• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly uniform Co-Cu bimetallic sulfides for rechargeable alkaline aqueous zinc batteries

    2024-04-05 02:28:50XiofngBiYuwiZhoMngwiCuiTinshuoGuoZijiTngChunLiHngGoShuoYngLingzhiZhoChunyiZhiHongfiLi
    Chinese Chemical Letters 2024年2期

    Xiofng Bi ,Yuwi Zho ,Mngwi Cui ,Tinshuo Guo ,Ziji Tng ,Chun Li ,Hng Go,Shuo Yng,Lingzhi Zho,Chunyi Zhi,c,Hongfi Li,,*

    a Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    b Songshan Lake Materials Laboratory,Dongguan 523808,China

    c Department of Materials Science and Engineering,City University of Hong Kong,Hong Kong,China

    d International Centre for Quantum and Molecular Structures,Department of Physics,Shanghai University,Shanghai 200444,China

    e Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Materials,Institute of Semiconductor Science and Technology,South China Normal University,Guangzhou 510631,China

    Keywords: Aqueous zinc batteries Bimetallic sulfides Cathode materials Rate performance Cycling stability

    ABSTRACT Rechargeable alkaline aqueous zinc batteries (RAZBs) have attracted increasing attention.However,most RAZBs are hindered by the limited availability of cathode materials.The practical electrochemical performance of most cathode materials is lower than the theoretical value due to their poor electrical conductivity and low utilization capacity.In this work,we develop a facile hydrothermal procedure to prepare highly uniform bimetallic sulfides as novel cathode materials for RAZBs.Copper-cobalt binary metallic oxides materials possess higher conductivity and larger capacity compared with their mono-metal oxides compounds due to bimetallic synergistic effects and multiple oxidation states.Furthermore,bimetallic sulfide compounds have smaller bond energy and longer bond length than their oxides,leading to less structural damage,faster kinetics of electrochemical reactions,and better stability.The as-prepared Co-Cu bimetallic sulfides show enhanced electrochemical performance due to various valences of Co and Cu as well as the existence of S.As a result,aqueous Zn/CuCo2S4 battery shows a high specific capacity of 117.4 mAh/g at 4 A/g and a good cycle life of over 8000 cycles.Based on PANa hydrogel electrolytes,a flexible Zn/CuCo2S4 battery demonstrates excellent cycling stability.This battery can also meet the requirements of electronic devices with different shapes and performs well in extreme environments,such as freezing,drilling,and hammering.This work opens new avenues to obtain high-rate and long-life cathode materials for RAZBs by utilizing the synergistic effects of bimetallic sulfides and provides a new platform for flexible energy storage devices.

    Rechargeable aqueous zinc-based batteries are considered to be one of the most promising candidates for lithium ion batteries(LIBs),since zinc has advantages of resource abundance,low cost,no environmental toxicity and a high theoretical gravimetric and volumetric capacity (820 mAh/g and 5855 mAh/cm3,respectively) [1-4].Transition metal oxides possess high theoretical capacity,which are widely used in rechargeable aqueous zinc batteries (RAZBs) [5-12],but their poor intrinsic conductivity hampers the fast electron transportation within the electrodes.Additionally,poor conductivity of these cathode materials leads to poor rate capability and stability especially under high current densities [13-16].Therefore,seeking better electrode materials with good electronic conductivity is significant to improve the electrochemical performance of RAZBs [17-21].

    Transition metal oxides,especially Co3O4,possess a variety of oxidation states and can carry out rich redox reactions [22,23].Thus,they always provide higher specific capacity as well as current density [5,6].However,the poor electric conductivity of electrode materials significantly impedes their practical applications in RAZBs [24,25].Chemical adulteration is one of the most effective methods to enhance its electrical conductivity,like bimetallic materials [18,26-28].Compared to Ni oxides and Co oxides,NiCo composites have better electronic conductivity and more redox reaction sites due to the synergistic effect between different metals to form multiple oxidation states,resulting in higher charge/discharge capacity [13,18].For these reasons,we introduced copper,an element with good conductivity and low price,to prepare copper-cobalt composites.On the other hand,some metal sulfides,such as NiCoS4[29,30],VS2[31] and Mo6S8[32],have been used as electrode materials for energy storage devices.As sulfur has a smaller electronegativity than oxygen,transition metal sulfides have smaller bond energy,longer bond length and better electron transport than those of metal oxides.Therefore,sulfides have a more flexible structure,and good electronic conductivity,leading to less structural damage,faster kinetics of electrochemical reactions and better stability [18,33].For example,Zn0.76Co0.24S,has better electronic conductivity and faster charge-transfer rate than its oxide counterparts,leading to longer cycling stability [34].

