• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vinyltrimethylsilane as a novel electrolyte additive for improving interfacial stability of Li-rich cathode working in high voltage

    2024-04-05 02:28:52BingJingHoLiBiLuoLehoLiuLihuChuQioboZhngMeichengLi
    Chinese Chemical Letters 2024年2期

    Bing Jing ,Ho Li ,Bi Luo ,Leho Liu ,Lihu Chu ,Qiobo Zhng ,Meicheng Li,*

    a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of New Energy,North China Electric Power University,Beijing 102206,China

    b State Key Laboratory of Physical Chemistry of Solid Surfaces,College of Materials,Xiamen University,Xiamen 361005,China

    Keywords: Vinyltrimethylsilane Electrolyte additive Li-rich cathode Interfacial stability Capacity retention

    ABSTRACT Boosting the interfacial stability between electrolyte and Li-rich cathode material at high operating voltage is vital important to enhance the cycling stability of Li-rich cathode materials for high-performance Li-ion batteries.In this work,vinyltrimethylsilane as a new type of organic silicon electrolyte additive is studied to address the interfacial instability of Li-rich cathode material at high operating voltage.The cells using vinyltrimethylsilane additive shows the high capacity retention of 73.9% after 300 cycles at 1 C,whereas the cells without this kind of additive only have the capacity retention of 58.9%.The improvement of stability is mainly attributed to the additive helping to form a more stable surface film for Li-rich cathode material,thus avoiding direct contact between the electrolyte and the cathode material,slowing down the dissolution of metal ions and the decomposition of the electrolyte under high operating voltage.Our findings in this work shed some light on the design of stable cycling performance of Li-rich cathode toward advanced Li-ion batteries.

    In recent years,with the rapid development of energy storage power stations,electric vehicles and various electronic products,the market demand for lithium-ion batteries (LIBs) has also increased sharply [1-8].Therefore,the pursuit of high energy density lithium-ion battery has become the focus,especially for the cathode material.The development of lithium-ion battery cathode materials has gone through a long process,the traditional cathode materials cannot meet the current demand for energy density,such as LiCoO2(145 mAh/g),LiMn2O4(120 mAh/g) and LiFePO4(165 mAh/g) [9,10].Compared with these traditional cathode materials,Li-rich (xLi2MnO3·(1-x)LiTMO2(TM=Ni,Mn,Co),whenx=0.5,in the form of Li1.2Mn0.54Co0.13Ni0.13O2) cathode materials have attracted extensive attention due to their high reversible capacity(more than 250 mAh/g),high operating potential (2-4.8 V) and the lower cost [11-13].However,Li-rich cathode will be destroyed because the serious decomposition of electrolytic liquid under high cycle potential.Therefore,it is very important to improve the stability of Li-rich cathode materials under high cycle potential.

    In order to improve the stability of Li-rich cathode materials,the researchers have done many works,in which two of the most traditional methods are doping [14,15] and surface coating [16-18].However,traditional modification methods such as doping and surface coating are complex and expensive.Therefore,introducing additives into electrolyte to form protective interface film on cathode surface is considered to be one of the effective and economical methods to enhance the electrochemical performance of layered lithium rich cathode materials [19,20].

    Because of the excellent performance and economic benefits of electrolyte additives,the electrolyte additives introducing into lithium-ion batteries have aroused wide interest of many researchers.In recent years,a large number of electrolyte additives have been reported,such as boron additives [21,22],organophosphorus additives [23-26],carbonate additives [27],sulfur additive [28-30],ionic liquid additive [31] and some inorganic lithium salt additives [32-34].Besides,silicon compounds have high thermal and chemical stability,and become a hot research topic.Hieu Quang Phametal.demonstrated that methoxytriethyleneoxypropyltrimethoxysilane (MTE-TMS) electrolyte additive is able to stabilize the interface of both Ni-rich layered NCM851005 cathode and graphite anode in a full-cell [35].Bangwei Dengetal.used diphenyldimethoxysilane (DPDMS) as electrolyte additive greatly increased the capacity retention of Li/NCM622 half-cell [36].Seol Heui Jangetal.demonstrated that dimethoxydimethylsilane(DODSi) electrolyte additive can improve surface stability of Ni-rich cathode [37].

    As a kind of silicon compound,comprising of a C=C double bond and a silicon-based functional group,vinyltrimethylsilane has good stability and has the unsaturated functional groups that are easy to be oxidized.In the other hand,compared to other silicon compounds,vinyltrimethylsilane has a much simpler structure and more practical values and economic benefits,because it is easy to be obtained.In this work,we propose to use vinyltrimethylsilane as a novel electrolyte additive in lithium-ion batteries,which could be oxidized prior to other components of the electrolyte to form a more stable interface film to inhibit the decomposition of the electrolyte and reduce side reactions with Li-rich cathode material.

