• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigated lattice distortion and oxygen loss of Li-rich layered cathode materials through anion/cation regulation by Ti4+-substitution

    2024-04-05 02:28:52KaichengZhangYuTianXuanjinChenShanHuZelangJian
    Chinese Chemical Letters 2024年2期

    Kaicheng Zhang,Yu Tian,Xuanjin Chen,Shan Hu ,Zelang Jian

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China

    Keywords: Lithium-rich layered cathode material Ti-substitution Anion/cation regulation Structural stability Cycling stability

    ABSTRACT Lithium-rich layered cathode material (LLM) can meet the requirement of power lithium-ion energy storage devices due to the great energy density.However,the de/intercalation of Li+ will cause the irreversible loss of lattice oxygen and trigger transition metal (TM) ions migrate to Li+ vacancies,resulting in capacity decay.Here we brought Ti4+ in substitution of TM ions in Li1.2Mn0.54Ni0.13Co0.13O2,which could stabilize structure and expand the layer spacing of LLM.Moreover,optimized Ti-substitution can regulate the anions and cations of LLM,enhance the interaction with lattice oxygen,increase Ni3+ and Co3+,and improve Mn4+ coordination,improving reversibility of oxygen redox activation,maintaining the stable framework and facilitating the Li+ diffusion.Furthermore,we found 5% Ti-substitution sample delivered a high discharge capacity of 244.2 mAh/g at 50 mA/g,an improved cycling stability to 87.3% after 100 cycles and enhanced rate performance.Thereby Ti-substitution gives a new pathway to achieve high reversible cycle retention for LLMs.

    The exploitation of new energy storage application and the development of electric vehicle industry have led to an imperative demand for advanced-performance lithium-ion batteries (LIBs)[1-5].The development of cathode materials stands pivotal position in accelerating the growth of state-of-the-art LIBs [6].At present,commercial layered cathode materials,mainly including LiCoO2and Li[NixCoy(Mn or Al)1-x-y]O2(NCM or NCA) ternary materials,provide less than 200 mAh/g practical specific capacity[7].Lithium-rich layered cathode materials (LLMs),xLi2MnO3·(1-x)LiTMO2(TM=Mn,Ni,Co,etc.) have attracted significant attention due to their high redox potential,high specific capacity (>250 mAh/g) and affordable price,which regards as the preferred cathode materials for LIBs [8-11].

    The high specific capacity of LLMs is derived from the extraction of Li+and oxidation of lattice oxygen in monoclinic Li2MnO3phase [12].Generally,the de/intercalation of Li+from LiTMO2contributes to the capacity at the voltage region lower than 4.4 V,and the Li2MnO3component is “inactive” in this process [13,14].When voltage is charged above 4.4 V,the lattice oxygen is released and Li+is extracted simultaneously from Li2MnO3,resulting in the extra capacity for LLMs [15-17].However,the loss of O2-will induce TM ions to migrate to Li+vacancies,causing phase transformation from layer to spinel structure,which occurs on the surface of LLMs [18,19].The irreversible oxygen evolution and TM ions conversion occur from surface to bulk as cycling,accelerating the capacity degradation,voltage decay and poor rate performance [20-23].Therefore,the challenge for high-performance LLMs is to consolidate the structure and alleviate the oxygen evolution.

    Recently,various attempts have been designed to tackle the unwanted phase transformation and lattice oxygen release to realize practical use of the high-performance LLMs [11-14].Among them,elemental substitution or ion doping has been one of the effective remedies to boost the electrochemical performance of LLMs.These approaches can mitigate voltage decay,stabilize cycling performance and improve rate properties of LLMs by introducing elements into Li or TM layer,such as Na+[24],K+[25],Nb5+[26],Al3+[27],Cr3+[28].Yangetal.synthesized K-doped Li1.232Mn0.615Ni0.154O2material with high rate performance and cycling stability,K+could increase Li layer space to promote the de/intercalation of Li+and constrict the formation of spinel phase[25].Caoetal.synthesized Li1.2-xNax(Co0.13Ni0.13Mn0.54)O2through polymer-pyrolysis strategy,the 3% Na-doped sample provided a higher reversible specific capacity (307 mAh/g),more excellent rate performance (139 mAh/g at 8 C) and cycling property (89% capacity retention after 100 cycles) than the undoped sample [29].In addition,the substitution in TM slab space could increase bonding energy of metal-oxygen and average chemical valence state of Mn ions,resulting in restraining the Jahn-Teller effect,stabilizing the structure of LLMs and improving the electrochemical performance[30,31].Wangetal.found Ti could improve structural stability to suppress voltage fading and improve cycling performance in LLMs,the first-principles analyses indicated Ti-substitution could prevent Mn4+from migrating to Li layer and stabilize the layered structure in materials [32].However,the recent studies mainly focus on the Ti-substitution of Mn or O ions [28-31],the effect of Tisubstitution on the accommodation to the phase transformation and structure integration still lacks further investigation.Therefore,an optimized Ti-substitution should be designed to mitigate the oxygen evolution and maintain the structure integrity,which will be profit to the improved reversible cycling performance and rate properties.