    In this paper,we used a low-cost and facile hydrothermal procedure to prepare CuCo2S4,which serves as a novel cathode material for RAZBs.Copper-cobalt binary metallic materials possess higher electrochemical conductivity compared with the mono-metal counterparts.In addition,the existence of S atoms can further produce a more flexible crystal structure and alter electron configurations,leading to enhanced conductivity and stability.As a result,Zn/CuCo2S4batteries displayed a good discharge capacity of 117.4 mAh/g at a large current density of 4 A/g and a better longterm cycle life (8000 cycles).Besides,the charge and discharge mechanism of the Zn/CuCo2S4battery was performed byinsituRaman and XPS,which revealed the high reversibility of CuCo2S4as cathode material during the charge/discharge process.Finally,a flexible and highly safe Zn/CuCo2S4battery was created based on a sodium polyacrylate (PANa) hydrogel electrolyte,demonstrating good cycling stability.It can also meet the requirements of electronic devices with different shapes and can operate well in extreme environments,such as freezing,drilling,weight loading,and hammering.This study inspires exploration of bimetallic sulfides as cathode material for rechargeable alkaline aqueous zinc batteries.

    Herein,using a simple hydrothermal method,CuCo2S4nanosheets were prepared on carbon cloth (Fig.1a).Before synthesis,in order to load more materials,the carbon cloth needs to be pretreated.Here,the carbon cloth was handled by nitric acid to introduce O-containing functional groups and increase its hydrophilicity.The pre-treated carbon fiber was immersed into a mixture solution containing Cu(NO3)2·6H2O,Co(NO3)2·6H2O and thiourea.This mixture solution is carried out by hydrothermal reaction at 200°C for 12 h to receive a homogeneous CuCu2S4sample [35,36].Fig.1b shows a spinel structure of CuCo2S4in which copper ions are filled in tetrahedral locations and cobalt ions are in octahedral positions (Fig.1b) [36,37].X-ray diffraction (XRD)pattern suggested that CuCo2S4was successfully synthesized on the pretreated carbon cloth surface (Fig.1c),which exhibited characteristic peaks at 16.45°,31.39°,38.12°,47.44°,50.25°,and 55.98°,corresponding to (111),(113),(004),(224),(115),and(004) planes of CuCo2S4(JCPDS card No.42-1450) [38,39].The distinctive peak at 26.3° indicates the carbon cloth support.For comparison,CuCo2O4nanosheets were prepared using the same procedure except that thiourea was replaced by urea (Fig.S1 in Supporting information).

    Fig.1.(a) Schematic diagram of the synthetic route of CuCo2S4.(b) Two views of the corresponding structure of CuCo2S4.(c) XRD data of CuCo2S4.(d) SEM images of CuCo2S4.(e) TEM of CuCo2S4.(f) STEM-EDS mapping of CuCo2S4.

    The scanning electron microscopy (SEM) images indicate that highly ordered CuCo2S4nanosheets are uniformly dispersed on the good conductive carbon cloth,creating a 3D architectural structure on its surface (Fig.1d and Fig.S3 in Supporting information).This 3D structure make this material have a large specific surface area and more reaction sites,which may lead to fast and efficient electron transfer during the charge-discharge process.Moreover,the electrolyte could easily penetrate the active material because of its abundant space between the 3D nanosheets.Fig.S2 (Supporting information) displays the SEM data of the CuCo2O4nanosheets on the carbon fiber textile surface,which exhibits a resembled morphology resembling that of CuCo2S4.The detailed morphology of CuCo2O4and CuCo2S4was further detected by TEM (Fig.1e and Fig.S4 in Supporting information).In Fig.1e,the lattice spacing of 2.86 ?A could be assigned to the (113) plane of CuCo2S4.Fig.1f outlines the elemental composition of CuCo2S4through scanning TEM mapping.The corresponding elemental maps of Cu,Co and S present that they are uniformly distributed in CuCo2S4(Fig.1f),as well as in CuCo2O4(Fig.S5 in Supporting information).