    The original electrolyte (DoDo Chem) is 1 mol/L LiPF6in ethylene carbonate (EC) and dimethyl carbonate (DMC) (3:7,v:v).As the electrolyte additive ALFA was added to the original electrolyte.The electrolyte with various concentrations of ALFA of 0.2%,0.5% and 1% in weight was prepared in argon-filled glove box(Mikrouna,China,H2O<0.1 ppm,O2<0.1 ppm).

    The cathode slurry consisting of active material (LRNCM),acetylene black (Super-P) and polyvinylidene fluoride (PVDF) with the ration of 8:1:1 in weight were mixed inN-methyl pyrrolidone(NMP).Then the slurry was coated in the aluminum foil and dried in a vacuum oven at 120 °C for 12 h.The coin half-cells were assembled with Li metal disk as anode and glass fiber (Whatman)as separator.Two kinds of electrolyte were original and modified by additives.CR2032-type coin-cells were prepared in argonfilled glove box,where the content of H2O and O2were less than 0.1 ppm.

    The cycle performance of LRNCM/Li half-cells were measured by multichannel battery test system (Land,China),which were charged to 4.8 V and discharged to 2.0 V (1 C=250 mAh/g).Linear sweep voltammetry (LSV),cyclic voltammetry (CV),chronoamperometry (CA) and AC impedance were performed by electrochemical workstation (CHI,China).LSV tests were measured at a scan rate of 1 mV/s from open-circuit voltage (OCV) of ≈3.0 V to 6.0 Vvs.Li+/Li,with stainless steel gasket as a working electrode,and lithium metal as the counter electrode.CV curves were measured at a scan rate of 0.1 mV/s in a voltage range of 2.0-4.8 V.CA was measured by maintaining the cells at 4.8 V after 3 cycles charge to 4.8 V at 0.1 C.The AC impedance was recorded during cycling and the data was fitted with the use of Z-View software.The frequency range is from 100 kHz to 0.01 Hz under 10 mV,

    Crystal structure of the cathode material after cycling was analyzed by X-ray diffraction (XRD,BRUKER,D8 Focus,Germany),in which incidence angle is at a range of 10°-80° with the speed of 6°/min.X-ray photoelectron spectroscopy (XPS,ESCALAB 250Xi,overall resolution: 1 eV,Al peak) was used to investigate the surface of the cathode materials.The morphology of the cathode materials was investigated before and after cycling,by scanning electron microscope (SEM,Quanta 200F) and transmission electron microscope (TEM,Tecnai G2 F20).

    The electrochemical stability of cells with original electrolyte without vinyltrimethylsilane and modified electrolyte with 0.5%vinyltrimethylsilane are measured respectively by linear sweep voltammetry (LSV) at a scan rate of 1 mV/s from open-circuit voltage (OCV) about 3.0-6.0 Vvs.Li+/Li (Fig.1a).Between 3.2 V to 3.7 V,an obvious oxidation peak is found in the curve with 0.5%vinyltrimethylsilane in the inset of Fig.1a,whereas the curve of original sample with original electrolyte is smooth,which indicates that vinyltrimethylsilane is oxidized in this interval.Above 4.0 V,the curve of the cell without additive rises abruptly,indicating that the electrolyte oxidizes and decomposes drastically.While through adding 0.5% vinyltrimethylsilane additive,the upward trend of the curve is slowed down and the oxidative current is distinctly reduced.These results show that oxidation is more influenced by vinyltrimethylsilane than other components of the electrolyte.Vinyltrimethylsilane can inhibit the oxidative decomposition of other electrolyte components under high operating potential [38-40].Fig.1b shows that the CV curves of LRNCM||Li half-cells without additive and with 0.5% vinyltrimethylsilane in the first cycle.The redox peak potential (ΔV) without additive is 0.746 V,whereas theΔVwith 0.5% vinyltrimethylsilane is 0.708 V,from which it is found thatΔVwas reduced about 40 mV because of vinyltrimethylsilane.The results show that the vinyltrimethylsilane probably improves the interface stability of the cathode material.In the CV curves,there are two significant oxidation peaks.One is the oxidation peak around 4.0 V associated with the oxidization of Ni2+and Co3+process.The other oxidation peak around 4.6 V is related to the partially reversible anion O2-→O2n-and the irreversible loss of oxygen during the first charge [41,42].With the addition of vinyltrimethylsilane,the oxidation current at 4.6 V decreased,indicating that the vinyltrimethylsilane inhibited the oxidation decomposition of electrolyte to a certain extent [40],which was almost consistent with the LSV test results.Fig.1c shows that the CV curves of LRNCM||Li half-cells without additive and with 0.5% vinyltrimethylsilane in the second cycle.We can find that two cells have similar curves and the cell with additive have closer REDOX peak difference,indicating that the surface film is more stable.CA is used to verify the oxidation stability of electrolyte at 4.8 V (Fig.1d).The two curves represent the residual current of LRNCM||Li half-cells with 0.5% vinyltrimethylsilane and without additive at 4.8 V.The cell without additive shows a larger residual current,which attributed to the more serious decomposition of the electrolyte [33,35,49].Whereas the lower residual current in the curve of the cell with 0.5% vinyltrimethylsilane indicates that additive can promote to form a more stable,dense protective CEI film on the cathode surface,and inhibit the oxidation and decomposition of the electrolyte.Figs.1e-g represent the charge and discharge performance of LRNCM||Li half-cells without additive and with 0.5% vinyltrimethylsilane additive.The cathode material also shows good cycling stability during long-term cycling at 1 C using the modified electrolyte (Fig.1e).The cell with original electrolyte presents an initial capacity of the cell of 239 mAh/g and a capacity retention of 58.9% after 300 cycles at 1 C.The cell with 0.5%vinyltrimethylsilane have the same initial capacity of 239 mAh/g and a final capacity of 177.2 mAh/g,indicating that the additive improves the capacity retention to 73.9% after 300 cycles at 1 C.Figs.1f and g show the voltage profiles of LRNCM||Li half-cells with and without vinyltrimethylsilane at different cycles.The cell with additive shows a better voltage platform.The average charging and discharging voltage is also slightly higher than the cell without additive (Fig.1h).