    In this work,we prepared the Ti-substitution LLMs,Li1.2(Mn0.54Ni0.13Co0.13)(1-x)TixO2through simple high-temperature solid-phase method to consolidate structure and mitigate lattice oxygen release,the Ti-substitution addresses the issues of the LLMs and thus enhances the reversible cycling performance and rate properties.In particularly,XPS was carried out to investigate the Ti-substitution effect on the anion-cation regulation and structure stability.The optimized Ti-substitution regulated the structure integrity by increasing the Ti-O bonding to coordinate transition metal ions.The presence of Ti in the LLMs increases the interplanar spacing and suppresses irreversible oxygen evolution,leading to an improved reversible cycling property and rate performance.

    Fig.1 illustrates XRD patterns of four samples.All strong diffraction peaks can be indexed to the layeredα-NaFeO2structure,which belongs to R-3m space group (Fig.1a),and the weak peaks between 20° and 30° correspond to the LiMn6superlattice structure in monoclinic Li2MnO3phase with C2/m space group[33,34].No extra peaks are detected in all samples,which indicates the Ti-substitution does not change the lattice structure.The sharp diffraction peaks show good crystallinity of samples [35].The magnified area of 18°-20° shows that the diffraction peak belonging to(003) plane shifts to lower angles with the increase of Ti content,explaining the larger interplanar spacing [32].The calculated lattice parameters corresponding to the pristine and Ti-substitution samples are summarized in Fig.1b through XRD Rietveld refinements by the one-phase model.The results of Rietveld refinements are shown in Fig.S1 and Table S1 (Supporting information),where LiCo1/3Ni1/3Mn1/3O2is used as reference.The lattice parameters increase with the raise of Ti-substitution,which is consist with XRD patterns (Fig.1a).The value ofc/a(Table S1) can reflect the degree of layered ordering.The values ofc/aexceed 4.9,indicating good layered ordering structures in all samples [36,37].Figs.1c-f display the corresponding SEM images of Ti-substitution samples.The four samples are composed of the non-homogeneous particles in the size range of 200-400 nm,indicating the large surface area.There are large secondary particles formed by agglomeration of nano particles.With the increase of the Ti-substitution,the morphology maintains round shaped nano grains,which demonstrates that Ti-substitution has not significant effect on the surface morphology and grain size.However,excessive Ti-substitution (Ti-7.5%)leads the grains agglomeration with non-uniform distributed.

    Fig.1.(a) XRD patterns and the magnified 2θ range of 18°-20°,and (b) Refined lattice parameters of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.The SEM images of (c) Ti-0,(d) Ti-2.5%,(e) Ti-5%,and (f) Ti-7.5%.

    Fig.2.The HRTEM images alone the [101] zone axis for (a) Ti-0,and (b) Ti-5%.The low magnification (c) and the mapping of Ni (d),Co (e),Mn (f),O (g) and Ti (h) for Ti-5%.

    In order to investigate the structure of Ti-substitution samples,Ti-0 and Ti-5% samples were compared by HRTEM.As shown in Figs.2a and b,thed-spacings in HRTEM images are 0.24 and 0.25 nm,corresponding to (101) planes of Ti-0 and Ti-5%,respectively.The enlarged d-spacing implies that Ti4+exists in the structure of Ti-5% sample.The TEM image and corresponding mapping/energy dispersive X-ray spectrometer (EDS) of Ti-5% are displayed in Figs.2c-h,the grain size is ranged from 200 nm to 400 nm with blurred boundaries,which confirms the SEM results.Furthermore,Ti4+is uniformly dispersed in Ti-substitution samples.Fig.S2 (Supporting information) shows the inductively coupled plasma (ICP) results of Ti-5%,the quantitative results are almost consistent with the designed values.