    Using X-ray photoelectron spectroscopy (XPS) characterization,it can be obtained information of elementary composition and oxidation electronic states of CuCo2S4.XPS spectra show that the asprepared materials contain Cu,Co and S (Fig.S6a in Supporting information),which is consistent with the above STEM-EDS results.The Cu 2p spectrum in CuCo2S4is deconvoluted into two-orbital doubles.The peaks located at 932.2 and 952.0 eV are assigned to Cu+species,while those concentrated at 933.1 and 953.6 eV are the characteristics of Cu2+species (Fig.S6b in Supporting information) [40,41].The Co 2p spectrum in CuCo2S4was also fitted with two parts with Co 2p peaks located at 778.5 eV and 793.6 eV indicating the presence of Co3+ions,while that Co2+was at 780.6 eV along with 796.2 eV (Fig.S6c in Supporting information).The peaks at binding energies of 787.0 eV and 802.0 eV represent the corresponding satellite peaks [40,41].The S 2p spectrum is described at 161.6 eV and 162.8 eV in CuCo2S4in Fig.S6d(Supporting information),corresponding to the existence of S2-and the bond of S-O.The peak located at 167.9 eV indicates a high possibility of S reacting with oxygen adsorption on their surface to synthesize sulfite-like compounds [40,41].The electrochemical performance of Zn/CuCo2S4batteries is shown in Fig.2.The cyclic voltammetry (CV) curves of Zn/CuS,Zn/CoS,Zn/CuCo2O4and Zn/CuCo2S4batteries at the scan rate of 5 mV/s are presented in Fig.2a.The Zn/CuCo2S4battery indicates the highest current density among them,proving that CuCo2S4can exhibit better electrochemical performance than its corresponding oxides (i.e.,CuCo2O4)and monometallic sulfides (i.e.,CuS and CoS).In Fig.S7 (Supporting information),the electrochemical impedance spectroscopy (EIS)of the Zn/CuCo2S4battery was less than that of the Zn/CuCo2O4battery.Fig.2b presents the CV curves of Zn/CuCo2S4batteries at different scan rates ranging from 2 mV/s to 10 mV/s between 0.65-1.95 V.With the increase in scan rates from 2 mV/s to 10 mV/s,the CV profiles are well retained,suggesting excellent reversibility of the Zn/CuCo2S4battery.The specific discharge capacities of CuCo2O4and CuCo2S4are 65 and 117.4 mAh/g at 2 mA/cm2(i.e.,4 A/g),respectively (Fig.2c).The specific capacity of CuCo2S4is almost two times higher than that of CuCo2O4,indicating that Cu-Co sulfide has a higher capacity than its oxide counterparts.Galvanometer charge/discharge curves under different current densities are displayed in Fig.2d.The galvanometer discharge capacities of CuCo2S4are 117.4,103.4,96.1,93.6,and 87.5 mAh/g at 2,4,6,8,and 10 mA/cm2,respectively.Fig.2e presents the rate capability of CuCo2S4,exhibiting a stable high-rate profile.Fig.2f illustrates the cycling stability of Zn/CuCo2S4batteries at 8 mA/cm2(16 A/g).There is an upward trend of the specific discharge capacity of CuCo2S4in the first 100 cycles,which then remains almost unchanged.After 8000 cycles,an impressive 111.9% of the initial capacity of CuCo2S4(84.0 mAh/g) was achieved,indicating decent cycling stability.It was better than that of CuCo2O4(Figs.S8 and S9 in Supporting information).

    Fig.2.Electrochemical performances of Zn/CuCo2S4 batteries in 2 mol/L KOH and 0.02 mol/L Zn(CH3COO)2 mixture aqueous electrolyte.(a) CV curves of Zn/CuS,Zn/CoS,Zn/CuCo2O4 and Zn/CuCo2S4 batteries at the scan rate of 5 mV/s.(b) CV curves of Zn/CuCo2S4 batteries at different scan rates.(c) The galvanotactic charge and discharge curves of Zn/CuCo2O4 and Zn/CuCo2S4 batteries at 2 mA/cm2 (4 A/g).(d) The galvanotactic charge/discharge curves of Zn/CuCo2S4 batteries at different current densities.(e)Rate performance of Zn/CuCo2S4 batteries at different current densities.(f) Cycling performance of Zn/CuCo2S4 batteries at 8 mA/cm2 (corresponding to 16 A/g with a mass loading of 0.5 mg/cm2).

    Furthermore,the Zn/CuCo2S4batteries exhibit outstanding electrochemical performance compared to reported sulfides and oxides (Table 1) [13,18,24,29,31,32,42-46].Fig.S10 (Supporting information) represents the band structure and densities of states of CuCo2S4,whose band gap is smaller than that of CuCo2O4.This implies that CuCo2S4has more electrons near the Fermi Level and is beneficial for electron transfer.The CuCo2S4possesses not only a 3D-nanosheet networked structure,but also has more active sites induced by the interaction of Cu and Co and higher conductivity due to bimetal synergy and the existence of S (Fig.S11 in Supporting information).Thus,CuCo2S4can be seen as a promising cathode material in the field of alkaline aqueous zinc batteries.

    Table 1Comparison of the key electrochemical performances of some alkaline aqueous zinc batteries.