    Fig.1.(a) LSV curves;(b) CV curves of LRNCM||Li half-cells at the first cycle.(c) CV curves of LRNCM||Li half-cells at the second cycle.(d) CA curves of LRNCM||Li half-cells after 3 cycles charge to 4.8 V at 0.1 C.(e) Cycling performance at 1 C of LRNCM||Li cells with and without vinyltrimethylsilane in a voltage range of 2.0-4.8 V.(f,g) Voltage profiles.(h) Average voltage.

    In order to prove the results above,the electrochemical resistance was investigated after charging to 4.8 V.As shown in Fig.2,Nyquist plots are made of solution resistance (Rsol),the surface film resistance (Rsf),the charge transfer resistance (Rct),and Warburg impedance (Zw).Figs.2a-d show the impedance diagram of the cells with two different electrolytes at various cycles.At the beginning,Rsfof the cell with 0.5% vinyltrimethylsilane is slightly greater than the cell without additive,indicating that additives promote the formation of the denser interfacial film.During the cycles,the composition of the surface film changes,which causes the impedance value to change constantly.Therefore,Rsfof the cell with 0.5% vinyltrimethylsilane changed less than that of the cell without additive,indicating additives can promote to form a more stable interfacial film.In particular,Rctis obviously reduced.From Table 1,after 250thcycles,Rctof the cell without additive is 216Ω,whereas that of the cell with 0.5% vinyltrimethylsilane is only 103.6Ω.The results show that the stable interface film can prevent the cathode materials from electrolyte erosion during charging and discharging,so that the cycle life of cells is improved obviously [48].

    Table 1Impedance fitting results of z view.

    Fig.2.AC internal resistance of LRNCM||Li cells without additive and with 0.5%vinyltrimethylsilane after (a) 5th,(b) 50th,(c) 150th,(d) 250th cycles.(e) Relevant equivalent circuit,and the corresponding impedance parameters of (f) Rsf and (g)Rct.

    Figs.3a-c show X-ray diffraction data of the cathode before and after 250 cycles at 1 C.Fig.3d shows the calculation results ofR-factor andI(003)/I(104).From previous reports,(I(006)+I(012))/I(101) is defined asR-factor,which ratio is related to hexagonal ordering and positive correlation (Smaller Rfactor corresponding the lower the hexagonal ordering).In addition,I(003)/I(104) is reported relevant to cation mixing of the cathode,in which the smallerI(003)/I(104) ratio,the worse cation mixing of the cathode [33,42-44].Therefore,the sample with 0.5%vinyltrimethylsilane shows better structural stability after 250thcycles (Fig.4d).Moreover,the diffraction peak of (003) without additive shifts slightly to lower 2θregion compared to the sample with 0.5% vinyltrimethylsilane after 250thcycles (Fig.4b),because of the loss of structural order and crystallinity [35].These results further evidence that vinyltrimethylsilane additive is effective to prevent the cathode material from structural destruction after long cycling at the high operating voltage.

