• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigated lattice distortion and oxygen loss of Li-rich layered cathode materials through anion/cation regulation by Ti4+-substitution

    2024-04-05 02:28:52KaichengZhangYuTianXuanjinChenShanHuZelangJian
    Chinese Chemical Letters 2024年2期

    Kaicheng Zhang,Yu Tian,Xuanjin Chen,Shan Hu ,Zelang Jian

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,School of Materials Science and Engineering,Wuhan University of Technology,Wuhan 430070,China

    Keywords: Lithium-rich layered cathode material Ti-substitution Anion/cation regulation Structural stability Cycling stability

    ABSTRACT Lithium-rich layered cathode material (LLM) can meet the requirement of power lithium-ion energy storage devices due to the great energy density.However,the de/intercalation of Li+ will cause the irreversible loss of lattice oxygen and trigger transition metal (TM) ions migrate to Li+ vacancies,resulting in capacity decay.Here we brought Ti4+ in substitution of TM ions in Li1.2Mn0.54Ni0.13Co0.13O2,which could stabilize structure and expand the layer spacing of LLM.Moreover,optimized Ti-substitution can regulate the anions and cations of LLM,enhance the interaction with lattice oxygen,increase Ni3+ and Co3+,and improve Mn4+ coordination,improving reversibility of oxygen redox activation,maintaining the stable framework and facilitating the Li+ diffusion.Furthermore,we found 5% Ti-substitution sample delivered a high discharge capacity of 244.2 mAh/g at 50 mA/g,an improved cycling stability to 87.3% after 100 cycles and enhanced rate performance.Thereby Ti-substitution gives a new pathway to achieve high reversible cycle retention for LLMs.

    The exploitation of new energy storage application and the development of electric vehicle industry have led to an imperative demand for advanced-performance lithium-ion batteries (LIBs)[1-5].The development of cathode materials stands pivotal position in accelerating the growth of state-of-the-art LIBs [6].At present,commercial layered cathode materials,mainly including LiCoO2and Li[NixCoy(Mn or Al)1-x-y]O2(NCM or NCA) ternary materials,provide less than 200 mAh/g practical specific capacity[7].Lithium-rich layered cathode materials (LLMs),xLi2MnO3·(1-x)LiTMO2(TM=Mn,Ni,Co,etc.) have attracted significant attention due to their high redox potential,high specific capacity (>250 mAh/g) and affordable price,which regards as the preferred cathode materials for LIBs [8-11].

    The high specific capacity of LLMs is derived from the extraction of Li+and oxidation of lattice oxygen in monoclinic Li2MnO3phase [12].Generally,the de/intercalation of Li+from LiTMO2contributes to the capacity at the voltage region lower than 4.4 V,and the Li2MnO3component is “inactive” in this process [13,14].When voltage is charged above 4.4 V,the lattice oxygen is released and Li+is extracted simultaneously from Li2MnO3,resulting in the extra capacity for LLMs [15-17].However,the loss of O2-will induce TM ions to migrate to Li+vacancies,causing phase transformation from layer to spinel structure,which occurs on the surface of LLMs [18,19].The irreversible oxygen evolution and TM ions conversion occur from surface to bulk as cycling,accelerating the capacity degradation,voltage decay and poor rate performance [20-23].Therefore,the challenge for high-performance LLMs is to consolidate the structure and alleviate the oxygen evolution.

    Recently,various attempts have been designed to tackle the unwanted phase transformation and lattice oxygen release to realize practical use of the high-performance LLMs [11-14].Among them,elemental substitution or ion doping has been one of the effective remedies to boost the electrochemical performance of LLMs.These approaches can mitigate voltage decay,stabilize cycling performance and improve rate properties of LLMs by introducing elements into Li or TM layer,such as Na+[24],K+[25],Nb5+[26],Al3+[27],Cr3+[28].Yangetal.synthesized K-doped Li1.232Mn0.615Ni0.154O2material with high rate performance and cycling stability,K+could increase Li layer space to promote the de/intercalation of Li+and constrict the formation of spinel phase[25].Caoetal.synthesized Li1.2-xNax(Co0.13Ni0.13Mn0.54)O2through polymer-pyrolysis strategy,the 3% Na-doped sample provided a higher reversible specific capacity (307 mAh/g),more excellent rate performance (139 mAh/g at 8 C) and cycling property (89% capacity retention after 100 cycles) than the undoped sample [29].In addition,the substitution in TM slab space could increase bonding energy of metal-oxygen and average chemical valence state of Mn ions,resulting in restraining the Jahn-Teller effect,stabilizing the structure of LLMs and improving the electrochemical performance[30,31].Wangetal.found Ti could improve structural stability to suppress voltage fading and improve cycling performance in LLMs,the first-principles analyses indicated Ti-substitution could prevent Mn4+from migrating to Li layer and stabilize the layered structure in materials [32].However,the recent studies mainly focus on the Ti-substitution of Mn or O ions [28-31],the effect of Tisubstitution on the accommodation to the phase transformation and structure integration still lacks further investigation.Therefore,an optimized Ti-substitution should be designed to mitigate the oxygen evolution and maintain the structure integrity,which will be profit to the improved reversible cycling performance and rate properties.

