• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu single atoms embedded on hollow g-C3N4 nanospheres with enhanced charge transfer and separation for efficient photocatalysis

    2024-04-05 02:28:42LinlinZhngJinjunLioYkunLiWeiSunChengjunGe
    Chinese Chemical Letters 2024年2期

    Linlin Zhng ,Jinjun Lio,* ,Ykun Li ,Wei Sun ,Chengjun Ge,*

    a Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province,School of Ecology and Environment,Hainan University,Haikou 570228,China

    b Shandong Ocean Chemical Industry Scientific Research Institute,Weifang 262737,China

    Keywords: g-C3N4 Cu single atom Hollow nanospheres Charge transfer pathways Photocatalytic hydrogen production

    ABSTRACT Establishing an effective charge transfer mechanism in carbon nitride (g-C3N4) to enhance its photocatalytic activity remains a limiting nuisance.Herein,the combination design of a single Cu atom with hollow g-C3N4 nanospheres (Cu-N3 structure) has been proven to offer significant opportunities for this crucial challenge.Moreover,this structure endows two pathways for charge transfer in the reaction,namely,the N atoms in the three-dimensional planar structure are only bonded with a single Cu atom,and charge transfer occurs between the plane and the layered structure due to the bending of the interlayered g-C3N4 hollow nanospheres.Notably,Cu-N3 and hollow nanosphere structures have been certified to greatly enhance the efficiency of photogenerated carrier separation and transfer between the layers and planes by ultrafast spectral analysis.As a result,this catalyst possesses unparalleled photocatalytic efficiency.Specifically,the hydrogen production rate up to 2040 μmol h-1 g-1,which is 51 times that of pure C3N4 under visible light conditions.The photocatalytic degradation performance of tetracycline and oxidation performance of benzene is also expressed,with a degradation rate of 100%,a conversion of 97.3% and a selectivity of 99.9%.This work focuses on the structure-activity relationship to provide the possibilities for the development of potential photocatalytic materials.

    Photocatalysis is a promising new energy conversion technology and pollutant treatment technology [1-4].Polymeric carbon nitride (g-C3N4),as a common organic semiconductor photocatalysts,has been applied in the fields of energy and environmental remediation due to its visible light responsiveness,robust stability,high wear resistance,excellent physicochemical properties and low synthesis cost [5-9].However,the low charge separation and transfer efficiency of bulk C3N4restrict its further development [10-13].To overcome the challenge of constraints and enhance unsatisfactory performance,various effective strategies have been probed,such as the establishment of defects,doping of heterogeneous elements,construction of heterojunctions,and nanostructures [14-19].Nevertheless,it is imperative to develop and use multiple charge transport tunnels.

    The ultra-high conductivity metal seems to be the best candidate for modifying g-C3N4.In particular,the introduction of atomsized metals can not only maximize the utilization of metals but also improve the charge separation and transfer efficiency of g-C3N4[20-23].For example,various noble or non-noble metal single atoms (Au,Pt,Pd,Cu,Co,etc.) have been immobilized on g-C3N4,because these metal atoms can be anchored at rich N sites[24-26].The metal atom fixed carbon nitride can effectively improve photocatalytic performance because the atom acts as an effective electron acceptor in the separation and transfer of photogenerated carriers in the plane [27-30].Thus,the introduction of metal atoms in the g-C3N4plane of the pyrazine (herbicide) conjugate can change the spatial charge transfer pathway [31].However,in-plane doping alone is insufficient to further promote photocatalytic performance,among which,the most effective challenge is to improve the charge transfer between layers (adjacent layers of g-C3N4).This is mainly because the intrinsic planar layered structure of g-C3N4is destroyed along with the weakening of electron transfer in the flat layer [32,33].The basic understanding is that the electronic structure of g-C3N4consists of sp2hybridπdelocalized electrons and lone electrons in N-pz orbit [34,35].Bending the structure of g-C3N4from the plane structure to the spherical structure will cause the electronic structure to deform and compress in the mixed intermediateness between sp2and sp3,further causing the delocalizedπelectrons to migrate from the concave to the convex [36,37].The formation of a hollow spherical structure is an effective method for bending layered g-C3N4.This will eventually result in a significant potential difference between the inner and outer surfaces of the g-C3N4hollow nanospheres due to the uneven distribution of electrons.Therefore,the potential difference of g-C3N4hollow nanospheres as the motive power will stimulate the e-to conquer the electrostatic barrier of the interlayer and shift to the outer layer of g-C3N4hollow nanospheres [38,39].In addition,the hollow nanosphere structure can enhance the light scattering and photosensitivity of g-C3N4or their composites.In a word,hollow sphere structure is an effective method to improve photocatalytic performance,which has been widely proved.