    Fig.3.(a-c) The X-ray diffraction data and (d) calculated structural parameters of pristine and without additive and with 0.5% vinyltrimethylsilane after 250 cycles at 1 C.XPS spectra of the electrode: (e) C 1s,(f) O 1s,(g) F 1s,(h) P 2p.

    Fig.4.Morphology of the LRNCM cathode taken from LRNCM||Li half-cells after cycles.(a,b) SEM images of the LRNCM cathode without additive.(d,e) SEM images of the LRNCM cathode with 0.5% vinyltrimethylsilane.(c) TEM image of the LRNCM cathode without additive.(f) TEM image of the LRNCM cathode with 0.5% vinyltrimethylsilane.

    The composition and chemical states of the surface films were characterized by XPS (Figs.3e-h).From C 1s,we can observe four peaks,the peak at 284.7 eV is corresponding to C-C,and the peak at 286.5 eV and 291 eV are corresponding to C-H and C-F of PVDF[33,35,42],respectively.The peak of C=O at 290 eV mainly corresponding to Li2CO3[42],which is mainly from the oxidation decomposition of electrolyte.More Li2CO3is observed in the cathode without additive than that with vinyltrimethylsilane,which is consistent with the result of the peak at 532 eV (C=O) in O 1s.It indicates that the oxidation decomposition of electrolyte is more serious in the cell without additive.Besides,we can make the same inference from F 1s and P 2p.The peak at 685.1 eV and 687.5 eV in F 1s are corresponding to LiF and LixPOyFz[45],respectively,which are mainly from the oxidation decomposition of electrolyte.The peak at 133.8 eV and 136.8 eV in P 2p have the same explanation as above,which are corresponding to LixPOyFzand LixPFy[46,47],respectively.From O 1s,the peak at 530 eV corresponding to transition metal M-O (M=Ni,Co,Mn) [35,40],the cathode with vinyltrimethylsilane contains more transition metal than that without additive.It shows that in the cell without additive,the cathode is more seriously corroded by electrolyte and more transition metals are dissolved.In summary,we can infer that with the addition of vinyltrimethylsilane,a more stable interface film forms in the cathode interface,which can inhibit the decomposition of electrolyte and the dissolution of transition metal ions,improving the cycle life of Li-rich cathode.

    Figs.4a-f show the SEM and TEM of the LRNCM cathode taken from LRNCM||Li half-cells after cycles.The morphology of LRNCM cathode without additive (Figs.4a and b) and with 0.5% vinyltrimethylsilane (Figs.4d and e) after cycles were observed,respectively.There are some cracks in the cathode particles without additive after cycles,whereas the cathode with 0.5%vinyltrimethylsilane presents the better integrity.The results show the vinyltrimethylsilane additive could prevent the cathode materials from the erosion by electrolyte.The fragmentation of cathode particles without additive is more serious due to severe side reactions with the electrolyte,which leads to poor cyclic stability.Figs.4c and f show the TEM characterization,in which the cathode with additive shows the more stable,uniform and thinner interfacial film.This film is more conducive to the migration of lithium ions,protect the cathode material,and inhibit the side reaction with the electrolyte.Therefore,the cyclic stability of Li-rich cathode material is greatly improved.

    Based on the above analysis results,Fig.5 shows briefly the surface modification mechanism of the vinyltrimethylsilane additive on Li-rich cathode.Vinyltrimethylsilane has good stability structure and is more easily oxidized and because of its C=C double bond and a silicon-based functional group.Therefore,it promotes the formation of more stable,uniform and thinner interface film on the surface of the cathode materials.Thus,the oxidation decomposition of electrolyte is inhibited and the erosion of cathode material by electrolyte could be slowed down.Because of the addition of vinyltrimethylsilane,most of cathode particles are intact and the transition metals are less dissolved after cycles,which are attributed to the more stable,uniform and thinner interface film.Therefore,the vinyltrimethylsilane additive improves the cyclic stability if Li-rich cathode.

    Fig.5.The schematic for the surface modification mechanism of the vinyltrimethylsilane additive on Li-rich cathode (a) without additive and (b) with vinyltrimethylsilane.