    To evaluate the chemical valence variation of anions and cations in Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%,X-ray photoelectron spectroscopy (XPS) was employed.Fig.S4 (Supporting information)shows the XPS spectra of Ti 2p,the 2p3/2peak of Ti located at 457.9 eV represents Ti4+[32],which can be detected in all Tisubstitution samples (the results are also presented in Fig.S3 in Supporting information).The peak positions of Ti 2p do not shift and the intensities raise with the increase of Ti-substitution,indicating the stable chemical valence and successful substitution of Ti4+in Ti-substitution LLMs.In the O 1s spectra (Fig.3a),a pair of peaks located at about 529.4 eV and 531.2 eV represent metal-oxygen and residual by-products in the process of materials preparation,respectively [38-42].With the increasing of Ti4+content,the amount of metal-oxygen gradually increases and the byproducts (Li2CO3) decreases.Meanwhile,the characteristic peaks of O 1s slightly shift to the lower energy,which may be derived from the change of metal-oxygen bonding or local environment after Tisubstitution.And the C 1s spectra (Fig.3b) display the peaks of C-C,C-O-C and O-C=O.The characteristic peak of C-C (284.8 eV)is attributed to hydrocarbon contaminants,which usually appears in the analysis chamber [43,44],the other two peaks are derived from carbonate compound impurities [39].From Ti-0 to Ti-7.5%,the relative content of hydrocarbon compounds raises,while the amount of carbonate compound impurities decreases from 50.69%to 42.31%.These results demonstrate that Ti-substitution enhances the strength of metal-oxygen bonding and reduces the content of by-products.It is reported that the 3d0electronic configuration of Ti can coordinate O ligands ionically [45],the enhanced metaloxygen bonding can improve reversibility of lattice oxygen redox.According to the XPS results,Ti-substitution has accelerated bonding effect on TM ions.In Fig.3c,the peaks at 642.9 eV and 641.8 eV are close to the binding energy values of Mn4+and Mn3+[46],the relative amount of Mn3+in Ti-0 (16.52%) is least and that in Ti-7.5% (28.57%) is most.The intensity of Mn4+2p3/2decreases and the intensity of Mn3+2p3/2increases,meaning the average valence of Mn ions decreases,which is related to the charge compensation after Ti-substitution.Although the exist of Mn3+tends to cause Jahn-Teller effect,resulting in the irreversible decrease of Mn ions and the formation of spinel phase [32],Ti4+can stabilize the structure of Ti-substitution materials,not only making it a supporting role in the Mn site,but also maintaining the structure integrity [45].Fig.3d illustrates that the spectra of Ni 2p3/2are fitted with two characteristic peaks,located around 854.8 eV and 856.7 eV,which can be attributed to Ni2+and Ni3+[38-47].It is obvious that the relative content of Ni2+decreases and the content of Ni3+increases after Ti-substitution,and the amount of Ni2+in Ti-7.5% is 18.19% less than that in Ti-0.In addition,the Ni2+peak intensity decreases and the shape broadens after Ti4+enters the structure of materials,which further reveals the low relative amount of Ni2+in Ti-substitution samples.Because the ionic radius of Ni2+(0.69 ?A) is close to that of Li+(0.76 ?A),Ni2+can enter Li layer and occupy vacant sites after Li+extraction.It will hinder the migration channel of Li+,making a low specific capacity and poor cycling performance [48-51].Ti-substitution can effectively reduce the degree of Li+/Ni2+mixing to realize high electrochemical performance for LLMs.The spectra of Co 2p3/2(Fig.S5 in Supporting information) present two peaks of Co2+and Co3+,respectively [52],the main valence state of Co ions in all samples is +3 and Co3+shows an increasing trend with the increase of Ti4+content [53].

    Fig.3.High-resolution XPS spectra for (a) O 1s,(b) C 1s,(c) Mn 2p,and (d) Ni 2p of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.

    Fig.4 illustrates the electrochemical performances of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.Figs.4a and b show the charge-discharge voltage curves of Ti-0 and Ti-5% at the current density of 50 mA/g,respectively.The charge-discharge curve diagram of Ti-2.5% and Ti-7.5% are displayed in Fig.S6 (Supporting information).The first charge/discharge curves of all samples present two distinct charging plateaus.The smooth slope at around 4 V is the result of the oxidation of Ni2+and Co3+in LiTMO2phase,and the long voltage plateau above 4.5 V is attributed to the migration of Li+and accompanying oxidation of lattice oxygen [54].The redox process for lattice oxygen at 4.5 V is considered in two sections: the reversible oxygen redox (O2-/On-) and the irreversible oxygen release from the surface in LLMs.The irreversible oxygen release will cause the capacity decay in subsequent cycles [11].Since Ti4+keeps constant in the device operation,the initial discharge capacity of the samples is slightly reduced because of Ti-substitution.The initial discharge capacity of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5% is 251.6,238.2,244.2 and 234.6 mAh/g,respectively.It is worth noting that a short plateau (at 2.5 V) exists in the subsequent charge/discharge curves of Ti-0,which attributes to the redox of Mn4+/Mn3+in the vicinity of the spinel phase region [55].This means that the structure of Ti-0 is easily changed and the electrochemical performance will be diminished during the cycling process.The short discharge plateau corresponding to Mn4+/Mn3+couple is not displayed in the charge/discharge curves of Ti-substitution samples (Fig.4b and Fig.S6).In comparison,Ti-5% sample maintains a stable capacity retention as large as 99.76% after 10 cycles.

    Fig.4.The 1st,2nd and 10th charge-discharge voltage profiles of (a) Ti-0,and (b) Ti-5% at 50 mA/g.(c) CV curves of Ti-0 and Ti-5% in the first two cycles at the scan rate of 0.1 mV/s.The cycling performance (d) at 200 mA/g and rate properties (e) for all samples.