    In order to study the charge and discharge mechanism of the CuCo2S4material,ex-situRaman and XPS measurements are described to investigate in Zn/CuCo2S4batteries in Fig.3.In Fig.3a,it is clear that the typical charge/discharge curves are displayed,which Raman outlined at distinct points A-G (Figs.3b and c).The peak at 470 cm-1is corresponded to the lattice vibrations (S-S stretching) of Cu-S,while the peaks at 512 cm-1and 673 cm-1are belonged to the Co-S [47-49].During the charging process (AC),the peak located at 673 cm-1in the Raman spectra shifts to a lower wavenumber,which corresponds to Co-S,while this peak shifts to a higher wavenumber during the discharging process.With the charging and discharging of the battery,Raman peaks shift gradually and finally go back to their original positions,implying the high reversibility of the as-prepared batteries.Figs.3d-f demonstrate theex-situXPS spectra of CuCo2S4,which further confirm the oxidation state of Co atoms.The peaks located at 778.4 and 793.7 eV of the Co 2p spectra belong to Co3+.Besides,peaks at 780.8 along with 796.6 eV are assigned to Co2+.The proportion of Co3+/Co2+declined slightly from 0.50 to 0.44 during the discharge process but increased to 1.1 when the battery was charged to 1.95 V,which matched well with the Raman analysis.

    Fig.3.Electrochemical and structural transformation of CuCo2S4 during the electrochemical process: (a) The charge/discharge curves for the second cycle at a current density of 8 mA/cm2 in the 2 mol/L KOH aqueous electrolyte along with 0.02 mol/L Zn(CH3COO)2.(b,c) The points A-G mark the states where spectra are performed for Raman analysis,high-resolution XPS spectra of Co 2p for (d) initial,(e) discharge to 0.65 V,and (f) charge to 1.95 V.

    Therefore,the possible electrochemical reactions for CuCo2S4and charge/discharge reactions can be summarized as follows[18,50]:

    Cathode:

    To further investigate the application potential of CuCo2S4as cathode materials for flexible and wearable devices,flexible Zn/CuCo2S4batteries were created based on the PANa hydrogel.The PANa hydrogel was soaked in a mixture solution of the 2 mol/L KOH aqueous electrolyte along with 0.02 mol/L Zn(CH3COO)2to ensure to assimilate a large amount of water and anions,ensuring excellent ionic conductivity [51].Fig.4a presents the schematic illustration of the structure of Zn/CuCo2S4batteries based on PANa hydrogel electrolytes.According to Fig.4b,the area of the CV curve of PANa hydrogel electrolyte is slightly smaller than that of KOH mixed aqueous solution.CV profiles of Zn/CuCo2S4batteries based on PANa hydrogel were measured at different scan rates ranging from 2 mV/s to 10 mV/s (Fig.4c).CuCo2S4in the PANa hydrogel electrolyte has slightly increased resistance than that of the aqueous solution (Fig.4d).The ionic conductivity of PANa hydrogel electrolyte in this work is 0.1 S/cm.The softness is influenced by the thickness of cathode compounds covered on carbon cloth.The softness and energy density of flexible Zn/CuCo2S4batteries with various thicknesses of cathode materials are presented in Fig.4e.The softness declines as the thickness of active materials increases.Conversely,the areal energy density of the Zn/CuCo2S4devices increases with the thickness of active materials.Therefore,the thickness of cathode materials of 200 mm would be optimal,and we used this thickness for our cathode materials.The as-prepared flexible Zn/CuCo2S4batteries based on PANa hydrogel electrolytes show good rate capability along with a super-long cycling life of over 10,000 cycles (Figs.4f and g).Moreover,this sort of flexible Zn/CuCo2S4batteries possesses good flexibility which can be utilized to make an energy wristband to power digital watches(Figs.4h-j).

    Fig.4.Electrochemical performance of rechargeable solid-state zinc batteries.(a) Schematic illustration of the structure of the flexible Zn/CuCo2S4 battery based on PANa hydrogel electrolytes at the scan rate of 5 mV/s.(b) The CV curves of the PANa hydrogel electrolyte and aqueous solution (the 2 mol/L KOH aqueous electrolyte with 0.02 mol/L Zn(CH3COO)2).(c) The CV curves of Zn/CuCo2S4 batteries based on PANa hydrogel at various scan sweeps,(d) The AC impedance spectrum of Zn/CuCo2S4 battery based on PANa hydrogel electrolytes and aqueous solution (the 2 mol/L KOH aqueous electrolyte with 0.02 mol/L Zn(CH3COO)2 (from 10 kHz to 0.01 Hz).(e) Softness and areal energy density of flexible Zn/CuCo2S4 batteries constructed with various thicknesses of cathode materials.(f) The rate performance of the flexible Zn/CuCo2S4 battery.(g) Cycling stability of Zn/CuCo2S4 batteries with PANa hydrogel electrolytes at 8 mA/cm2 (or 16 A/g,loading 0.5 mg/cm2).(h-j) Digital watches powered by flexible Zn batteries.