    In summary,the effects of the vinyltrimethylsilane additive in electrolyte on the stability of Li-rich cathode materials in Li-ion half-cells.The results show that the capacity retention of the cells is improved from 58.9% to 73.9% under 1 C after 300 cycles by vinyltrimethylsilane.Compared with the cells without additives,a more stable,uniform and thinner interface film is observed on the cathode surface because of vinyltrimethylsilane with the better oxidability.This CEI film inhibits the oxidation decomposition of electrolyte during the cycles and the dissolution of metal ions of cathodes at the high operating voltage.This paper presents vinyltrimethylsilane as a novel Si-based electrolyte additive,which can improve interfacial stability of Li-rich cathode working in high voltage.

    Declaration of competing interest

    The authors declare that they have no know competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported partially by State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004,LAPS202114),National Natural Science Foundation of China (Nos.52272200,51972110,52102245 and 52072121),Beijing Science and Technology Project (No.Z211100004621010),Beijing Natural Science Foundation (Nos.2222076,2222077),Hebei Natural Science Foundation (No.E2022502022),Huaneng Group Headquarters Science and Technology Project (No.HNKJ20-H88),2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation (No.2022M721129) and the Fundamental Research Funds for the Central Universities (Nos.2022MS030,2021MS028,2020MS023,2020MS028),the NCEPU "Double First-Class" Program and the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No.LAPS22005).