    To analyze the influence of Ti-substitution on the electrochemical behavior of Li1.2Mn0.54Ni0.13Co0.13O2,the dQ/dVcurves of the initial charge/discharge plots for all samples are displayed in Fig.S7 (Supporting information).The two anodic peaks located around 4 V and 4.5 V correspond to the oxidation of TM ions and lattice oxygen [56].During the first discharge process,there is a weak reduction peak around 4.3 V,which is considered to the reduction of Ni4+.The reduction peak of Co3+/Co4+couple is located at 3.7 V [26].The distinct reduction peak below 3.5 V is derived from the reduction of Mn4+,which compensates for the charge loss due to the irreversible oxidation of lattice oxygen [57].The intensities of the anodic peak of lattice oxygen and the reduction peak of Mn4+/Mn3+redox gradually decrease with the increase of Ti4+amount,indicating that the strong Ti-O bonding alleviates the oxygen release and decreases the reduction of Mn4+,which contributes to the stable structure in Li1.2Mn0.54Ni0.13Co0.13O2.The cyclic voltammetry (CV) was employed to further determine the influence of Ti-substitution for electrochemical performance.As shown in Fig.4c,the CV plots in the initial cycle for Ti-0 and Ti-5% possess the same electrochemical trend (Fig.S7).The oxidation peak of lattice oxygen for Ti-5% is located at 4.58 V,and the peak for Ti-0 is at 4.63 V.The oxidation peak shifts to the lower voltage position after introducing Ti-substitution,which implies that the redox of oxygen becomes easier [45].The oxidation peak above 4.5 V disappears and a new oxidation peak (3.7-4.2 V) appears in the second cycle,which is related to the oxidation for Ni2+and Co3+.In the second CV for Ti-0,the slight reduction peak (~2.5 V)corresponds to the short plateau in the second discharge curve(Fig.4a),revealing that the layered structure of Ti-0 changes during cycling progresses.This result can also be evidenced by the CV plots in Fig.S8 (Supporting information).The potential interval value (ΔV) between oxidation and reduction peaks can reflect the polarization and electrochemical reversibility of samples [58].In Fig.4c and Fig.S8 (Supporting information),the values ofΔVfor Ti-0 and Ti-5% are 0.28 V and 0.269 V,respectively.The smallerΔV reflects the lower polarization associated with the Li+diffusion.Thereby,Ti-5% shows a better electrochemical reversibility and smaller polarizability.

    Fig.4d shows the cycling performance of four samples at the current density of 200 mA/g.Ti-0 delivers the initial discharge capacity of 194.1 mAh/g with a decreased capacity retention rate of 75.37%.Compared with Ti-0,the discharge capacity of Ti-2.5%,Ti-5% and Ti-7.5% is 172.0,175.7 and 152.9 mAh/g after 100 cycles,corresponding to the capacity retention rate of 85.82%,87.28% and 85.39%,respectively.The Ti-5% sample exhibits the best cycling stability,which corresponds to the analysis result of CV plots.Fig.4e displays the rate performance of four samples at the current density of 20,50,100,200,500,1000,2000,50 mA/g.Ti-0 delivers the discharge capacity of 233.4,181.9,150.8,126.3,97.3,76.8,54.3,167.6 mAh/g.Ti-5% exhibits an improved rate performance than Ti-0 with a capacity of 245.3,191.5,165.2,143.1,113.7,87.5,56.5,181.3 mAh/g,respectively.However,Ti-7.5% achieves a decreased discharge capacity from 222.8 mAh/g to 39.9 mAh/g.The results suggest that the appropriate amount of Ti-substitution can expand the layer spacing to facilitate Li+diffusion,maintain the structure stability to alleviate the phase transformation,contributing to the improved cycling and rate performance.However,excess Ti4+will hinder the reversible migration of Li+and cause the large capacity loss.

    In order to validate that Ti-substitution is beneficial to stabilize lattice structure and improve cycling property.Fig.5 compares the structure and chemical valence changes of the pristine and Ti-substitution materials after 100 cycles.As shown in Fig.5a,the characteristic peaks of XRD patterns are attributed to the layered structure.A value ofI(003)/I(104)above 1.2 can reflect the wellordered layered structure as reported [26].The value ofI(003)/I(104)is 1.72,1.86,2.09 and 2.01 for Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%,respectively,which implies that the good layered structure is maintained after 100 cycles.In addition,the value ofI(003)/I(104)determines the degree of TM ions mixing in Li slabs [59].The value ofI(003)/I(104)in Ti-5% (2.09) becomes higher compared to Ti-0,indicating that Ti-substitution can reduce ion mixing of materials after cycle.While theI(003)/I(104)of Ti-7.5% is lower than that of Ti-5%due to the excess Ti increasing the degree of ion mixing.The XRD patterns before and after 100 cycles are shown in Fig.S9 (Supporting information).It is obvious that the characteristic peaks shift to smaller 2θbecomes sluggish after 100 cycles with the increase of Ti4+,suggesting that Ti-substitution can weaken the distortion of lattice structure in the cycling process.In addition,XPS was used to investigate the composition for Ti-5% and Ti-0 samples after 100 cycles (Figs.5b-d).The characteristic peaks (533.3 eV) of O 1s for Ti-0 and Ti-5% after 100 cycles are attributed to organic species of oxygen containing groups in SEI (Fig.5b) [60].The characteristic peak of metal-oxygen weakens and the peak of Li2CO3becomes greater after 100 cycles (Figs.5b and 3a).The relative content of metal-oxygen in Ti-5% is higher than that in Ti-0,implying stronger metal-oxygen in Ti-substitution samples.Fig.5c shows that the Mn3+content of Ti-5% is less than Ti-0,and the Mn3+relative content of Ti-5% and Ti-0 before 100 cycles (Fig.3c) is 25.42% and 16.52%,respectively.The difference of Mn 2p1/2and 2p3/2peaks for Ti-5% and Ti-0 samples illustrates decreased Mn3+during cycling process,which is associated with the Ti4+substitution.These findings confirm that Ti4+inhibits the release of lattice oxygen and avoids the reduction of more Mn4+.Comparing with Ni 2p spectra before 100 cycles (Fig.3d),the characteristic peaks of Ni 2p3/2and Ni 2p1/2for Ti-5% and Ti-0 slightly drift to higher binding energy(Fig.5d),suggesting that Ni is not completely reduced during discharge process [61].The Ni3+relative content for Ti-5% is greater and the degree of Li+/Ni2+mixing is lower,which is fitted well with the XRD results.The characteristic peaks of Ti 2p barely shift after 100 cycles (Fig.S10 in Supporting information) due to the stability of Ti in material structure.Fig.S11 (Supporting information)shows the morphology and structure of all the samples after 100 cycles.The grains severely crushed and the particles agglomerated in Ti-0 sample.The grains of Ti-2.5% and Ti-5% samples remain intact,while the particle flatness decreases for Ti-7.5%.These results demonstrate that the appropriate amount of Ti-substitution effectively maintains the structure integrity,therefore contributing to the improved cycle life of materials.