    Therefore,we prepared hollow g-C3N4nanospheres (HC3N4)and loaded Cu single atoms as electron acceptors on the surface of Cu-HC3N4.Multiple testing methods demonstrated that single Cu atoms were embedded in the C3N4plane,and had an enormous capacity to enhance charge separation and transfer within the plane.The hollow nanosphere structure enhanced charge separation and transfer in the interlayer.Therefore,under visible light irradiation,Cu single atom-modified,hollow g-C3N4nanospheres exhibited excellent performance in the selective oxidation of benzene to phenol and photocatalytic hydrogen evolution.The molecular structure engineering strategy of introducing the bending of the delocalizedπelectrons of g-C3N4provided a new option for promoting oriented charge transfer between nanolayers and is applicable to other single-atom functional materials.

    As shown in Fig.1a,we used SiO2as the hard template to synthesize HC3N4nanospheres by thermal polymerization.Then,monoatomic copper is loaded,and finally hollow carbon nitride loaded with monoatomic copper is formed.Single atoms of copper show bright spots in high resolution high angle ring dark field(HAADF) to determine whether it exists.As shown in Fig.1b,multiple bright spots with uniform size and uniform distribution are presented,proving that the product contains Cu in the form of a single atom.Furthermore,the synthesized HC3N4is composed of C,N and Cu elements and proved by element mapping.More excitingly,it can be observed that Cu is uniformly distributed on the entire carbon nitride carrier.The loaded copper content was monitored as 0.50±0.02 wt% by inductively coupled plasma atomic emission spectrometry (ICP-AES).As displayed in Fig.S2 (Supporting information),the Cu-HC3N4is the nanospheres structure.Furthermore,it can be seen from the mapping image and Fig.1c that the prepared sample is a hollow nanosphere structure.And the Cu element is evenly distributed in the hollow spherical shell.

    Fig.1.(a) Scheme of Cu single atom doted HC3N4.(b) HAADF-STEM,HADDF,mapping image of Cu single atom HC3N4.(c) TEM of Cu-HC3N4 composite.(d) XRD patterns for C3N4,HC3N4 and Cu-HC3N4 composite.

    Fig.1d shows the XRD patterns of HC3N4with Cu single atom loadings,C3N4and HC3N4.For C3N4,a very distinct XRD diffraction peak situated at 27.7°,which is attributed to the interlayer stacked reflectance of the conjugated aromatic hydrocarbon system[5].The signature peak at 2θis the typical (002) peak to indicate the graphite material [40].Otherwise,for HC3N4,the peak with intensity slightly higher than the noise appears at 2θof 13.3°,showing an in-plane repeated structural unit of tri-s-triazine.It can be seen that compared with C3N4,hollow g-C3N4nanospheres have a less porous and layered structure.Compared with the former two,there is almost no (100) peak in Cu-HC3N4,which proves that the aromatic structure is destroyed [9].Fig.S3 (Supporting information) gives the FTIR spectroscopy to clarify the structural composition of the synthesized photocatalyst.It is obvious that all the synthesized photocatalysts display the analogous FT-IR signals.Specifically,the characteristic peak loaded at 813 cm-1represents the condensed heptazine heterocyclic ring (C6N7).The peaks at 1545 cm-1,1328 cm-1,and 1232 cm-1correspond to C=N(sp2),C-N(sp2) in the heptazine unit and the C-NH-C bond in melamine,respectively,which prove the composition of the basic heptazine unit of g-C3N4[41-45].The pronounced broad spectral band is in the range of 3000-3800 cm-1,which is mainly due to the N-H band formed by the uncondensed amine group and the ·OH formed by the adsorption of H2O on the surface [5].