    亚洲av成人一区二区三| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 美女扒开内裤让男人捅视频| 亚洲avbb在线观看| 精品欧美一区二区三区在线| 夜夜夜夜夜久久久久| 亚洲成国产人片在线观看| 法律面前人人平等表现在哪些方面| 欧美国产精品一级二级三级| 国产男女内射视频| 美女主播在线视频| a在线观看视频网站| 夜夜爽天天搞| 国产成人影院久久av| 日韩大片免费观看网站| 国产成人一区二区三区免费视频网站| 亚洲天堂av无毛| 中文欧美无线码| 免费观看a级毛片全部| 99热国产这里只有精品6| 如日韩欧美国产精品一区二区三区| 最黄视频免费看| 一进一出抽搐动态| 中文字幕av电影在线播放| 热re99久久精品国产66热6| 精品一品国产午夜福利视频| 亚洲九九香蕉| 精品久久蜜臀av无| 亚洲色图av天堂| 搡老岳熟女国产| 91成年电影在线观看| 99香蕉大伊视频| 午夜免费鲁丝| 飞空精品影院首页| 色94色欧美一区二区| 美女主播在线视频| 精品国内亚洲2022精品成人 | 我的亚洲天堂| 亚洲国产成人一精品久久久| 国产在线视频一区二区| 欧美日韩视频精品一区| 我的亚洲天堂| 韩国精品一区二区三区| 一个人免费在线观看的高清视频| 久久久精品国产亚洲av高清涩受| 99国产精品99久久久久| 老熟女久久久| 久久中文字幕一级| 在线av久久热| 中文字幕精品免费在线观看视频| 免费看a级黄色片| 精品久久久久久久毛片微露脸| 国产熟女午夜一区二区三区| 中文字幕av电影在线播放| 成人av一区二区三区在线看| 午夜福利免费观看在线| 一本—道久久a久久精品蜜桃钙片| 怎么达到女性高潮| 国产精品久久久久久精品电影小说| 12—13女人毛片做爰片一| 久久狼人影院| 欧美日本中文国产一区发布| 一本一本久久a久久精品综合妖精| 精品少妇黑人巨大在线播放| 国产一区二区三区综合在线观看| 成人亚洲精品一区在线观看| 精品福利永久在线观看| 制服诱惑二区| 成人国语在线视频| 久久人妻av系列| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女 | 久久久久久久国产电影| 成人免费观看视频高清| 日本vs欧美在线观看视频| 色播在线永久视频| 日本欧美视频一区| 老鸭窝网址在线观看| 免费久久久久久久精品成人欧美视频| av免费在线观看网站| 两个人免费观看高清视频| av网站免费在线观看视频| 国产成人欧美在线观看 | 伊人久久大香线蕉亚洲五| 性高湖久久久久久久久免费观看| 国产成人av教育| 亚洲成人手机| 999久久久国产精品视频| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 精品午夜福利视频在线观看一区 | 亚洲精品美女久久av网站| 波多野结衣一区麻豆| 久久青草综合色| 婷婷成人精品国产| 极品教师在线免费播放| 欧美日韩亚洲国产一区二区在线观看 | 成年人黄色毛片网站| 午夜激情久久久久久久| 免费在线观看日本一区| av线在线观看网站| 少妇被粗大的猛进出69影院| 丝袜人妻中文字幕| 国产成人免费无遮挡视频| 久久婷婷成人综合色麻豆| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 国产成人影院久久av| 久久香蕉激情| 9色porny在线观看| 亚洲一区中文字幕在线| 色在线成人网| 久久久久精品人妻al黑| 国产精品成人在线| 日本一区二区免费在线视频| 亚洲五月婷婷丁香| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 色94色欧美一区二区| 亚洲成a人片在线一区二区| 久久国产亚洲av麻豆专区| 成年版毛片免费区| 国产在线视频一区二区| bbb黄色大片| 亚洲av成人一区二区三| 国产高清激情床上av| 一边摸一边抽搐一进一小说 | av国产精品久久久久影院| 少妇 在线观看| 久久久精品免费免费高清| av网站免费在线观看视频| 国产精品 欧美亚洲| 麻豆乱淫一区二区| 色94色欧美一区二区| 狂野欧美激情性xxxx| 亚洲色图av天堂| 国产伦理片在线播放av一区| 99久久国产精品久久久| 黄色视频在线播放观看不卡| 国产精品免费一区二区三区在线 | 日韩人妻精品一区2区三区| 亚洲国产看品久久| 国产欧美日韩一区二区三| 深夜精品福利| 久久中文字幕人妻熟女| 亚洲av国产av综合av卡| 无人区码免费观看不卡 | 91精品国产国语对白视频| 夜夜骑夜夜射夜夜干| 中文亚洲av片在线观看爽 | 亚洲国产毛片av蜜桃av| 国产一卡二卡三卡精品| 久久中文字幕一级| 亚洲一卡2卡3卡4卡5卡精品中文| av又黄又爽大尺度在线免费看| 看免费av毛片| 亚洲熟女毛片儿| 一区福利在线观看| 亚洲国产精品一区二区三区在线| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| 亚洲成人国产一区在线观看| bbb黄色大片| 99国产精品一区二区三区| av视频免费观看在线观看| a在线观看视频网站| 久久国产亚洲av麻豆专区| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| avwww免费| 如日韩欧美国产精品一区二区三区| 国产成人免费无遮挡视频| 国产亚洲精品第一综合不卡| 中文欧美无线码| netflix在线观看网站| 国产淫语在线视频| 日韩有码中文字幕| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 91老司机精品| 精品国产一区二区三区四区第35| 欧美日韩视频精品一区| 欧美性长视频在线观看| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 午夜两性在线视频| 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| 亚洲欧美日韩高清在线视频 | 久久久久国内视频| 成人影院久久| 777久久人妻少妇嫩草av网站| 伊人久久大香线蕉亚洲五| 岛国毛片在线播放| 国产伦人伦偷精品视频| bbb黄色大片| 国产精品一区二区在线不卡| 超碰成人久久| 欧美精品高潮呻吟av久久| 亚洲人成77777在线视频| 亚洲人成电影免费在线| 欧美精品av麻豆av| 九色亚洲精品在线播放| 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 