    Fig.5.(a) The XRD patterns of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5% after 100 cycles.The high-resolution XPS spectra of (b) O 1s,(c) Mn 2p,and (d) Ni 2p for Ti-0 and Ti-5%after 100 cycles.

    In summary,the Ti-substitution LLMs Li1.2(Mn0.54Ni0.13Co0.13)(1-x)TixO2(x=0,2.5%,5%,7.5%) are successfully synthesized by a simple solid-state sintering method.The effects of Ti-substitution on structure stability,inhibition of lattice oxygen release,and improvement of electrochemical performance of LLMs are verified in depth by a series of characterization and test methods.The designed Ti-substitution can expand layer spacing and maintain a stable structure.Moreover,Ti-substitution increases the Ni3+/Ni2+ratio,inhibits the reduction of Mn4+in cycling process and mitigates the release of lattice oxygen through the regulation of cations and anions (Fig.6).The well-ordered layered cathode materials demonstrate a high discharge specific capacity and good capacity retention of 244.2 mAh/g at 50 mA/g and 87.28% after 100 cycles at 200 mA/g,indicating that the appropriate amount of Ti-substitution accelerates the diffusion rate of Li+and stabilizes the material layered structure,thereby improving the electrochemical performance in LLMs.This study provides a new idea to design a Ti-substitution Li-rich layered cathode materials with an enhanced life span and good reversible capacity retention.

    Fig.6.Schematic illustrations of the Ti-substitution LLMs.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.51972258,22109186).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108308.

    亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 日韩av在线大香蕉| 汤姆久久久久久久影院中文字幕 | a级毛色黄片| 男女国产视频网站| 国产精品无大码| 精品酒店卫生间| 啦啦啦啦在线视频资源| 最近中文字幕高清免费大全6| 久久久久精品久久久久真实原创| 成人毛片a级毛片在线播放| 欧美区成人在线视频| kizo精华| 内地一区二区视频在线| 男人爽女人下面视频在线观看| 日本爱情动作片www.在线观看| 亚洲精品自拍成人| 久久鲁丝午夜福利片| 尤物成人国产欧美一区二区三区| 精品一区二区三区视频在线| 成人漫画全彩无遮挡| 亚洲av.av天堂| 日韩一本色道免费dvd| 亚洲无线观看免费| 99久久人妻综合| 熟女人妻精品中文字幕| 日日摸夜夜添夜夜爱| 一级毛片 在线播放| 身体一侧抽搐| 日韩欧美一区视频在线观看 | 国精品久久久久久国模美| 婷婷六月久久综合丁香| 国产高清不卡午夜福利| 国产精品麻豆人妻色哟哟久久 | 亚洲国产日韩欧美精品在线观看| 午夜爱爱视频在线播放| 久久久精品欧美日韩精品| 午夜视频国产福利| 亚洲精品456在线播放app| 在线观看免费高清a一片| 99热网站在线观看| 男女边摸边吃奶| 国产精品一区二区在线观看99 | 中文字幕av在线有码专区| 国产乱来视频区| 久99久视频精品免费| 卡戴珊不雅视频在线播放| 又粗又硬又长又爽又黄的视频| 五月伊人婷婷丁香| 久久久亚洲精品成人影院| 熟妇人妻久久中文字幕3abv| 小蜜桃在线观看免费完整版高清| 伊人久久国产一区二区| 狠狠精品人妻久久久久久综合| 国产在视频线精品| 韩国av在线不卡| 国产一级毛片七仙女欲春2| av专区在线播放| 嘟嘟电影网在线观看| 在线 av 中文字幕| 大香蕉97超碰在线| 精品久久久精品久久久| 亚洲国产精品专区欧美| 色网站视频免费| 国产 一区 欧美 日韩| 亚洲av免费高清在线观看| 美女大奶头视频| 成年女人看的毛片在线观看| 午夜免费男女啪啪视频观看| av女优亚洲男人天堂| 国产午夜精品久久久久久一区二区三区| 人体艺术视频欧美日本| 啦啦啦韩国在线观看视频| 在线免费观看不下载黄p国产| 偷拍熟女少妇极品色| 国产精品国产三级国产av玫瑰| 免费观看在线日韩| 亚洲国产日韩欧美精品在线观看| 午夜久久久久精精品| 51国产日韩欧美| 欧美性感艳星| 久久国产乱子免费精品| av福利片在线观看| 亚洲国产日韩欧美精品在线观看| 男人狂女人下面高潮的视频| 超碰av人人做人人爽久久| 蜜臀久久99精品久久宅男| 国产精品久久久久久久电影| 免费观看精品视频网站| 国产成人aa在线观看| 一夜夜www| av免费观看日本| 2022亚洲国产成人精品| 国产午夜精品久久久久久一区二区三区| 日本-黄色视频高清免费观看| 超碰97精品在线观看| 欧美日韩国产mv在线观看视频 | 久久99热这里只频精品6学生| 草草在线视频免费看| 我的老师免费观看完整版| 欧美激情国产日韩精品一区| 亚洲av在线观看美女高潮| 最后的刺客免费高清国语| 亚洲av成人av| 男女下面进入的视频免费午夜| 国产成人精品久久久久久| 亚洲无线观看免费| 亚洲美女搞黄在线观看| 国产精品美女特级片免费视频播放器| 免费观看无遮挡的男女| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 国产视频内射| 国产色婷婷99| 熟女电影av网| 国产精品美女特级片免费视频播放器| 日韩中字成人| 国产毛片a区久久久久| 成人欧美大片| 在线观看人妻少妇| 午夜久久久久精精品| 小蜜桃在线观看免费完整版高清| 少妇高潮的动态图| .国产精品久久| 日本免费在线观看一区| 欧美精品一区二区大全| 婷婷六月久久综合丁香| 美女xxoo啪啪120秒动态图| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 成人欧美大片| 国产男女超爽视频在线观看| 亚洲欧美精品自产自拍| 日韩欧美精品v在线| 婷婷色综合大香蕉| 婷婷六月久久综合丁香| av免费在线看不卡| 久久精品综合一区二区三区| or卡值多少钱| 亚洲精品视频女| 日韩精品有码人妻一区| 中文精品一卡2卡3卡4更新| av免费观看日本| av福利片在线观看| 看免费成人av毛片| 狠狠精品人妻久久久久久综合| 久久久久精品性色| 精品久久国产蜜桃| 亚洲精品成人久久久久久| 国产黄片美女视频| 特大巨黑吊av在线直播| 搡老妇女老女人老熟妇| 最新中文字幕久久久久| 国产精品一区二区在线观看99 | 最后的刺客免费高清国语| 国产精品av视频在线免费观看| 精品熟女少妇av免费看| 男女那种视频在线观看| 少妇熟女欧美另类| 欧美成人一区二区免费高清观看| av一本久久久久| 日韩三级伦理在线观看| 国产极品天堂在线| www.av在线官网国产| 国产一区有黄有色的免费视频 | 天天躁日日操中文字幕| 91久久精品国产一区二区三区| 日韩精品有码人妻一区| 日产精品乱码卡一卡2卡三| 婷婷六月久久综合丁香| 九色成人免费人妻av| 一级毛片电影观看| 午夜免费激情av| 男人和女人高潮做爰伦理| 亚洲人与动物交配视频| 如何舔出高潮| 欧美变态另类bdsm刘玥| 十八禁网站网址无遮挡 | 老司机影院成人| 搡老乐熟女国产| 日本午夜av视频| 少妇丰满av| 91aial.com中文字幕在线观看| 国产黄色免费在线视频| 中文天堂在线官网| 亚洲第一区二区三区不卡| 国产精品1区2区在线观看.| 精品酒店卫生间| 少妇高潮的动态图| 18+在线观看网站| 国产精品不卡视频一区二区| 久久久a久久爽久久v久久| 熟妇人妻不卡中文字幕| 亚洲av不卡在线观看| 男人狂女人下面高潮的视频| a级毛色黄片| 乱系列少妇在线播放| 日本欧美国产在线视频| 久久久色成人| 男插女下体视频免费在线播放| 日本av手机在线免费观看| 久久97久久精品| 国产高清有码在线观看视频| 美女内射精品一级片tv| 成人漫画全彩无遮挡| 精品一区在线观看国产| 国产av不卡久久| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻一区二区三区麻豆| 亚洲精品乱码久久久v下载方式| 伊人久久国产一区二区| 又黄又爽又刺激的免费视频.