    X-ray absorption spectroscopy (XAS) was used to determine the valence structure and coordination environment of Cu in the synthesized Cu-HC3N4sample.As displayed in Fig.2a,the absorption edge of the Cu-HC3N4sample is located between the absorption edges of CuO and Cu2O (Cu K-edge X-ray absorption near edge structure spectrum,XANES),demonstrating the presence of Cu+(the predominant oxidation state) and Cu2+in Cu-HC3N4[20,31].The absorption edge of the Cu-HC3N4migrated to a higher energy than that of Cu foil,indicating that Cu is oxidized in Cu-HC3N4[26].The FT value of the EXAFS results at the Cu K edge shows that a distinct symmetrical peak of the Cu foil at ≈2.2 ?A is attributed to the Cu-Cu bond (Fig.2b),which is not found in Cu-HC3N4.On the contrary,a very obvious peak appears at ≈1.4 ?A,which is attributed to the Cu-N bond.The chemical structure of the Cu-HC3N4sample was further determined by X-ray photoelectron spectroscopy (XPS).Fig.2c presents the survey XPS spectra of all synthesized material,and it is detected that the material has two characteristic peaks of C and N elements.It is worth noting that a slight or negligible Cu signal is present in Cu-HC3N4material,proving that the Cu element content in the sample is low.Two significant characteristic peaks of 284.8 and 288.3 eV appeared in the C 1s high-resolution XPS spectrum (Fig.2d),indicating the presence of C-C and sp2bond carbon (N-C=N) in the g-C3N4skeleton,respectively [9].The high-resolution spectrum of N 1s shows characteristic peaks at 401.3,400.2,and 398.6 eV in the g-C3N4sample (Fig.2e),corresponding to graphical nitrogen,pyrrole nitrogen,and pyridine nitrogen,respectively [9].Not surprisingly,the N 1s binding energy of Cu-HC3N4is slightly higher than that of C3N4,indicating the slight decrease in the electron density of the pyridine N atom,which is attributed to its interaction with the Cu atom.Hence,the Cu atom is immobilized on the pyridine N atom in g-C3N4to form a stable structure.For Cu-HC3N4,in the Cu 2p high-resolution spectrum,in addition to containing Cu+,it also shows two characteristic peaks of Cu2+corresponding to 935.0 and 955.0 eV,and the ratio of Cu2+to Cu+is~2 (Fig.2f) [28].The above results indicate the existence of single-atom copper.

    Fig.2.(a) Cu K-edge XANES spectra.(b) FT-EXAFS spectra.(c) XPS survey spectra and corresponding high-resolution XPS spectra of (d) C 1s,(e) N 1s and (f) Cu 2p.

    The optical properties and light harvesting ability of C3N4,HC3N4and Cu-HC3N4were studied by UV-vis diffuse reflectance spectroscopy.As presented in Fig.3a,the UV-vis absorption edges of all samples are analyzed as follows: The absorption edge of C3N4is located at 458 nm,while the HC3N4and Cu-HC3N4are redshifted to 465 and 468 nm,respectively.In addition,all materials show tailing absorption in the visible region,which is attributed to the Cu single atom and hollow structure.The reaction of Cu atoms on the surface properties of hollow g-C3N4nanospheres was investigated by N2adsorption tests.As shown in Fig.3b,HC3N4and Cu-HC3N4samples express the traditional type IV isotherms and have high adsorption capacity,especially at high (P/P0>0.8) relative pressure.The BET specific surface areas of HC3N4and Cu-HC3N4samples are 45.2 and 100.4 m2/g,which are 4.8 and 10.6 times that of g-C3N4(9.4 m2/g),respectively.The Cu-HC3N4sample with such a high specific surface area is derived from its unique hollow nanospheres morphology,which provides more active sites for utilization.

    Fig.3.(a) UV-vis DRS of C3N4,HC3N4,and Cu-HC3N4.(b) Nitrogen adsorption desorption isotherm,(c) steady-state PL spectra,(d) time-resolved PL spectra,(e) transient photocurrent responses and (f) Nyquist plots of C3N4,HC3N4, Cu-C3N4,and Cu-HC3N4.