欧美成人免费av一区二区三区 | 精品午夜福利视频在线观看一区 | 免费少妇av软件| 精品国产一区二区三区久久久樱花| 中文字幕人妻熟女乱码| 久久青草综合色| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 欧美日韩视频精品一区| 精品一区二区三区av网在线观看 | 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添小说| 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 成年版毛片免费区| 中文字幕另类日韩欧美亚洲嫩草| 脱女人内裤的视频| 成年动漫av网址| 国产成人一区二区三区免费视频网站| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕一二三四区 | 成在线人永久免费视频| 亚洲精品久久午夜乱码| 久热这里只有精品99| 日韩有码中文字幕| 少妇 在线观看| 国产精品.久久久| www.熟女人妻精品国产| av天堂在线播放| 成人手机av| a级毛片黄视频| 国产免费现黄频在线看| 伦理电影免费视频| 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 久久人妻av系列| 另类精品久久| 国产欧美亚洲国产| 99热国产这里只有精品6| 国精品久久久久久国模美| 狠狠精品人妻久久久久久综合| 国产伦理片在线播放av一区| 久久精品成人免费网站| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| 欧美午夜高清在线| 欧美日韩视频精品一区| 免费在线观看日本一区| www.自偷自拍.com| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 曰老女人黄片| 久久中文看片网| 精品熟女少妇八av免费久了| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 亚洲av国产av综合av卡| 中文字幕最新亚洲高清| 999精品在线视频| 另类亚洲欧美激情| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看 | av免费在线观看网站| 高清视频免费观看一区二区| 成人手机av| 久久国产亚洲av麻豆专区| 午夜免费成人在线视频| 亚洲欧美一区二区三区黑人| 男女高潮啪啪啪动态图| 丝袜在线中文字幕| 欧美日韩亚洲综合一区二区三区_| 精品久久蜜臀av无| 国产日韩欧美视频二区| 91精品三级在线观看| 99热网站在线观看| 99国产极品粉嫩在线观看| 男人操女人黄网站| 日本黄色视频三级网站网址 | 国产成人免费观看mmmm| 亚洲专区中文字幕在线| 精品国产乱码久久久久久小说| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 大片免费播放器 马上看| 亚洲,欧美精品.| 欧美中文综合在线视频| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 热re99久久精品国产66热6| 国产成人精品无人区| 午夜91福利影院| 亚洲熟妇熟女久久| 窝窝影院91人妻| 国产精品二区激情视频| 淫妇啪啪啪对白视频| 久久毛片免费看一区二区三区| av片东京热男人的天堂| 亚洲精品在线观看二区| 极品人妻少妇av视频| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站 | 成人国语在线视频| 一个人免费看片子| 久久香蕉激情| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 成人永久免费在线观看视频 | 黄色丝袜av网址大全| 在线观看免费视频日本深夜| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 欧美日韩中文字幕国产精品一区二区三区 | av天堂久久9| 亚洲熟女毛片儿| 国产日韩欧美亚洲二区| 国产99久久九九免费精品| avwww免费| 久久这里只有精品19| 国产精品1区2区在线观看. | 无限看片的www在线观看| 国产91精品成人一区二区三区 | 在线观看免费视频日本深夜| 国产高清激情床上av| 大型av网站在线播放| 人人澡人人妻人| 免费在线观看影片大全网站| 欧美变态另类bdsm刘玥| 亚洲成a人片在线一区二区| 纯流量卡能插随身wifi吗| 国产欧美日韩精品亚洲av| 成人黄色视频免费在线看| 国产精品 欧美亚洲| 亚洲色图av天堂| 五月开心婷婷网| 老司机午夜十八禁免费视频| 夜夜骑夜夜射夜夜干| 国产成人系列免费观看| 亚洲人成电影观看| 精品一区二区三区av网在线观看 | 欧美精品高潮呻吟av久久| 精品一区二区三区四区五区乱码| 久久久久网色| 一二三四社区在线视频社区8| av福利片在线| 91精品国产国语对白视频| 老熟女久久久| 99国产综合亚洲精品| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 国产精品自产拍在线观看55亚洲 | 国产男女内射视频| 国产一区二区三区视频了| 日本a在线网址| 99精品在免费线老司机午夜| 久久国产精品男人的天堂亚洲| 91国产中文字幕| 欧美人与性动交α欧美软件| 91精品三级在线观看| 大片电影免费在线观看免费| 久久久精品区二区三区| 一夜夜www| 中文字幕av电影在线播放| 久久亚洲精品不卡| 成人影院久久| 18禁国产床啪视频网站| 久久人妻av系列| 日本精品一区二区三区蜜桃| 日日摸夜夜添夜夜添小说| 亚洲中文av在线| 久久青草综合色| 日本精品一区二区三区蜜桃| 国产成人免费无遮挡视频| 成年人免费黄色播放视频| 久久99热这里只频精品6学生| 亚洲男人天堂网一区| 国产在线精品亚洲第一网站| 十八禁网站网址无遮挡| 黄色毛片三级朝国网站| 日韩视频一区二区在线观看| 老司机深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 午夜福利免费观看在线| 国产在视频线精品| 黄频高清免费视频| 黄色成人免费大全| 国产成人影院久久av| 亚洲精品在线美女| 日韩有码中文字幕| 色在线成人网| 欧美中文综合在线视频| 亚洲av美国av| 啦啦啦视频在线资源免费观看| 黄色视频不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲性夜色夜夜综合| 国产亚洲精品一区二区www | 欧美黄色淫秽网站| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 国产91精品成人一区二区三区 | 午夜福利在线免费观看网站| 国产精品久久久久成人av| 亚洲av第一区精品v没综合| 欧美日韩av久久| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| 日韩有码中文字幕| tube8黄色片| 亚洲国产欧美在线一区| 蜜桃在线观看..