| 国产在线男女| 99热这里只有是精品50| 免费av观看视频| 日韩一本色道免费dvd| 最近最新中文字幕免费大全7| 噜噜噜噜噜久久久久久91| 天美传媒精品一区二区| 成人午夜高清在线视频| av在线播放精品| 国产成人a∨麻豆精品| 欧美一区二区亚洲| 夫妻午夜视频| 有码 亚洲区| 日韩av免费高清视频| 中文精品一卡2卡3卡4更新| 亚洲精品日韩在线中文字幕| 在线观看一区二区三区| 五月伊人婷婷丁香| 亚洲自偷自拍三级| 少妇丰满av| 我的女老师完整版在线观看| 日韩精品有码人妻一区| 久久国产乱子免费精品| 亚洲av成人av| 欧美成人a在线观看| 人妻少妇偷人精品九色| 久久精品夜色国产| 亚洲一区高清亚洲精品| 一级av片app| 老师上课跳d突然被开到最大视频| 精品久久久久久久久久久久久| 乱码一卡2卡4卡精品| 99久国产av精品| 亚洲av电影不卡..在线观看| 亚洲av在线观看美女高潮| 又爽又黄a免费视频| 久久久a久久爽久久v久久| 亚洲久久久久久中文字幕| 在线观看人妻少妇| 久久久久久久亚洲中文字幕| 中文字幕人妻熟人妻熟丝袜美| av黄色大香蕉| 99热这里只有是精品50| 可以在线观看毛片的网站| 国产伦精品一区二区三区四那| 国产一区二区三区综合在线观看 | 日韩精品青青久久久久久| 日本免费在线观看一区| 亚洲精品aⅴ在线观看| 精品一区二区三区人妻视频| 两个人的视频大全免费| 国产永久视频网站| 午夜日本视频在线| 久久精品国产自在天天线| 少妇丰满av| 亚洲精品乱久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 免费播放大片免费观看视频在线观看| 免费av毛片视频| 男女国产视频网站| 日本爱情动作片www.在线观看| 在线免费十八禁| 国产中年淑女户外野战色| 久久精品久久久久久久性| 99久国产av精品| 国产一区有黄有色的免费视频 | 内地一区二区视频在线| 高清毛片免费看| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久久免费av| 99久久九九国产精品国产免费| 日本免费在线观看一区| 少妇被粗大猛烈的视频| 97在线视频观看| 国产精品精品国产色婷婷| 午夜福利在线观看吧| 能在线免费观看的黄片| 亚洲一区高清亚洲精品| 国产乱人偷精品视频| 一级毛片aaaaaa免费看小| 91狼人影院| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| av播播在线观看一区| 亚洲成人中文字幕在线播放| 精品国产三级普通话版| 2018国产大陆天天弄谢| 欧美另类一区| 丝袜美腿在线中文| 国产亚洲精品久久久com| 亚洲欧美一区二区三区国产| 国产精品一二三区在线看| av黄色大香蕉| 成人一区二区视频在线观看| 亚洲精华国产精华液的使用体验| 亚洲精华国产精华液的使用体验| www.av在线官网国产| 国产成人精品福利久久| 免费观看av网站的网址| freevideosex欧美| 美女主播在线视频| 看非洲黑人一级黄片| 少妇的逼好多水| 久久97久久精品| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 3wmmmm亚洲av在线观看| 在线观看一区二区三区| 深爱激情五月婷婷| 在线免费观看不下载黄p国产| 韩国av在线不卡| 国产综合懂色| 国产在线男女| 精品国产一区二区三区久久久樱花 | 777米奇影视久久| 麻豆国产97在线/欧美| 亚州av有码| 欧美一区二区亚洲| 大片免费播放器 马上看| 国产人妻一区二区三区在| 色尼玛亚洲综合影院| 亚洲久久久久久中文字幕| 国产精品.久久久| 天堂中文最新版在线下载 | 91精品伊人久久大香线蕉| 两个人视频免费观看高清| 一区二区三区免费毛片| 又爽又黄无遮挡网站| 天堂影院成人在线观看| 中文字幕av在线有码专区| 99视频精品全部免费 在线| 午夜日本视频在线| 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 欧美成人一区二区免费高清观看| 国产黄色小视频在线观看| 嫩草影院新地址| 麻豆成人午夜福利视频| 亚洲精品456在线播放app| 国产在视频线在精品| 91精品一卡2卡3卡4卡| 国产av码专区亚洲av| 亚洲精品日韩在线中文字幕| 色综合亚洲欧美另类图片| 国产亚洲午夜精品一区二区久久 | 久久精品熟女亚洲av麻豆精品 | 一夜夜www| 麻豆乱淫一区二区| 日本一本二区三区精品| 亚洲最大成人中文| 国产精品福利在线免费观看| 在线免费观看的www视频| 在线免费观看的www视频| 国产成人免费观看mmmm| 国产国拍精品亚洲av在线观看| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 久久久久免费精品人妻一区二区| 边亲边吃奶的免费视频| 国产不卡一卡二| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 97热精品久久久久久| 偷拍熟女少妇极品色| 性插视频无遮挡在线免费观看| 水蜜桃什么品种好| av黄色大香蕉| 国产成人freesex在线| 国产精品一区二区性色av| 精品久久久久久久久亚洲| 国产精品三级大全| 精品一区二区三区视频在线| 国产精品蜜桃在线观看| 91精品一卡2卡3卡4卡| 日韩,欧美,国产一区二区三区| 日本黄大片高清| 七月丁香在线播放| 观看美女的网站| 成人av在线播放网站| av专区在线播放| 亚洲,欧美,日韩| 日韩中字成人| 成人av在线播放网站| 中文字幕久久专区| 久久热精品热| 美女黄网站色视频| 亚洲国产av新网站| 黄片wwwwww| 日本av手机在线免费观看| 尤物成人国产欧美一区二区三区| 97超碰精品成人国产| 日韩精品有码人妻一区| 两个人视频免费观看高清| a级毛色黄片| 欧美潮喷喷水| 亚洲成人av在线免费| 亚洲怡红院男人天堂| 97热精品久久久久久| 午夜精品国产一区二区电影 | 国产成人91sexporn| 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 欧美潮喷喷水| 中文字幕av成人在线电影| 亚洲内射少妇av| 18禁裸乳无遮挡免费网站照片| 