| 国产69精品久久久久777片| 男女国产视频网站| 色哟哟·www| 精品久久久久久久久av| 欧美一区二区亚洲| 爱豆传媒免费全集在线观看| 婷婷六月久久综合丁香| 午夜福利网站1000一区二区三区| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 熟妇人妻不卡中文字幕| 99热6这里只有精品| 国产黄色视频一区二区在线观看| 日本免费a在线| 高清日韩中文字幕在线| 日本色播在线视频| 久久精品国产自在天天线| 亚洲av成人精品一二三区| 日本午夜av视频| 蜜臀久久99精品久久宅男| 久久国产乱子免费精品| 国产女主播在线喷水免费视频网站 | 最近手机中文字幕大全| 亚洲国产精品成人综合色| 欧美性感艳星| 激情 狠狠 欧美| 精品一区在线观看国产| 97超视频在线观看视频| 免费播放大片免费观看视频在线观看| 色综合色国产| 搞女人的毛片| 国产精品1区2区在线观看.| 看免费成人av毛片| 免费少妇av软件| 国产在线一区二区三区精| 亚洲精品一区蜜桃| 一级毛片aaaaaa免费看小| 男人狂女人下面高潮的视频| 国产精品嫩草影院av在线观看| 女人十人毛片免费观看3o分钟| 免费看美女性在线毛片视频| 成人午夜高清在线视频| 久久久久九九精品影院| 卡戴珊不雅视频在线播放| 久久99热这里只频精品6学生| 国产黄色小视频在线观看| 日日摸夜夜添夜夜爱| 婷婷色综合www| 啦啦啦中文免费视频观看日本| 在线免费观看的www视频| 色综合亚洲欧美另类图片| 丰满人妻一区二区三区视频av| 中文字幕av成人在线电影| 国产大屁股一区二区在线视频| 美女高潮的动态| 熟妇人妻不卡中文字幕| 最近2019中文字幕mv第一页| 久久综合国产亚洲精品| 久久人人爽人人爽人人片va| 热99在线观看视频| 国产精品av视频在线免费观看| 春色校园在线视频观看| 亚洲经典国产精华液单| 亚洲精品一二三| 18+在线观看网站| 十八禁网站网址无遮挡 | 国产亚洲一区二区精品| 18禁动态无遮挡网站| 亚洲人成网站高清观看| 精品久久久噜噜| 别揉我奶头 嗯啊视频| 亚洲av成人精品一区久久| 国产大屁股一区二区在线视频| 精品人妻一区二区三区麻豆| 欧美高清性xxxxhd video| 别揉我奶头 嗯啊视频| 日韩视频在线欧美| 人妻一区二区av| 99re6热这里在线精品视频| 日日摸夜夜添夜夜添av毛片| 秋霞伦理黄片| 国产日韩欧美在线精品| 亚洲人成网站高清观看| 国产成人a区在线观看| 蜜桃亚洲精品一区二区三区| 啦啦啦啦在线视频资源| 国产 一区 欧美 日韩| 国产精品一二三区在线看| 18禁动态无遮挡网站| 亚洲av在线观看美女高潮| 久久精品国产亚洲网站| 日韩 亚洲 欧美在线| 免费观看在线日韩| 国产精品一区二区在线观看99 | 免费少妇av软件| 天堂av国产一区二区熟女人妻| 亚洲性久久影院| 肉色欧美久久久久久久蜜桃 | 国产免费一级a男人的天堂| 亚洲电影在线观看av| 日日啪夜夜撸| 亚洲综合色惰| 综合色av麻豆| 亚洲综合精品二区| 两个人视频免费观看高清| 18禁在线播放成人免费| 日本wwww免费看| 免费av毛片视频| 国产成人精品婷婷| 五月伊人婷婷丁香| 精品人妻视频免费看| 美女国产视频在线观看| 少妇的逼好多水| av在线天堂中文字幕| 国产高清有码在线观看视频| 狂野欧美激情性xxxx在线观看| 亚洲欧洲日产国产| 久久精品综合一区二区三区| 成人特级av手机在线观看| 国产精品精品国产色婷婷| 免费看美女性在线毛片视频| 国产高清有码在线观看视频| 欧美成人a在线观看| 一区二区三区免费毛片| 一本久久精品| 人妻少妇偷人精品九色| 99热这里只有是精品在线观看| 免费看日本二区| 久久久久久久国产电影| 色尼玛亚洲综合影院| 午夜免费男女啪啪视频观看| 欧美97在线视频| 午夜免费观看性视频| 亚洲,欧美,日韩| 一区二区三区高清视频在线| 日韩人妻高清精品专区| 国产亚洲5aaaaa淫片| 免费av毛片视频| 色综合站精品国产| videossex国产| 99热这里只有是精品在线观看| 最近最新中文字幕大全电影3| 亚洲av成人精品一区久久| 亚洲三级黄色毛片| 免费看光身美女| 国产精品综合久久久久久久免费| 国产黄色免费在线视频| 国产亚洲5aaaaa淫片| 2021天堂中文幕一二区在线观| 婷婷色综合大香蕉| 国产精品人妻久久久影院| 色综合站精品国产| 18禁在线播放成人免费| 大香蕉97超碰在线| 中文字幕人妻熟人妻熟丝袜美| 国产精品.