    As shown in Fig.3c,a significant photoluminescence (PL)quenching occurs in the steady-state PL emission spectra of the Cu-HC3N4heterostructure relative to Cu-C3N4,HC3N4,and C3N4,indicating the intrinsic radiative recombination of the photogenerated electron-hole pairs in C3N4,HC3N4,and Cu-C3N4.It follows that the PL quenching on C3N4and HC3N4may be caused by the introduction of Cu atoms.In addition,compared with C3N4,the PL intensity of HC3N4also decreases,which indicates that C3N4can effectively improve the charge transport between the interface layers after surface bendingviahollow structure,and effectively inhibit the carrier recombination.Furthermore,as seen in Fig.3d and Table S4 (Supporting information),the time-resolved transient PL decay spectra by the position of the corresponding steady-state emission peaks show that the Cu-HC3N4heterostructure has a longer charge carrier average lifetime (τavg) relative to Cu-C3N4,HC3N4,and C3N4,which indicates the presence of more efficient charge transfer in Cu-HC3N4.By using a pump pulse at 400 nm wavelength,electrons are effectively promoted from the valence band to the conduction band of g-C3N4.As shown by the results,a very similar TA spectrum characterized by the detection of bleaching signals appears in the detection range of 450-760 nm wavelengths.A global fitting procedure to retrieve the characteristic relaxation time constants was performed to eliminate the avoidable effects of different probe wavelengths on the recovery kinetics.The average time constants for C3N4,HC3N4,Cu-C3N4,and Cu-HC3N4are 112,93,86,and 68 ps,respectively,as shown in Fig.S4 (Supporting information).The fit results converge to a long-lived plateau with a certain amplitude,which reflects the longer lifetime of the charge recombination process on the nano-microsecond time scale.And the average recovery lifetime is an obvious indicator to assess the separation/transfer efficiency of photogenerated charge carriers.By comparing the average recovery lifetime cases of HC3N4and Cu-HC3N4,a decrease can be observed.This may be due to the fact that Cu-N3opens an additional in-plane channel for electron transfer which shortens the average recovery lifetime.There is also a decrease in the average recovery lifetime of Cu-HC3N4compared to Cu-C3N4,which may be due to the hollow nanosphere structure opening an additional interlayer channel for electron transfer.

    Furthermore,chrono-measuredI-tcurves under chopper illumination conditions were used to characterize the photo-response of C3N4,HC3N4,Cu-C3N4,and Cu-HC3N4catalysts.As shown in Fig.3e,the Cu-HC3N4catalyst has a higher photocurrent value relative to the pristine HC3N4and Cu-C3N4,indicating that the Cu-HC3N4catalyst has a higher electron-hole separation efficiency.A rapid improvement in charge transfer capability was also confirmed by electrochemical impedance spectroscopy (EIS).The small arc radius of the Nyquist plot of the Cu-HC3N4electrode was used to characterize the rapid interfacial charge transfer between Cu-HC3N4and the dielectric (Fig.3f).The results shown above further demonstrate that the hollow structure has the positive effect of promoting the separation of photogenerated carriers within the face and between the layers,thereby also improving the performance of single-atom Cu-HC3N4photocatalysts.

    The photocatalytic hydrogen evolution experiments were implemented by using methanol as an electron donor and platinum as a co-catalyst under visible light (λ>420 nm) irradiation.Hydrogen evolution rates were about 20 μmol/h for C3N4,68 μmol/h for HC3N4,378 μmol/h for Cu-C3N4,and 1020 μmol/h for Cu-HC3N4(Figs.4a and b).Cu-HC3N4has a relatively good activity as a good performing photocatalyst over a longer period of time (Fig.4c).It is because of the high planar and interlayer conductivity generated by Cu-N3and hollow nanostructures,which allow rapid migration of photogenerated electron-hole pairs and inhibit charge recombination,the photocatalytic activity of Cu-HC3N4is higher than that of C3N4,HC3N4and Cu-C3N4.Besides,the effect of the number of Cu single atoms on the product hydrogen evolution can also be seen by Fig.S5 (Supporting information),where the loading of Cu should not exceed 0.50 wt%,otherwise there is a significant decrease in activity,which is due to the aggregation of copper atoms making the utilization of copper atoms less efficient.

    Fig.4.(a) Average hydrogen production rates and (b) H2 evolution under visible light irradiation.(c) Cycling tests of photocatalytic hydrogen generation of Cu-HC3N4.(d) Photocatalytic TC degradation.(e) Cycling tests of photocatalytic TC degradation of Cu-HC3N4.(f) The effects of scavengers on the photocatalytic TC degradation (catalysts=50 mg,scavenger=10 mmol/L).