午夜激情欧美在线| 日韩成人伦理影院| 日韩伦理黄色片| 少妇猛男粗大的猛烈进出视频 | 美女xxoo啪啪120秒动态图| 午夜福利视频1000在线观看| 高清在线视频一区二区三区| 欧美区成人在线视频| 精品久久久久久久久av| 亚洲人与动物交配视频| 高清在线视频一区二区三区| 永久免费av网站大全| 亚洲国产欧美人成| 亚洲四区av| 99热这里只有是精品50| 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 男插女下体视频免费在线播放| av在线老鸭窝| 永久免费av网站大全| 一级片'在线观看视频| 麻豆成人午夜福利视频| 联通29元200g的流量卡| 国产一级毛片七仙女欲春2| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97人妻精品一区二区三区麻豆| 国产av国产精品国产| 亚洲国产精品成人久久小说| 在线 av 中文字幕| 天天躁日日操中文字幕| 日日撸夜夜添| 亚洲精品久久久久久婷婷小说| .国产精品久久| 伊人久久精品亚洲午夜| 激情五月婷婷亚洲| 亚洲av一区综合| 亚洲成人一二三区av| 精品少妇黑人巨大在线播放| 只有这里有精品99| 日日干狠狠操夜夜爽| 别揉我奶头 嗯啊视频| 大陆偷拍与自拍| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看| 在线观看人妻少妇| 中文天堂在线官网| 美女主播在线视频| 能在线免费看毛片的网站| 又黄又爽又刺激的免费视频.| 日韩欧美 国产精品| 国产视频首页在线观看| 三级国产精品片| 亚洲色图av天堂| 26uuu在线亚洲综合色| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 国产白丝娇喘喷水9色精品| 最近最新中文字幕免费大全7| 午夜激情欧美在线| 国产亚洲av嫩草精品影院| 中文在线观看免费www的网站| 国内精品美女久久久久久| 国产精品日韩av在线免费观看| 99热6这里只有精品| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频 | 国产精品伦人一区二区| 国产成人午夜福利电影在线观看| av在线观看视频网站免费| 欧美bdsm另类| av在线播放精品| 免费黄网站久久成人精品| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 久久这里只有精品中国| 简卡轻食公司| 久久久欧美国产精品| 国产一区二区在线观看日韩| 嫩草影院入口| videos熟女内射| 午夜福利在线观看免费完整高清在| 国产欧美另类精品又又久久亚洲欧美| 午夜老司机福利剧场| 亚洲三级黄色毛片| 免费看a级黄色片| 国产高清国产精品国产三级 | 看黄色毛片网站| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 99热全是精品| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 99久国产av精品| 成人一区二区视频在线观看| 久久99精品国语久久久| 深爱激情五月婷婷| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 欧美一区二区亚洲| 成年av动漫网址| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图| 男人狂女人下面高潮的视频| av福利片在线观看| 亚洲欧洲日产国产| 在线观看人妻少妇| 久久国产乱子免费精品| 免费在线观看成人毛片| 亚洲av日韩在线播放| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| 午夜福利在线观看吧| 网址你懂的国产日韩在线| 日本爱情动作片www.在线观看| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区 | 日韩精品有码人妻一区| 嫩草影院入口| 69av精品久久久久久| 真实男女啪啪啪动态图| av播播在线观看一区| 天堂俺去俺来也www色官网 | 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx在线观看| 日本三级黄在线观看| 精品久久久久久久久亚洲| 免费看日本二区| 国产三级在线视频| 免费在线观看成人毛片| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 日本一本二区三区精品| 日韩不卡一区二区三区视频在线| 久久久久网色| 少妇熟女aⅴ在线视频| 亚洲怡红院男人天堂| 亚洲人与动物交配视频| .国产精品久久| 国产黄a三级三级三级人| 成年av动漫网址| 22中文网久久字幕| 91精品伊人久久大香线蕉| 欧美日本视频| xxx大片免费视频| 91精品国产九色| 亚洲精品aⅴ在线观看| 亚洲最大成人av| 熟妇人妻不卡中文字幕| av播播在线观看一区| 美女cb高潮喷水在线观看| 国产男女超爽视频在线观看| 国产精品爽爽va在线观看网站| 极品少妇高潮喷水抽搐| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说| 黄色一级大片看看| 嫩草影院新地址| 久久久欧美国产精品| 亚洲av.av天堂| 亚洲国产成人一精品久久久| 国产乱人视频| 国产精品熟女久久久久浪| 看免费成人av毛片| 综合色丁香网| 国产精品人妻久久久久久| 亚洲美女视频黄频| 国产中年淑女户外野战色| av.在线天堂| 毛片一级片免费看久久久久| 亚洲av中文字字幕乱码综合| 在线免费观看的www视频| 午夜激情福利司机影院| 亚洲av中文av极速乱| 日本一二三区视频观看| 国产一区二区三区综合在线观看 | 午夜精品国产一区二区电影 | 久久精品久久精品一区二区三区| 十八禁国产超污无遮挡网站| 五月伊人婷婷丁香| 高清毛片免费看| eeuss影院久久| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看| 一个人观看的视频www高清免费观看| 97超碰精品成人国产| 久久久久久久午夜电影| 成人美女网站在线观看视频|