    In this work,we prepared the Ti-substitution LLMs,Li1.2(Mn0.54Ni0.13Co0.13)(1-x)TixO2through simple high-temperature solid-phase method to consolidate structure and mitigate lattice oxygen release,the Ti-substitution addresses the issues of the LLMs and thus enhances the reversible cycling performance and rate properties.In particularly,XPS was carried out to investigate the Ti-substitution effect on the anion-cation regulation and structure stability.The optimized Ti-substitution regulated the structure integrity by increasing the Ti-O bonding to coordinate transition metal ions.The presence of Ti in the LLMs increases the interplanar spacing and suppresses irreversible oxygen evolution,leading to an improved reversible cycling property and rate performance.

    Fig.1 illustrates XRD patterns of four samples.All strong diffraction peaks can be indexed to the layeredα-NaFeO2structure,which belongs to R-3m space group (Fig.1a),and the weak peaks between 20° and 30° correspond to the LiMn6superlattice structure in monoclinic Li2MnO3phase with C2/m space group[33,34].No extra peaks are detected in all samples,which indicates the Ti-substitution does not change the lattice structure.The sharp diffraction peaks show good crystallinity of samples [35].The magnified area of 18°-20° shows that the diffraction peak belonging to(003) plane shifts to lower angles with the increase of Ti content,explaining the larger interplanar spacing [32].The calculated lattice parameters corresponding to the pristine and Ti-substitution samples are summarized in Fig.1b through XRD Rietveld refinements by the one-phase model.The results of Rietveld refinements are shown in Fig.S1 and Table S1 (Supporting information),where LiCo1/3Ni1/3Mn1/3O2is used as reference.The lattice parameters increase with the raise of Ti-substitution,which is consist with XRD patterns (Fig.1a).The value ofc/a(Table S1) can reflect the degree of layered ordering.The values ofc/aexceed 4.9,indicating good layered ordering structures in all samples [36,37].Figs.1c-f display the corresponding SEM images of Ti-substitution samples.The four samples are composed of the non-homogeneous particles in the size range of 200-400 nm,indicating the large surface area.There are large secondary particles formed by agglomeration of nano particles.With the increase of the Ti-substitution,the morphology maintains round shaped nano grains,which demonstrates that Ti-substitution has not significant effect on the surface morphology and grain size.However,excessive Ti-substitution (Ti-7.5%)leads the grains agglomeration with non-uniform distributed.

    Fig.1.(a) XRD patterns and the magnified 2θ range of 18°-20°,and (b) Refined lattice parameters of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.The SEM images of (c) Ti-0,(d) Ti-2.5%,(e) Ti-5%,and (f) Ti-7.5%.

    Fig.2.The HRTEM images alone the [101] zone axis for (a) Ti-0,and (b) Ti-5%.The low magnification (c) and the mapping of Ni (d),Co (e),Mn (f),O (g) and Ti (h) for Ti-5%.

    In order to investigate the structure of Ti-substitution samples,Ti-0 and Ti-5% samples were compared by HRTEM.As shown in Figs.2a and b,thed-spacings in HRTEM images are 0.24 and 0.25 nm,corresponding to (101) planes of Ti-0 and Ti-5%,respectively.The enlarged d-spacing implies that Ti4+exists in the structure of Ti-5% sample.The TEM image and corresponding mapping/energy dispersive X-ray spectrometer (EDS) of Ti-5% are displayed in Figs.2c-h,the grain size is ranged from 200 nm to 400 nm with blurred boundaries,which confirms the SEM results.Furthermore,Ti4+is uniformly dispersed in Ti-substitution samples.Fig.S2 (Supporting information) shows the inductively coupled plasma (ICP) results of Ti-5%,the quantitative results are almost consistent with the designed values.