久久久| 草草在线视频免费看| 日韩成人av中文字幕在线观看| 欧美日韩亚洲高清精品| 免费大片黄手机在线观看| 精品人妻视频免费看| 久久精品综合一区二区三区| 日韩欧美精品免费久久| 女人被狂操c到高潮| 国产淫语在线视频| 色网站视频免费| 国产永久视频网站| 日韩不卡一区二区三区视频在线| 亚洲av电影在线观看一区二区三区 | 内射极品少妇av片p| av天堂中文字幕网| 国产免费一级a男人的天堂| 日本wwww免费看| 色哟哟·www| 嫩草影院入口| 国产一级毛片在线| 夜夜爽夜夜爽视频| 女人久久www免费人成看片| 久久99精品国语久久久| 国产男人的电影天堂91| 午夜福利视频1000在线观看| 又爽又黄a免费视频| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看| 精品国产露脸久久av麻豆 | 久久久久久久久大av| 久久97久久精品| 婷婷色综合www| 青春草国产在线视频| 在线观看人妻少妇| 午夜视频国产福利| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 欧美一区二区亚洲| 三级国产精品片| 国产色爽女视频免费观看| www.av在线官网国产| 国产极品天堂在线| 美女被艹到高潮喷水动态| 亚洲av中文字字幕乱码综合| 伦精品一区二区三区| av福利片在线观看| 国产亚洲5aaaaa淫片| 国产男人的电影天堂91| 久久久久九九精品影院| 中文字幕免费在线视频6| 国产精品人妻久久久久久| 国产精品.久久久| 我的老师免费观看完整版| 在线观看一区二区三区| 一级二级三级毛片免费看| 在线 av 中文字幕| 国产精品一二三区在线看| av线在线观看网站| 91精品一卡2卡3卡4卡| av天堂中文字幕网| 亚洲精品,欧美精品| 亚州av有码| 69人妻影院| 国产淫片久久久久久久久| 亚洲美女搞黄在线观看| 午夜视频国产福利| 成人亚洲精品一区在线观看 | 国产成人免费观看mmmm| 免费观看的影片在线观看| 久热久热在线精品观看| av又黄又爽大尺度在线免费看| 一级二级三级毛片免费看| 久久久色成人| 内地一区二区视频在线| 91精品一卡2卡3卡4卡| 国产精品1区2区在线观看.| 国产不卡一卡二| 国产成人福利小说| 嫩草影院入口| 三级国产精品片| av在线亚洲专区| av播播在线观看一区| 久久精品久久精品一区二区三区| 2021少妇久久久久久久久久久| 亚洲精品中文字幕在线视频 | 欧美日韩国产mv在线观看视频 | 国产免费一级a男人的天堂| 免费观看a级毛片全部| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 国产成人freesex在线| 亚洲av中文av极速乱| 国产精品一区二区三区四区久久| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 久久久久久久亚洲中文字幕| av在线蜜桃| 国产 亚洲一区二区三区 | 亚洲国产精品专区欧美| 国产亚洲午夜精品一区二区久久 | 成人特级av手机在线观看| 97精品久久久久久久久久精品| 国产淫语在线视频| 精品国产一区二区三区久久久樱花 | 人妻夜夜爽99麻豆av| 色综合亚洲欧美另类图片| 高清欧美精品videossex| 一级爰片在线观看| 亚洲色图av天堂| 蜜臀久久99精品久久宅男| 舔av片在线| 男人爽女人下面视频在线观看| 免费黄频网站在线观看国产| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 午夜激情久久久久久久| 成人性生交大片免费视频hd| 亚洲精品一二三| 黄片wwwwww| 午夜免费激情av| 尤物成人国产欧美一区二区三区| 亚洲在久久综合| 国产成人精品久久久久久| 最新中文字幕久久久久| 丰满少妇做爰视频| 国产高清三级在线| 老女人水多毛片| 麻豆久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 水蜜桃什么品种好| 欧美人与善性xxx| 国产不卡一卡二| 一区二区三区四区激情视频| 建设人人有责人人尽责人人享有的 | 