    As shown in Fig.4d,the photocatalytic performance of the Cu-HC3N4sample was verified by tetracycline (TC) photocatalytic degradation in an aqueous solution under visible light irradiation,where the photoelectrons generated by the photocatalyst were transferred to copper ions for efficient copper cycling,enabling the continuation of the reaction.In addition to this,the holes generated by light can also produce certain radicals.Therefore,singleatom copper and hollow structure modified photocatalytic materials can generate free radicals better due to their higher charge separation properties.Under dark conditions,the adsorption of the model pollutant TC on the surfaces of C3N4,HC3N4,Cu-C3N4and Cu-HC3N4after 10 min was not different compared to the results of BET.Under visible light irradiation,the absorption intensity of TC decreases with time,indicating the appearance of photo-oxidation of TC,and suggesting that Cu-HC3N4has the best photocatalytic degradation,which is caused by the combined effect of the unitary copper and hollow nanosphere structure.The total organic carbon removal rate is displayed in Fig.S6 (Supporting information),and the results indicate that the removal of organic carbon is similar to the degradation outcomes,with Cu-HC3N4exhibiting the highest removal rate.This suggests that it has superior photocatalytic degradation performance.

    The stable photocatalytic performance of Cu-HC3N4was demonstrated by stability testing (Fig.4e),proving the successful preparation of a single-atom photocatalyst with excellent performance.XRD and FTIR tests were performed for the samples recovered after the test (Fig.S7 in Supporting information).As shown in Fig.S7b,there was no significant change in the spectra before and after the tests,which further verified that the photocatalyst has good stability.Furthermore,as shown in Fig.4f,it can be seen that BQ has the greatest impact on performance,indicating that·O2-is the main reactive oxygen species.As benzene is an important reagent for the synthesis of many chemicals,the photocatalytic oxidation activity of Cu-HC3N4can be tested by whether it can selectively oxidize benzene to phenol,and the conversion of benzene to phenol cannot occur in the absence of the catalyst (Fig.S8 in Supporting information).Compared to C3N4,HC3N4and Cu-C3N4,the conversion and selectivity of Cu-HC3N4were improved to 97.3%and 99.9%,respectively,under visible light conditions,providing a more excellent performance.The sample recovery was tested after the experiment (Fig.S9 in Supporting information),and Cu-HC3N4also has good stability for phenol production,as evidenced by hydrogen evolution and TC degradation experiments.

    In general,the photocatalytic process involves several steps:First,light is absorbed by the prepared Cu-C3N4photocatalyst,generating an excited state called an electron-hole pair.Second,the electron and hole are separated and migrate to a reaction site on the photocatalyst surface,where the hollow sphere structure and Cu single atoms can effectively promote the separation of photogenerated charge carriers (Fig.S10 in Supporting information).Third,the reactant molecules or ions adsorb onto the photocatalyst surface,and the larger specific surface area of the hollow sphere structure can increase the adsorption of reactant molecules.Fourth,the electrons on the photocatalyst surface react with the adsorbed reactant molecules or ions,causing them to undergo redox reactions.Fifth,the products of the redox reactions desorb from the photocatalyst surface,completing the photocatalysis process.

    In summary,we propose a simple pre-assembly strategy to prepare porous and hollow nanospheres g-C3N4photocatalysts with unique Cu-N3species and high active site accessibility.Interestingly,compared with HC3N4and Cu-C3N4,the developed Cu-HC3N4catalyst exhibits excellent photocatalytic performance,especially in the photocatalytic degradation of TC and the selective oxidation of benzene to phenol.The atomically dispersed,anchored peculiar Cu-N3species is responsible for the prominent catalytic behavior.This study not only affords a neoteric and highly active catalyst for photocatalytic hydrogen production,but also provides a new way to design and fabricate single-atom catalysts in various g-C3N4micro/nanostructures by changing the metal and/or adjusting the structure of pre-organized supramolecular aggregates.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Hainan Province Science and Technology Special Fund (No.ZDYF2022SHFZ094),National Natural Science Foundation of China (No.22166016),Hainan Provincial Key Research and Development Program (No.ZDYF2020222),and the open-ended fund of Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (No.AFEPER202205).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108568.