    To evaluate the chemical valence variation of anions and cations in Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%,X-ray photoelectron spectroscopy (XPS) was employed.Fig.S4 (Supporting information)shows the XPS spectra of Ti 2p,the 2p3/2peak of Ti located at 457.9 eV represents Ti4+[32],which can be detected in all Tisubstitution samples (the results are also presented in Fig.S3 in Supporting information).The peak positions of Ti 2p do not shift and the intensities raise with the increase of Ti-substitution,indicating the stable chemical valence and successful substitution of Ti4+in Ti-substitution LLMs.In the O 1s spectra (Fig.3a),a pair of peaks located at about 529.4 eV and 531.2 eV represent metal-oxygen and residual by-products in the process of materials preparation,respectively [38-42].With the increasing of Ti4+content,the amount of metal-oxygen gradually increases and the byproducts (Li2CO3) decreases.Meanwhile,the characteristic peaks of O 1s slightly shift to the lower energy,which may be derived from the change of metal-oxygen bonding or local environment after Tisubstitution.And the C 1s spectra (Fig.3b) display the peaks of C-C,C-O-C and O-C=O.The characteristic peak of C-C (284.8 eV)is attributed to hydrocarbon contaminants,which usually appears in the analysis chamber [43,44],the other two peaks are derived from carbonate compound impurities [39].From Ti-0 to Ti-7.5%,the relative content of hydrocarbon compounds raises,while the amount of carbonate compound impurities decreases from 50.69%to 42.31%.These results demonstrate that Ti-substitution enhances the strength of metal-oxygen bonding and reduces the content of by-products.It is reported that the 3d0electronic configuration of Ti can coordinate O ligands ionically [45],the enhanced metaloxygen bonding can improve reversibility of lattice oxygen redox.According to the XPS results,Ti-substitution has accelerated bonding effect on TM ions.In Fig.3c,the peaks at 642.9 eV and 641.8 eV are close to the binding energy values of Mn4+and Mn3+[46],the relative amount of Mn3+in Ti-0 (16.52%) is least and that in Ti-7.5% (28.57%) is most.The intensity of Mn4+2p3/2decreases and the intensity of Mn3+2p3/2increases,meaning the average valence of Mn ions decreases,which is related to the charge compensation after Ti-substitution.Although the exist of Mn3+tends to cause Jahn-Teller effect,resulting in the irreversible decrease of Mn ions and the formation of spinel phase [32],Ti4+can stabilize the structure of Ti-substitution materials,not only making it a supporting role in the Mn site,but also maintaining the structure integrity [45].Fig.3d illustrates that the spectra of Ni 2p3/2are fitted with two characteristic peaks,located around 854.8 eV and 856.7 eV,which can be attributed to Ni2+and Ni3+[38-47].It is obvious that the relative content of Ni2+decreases and the content of Ni3+increases after Ti-substitution,and the amount of Ni2+in Ti-7.5% is 18.19% less than that in Ti-0.In addition,the Ni2+peak intensity decreases and the shape broadens after Ti4+enters the structure of materials,which further reveals the low relative amount of Ni2+in Ti-substitution samples.Because the ionic radius of Ni2+(0.69 ?A) is close to that of Li+(0.76 ?A),Ni2+can enter Li layer and occupy vacant sites after Li+extraction.It will hinder the migration channel of Li+,making a low specific capacity and poor cycling performance [48-51].Ti-substitution can effectively reduce the degree of Li+/Ni2+mixing to realize high electrochemical performance for LLMs.The spectra of Co 2p3/2(Fig.S5 in Supporting information) present two peaks of Co2+and Co3+,respectively [52],the main valence state of Co ions in all samples is +3 and Co3+shows an increasing trend with the increase of Ti4+content [53].

    Fig.3.High-resolution XPS spectra for (a) O 1s,(b) C 1s,(c) Mn 2p,and (d) Ni 2p of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.

    Fig.4 illustrates the electrochemical performances of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%.Figs.4a and b show the charge-discharge voltage curves of Ti-0 and Ti-5% at the current density of 50 mA/g,respectively.The charge-discharge curve diagram of Ti-2.5% and Ti-7.5% are displayed in Fig.S6 (Supporting information).The first charge/discharge curves of all samples present two distinct charging plateaus.The smooth slope at around 4 V is the result of the oxidation of Ni2+and Co3+in LiTMO2phase,and the long voltage plateau above 4.5 V is attributed to the migration of Li+and accompanying oxidation of lattice oxygen [54].The redox process for lattice oxygen at 4.5 V is considered in two sections: the reversible oxygen redox (O2-/On-) and the irreversible oxygen release from the surface in LLMs.The irreversible oxygen release will cause the capacity decay in subsequent cycles [11].Since Ti4+keeps constant in the device operation,the initial discharge capacity of the samples is slightly reduced because of Ti-substitution.The initial discharge capacity of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5% is 251.6,238.2,244.2 and 234.6 mAh/g,respectively.It is worth noting that a short plateau (at 2.5 V) exists in the subsequent charge/discharge curves of Ti-0,which attributes to the redox of Mn4+/Mn3+in the vicinity of the spinel phase region [55].This means that the structure of Ti-0 is easily changed and the electrochemical performance will be diminished during the cycling process.The short discharge plateau corresponding to Mn4+/Mn3+couple is not displayed in the charge/discharge curves of Ti-substitution samples (Fig.4b and Fig.S6).In comparison,Ti-5% sample maintains a stable capacity retention as large as 99.76% after 10 cycles.

    Fig.4.The 1st,2nd and 10th charge-discharge voltage profiles of (a) Ti-0,and (b) Ti-5% at 50 mA/g.(c) CV curves of Ti-0 and Ti-5% in the first two cycles at the scan rate of 0.1 mV/s.The cycling performance (d) at 200 mA/g and rate properties (e) for all samples.