国产91av在线免费观看| 一个人看视频在线观看www免费| 91久久精品电影网| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说 | 午夜免费观看性视频| 日本免费在线观看一区| 色吧在线观看| 一本久久精品| 久久久精品免费免费高清| 成人毛片a级毛片在线播放| 日本wwww免费看| 久久97久久精品| 中文字幕制服av| 大香蕉久久网| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 欧美日韩亚洲高清精品| 天天一区二区日本电影三级| 亚洲熟女精品中文字幕| 视频中文字幕在线观看| 成人二区视频| 不卡视频在线观看欧美| 欧美日韩在线观看h| 综合色丁香网| 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 中文字幕亚洲精品专区| 少妇高潮的动态图| 精品一区二区免费观看| 最近手机中文字幕大全| 别揉我奶头 嗯啊视频| av福利片在线观看| 日本猛色少妇xxxxx猛交久久| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 成人国产麻豆网| 国产黄色小视频在线观看| 中文字幕亚洲精品专区| 女人久久www免费人成看片| 久久久久久久久久黄片| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| a级毛色黄片| 在线天堂最新版资源| 嫩草影院精品99| 国产在线一区二区三区精| 国产午夜福利久久久久久| 国产av不卡久久| 国产精品伦人一区二区| 一级毛片黄色毛片免费观看视频| 国产精品日韩av在线免费观看| 亚洲精品中文字幕在线视频 | 一夜夜www| 国产69精品久久久久777片| 久久久久国产网址| 亚洲内射少妇av| 中文字幕免费在线视频6| 色网站视频免费| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| 青春草视频在线免费观看| av天堂中文字幕网| 国产高清国产精品国产三级 | 亚洲欧洲国产日韩| 午夜福利视频1000在线观看| 亚洲三级黄色毛片| 国产三级在线视频| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 日韩一本色道免费dvd| 亚洲国产欧美人成| 女的被弄到高潮叫床怎么办| 中国美白少妇内射xxxbb| 99久久精品热视频| 久久精品国产亚洲网站| 波野结衣二区三区在线| 纵有疾风起免费观看全集完整版 | 97在线视频观看| 欧美 日韩 精品 国产| 男的添女的下面高潮视频| 一个人观看的视频www高清免费观看| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 国产人妻一区二区三区在| 青春草视频在线免费观看| 亚洲精品乱码久久久久久按摩| 一级毛片久久久久久久久女| 熟妇人妻不卡中文字幕| 91午夜精品亚洲一区二区三区| 亚洲精品影视一区二区三区av| 成人欧美大片| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 毛片一级片免费看久久久久| 亚洲人成网站在线播| 国产爱豆传媒在线观看| 最近视频中文字幕2019在线8| 女的被弄到高潮叫床怎么办| 99久久九九国产精品国产免费| 免费在线观看成人毛片| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 久久久久久久午夜电影| 国产一级毛片在线| 白带黄色成豆腐渣| 噜噜噜噜噜久久久久久91| 国产在视频线在精品| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 国产中年淑女户外野战色| 黄色一级大片看看| 丰满乱子伦码专区| 在线观看人妻少妇| 婷婷色综合大香蕉| 51国产日韩欧美| 99久久九九国产精品国产免费| 国产av不卡久久| 如何舔出高潮| 一区二区三区高清视频在线| 性插视频无遮挡在线免费观看| 赤兔流量卡办理| 最近最新中文字幕免费大全7| 国产v大片淫在线免费观看| 日韩av不卡免费在线播放| 一级毛片我不卡| 不卡视频在线观看欧美| 日本猛色少妇xxxxx猛交久久| 尤物成人国产欧美一区二区三区| 