    女人十人毛片免费观看3o分钟| videos熟女内射| 国产精品不卡视频一区二区| 久久久久久九九精品二区国产| 成人三级黄色视频| 美女xxoo啪啪120秒动态图| 亚洲四区av| 免费黄网站久久成人精品| 天堂av国产一区二区熟女人妻| 看十八女毛片水多多多| 男女下面进入的视频免费午夜| 欧美精品国产亚洲| 国产片特级美女逼逼视频| 老女人水多毛片| 国产黄片美女视频| 亚洲av男天堂| 日本欧美国产在线视频| 国产高清三级在线| 天堂中文最新版在线下载 | 亚洲欧美成人精品一区二区| av播播在线观看一区| 一级毛片电影观看 | 人体艺术视频欧美日本| 国产精品,欧美在线| 亚洲五月天丁香| 久久草成人影院| 亚洲性久久影院| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 麻豆精品久久久久久蜜桃| 日韩一区二区视频免费看| 免费观看在线日韩| 亚洲精品乱久久久久久| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 亚洲在久久综合| 蜜臀久久99精品久久宅男| 成年女人永久免费观看视频| 日韩一区二区三区影片| 特级一级黄色大片| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 欧美成人精品欧美一级黄| 色5月婷婷丁香| 国产av在哪里看| or卡值多少钱| 国产乱来视频区| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久| 最新中文字幕久久久久| 日韩av在线大香蕉| 日韩欧美国产在线观看| 尤物成人国产欧美一区二区三区| 伊人久久精品亚洲午夜| eeuss影院久久| 日韩成人av中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 天堂影院成人在线观看| 国产极品精品免费视频能看的| 亚洲av.av天堂| 国产成人a∨麻豆精品| 如何舔出高潮| 免费看光身美女| 欧美日本亚洲视频在线播放| 成人漫画全彩无遮挡| 热99re8久久精品国产| 久久这里有精品视频免费| 1000部很黄的大片| 97在线视频观看| 精品人妻熟女av久视频| 国产激情偷乱视频一区二区| 国产极品天堂在线| 国产高清国产精品国产三级 | 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 美女高潮的动态| 国产探花在线观看一区二区| 久久久久国产网址| 搡女人真爽免费视频火全软件| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 免费看日本二区| 亚洲在久久综合| 免费观看a级毛片全部| 日本av手机在线免费观看| 女人被狂操c到高潮| 日韩成人伦理影院| av播播在线观看一区| 18禁在线播放成人免费| 亚洲国产成人一精品久久久| 黄色一级大片看看| 国产成人91sexporn| 亚洲婷婷狠狠爱综合网| 波多野结衣高清无吗| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 亚洲国产精品久久男人天堂| 日本-黄色视频高清免费观看| АⅤ资源中文在线天堂| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| or卡值多少钱| 国产久久久一区二区三区| 夫妻性生交免费视频一级片| 精品久久久久久久久av| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜爱| 亚洲久久久久久中文字幕| 国产老妇女一区| 亚洲精品乱久久久久久| 美女高潮的动态| 国产精品国产高清国产av| 久久99热这里只有精品18| 最后的刺客免费高清国语| 亚洲在线自拍视频| 国产三级中文精品| 久久99热这里只频精品6学生 | 午夜日本视频在线| 一个人观看的视频www高清免费观看| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 一级二级三级毛片免费看| 女人被狂操c到高潮| 国产精品.久久久| 久久久久久伊人网av| 国产亚洲精品久久久com| 联通29元200g的流量卡| 国产极品天堂在线| 免费观看性生交大片5| 亚洲精品乱码久久久v下载方式| 日本黄色视频三级网站网址| 97在线视频观看| 成人二区视频| 日本黄色视频三级网站网址| 一级毛片久久久久久久久女| 乱码一卡2卡4卡精品| 亚洲av日韩在线播放| 91久久精品国产一区二区三区| 亚洲一区高清亚洲精品| 在线天堂最新版资源| 97超视频在线观看视频| 久久精品久久久久久久性| 九草在线视频观看| 国产国拍精品亚洲av在线观看| 秋霞在线观看毛片| 亚洲经典国产精华液单| 成年女人永久免费观看视频| 色尼玛亚洲综合影院| 最近中文字幕高清免费大全6| 内地一区二区视频在线| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 亚洲国产精品国产精品| 午夜福利网站1000一区二区三区| 国产黄色小视频在线观看| 99热这里只有精品一区| 日本黄大片高清| 淫秽高清视频在线观看| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 国产视频首页在线观看| 成年av动漫网址| 欧美区成人在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产69精品久久久久777片| 