    To analyze the influence of Ti-substitution on the electrochemical behavior of Li1.2Mn0.54Ni0.13Co0.13O2,the dQ/dVcurves of the initial charge/discharge plots for all samples are displayed in Fig.S7 (Supporting information).The two anodic peaks located around 4 V and 4.5 V correspond to the oxidation of TM ions and lattice oxygen [56].During the first discharge process,there is a weak reduction peak around 4.3 V,which is considered to the reduction of Ni4+.The reduction peak of Co3+/Co4+couple is located at 3.7 V [26].The distinct reduction peak below 3.5 V is derived from the reduction of Mn4+,which compensates for the charge loss due to the irreversible oxidation of lattice oxygen [57].The intensities of the anodic peak of lattice oxygen and the reduction peak of Mn4+/Mn3+redox gradually decrease with the increase of Ti4+amount,indicating that the strong Ti-O bonding alleviates the oxygen release and decreases the reduction of Mn4+,which contributes to the stable structure in Li1.2Mn0.54Ni0.13Co0.13O2.The cyclic voltammetry (CV) was employed to further determine the influence of Ti-substitution for electrochemical performance.As shown in Fig.4c,the CV plots in the initial cycle for Ti-0 and Ti-5% possess the same electrochemical trend (Fig.S7).The oxidation peak of lattice oxygen for Ti-5% is located at 4.58 V,and the peak for Ti-0 is at 4.63 V.The oxidation peak shifts to the lower voltage position after introducing Ti-substitution,which implies that the redox of oxygen becomes easier [45].The oxidation peak above 4.5 V disappears and a new oxidation peak (3.7-4.2 V) appears in the second cycle,which is related to the oxidation for Ni2+and Co3+.In the second CV for Ti-0,the slight reduction peak (~2.5 V)corresponds to the short plateau in the second discharge curve(Fig.4a),revealing that the layered structure of Ti-0 changes during cycling progresses.This result can also be evidenced by the CV plots in Fig.S8 (Supporting information).The potential interval value (ΔV) between oxidation and reduction peaks can reflect the polarization and electrochemical reversibility of samples [58].In Fig.4c and Fig.S8 (Supporting information),the values ofΔVfor Ti-0 and Ti-5% are 0.28 V and 0.269 V,respectively.The smallerΔV reflects the lower polarization associated with the Li+diffusion.Thereby,Ti-5% shows a better electrochemical reversibility and smaller polarizability.

    Fig.4d shows the cycling performance of four samples at the current density of 200 mA/g.Ti-0 delivers the initial discharge capacity of 194.1 mAh/g with a decreased capacity retention rate of 75.37%.Compared with Ti-0,the discharge capacity of Ti-2.5%,Ti-5% and Ti-7.5% is 172.0,175.7 and 152.9 mAh/g after 100 cycles,corresponding to the capacity retention rate of 85.82%,87.28% and 85.39%,respectively.The Ti-5% sample exhibits the best cycling stability,which corresponds to the analysis result of CV plots.Fig.4e displays the rate performance of four samples at the current density of 20,50,100,200,500,1000,2000,50 mA/g.Ti-0 delivers the discharge capacity of 233.4,181.9,150.8,126.3,97.3,76.8,54.3,167.6 mAh/g.Ti-5% exhibits an improved rate performance than Ti-0 with a capacity of 245.3,191.5,165.2,143.1,113.7,87.5,56.5,181.3 mAh/g,respectively.However,Ti-7.5% achieves a decreased discharge capacity from 222.8 mAh/g to 39.9 mAh/g.The results suggest that the appropriate amount of Ti-substitution can expand the layer spacing to facilitate Li+diffusion,maintain the structure stability to alleviate the phase transformation,contributing to the improved cycling and rate performance.However,excess Ti4+will hinder the reversible migration of Li+and cause the large capacity loss.

    In order to validate that Ti-substitution is beneficial to stabilize lattice structure and improve cycling property.Fig.5 compares the structure and chemical valence changes of the pristine and Ti-substitution materials after 100 cycles.As shown in Fig.5a,the characteristic peaks of XRD patterns are attributed to the layered structure.A value ofI(003)/I(104)above 1.2 can reflect the wellordered layered structure as reported [26].The value ofI(003)/I(104)is 1.72,1.86,2.09 and 2.01 for Ti-0,Ti-2.5%,Ti-5% and Ti-7.5%,respectively,which implies that the good layered structure is maintained after 100 cycles.In addition,the value ofI(003)/I(104)determines the degree of TM ions mixing in Li slabs [59].The value ofI(003)/I(104)in Ti-5% (2.09) becomes higher compared to Ti-0,indicating that Ti-substitution can reduce ion mixing of materials after cycle.While theI(003)/I(104)of Ti-7.5% is lower than that of Ti-5%due to the excess Ti increasing the degree of ion mixing.The XRD patterns before and after 100 cycles are shown in Fig.S9 (Supporting information).It is obvious that the characteristic peaks shift to smaller 2θbecomes sluggish after 100 cycles with the increase of Ti4+,suggesting that Ti-substitution can weaken the distortion of lattice structure in the cycling process.In addition,XPS was used to investigate the composition for Ti-5% and Ti-0 samples after 100 cycles (Figs.5b-d).The characteristic peaks (533.3 eV) of O 1s for Ti-0 and Ti-5% after 100 cycles are attributed to organic species of oxygen containing groups in SEI (Fig.5b) [60].The characteristic peak of metal-oxygen weakens and the peak of Li2CO3becomes greater after 100 cycles (Figs.5b and 3a).The relative content of metal-oxygen in Ti-5% is higher than that in Ti-0,implying stronger metal-oxygen in Ti-substitution samples.Fig.5c shows that the Mn3+content of Ti-5% is less than Ti-0,and the Mn3+relative content of Ti-5% and Ti-0 before 100 cycles (Fig.3c) is 25.42% and 16.52%,respectively.The difference of Mn 2p1/2and 2p3/2peaks for Ti-5% and Ti-0 samples illustrates decreased Mn3+during cycling process,which is associated with the Ti4+substitution.These findings confirm that Ti4+inhibits the release of lattice oxygen and avoids the reduction of more Mn4+.Comparing with Ni 2p spectra before 100 cycles (Fig.3d),the characteristic peaks of Ni 2p3/2and Ni 2p1/2for Ti-5% and Ti-0 slightly drift to higher binding energy(Fig.5d),suggesting that Ni is not completely reduced during discharge process [61].The Ni3+relative content for Ti-5% is greater and the degree of Li+/Ni2+mixing is lower,which is fitted well with the XRD results.The characteristic peaks of Ti 2p barely shift after 100 cycles (Fig.S10 in Supporting information) due to the stability of Ti in material structure.Fig.S11 (Supporting information)shows the morphology and structure of all the samples after 100 cycles.The grains severely crushed and the particles agglomerated in Ti-0 sample.The grains of Ti-2.5% and Ti-5% samples remain intact,while the particle flatness decreases for Ti-7.5%.These results demonstrate that the appropriate amount of Ti-substitution effectively maintains the structure integrity,therefore contributing to the improved cycle life of materials.