    Flexible Zn/CuCo2S4battery based on polymer hydrogel electrolytes can also perform well in various harsh conditions.As shown in Figs.5a-g,after different cutting times,the flexible Zn/CuCo2S4battery can still act as a reliable power source for electronic watches.With the increase in the cutting area,the voltages of the flexible Zn/CuCo2S4battery almost remained unchanged(Fig.5h),demonstrating that this kind of battery can be tailored to meet the requirements of wearable devices with unusual shapes.The charge/discharge curves of Zn/CuCo2S4batteries at various cutting status also can show high stability.In addition,this type of battery is suitable for other harsh conditions,such as freezing in ice (-20 °C) (Fig.5i),drilling,weight loading,and hammering(Fig.S12 in Supporting information).These results show that our flexible Zn/CuCo2S4batteries possess high durability and robustness,which can serve as reliable and powerful energy suppliers for wearable devices.

    Fig.5.Cutting test of the flexible Zn/CuCo2S4 battery based on the PANa hydrogel electrolyte.(a) Initial state,(b) after the first cut,(c) after the second cut,(d) after the third cut,(e) after the fourth cut,(f) after the fifth cut,(g) after the sixth cut.(h) The galvanotactic charge/discharge curves of Zn/CuCo2S4 batteries at different cutting status,(i) The flexible Zn/CuCo2S4 battery in freezing test.

    In summary,highly uniform Co-Cu bimetallic sulfides can be considered as excellent cathode materials for rechargeable and flexible zinc batteries.The as-prepared CuCo2S4nanosheets present superior discharge capacities of 117.4 mAh/g (4 A/g) and 84.0 mAh/g (16 A/g),which is much higher than corresponding oxides (i.e.,CuCo2O4) and monometallic sulfides (i.e.,CuS and CoS).It shows that Cu-Co bimetallic synergy can introduce more active sites,and Cu-Co sulfide can obtain a flexible structure with smaller bond energy and longer bond length,which is beneficial for electron transport.The as-prepared Zn/CuCo2S4batteries also demonstrate admirable cycling life with a 111.9% retention rate after 8000 cycles.Besides,flexible Zn/CuCo2S4batteries based on PANa hydrogel electrolytes can perform as wearable and reliable power sources,delivering good discharge capacity along with excellent cycle life (over 10,000 cycles).This kind of battery can also be tailored to meet the requirements of wearable devices with unusual shapes and perform well in other destructive conditions,such as freezing,drilling,weight loading,and hammering.This work expands the accessible cathode materials by designing bimetallic sulfides for rechargeable Zn batteries and flexible devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by National Natural Science Foundation of China (No.22005207),Guangdong Basic and Applied Basic Research Foundation (Nos.2019A1515011819,2020A1515110442).The authors also would like to thank Yang Chengyu from Shiyanjia Lab (www.shiyanjia.com) for the TEM analysis.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108406.