少妇高潮的动态图| 亚洲av福利一区| 在线免费观看不下载黄p国产| 国产伦一二天堂av在线观看| 我的女老师完整版在线观看| 久久精品久久久久久久性| 亚洲经典国产精华液单| 高清av免费在线| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | 国产真实乱freesex| 看黄色毛片网站| 91aial.com中文字幕在线观看| av在线播放精品| 免费黄网站久久成人精品| 日本免费在线观看一区| 久久精品综合一区二区三区| 国产单亲对白刺激| 欧美日韩一区二区视频在线观看视频在线 | 韩国av在线不卡| 国产伦一二天堂av在线观看| 婷婷色麻豆天堂久久 | 韩国av在线不卡| 亚洲精品色激情综合| 日韩强制内射视频| 国产在视频线精品| 国产精华一区二区三区| 国产综合懂色| av在线亚洲专区| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 在线观看美女被高潮喷水网站| 精品欧美国产一区二区三| 亚洲国产成人一精品久久久| 99久久人妻综合| 亚洲欧洲日产国产| 亚洲高清免费不卡视频| 精品人妻熟女av久视频| 尤物成人国产欧美一区二区三区| 尾随美女入室| 午夜福利在线观看免费完整高清在| 亚洲精品,欧美精品| 亚洲av男天堂| 日韩成人av中文字幕在线观看| 国产单亲对白刺激| 在线播放无遮挡| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲av免费高清在线观看| 夜夜爽夜夜爽视频| 欧美日韩综合久久久久久| 精品午夜福利在线看| 国产片特级美女逼逼视频| av专区在线播放| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 大香蕉97超碰在线| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品久久久久久婷婷小说 | 六月丁香七月| 麻豆精品久久久久久蜜桃| 国产精品电影一区二区三区| 精品国产一区二区三区久久久樱花 | 岛国毛片在线播放| 97人妻精品一区二区三区麻豆| 国产精品精品国产色婷婷| 狂野欧美白嫩少妇大欣赏| 看黄色毛片网站| 亚洲乱码一区二区免费版| 久久久久久大精品| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 天天躁日日操中文字幕| 日韩成人伦理影院| 久久这里只有精品中国| 男人的好看免费观看在线视频| 高清视频免费观看一区二区 | 天堂√8在线中文| 18禁动态无遮挡网站| 亚洲精品aⅴ在线观看| 一个人观看的视频www高清免费观看| 国产成人午夜福利电影在线观看| 丰满人妻一区二区三区视频av| 又爽又黄无遮挡网站| 纵有疾风起免费观看全集完整版 | 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| a级一级毛片免费在线观看| 高清日韩中文字幕在线| 欧美成人午夜免费资源| 婷婷色综合大香蕉| 成人二区视频| 午夜日本视频在线| 能在线免费观看的黄片| 身体一侧抽搐| 日本一二三区视频观看| 国产精品1区2区在线观看.| 国产精品女同一区二区软件| 欧美潮喷喷水| 亚洲av福利一区| 99久久人妻综合| 亚洲国产精品sss在线观看| 精品人妻熟女av久视频| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 夜夜看夜夜爽夜夜摸| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| 久久久久久久午夜电影| 国产高清三级在线| 国产精品,欧美在线| av在线老鸭窝| 免费播放大片免费观看视频在线观看 | 亚洲av免费高清在线观看| 国产又黄又爽又无遮挡在线| 国产熟女欧美一区二区| 97超视频在线观看视频| 国产淫片久久久久久久久| 国产伦理片在线播放av一区| 久久精品夜夜夜夜夜久久蜜豆| 天美传媒精品一区二区| 精品久久久久久成人av| 在线观看66精品国产| 日韩大片免费观看网站 | 免费人成在线观看视频色| 国产午夜精品久久久久久一区二区三区| videossex国产| 中文在线观看免费www的网站| 国产老妇女一区| 亚洲欧洲日产国产| 亚洲人与动物交配视频| 中文资源天堂在线| 国产 一区精品| 国产黄片视频在线免费观看| 高清在线视频一区二区三区 | 国产精品三级大全| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 亚洲精品自拍成人| 亚洲婷婷狠狠爱综合网| 亚洲av中文字字幕乱码综合| 91aial.com中文字幕在线观看| 三级经典国产精品| 国产极品天堂在线| 国产黄a三级三级三级人| 精品熟女少妇av免费看| www.