    Fig.5.(a) The XRD patterns of Ti-0,Ti-2.5%,Ti-5% and Ti-7.5% after 100 cycles.The high-resolution XPS spectra of (b) O 1s,(c) Mn 2p,and (d) Ni 2p for Ti-0 and Ti-5%after 100 cycles.

    In summary,the Ti-substitution LLMs Li1.2(Mn0.54Ni0.13Co0.13)(1-x)TixO2(x=0,2.5%,5%,7.5%) are successfully synthesized by a simple solid-state sintering method.The effects of Ti-substitution on structure stability,inhibition of lattice oxygen release,and improvement of electrochemical performance of LLMs are verified in depth by a series of characterization and test methods.The designed Ti-substitution can expand layer spacing and maintain a stable structure.Moreover,Ti-substitution increases the Ni3+/Ni2+ratio,inhibits the reduction of Mn4+in cycling process and mitigates the release of lattice oxygen through the regulation of cations and anions (Fig.6).The well-ordered layered cathode materials demonstrate a high discharge specific capacity and good capacity retention of 244.2 mAh/g at 50 mA/g and 87.28% after 100 cycles at 200 mA/g,indicating that the appropriate amount of Ti-substitution accelerates the diffusion rate of Li+and stabilizes the material layered structure,thereby improving the electrochemical performance in LLMs.This study provides a new idea to design a Ti-substitution Li-rich layered cathode materials with an enhanced life span and good reversible capacity retention.

    Fig.6.Schematic illustrations of the Ti-substitution LLMs.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.51972258,22109186).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108308.