    日韩成人伦理影院| 色尼玛亚洲综合影院| 精品人妻熟女av久视频| 午夜免费激情av| 黄色视频,在线免费观看| 黄片wwwwww| 国产一区二区在线观看日韩| 91aial.com中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 神马国产精品三级电影在线观看| 有码 亚洲区| 在线观看午夜福利视频| 乱码一卡2卡4卡精品| 搞女人的毛片| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 成人毛片60女人毛片免费| 99热网站在线观看| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 久久99精品国语久久久| 18禁在线播放成人免费| 麻豆精品久久久久久蜜桃| 成人午夜精彩视频在线观看| 日韩一本色道免费dvd| 长腿黑丝高跟| 午夜爱爱视频在线播放| 小蜜桃在线观看免费完整版高清| av在线观看视频网站免费| 一级毛片电影观看 | 青春草国产在线视频 | 深夜精品福利| 亚洲欧美中文字幕日韩二区| 国产午夜精品一二区理论片| 2022亚洲国产成人精品| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 成人亚洲欧美一区二区av| 搡女人真爽免费视频火全软件| 69人妻影院| 成人鲁丝片一二三区免费| 亚洲精华国产精华液的使用体验 | 国产精品久久久久久久久免| 亚洲色图av天堂| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 免费av毛片视频| 一级二级三级毛片免费看| 免费在线观看成人毛片| 人妻制服诱惑在线中文字幕| 日本色播在线视频| 久久午夜福利片| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 精品久久久久久久久av| 国产人妻一区二区三区在| 大又大粗又爽又黄少妇毛片口| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 午夜a级毛片| 综合色丁香网| 国产久久久一区二区三区| 看免费成人av毛片| 最新中文字幕久久久久| 18禁裸乳无遮挡免费网站照片| 老师上课跳d突然被开到最大视频| 亚洲成人av在线免费| 久久精品国产清高在天天线| 好男人在线观看高清免费视频| 日韩视频在线欧美| 欧美一区二区精品小视频在线| 有码 亚洲区| 三级毛片av免费| 赤兔流量卡办理| 久久久午夜欧美精品| 床上黄色一级片| 国产精品美女特级片免费视频播放器| 国产欧美日韩精品一区二区| 欧美一区二区精品小视频在线| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 国产毛片a区久久久久| 少妇丰满av| 少妇猛男粗大的猛烈进出视频 | 亚洲精品粉嫩美女一区| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 欧美日韩精品成人综合77777| av视频在线观看入口| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡人人爽人人夜夜 | 波野结衣二区三区在线| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 麻豆精品久久久久久蜜桃| 特级一级黄色大片| 国产精品久久久久久精品电影| 春色校园在线视频观看| 国产激情偷乱视频一区二区| 黄片wwwwww| videossex国产| 亚洲不卡免费看| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 午夜免费激情av| 欧美最黄视频在线播放免费| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲天堂国产精品一区在线| 99热这里只有是精品在线观看| 亚洲久久久久久中文字幕| 精品国内亚洲2022精品成人| 亚洲丝袜综合中文字幕| 99热这里只有精品一区| 99久久成人亚洲精品观看| 日韩视频在线欧美| 天堂影院成人在线观看| 亚洲人成网站高清观看| 99热这里只有精品一区| 国产在视频线在精品| 亚洲国产日韩欧美精品在线观看| 色综合色国产| 日韩一本色道免费dvd| 九九久久精品国产亚洲av麻豆| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av香蕉五月| 亚洲熟妇中文字幕五十中出| 我要看日韩黄色一级片| 亚洲精品影视一区二区三区av| 午夜激情福利司机影院| 中文字幕免费在线视频6| 欧美一级a爱片免费观看看| 日韩欧美在线乱码| 女同久久另类99精品国产91| 日产精品乱码卡一卡2卡三| 草草在线视频免费看| 国产一区二区在线av高清观看| 免费搜索国产男女视频| 欧美潮喷喷水| 日本与韩国留学比较| 欧美激情在线99| 级片在线观看| 国产亚洲5aaaaa淫片| 岛国在线免费视频观看| 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 丰满的人妻完整版| 99热这里只有是精品在线观看| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| a级毛色黄片| 国产精品国产高清国产av| 亚洲av.av天堂| 精品一区二区三区视频在线| 岛国毛片在线播放| 国产精品日韩av在线免费观看| 麻豆av噜噜一区二区三区| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 桃色一区二区三区在线观看| 亚洲电影在线观看av| 色综合站精品国产| 久久久久久久久久久丰满| 精品一区二区三区人妻视频| 69人妻影院| av在线老鸭窝| 深夜a级毛片| 亚洲va在线va天堂va国产| 免费一级毛片在线播放高清视频| 国产极品天堂在线| 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 国产蜜桃级精品一区二区三区| 麻豆成人午夜福利视频| 白带黄色成豆腐渣| 丰满乱子伦码专区| 人妻久久中文字幕网| 日本黄大片高清| 我要搜黄色片| 一本精品99久久精品77| 国产精品无大码| 最后的刺客免费高清国语| 中文字幕av在线有码专区| 26uuu在线亚洲综合色| 久久久久网色| 网址你懂的国产日韩在线| 亚洲内射少妇av| 精品日产1卡2卡| 精品熟女少妇av免费看| 岛国在线免费视频观看| 中文字幕av在线有码专区| 