| 国产aⅴ精品一区二区三区波| 国产伦理片在线播放av一区| 怎么达到女性高潮| 极品教师在线免费播放| 欧美日韩精品网址| 制服诱惑二区| 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 欧美激情 高清一区二区三区| 亚洲情色 制服丝袜| 国产三级黄色录像| 高清欧美精品videossex| 国产精品自产拍在线观看55亚洲 | 国精品久久久久久国模美| 久久狼人影院| 欧美日韩成人在线一区二区| 精品国产一区二区久久| 国产在线精品亚洲第一网站| 水蜜桃什么品种好| 精品亚洲成国产av| 大香蕉久久成人网| 亚洲成人免费电影在线观看| 久久免费观看电影| 9热在线视频观看99| 在线看a的网站| 搡老熟女国产l中国老女人| 成人亚洲精品一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品香港三级国产av潘金莲| 国产av又大| 欧美亚洲日本最大视频资源| 99香蕉大伊视频| 欧美 日韩 精品 国产| 亚洲九九香蕉| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 国产精品自产拍在线观看55亚洲 | 在线观看免费日韩欧美大片| www日本在线高清视频| 亚洲熟妇熟女久久| 黄片播放在线免费| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 中文字幕制服av| 精品一区二区三区四区五区乱码| 久久精品国产a三级三级三级| 日本一区二区免费在线视频| 自线自在国产av| 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 国产精品98久久久久久宅男小说| 欧美午夜高清在线| av网站在线播放免费| 三上悠亚av全集在线观看| 久久亚洲真实| 香蕉久久夜色| 国产在线免费精品| 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月 | 青草久久国产| 一级a爱视频在线免费观看| 性色av乱码一区二区三区2| 美女福利国产在线| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 美女午夜性视频免费| 久久久久久亚洲精品国产蜜桃av| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯 | 午夜福利视频精品| 亚洲,欧美精品.| 9色porny在线观看| 人人妻人人爽人人添夜夜欢视频| 国产片内射在线| 欧美老熟妇乱子伦牲交| www.精华液| 日韩欧美一区二区三区在线观看 | 后天国语完整版免费观看| 婷婷成人精品国产| 久久香蕉激情| 好男人电影高清在线观看| 日韩有码中文字幕| 欧美+亚洲+日韩+国产| 三级毛片av免费| 自线自在国产av| 亚洲人成伊人成综合网2020| 新久久久久国产一级毛片| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 操美女的视频在线观看| 亚洲精品一二三| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 日本精品一区二区三区蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区三区视频了| 在线av久久热| 日本精品一区二区三区蜜桃| 免费日韩欧美在线观看| 午夜精品久久久久久毛片777| 精品亚洲成国产av| 欧美精品av麻豆av| 久久中文字幕人妻熟女| 亚洲熟女毛片儿| 首页视频小说图片口味搜索| 高清视频免费观看一区二区| 丰满少妇做爰视频| 久久天躁狠狠躁夜夜2o2o| 久久精品国产a三级三级三级| 国产男女内射视频| 久久久水蜜桃国产精品网| 免费日韩欧美在线观看| 99精品久久久久人妻精品| 国产又色又爽无遮挡免费看| 久久 成人 亚洲| 在线看a的网站| 蜜桃国产av成人99| 国产亚洲欧美精品永久| 国产在线视频一区二区| 欧美性长视频在线观看| 中文字幕人妻熟女乱码| 精品人妻在线不人妻| 丝袜美足系列| 高清毛片免费观看视频网站 | 在线观看免费高清a一片| 最近最新中文字幕大全免费视频| 欧美日韩黄片免| 大片电影免费在线观看免费| 久久久水蜜桃国产精品网| 黄色视频在线播放观看不卡| 18在线观看网站| 久久婷婷成人综合色麻豆| 一区二区av电影网| 精品国产乱子伦一区二区三区| 高清欧美精品videossex| 亚洲九九香蕉| 777久久人妻少妇嫩草av网站| 99国产精品一区二区蜜桃av | av国产精品久久久久影院| 亚洲男人天堂网一区| 黄色怎么调成土黄色| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放| 五月开心婷婷网| netflix在线观看网站| 亚洲av第一区精品v没综合| 久热爱精品视频在线9| 国产色视频综合| 男人舔女人的私密视频| 老司机午夜福利在线观看视频 | av超薄肉色丝袜交足视频| 精品国产超薄肉色丝袜足j| 精品一区二区三区四区五区乱码| 国产日韩欧美亚洲二区| 成年女人毛片免费观看观看9 | 在线观看www视频免费| 国产国语露脸激情在线看| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产一区二区精华液| 热99久久久久精品小说推荐| 啦啦啦在线免费观看视频4| 日韩欧美免费精品| 国产精品久久久久久精品电影小说| 免费观看a级毛片全部| 国产av一区二区精品久久| 夜夜骑夜夜射夜夜干| 国产av又大| 国产av一区二区精品久久| 亚洲专区字幕在线| 最黄视频免费看| h视频一区二区三区| 成人精品一区二区免费| 国产精品成人在线| 国产日韩欧美在线精品| 大片免费播放器 马上看| 亚洲人成电影观看| 男女无遮挡免费网站观看|