    日韩欧美免费精品| 欧美精品高潮呻吟av久久| 秋霞在线观看毛片| 超碰成人久久| 亚洲精品av麻豆狂野| 中文精品一卡2卡3卡4更新| 99热网站在线观看| 热99re8久久精品国产| 成人黄色视频免费在线看| 亚洲激情五月婷婷啪啪| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久男人| 亚洲,欧美精品.| 人人妻,人人澡人人爽秒播| 在线亚洲精品国产二区图片欧美| 性色av一级| 欧美日韩av久久| 欧美人与性动交α欧美软件| 午夜福利影视在线免费观看| 国精品久久久久久国模美| 青青草视频在线视频观看| 中国国产av一级| 日本av手机在线免费观看| 王馨瑶露胸无遮挡在线观看| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 侵犯人妻中文字幕一二三四区| 欧美国产精品va在线观看不卡| av电影中文网址| 日韩免费高清中文字幕av| 国产免费视频播放在线视频| 国产精品一区二区在线不卡| √禁漫天堂资源中文www| 一本色道久久久久久精品综合| 操美女的视频在线观看| 在线av久久热| 亚洲伊人久久精品综合| 美女主播在线视频| 精品国产乱码久久久久久小说| 99热国产这里只有精品6| 日本a在线网址| 精品亚洲乱码少妇综合久久| 人妻人人澡人人爽人人| 国产99久久九九免费精品| 美女主播在线视频| 一进一出抽搐动态| 桃花免费在线播放| 国产成人免费观看mmmm| 国产精品亚洲av一区麻豆| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品94久久精品| 青春草亚洲视频在线观看| 久久午夜综合久久蜜桃| av在线播放精品| 亚洲av片天天在线观看| 99九九在线精品视频| 亚洲欧美清纯卡通| 99久久人妻综合| 欧美 亚洲 国产 日韩一| 精品卡一卡二卡四卡免费| 最新在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 五月天丁香电影| 天堂8中文在线网| 2018国产大陆天天弄谢| 国产精品欧美亚洲77777| 99久久精品国产亚洲精品| 国产欧美日韩综合在线一区二区| 免费高清在线观看视频在线观看| 免费看十八禁软件| 啪啪无遮挡十八禁网站| 中亚洲国语对白在线视频| 久久九九热精品免费| 国产国语露脸激情在线看| 在线av久久热| av天堂久久9| 精品第一国产精品| 丝袜美足系列| 在线 av 中文字幕| 亚洲成人免费电影在线观看| 亚洲精品在线美女| 秋霞在线观看毛片| 97精品久久久久久久久久精品| 国产精品一二三区在线看| 国产精品久久久久久精品古装| 久久国产精品影院| 亚洲精品第二区| 精品少妇一区二区三区视频日本电影| av电影中文网址| 一本大道久久a久久精品| 午夜91福利影院| 久久综合国产亚洲精品| 大片免费播放器 马上看| 人妻人人澡人人爽人人| 精品高清国产在线一区| 热re99久久国产66热| av不卡在线播放| 在线十欧美十亚洲十日本专区| 一本综合久久免费| 青青草视频在线视频观看| 精品久久蜜臀av无| 亚洲av男天堂| 亚洲欧洲精品一区二区精品久久久| 成人18禁高潮啪啪吃奶动态图| 午夜免费鲁丝| 国产免费视频播放在线视频| 午夜免费鲁丝| 窝窝影院91人妻| 亚洲色图综合在线观看| 欧美少妇被猛烈插入视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费福利视频在线观看| 两个人免费观看高清视频| 男人舔女人的私密视频| 乱人伦中国视频| 国产一区有黄有色的免费视频| 91麻豆精品激情在线观看国产 | 精品久久久久久久毛片微露脸 | 免费人妻精品一区二区三区视频| 久久精品久久久久久噜噜老黄| 在线观看免费日韩欧美大片| 制服诱惑二区| 久久久久久亚洲精品国产蜜桃av| 中国国产av一级| 精品高清国产在线一区| 亚洲av片天天在线观看| 热re99久久国产66热| 男女国产视频网站| 大片电影免费在线观看免费| 亚洲欧洲日产国产| 淫妇啪啪啪对白视频 | 久久精品亚洲熟妇少妇任你| 我要看黄色一级片免费的| a 毛片基地| 国产日韩欧美视频二区| 成人国产一区最新在线观看| 午夜免费成人在线视频| 日本欧美视频一区| 国产一区有黄有色的免费视频| 亚洲av日韩精品久久久久久密| 精品福利永久在线观看| 精品一区二区三区四区五区乱码| 9色porny在线观看| 下体分泌物呈黄色| tube8黄色片| 一区福利在线观看| 国产精品.久久久| av网站免费在线观看视频| 午夜精品久久久久久毛片777| 欧美中文综合在线视频| 黑人欧美特级aaaaaa片| 欧美精品啪啪一区二区三区 | 色老头精品视频在线观看| 少妇粗大呻吟视频| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 桃红色精品国产亚洲av| 精品久久蜜臀av无| 青青草视频在线视频观看| 国产在视频线精品| 在线 av 中文字幕| 亚洲精品一区蜜桃| 成年人免费黄色播放视频| 精品免费久久久久久久清纯 | 国产日韩欧美视频二区| 日韩 亚洲 欧美在线| 精品少妇一区二区三区视频日本电影| 韩国高清视频一区二区三区| 免费在线观看影片大全网站| 天天躁狠狠躁夜夜躁狠狠躁| 黑丝袜美女国产一区| 国产av又大| 成人三级做爰电影| 在线观看免费高清a一片| 亚洲熟女毛片儿| 亚洲自偷自拍图片 自拍| 成年人午夜在线观看视频| 国产成人精品久久二区二区免费| 咕卡用的链子| 亚洲精品国产区一区二| tube8黄色片| 人人妻人人爽人人添夜夜欢视频| 日韩,欧美,国产一区二区三区| 最近最新中文字幕大全免费视频| 国产一区二区三区av在线| 亚洲国产中文字幕在线视频| 国产成人精品久久二区二区免费| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 99精品欧美一区二区三区四区| 大型av网站在线播放| 性少妇av在线| 午夜免费鲁丝| 动漫黄色视频在线观看| 日本欧美视频一区| 亚洲精品美女久久av网站| 国产亚洲精品久久久久5区| 在线观看免费日韩欧美大片| 成人国语在线视频| 精品国产国语对白av| 成年av动漫网址| 精品少妇黑人巨大在线播放| 欧美xxⅹ黑人| 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 少妇粗大呻吟视频| 国产主播在线观看一区二区| 啪啪无遮挡十八禁网站| 