久久这里只有精品中国| 啦啦啦啦在线视频资源| 三级国产精品欧美在线观看| 免费搜索国产男女视频| 美女被艹到高潮喷水动态| 美女大奶头视频| 亚洲四区av| 国产成人一区二区在线| 国产av不卡久久| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 亚洲最大成人av| 亚洲精品乱码久久久v下载方式| 12—13女人毛片做爰片一| 校园人妻丝袜中文字幕| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 熟女人妻精品中文字幕| 亚洲国产高清在线一区二区三| 深爱激情五月婷婷| 久久久久久久亚洲中文字幕| 国产精品无大码| 亚洲四区av| 久久精品国产亚洲av涩爱 | 美女被艹到高潮喷水动态| 色噜噜av男人的天堂激情| 简卡轻食公司| 欧美三级亚洲精品| 色播亚洲综合网| 99久久精品一区二区三区| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 国产黄片美女视频| 九九热线精品视视频播放| 亚洲av不卡在线观看| 国产高潮美女av| 免费搜索国产男女视频| 搞女人的毛片| 激情 狠狠 欧美| 国产 一区 欧美 日韩| 国产精品福利在线免费观看| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜 | 床上黄色一级片| 欧美另类亚洲清纯唯美| 日产精品乱码卡一卡2卡三| 最近手机中文字幕大全| 99久久九九国产精品国产免费| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 只有这里有精品99| 日本免费a在线| 久久韩国三级中文字幕| 中文字幕av成人在线电影| 国产真实伦视频高清在线观看| 国产精品三级大全| 亚洲精品国产av成人精品| 老司机福利观看| 国产精品.久久久| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 成人毛片a级毛片在线播放| 中文字幕熟女人妻在线| 1024手机看黄色片| 午夜精品一区二区三区免费看| 亚洲电影在线观看av| 高清日韩中文字幕在线| 免费观看的影片在线观看| 99精品在免费线老司机午夜| av天堂在线播放| 国产黄片视频在线免费观看| 亚州av有码| 久久99热这里只有精品18| 亚洲精品色激情综合| 免费看美女性在线毛片视频| 久99久视频精品免费| 欧美一级a爱片免费观看看| 在线观看免费视频日本深夜| 国产私拍福利视频在线观看| 午夜老司机福利剧场| 成熟少妇高潮喷水视频| 三级经典国产精品| 少妇被粗大猛烈的视频| 69人妻影院| 国产69精品久久久久777片| 搞女人的毛片| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 免费观看精品视频网站| 色综合亚洲欧美另类图片| 中出人妻视频一区二区| 免费看a级黄色片| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 欧美xxxx黑人xx丫x性爽| 两性午夜刺激爽爽歪歪视频在线观看| 听说在线观看完整版免费高清| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 国产极品天堂在线| 韩国av在线不卡| 人妻夜夜爽99麻豆av| 国产精品久久视频播放| .国产精品久久| 亚洲七黄色美女视频| 久久亚洲国产成人精品v| 色哟哟·www| 观看免费一级毛片| 菩萨蛮人人尽说江南好唐韦庄 | 又黄又爽又刺激的免费视频.| 黄片wwwwww| 久久久久性生活片| 日日啪夜夜撸| 午夜激情福利司机影院| 日本成人三级电影网站| 亚洲婷婷狠狠爱综合网| 网址你懂的国产日韩在线| 69人妻影院| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 啦啦啦韩国在线观看视频| 亚州av有码| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 99热6这里只有精品| 国产女主播在线喷水免费视频网站 | 只有这里有精品99| 欧美xxxx性猛交bbbb| 久久精品91蜜桃| 插阴视频在线观看视频| 99视频精品全部免费 在线| 天天躁日日操中文字幕| .国产精品久久| 色播亚洲综合网| 日韩欧美在线乱码| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 亚洲三级黄色毛片| 国产一区二区在线av高清观看| 国内精品久久久久精免费| 免费不卡的大黄色大毛片视频在线观看 | 国产黄色小视频在线观看| 中国美白少妇内射xxxbb| 淫秽高清视频在线观看| 97超碰精品成人国产| 欧美性猛交黑人性爽| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频 | 久久这里只有精品中国| 国产乱人偷精品视频| 久久婷婷人人爽人人干人人爱| 国产91av在线免费观看| 男女做爰动态图高潮gif福利片| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 亚洲国产欧洲综合997久久,| 秋霞在线观看毛片| 久久久久久久久久成人| 日韩欧美 国产精品| 99九九线精品视频在线观看视频| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 日本爱情动作片www.在线观看| 国产日韩欧美在线精品| av国产免费在线观看| 亚洲国产色片| 亚洲经典国产精华液单| 日韩强制内射视频| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 久久国内精品自在自线图片| 精品少妇黑人巨大在线播放 | 久久久久久大精品| 国产大屁股一区二区在线视频| www日本黄色视频网| 中出人妻视频一区二区| 亚洲美女视频黄频| 一本精品99久久精品77| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 深爱激情五月婷婷| 黄色一级大片看看| 能在线免费看毛片的网站| 黄色日韩在线| 最近手机中文字幕大全| 亚洲精品国产成人久久av| 一级毛片aaaaaa免费看小| 变态另类丝袜制服| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| 久久久久久久久中文| 激情 狠狠 欧美| 亚洲性久久影院| 日本av手机在线免费观看| 国产精品国产高清国产av| 