深夜a级毛片| 好男人在线观看高清免费视频| 特级一级黄色大片| 久久久久久国产a免费观看| 精品久久久久久久久久久久久| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频 | 韩国高清视频一区二区三区| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 久久久精品免费免费高清| 菩萨蛮人人尽说江南好唐韦庄| 99热这里只有是精品在线观看| 麻豆久久精品国产亚洲av| 精品久久久久久久末码| 特级一级黄色大片| 午夜激情久久久久久久| 高清毛片免费看| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| 久久亚洲国产成人精品v| 男女边吃奶边做爰视频| 中文在线观看免费www的网站| 日本午夜av视频| 亚洲精品第二区| av.在线天堂| 欧美日韩视频高清一区二区三区二| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 成年av动漫网址| 美女大奶头视频| 韩国高清视频一区二区三区| 人妻夜夜爽99麻豆av| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 丝袜喷水一区| 男女下面进入的视频免费午夜| 亚洲精品中文字幕在线视频 | 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| 直男gayav资源| 精品久久久久久久久亚洲| 免费在线观看成人毛片| 成人亚洲精品一区在线观看 | 一本一本综合久久| 不卡视频在线观看欧美| 淫秽高清视频在线观看| 一级毛片aaaaaa免费看小| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美成人综合另类久久久| 成年免费大片在线观看| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频 | 亚洲av免费在线观看| 国产精品久久久久久久久免| 亚洲精品视频女| 国产片特级美女逼逼视频| 精品不卡国产一区二区三区| 欧美激情在线99| 国产精品99久久久久久久久| 日韩av免费高清视频| 日本一本二区三区精品| 亚洲在久久综合| 色哟哟·www| 婷婷色av中文字幕| 2022亚洲国产成人精品| 禁无遮挡网站| 黄色日韩在线| 日韩av在线大香蕉| 内射极品少妇av片p| 舔av片在线| 欧美高清成人免费视频www| 天堂√8在线中文| 九九爱精品视频在线观看| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 日韩精品青青久久久久久| 乱系列少妇在线播放| 两个人的视频大全免费| 性色avwww在线观看| 成人亚洲精品一区在线观看 | 最后的刺客免费高清国语| 天天一区二区日本电影三级| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 国产av不卡久久| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| 伊人久久国产一区二区| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 国产男人的电影天堂91| a级一级毛片免费在线观看| 色综合站精品国产| 亚洲人成网站在线观看播放| 国产黄a三级三级三级人| 日韩一区二区视频免费看| 国产成年人精品一区二区| av在线老鸭窝| 丰满人妻一区二区三区视频av| 乱码一卡2卡4卡精品| 777米奇影视久久| 日韩欧美一区视频在线观看 | 欧美精品一区二区大全| 一区二区三区四区激情视频| 欧美不卡视频在线免费观看| 一区二区三区免费毛片| 欧美三级亚洲精品| 国产精品久久久久久精品电影小说 | 男女下面进入的视频免费午夜| 国产精品久久久久久久久免| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式| 日本wwww免费看| 十八禁国产超污无遮挡网站| 久久久国产一区二区| 久久99精品国语久久久| 国产精品国产三级国产专区5o| freevideosex欧美| 91精品国产九色| 精品一区二区免费观看| 国产综合懂色|