成年女人毛片免费观看观看9 | 美女视频免费永久观看网站| 啦啦啦免费观看视频1| 久久久久久亚洲精品国产蜜桃av| 欧美黄色淫秽网站| 精品卡一卡二卡四卡免费| 久久久精品区二区三区| 美女高潮喷水抽搐中文字幕| 最新的欧美精品一区二区| 欧美一级毛片孕妇| 国产免费一区二区三区四区乱码| 久久精品亚洲熟妇少妇任你| videos熟女内射| 人妻一区二区av| 久久国产精品大桥未久av| 热99re8久久精品国产| 多毛熟女@视频| 国产视频一区二区在线看| 高清视频免费观看一区二区| 最近最新中文字幕大全免费视频| 人人妻人人澡人人看| 久久久精品94久久精品| 一本大道久久a久久精品| 国产视频一区二区在线看| 青春草视频在线免费观看| 国产精品二区激情视频| 嫁个100分男人电影在线观看| 久久久精品国产亚洲av高清涩受| 青青草视频在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美精品av麻豆av| 一本久久精品| 国产欧美日韩一区二区三区在线| 久久精品aⅴ一区二区三区四区| 在线永久观看黄色视频| 亚洲成av片中文字幕在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲五月婷婷丁香| 国产麻豆69| 久久热在线av| 国产精品一区二区精品视频观看| 涩涩av久久男人的天堂| www.999成人在线观看| 日韩欧美免费精品| 国产精品成人在线| 丁香六月欧美| 国产一级毛片在线| 亚洲成av片中文字幕在线观看| 国产精品成人在线| 丰满迷人的少妇在线观看| 亚洲精品国产区一区二| 人妻一区二区av| 亚洲av国产av综合av卡| 我的亚洲天堂| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 国产av精品麻豆| 亚洲伊人久久精品综合| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 五月开心婷婷网| 一区二区av电影网| 国产av国产精品国产| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 久久精品亚洲av国产电影网| 国产成人精品久久二区二区免费| 免费黄频网站在线观看国产| 电影成人av| 久久国产精品人妻蜜桃| 欧美精品亚洲一区二区| 久久久精品免费免费高清| 国产成人av教育| 在线观看舔阴道视频| 欧美日韩黄片免| 国产一区二区激情短视频 | 午夜激情av网站| 欧美变态另类bdsm刘玥| 亚洲精品久久久久久婷婷小说| 黑人猛操日本美女一级片| 亚洲精品国产区一区二| 捣出白浆h1v1| 黄色片一级片一级黄色片| 精品国内亚洲2022精品成人 | av有码第一页| 久久精品亚洲av国产电影网| 久久青草综合色| 亚洲国产成人一精品久久久| 深夜精品福利| 18在线观看网站| 91老司机精品| 性色av一级| 欧美激情极品国产一区二区三区| 麻豆国产av国片精品| 9色porny在线观看| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 欧美另类亚洲清纯唯美| 国产精品国产三级国产专区5o| 久久精品国产亚洲av香蕉五月 | 五月天丁香电影| avwww免费| 电影成人av| 国产一区二区 视频在线| 麻豆乱淫一区二区| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 国产成人啪精品午夜网站| 一本久久精品| 国产欧美日韩一区二区三区在线| 午夜福利在线免费观看网站| 嫁个100分男人电影在线观看| 夫妻午夜视频| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 久久国产精品大桥未久av| 99久久国产精品久久久| 我的亚洲天堂| 亚洲少妇的诱惑av| 国产精品一区二区在线观看99| 日本av免费视频播放| www.熟女人妻精品国产| 九色亚洲精品在线播放| 韩国精品一区二区三区| 啦啦啦 在线观看视频| 亚洲欧美成人综合另类久久久| 看免费av毛片| 婷婷成人精品国产| 亚洲男人天堂网一区| 国产熟女午夜一区二区三区| 国产一区二区 视频在线| 亚洲精品中文字幕在线视频| 国产精品av久久久久免费| 人人妻人人澡人人看| 午夜福利视频精品| 国产在线一区二区三区精| 狠狠狠狠99中文字幕| 国产片内射在线| 91字幕亚洲| 日本黄色日本黄色录像| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美精品济南到| 国产av国产精品国产| 久久人人97超碰香蕉20202| 狠狠婷婷综合久久久久久88av| 亚洲第一欧美日韩一区二区三区 | 性少妇av在线| 欧美激情久久久久久爽电影 | 国产精品熟女久久久久浪| 亚洲少妇的诱惑av| 老司机影院毛片| bbb黄色大片| 不卡av一区二区三区| 人妻 亚洲 视频| 久久99一区二区三区| 午夜免费鲁丝| 少妇粗大呻吟视频| 黄色视频不卡| 桃花免费在线播放| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 69av精品久久久久久 | 国产一区二区 视频在线| 成年av动漫网址| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 国产伦人伦偷精品视频| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 一级片免费观看大全| 丝袜美足系列| 久久狼人影院| 国产一区二区在线观看av| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 久久青草综合色| 成年动漫av网址| 亚洲人成电影免费在线| a级毛片黄视频| 国产精品自产拍在线观看55亚洲 | 热99久久久久精品小说推荐| 亚洲精品自拍成人| 热re99久久国产66热| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 午夜福利视频精品| av欧美777| 热99re8久久精品国产| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 国产99久久九九免费精品| 精品一区二区三卡| 免费观看a级毛片全部| 亚洲欧美清纯卡通| 久久久久精品人妻al黑| 法律面前人人平等表现在哪些方面 | 极品少妇高潮喷水抽搐| 又大又爽又粗| 亚洲国产欧美网| 亚洲久久久国产精品| 熟女少妇亚洲综合色aaa.