69av精品久久久久久| 老熟妇乱子伦视频在线观看| 久久久久九九精品影院| 三级国产精品欧美在线观看| 美女 人体艺术 gogo| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色| 午夜福利在线在线| 特大巨黑吊av在线直播| 国产成人91sexporn| 观看免费一级毛片| 精品久久国产蜜桃| 国产伦在线观看视频一区| 天美传媒精品一区二区| 波野结衣二区三区在线| 日本一二三区视频观看| 一进一出抽搐gif免费好疼| 午夜激情福利司机影院| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 亚洲av男天堂| 大又大粗又爽又黄少妇毛片口| 久久久久久久午夜电影| 国产伦一二天堂av在线观看| 久久韩国三级中文字幕| 国产极品精品免费视频能看的| 老司机影院成人| 午夜福利高清视频| 性欧美人与动物交配| 婷婷色综合大香蕉| 最近最新中文字幕大全电影3| 久久精品影院6| 赤兔流量卡办理| 免费观看人在逋| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 不卡一级毛片| 麻豆精品久久久久久蜜桃| 免费观看a级毛片全部| 高清毛片免费看| 亚洲av免费在线观看| 国产精品野战在线观看| 超碰av人人做人人爽久久| www.av在线官网国产| 一级毛片我不卡| 99国产极品粉嫩在线观看| АⅤ资源中文在线天堂| 亚洲第一电影网av| 日韩中字成人| 少妇人妻精品综合一区二区 | 草草在线视频免费看| 国产单亲对白刺激| 亚洲激情五月婷婷啪啪| 99在线视频只有这里精品首页| 人体艺术视频欧美日本| 一区二区三区免费毛片| 日韩欧美 国产精品| 青春草国产在线视频 | 三级毛片av免费| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲自偷自拍三级| 中文资源天堂在线| 欧美成人a在线观看| 日本-黄色视频高清免费观看| 简卡轻食公司| 日本色播在线视频| 观看免费一级毛片| 亚洲最大成人av| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 97超视频在线观看视频| 少妇的逼水好多| 狠狠狠狠99中文字幕| 熟女电影av网| 秋霞在线观看毛片| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 亚洲av一区综合| .国产精品久久| 亚洲国产色片| 亚洲成人中文字幕在线播放| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 白带黄色成豆腐渣| 亚洲国产精品成人久久小说 | 国产大屁股一区二区在线视频| 国产精品日韩av在线免费观看| 免费看光身美女| 男人的好看免费观看在线视频| 男女啪啪激烈高潮av片| 特大巨黑吊av在线直播| 精品午夜福利在线看| 97超碰精品成人国产| 国产成人a∨麻豆精品| 亚洲成人久久性| 久久99热6这里只有精品| 18禁黄网站禁片免费观看直播| 极品教师在线视频| 色噜噜av男人的天堂激情| 精品99又大又爽又粗少妇毛片| 黄片wwwwww| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 久久99热6这里只有精品| 蜜臀久久99精品久久宅男| 久久久久性生活片| 欧美又色又爽又黄视频| 人妻系列 视频| 久久99蜜桃精品久久| 人妻系列 视频| 免费看a级黄色片| 夜夜夜夜夜久久久久| 久久99蜜桃精品久久| 欧美3d第一页| 哪个播放器可以免费观看大片| 免费看日本二区| 欧美日韩精品成人综合77777| 晚上一个人看的免费电影| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 亚洲欧美成人综合另类久久久 | 天堂av国产一区二区熟女人妻| 91在线精品国自产拍蜜月| 国产成人精品久久久久久| 婷婷色av中文字幕| 国产高清视频在线观看网站| 不卡视频在线观看欧美| 国产老妇伦熟女老妇高清| 精华霜和精华液先用哪个| 国内精品久久久久精免费| 嫩草影院新地址| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人国产麻豆网| 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频 | 91精品国产九色| 国产精品一区二区三区四区久久| 久久久久久久久久成人| 精品欧美国产一区二区三| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 国产私拍福利视频在线观看| av在线老鸭窝| 中文精品一卡2卡3卡4更新| 中文在线观看免费www的网站| 亚洲综合色惰| 久久精品国产鲁丝片午夜精品| 久久精品夜夜夜夜夜久久蜜豆| 人妻久久中文字幕网| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 久久久成人免费电影| 真实男女啪啪啪动态图| 波多野结衣高清作品| 国产av麻豆久久久久久久| 淫秽高清视频在线观看| 亚洲性久久影院| 亚洲七黄色美女视频| 成年版毛片免费区| 午夜老司机福利剧场| 永久网站在线| 一进一出抽搐动态| 国产三级在线视频| 国产一级毛片在线| 午夜a级毛片| 一本精品99久久精品77| 国产男人的电影天堂91| 波多野结衣巨乳人妻| 亚洲av一区综合| 午夜精品在线福利| 国产毛片a区久久久久| 在线观看午夜福利视频| 亚洲成人久久性| 日韩 亚洲 欧美在线| 2022亚洲国产成人精品| 如何舔出高潮| 爱豆传媒免费全集在线观看| 亚洲最大成人中文| 国产麻豆成人av免费视频| 日日撸夜夜添| 国产探花极品一区二区| 能在线免费观看的黄片| 99热网站在线观看| 搞女人的毛片| 亚洲成人久久爱视频| 久久久久久久久大av| 欧美人与善性xxx| 1024手机看黄色片| 九九久久精品国产亚洲av麻豆| 亚洲无线观看免费| 麻豆国产av国片精品| 国产伦精品一区二区三区视频9| 久久久久免费精品人妻一区二区| 亚洲欧美日韩高清专用| 久久这里只有精品中国| 国产午夜精品论理片| av卡一久久| 12—13女人毛片做爰片一| 亚洲国产色片| 亚洲欧美精品综合久久99| 搡女人真爽免费视频火全软件| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 国产成人精品一,二区 | 色视频www国产| 婷婷六月久久综合丁香| 一级毛片aaaaaa免费看小|