| 日韩制服丝袜自拍偷拍| 久久精品亚洲av国产电影网| 色婷婷久久久亚洲欧美| 亚洲中文av在线| 精品第一国产精品| 少妇精品久久久久久久| 亚洲精品美女久久久久99蜜臀| 久久久久视频综合| 亚洲中文字幕日韩| 日韩视频一区二区在线观看| 国产高清国产精品国产三级| 97在线人人人人妻| 久久精品亚洲av国产电影网| av电影中文网址| 久久毛片免费看一区二区三区| 超色免费av| 久久青草综合色| 亚洲精品一区蜜桃| 两性夫妻黄色片| 热re99久久国产66热| 男女无遮挡免费网站观看| 青草久久国产| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 久久久久视频综合| 动漫黄色视频在线观看| 亚洲精华国产精华精| 亚洲av片天天在线观看| 午夜福利,免费看| 久久久久精品国产欧美久久久 | 国产不卡av网站在线观看| 成人国语在线视频| 狂野欧美激情性bbbbbb| 视频区欧美日本亚洲| 成人影院久久| 午夜福利视频在线观看免费| 一区在线观看完整版| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 99久久精品国产亚洲精品| 一二三四在线观看免费中文在| 成在线人永久免费视频| av在线播放精品| 亚洲精品一二三| 可以免费在线观看a视频的电影网站| av天堂在线播放| 欧美日韩视频精品一区| 亚洲欧美激情在线| 汤姆久久久久久久影院中文字幕| 国产免费一区二区三区四区乱码| 一区二区三区激情视频| 久久久国产精品麻豆| 亚洲成av片中文字幕在线观看| 成人亚洲精品一区在线观看| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 又大又爽又粗| 99国产精品99久久久久| 久久久精品免费免费高清| 三级毛片av免费| 九色亚洲精品在线播放| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 亚洲伊人色综图| 久久精品亚洲av国产电影网| 免费日韩欧美在线观看| 成人免费观看视频高清| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 午夜精品久久久久久毛片777| 99久久人妻综合| 亚洲第一欧美日韩一区二区三区 | 免费日韩欧美在线观看| 久久性视频一级片| 丝瓜视频免费看黄片| 少妇的丰满在线观看| 两个人免费观看高清视频| 精品第一国产精品| 五月开心婷婷网| 国产在视频线精品| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 国产一区二区在线观看av| 久久国产精品男人的天堂亚洲| www.熟女人妻精品国产| 啦啦啦 在线观看视频| 久久精品国产综合久久久| 国产成人精品久久二区二区91| 动漫黄色视频在线观看| 极品人妻少妇av视频| 精品国产一区二区三区四区第35| 精品第一国产精品| 精品久久久久久久毛片微露脸 | 91成年电影在线观看| 热99国产精品久久久久久7| 又大又爽又粗| 99国产极品粉嫩在线观看| 2018国产大陆天天弄谢| 91精品三级在线观看| 丰满少妇做爰视频| 最近最新免费中文字幕在线| 少妇粗大呻吟视频| 日韩中文字幕视频在线看片| 亚洲,欧美精品.| 亚洲欧美一区二区三区久久| 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区 | 在线永久观看黄色视频| 黄色毛片三级朝国网站| 亚洲国产精品一区二区三区在线| 性色av一级| 首页视频小说图片口味搜索| kizo精华| 一本久久精品| av网站免费在线观看视频| 999精品在线视频| 欧美黄色淫秽网站| 国产91精品成人一区二区三区 | 亚洲伊人色综图| 丰满人妻熟妇乱又伦精品不卡| 日韩三级视频一区二区三区| 热99国产精品久久久久久7| 制服诱惑二区| 日韩视频在线欧美| 精品国产乱子伦一区二区三区 | 一边摸一边做爽爽视频免费| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| 99久久综合免费| 久久久久久久久久久久大奶| 在线亚洲精品国产二区图片欧美| 成年女人毛片免费观看观看9 | 丰满饥渴人妻一区二区三| 亚洲伊人久久精品综合| 午夜福利一区二区在线看| 亚洲成人手机| 亚洲精华国产精华精| 午夜精品国产一区二区电影| 2018国产大陆天天弄谢| 视频区欧美日本亚洲| 一二三四在线观看免费中文在| 女警被强在线播放| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 永久免费av网站大全| 少妇粗大呻吟视频| 亚洲欧洲日产国产| av有码第一页| 黄色视频在线播放观看不卡| 日韩有码中文字幕| 在线观看免费视频网站a站| 男男h啪啪无遮挡| av超薄肉色丝袜交足视频| 午夜精品国产一区二区电影| 高清在线国产一区| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 国产精品亚洲av一区麻豆| 国产伦理片在线播放av一区| 午夜福利影视在线免费观看| 国产色视频综合| 波多野结衣av一区二区av| 国产片内射在线| 免费高清在线观看日韩| 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 男人舔女人的私密视频| 国产亚洲午夜精品一区二区久久| 老司机影院毛片| 一边摸一边做爽爽视频免费| 少妇的丰满在线观看| 在线天堂中文资源库| av不卡在线播放| 久9热在线精品视频| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 欧美精品人与动牲交sv欧美| 十八禁高潮呻吟视频| 丰满迷人的少妇在线观看| 中文字幕人妻丝袜制服| 国产一级毛片在线| 国产精品 欧美亚洲| 老司机影院毛片| 不卡一级毛片| 久久久久视频综合| 久久久水蜜桃国产精品网| 下体分泌物呈黄色| 久久久精品国产亚洲av高清涩受| 欧美激情 高清一区二区三区| 又黄又粗又硬又大视频| 成人黄色视频免费在线看| 久久狼人影院| 99国产精品99久久久久| 欧美日韩成人在线一区二区| 日韩视频在线欧美| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 欧美精品高潮呻吟av久久| 免费在线观看日本一区|