色视频.com| 久久韩国三级中文字幕| 亚洲国产成人一精品久久久| 日本黄色视频三级网站网址| 国产男人的电影天堂91| 免费看日本二区| 久久久亚洲精品成人影院| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 黄片无遮挡物在线观看| 嫩草影院入口| 国产高清三级在线| 波多野结衣高清无吗| 校园人妻丝袜中文字幕| 亚洲美女搞黄在线观看| 欧美一区二区精品小视频在线| 激情 狠狠 欧美| 亚洲精品自拍成人| 高清av免费在线| 桃色一区二区三区在线观看| 亚洲色图av天堂| av免费在线看不卡| 干丝袜人妻中文字幕| 波野结衣二区三区在线| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| 99久久精品热视频| 少妇人妻精品综合一区二区| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 黄色欧美视频在线观看| 97人妻精品一区二区三区麻豆| 一区二区三区免费毛片| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 国产精品野战在线观看| 日日啪夜夜撸| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 亚洲欧美成人综合另类久久久 | 成人二区视频| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 亚洲精品一区蜜桃| 久久精品人妻少妇| 久久午夜福利片| 中文字幕av在线有码专区| 99热网站在线观看| 久久久久性生活片| 国产精品人妻久久久久久| 亚洲怡红院男人天堂| 亚洲人与动物交配视频| av天堂中文字幕网| 日韩强制内射视频| 高清毛片免费看| 亚洲精品亚洲一区二区| 一本久久精品| 国产午夜精品论理片| 日韩大片免费观看网站 | 亚洲在久久综合| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 91久久精品电影网| 国产成人a∨麻豆精品| av线在线观看网站| 熟女电影av网| 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 一个人看的www免费观看视频| 欧美性感艳星| 99热精品在线国产| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人片av| 自拍偷自拍亚洲精品老妇| 桃色一区二区三区在线观看| 少妇被粗大猛烈的视频| 99久久成人亚洲精品观看| 亚洲一级一片aⅴ在线观看| 又黄又爽又刺激的免费视频.| 爱豆传媒免费全集在线观看| 中文字幕久久专区| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添av毛片| 国产高清有码在线观看视频| 色网站视频免费| 一本久久精品| 午夜福利高清视频| a级毛色黄片| 黄片无遮挡物在线观看| 亚洲美女搞黄在线观看| 黑人高潮一二区| 成人一区二区视频在线观看| 亚洲精品国产成人久久av| 欧美日韩国产亚洲二区| 91精品伊人久久大香线蕉| 免费av不卡在线播放| 午夜免费激情av| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 色综合亚洲欧美另类图片| 又黄又爽又刺激的免费视频.| 床上黄色一级片| 91精品一卡2卡3卡4卡| 69人妻影院| 国产黄片美女视频| 精品欧美国产一区二区三| 久久精品人妻少妇| 91精品国产九色| 少妇被粗大猛烈的视频| 欧美bdsm另类| 久久草成人影院| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 久久这里只有精品中国| 如何舔出高潮| 2022亚洲国产成人精品| 亚洲真实伦在线观看| 九九久久精品国产亚洲av麻豆| 久久久色成人| 少妇高潮的动态图| 免费大片18禁| 国产午夜精品一二区理论片| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 秋霞在线观看毛片| 亚洲av中文av极速乱| 18禁裸乳无遮挡免费网站照片| 久久久久免费精品人妻一区二区| 有码 亚洲区| 色视频www国产| 晚上一个人看的免费电影| 日本免费一区二区三区高清不卡| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品专区久久| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 观看免费一级毛片| 久久久成人免费电影| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 三级国产精品片| 久久久久久九九精品二区国产| 久久久色成人| 亚洲第一区二区三区不卡| 一本久久精品| 99视频精品全部免费 在线| 国产精品久久视频播放| 成年版毛片免费区| 亚洲av熟女| 亚洲国产精品合色在线| 日本爱情动作片www.在线观看| 国产伦在线观看视频一区| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 国产成人freesex在线| 一本久久精品| 蜜臀久久99精品久久宅男| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| 国产伦理片在线播放av一区| av国产久精品久网站免费入址| 91久久精品电影网| 特大巨黑吊av在线直播| 亚洲国产欧洲综合997久久,| 久久久久久久久久成人| 插阴视频在线观看视频| 国产精品国产三级专区第一集| 99热这里只有精品一区| 日本猛色少妇xxxxx猛交久久| 国产探花极品一区二区| 一本久久精品| av在线观看视频网站免费| 欧美成人午夜免费资源| 男女边吃奶边做爰视频| 国产精品.久久久| 国产淫片久久久久久久久| 国产一区二区三区av在线| videos熟女内射| 亚洲最大成人av| 亚洲成色77777| 成人性生交大片免费视频hd| 看非洲黑人一级黄片| 一级爰片在线观看| 国产精品精品国产色婷婷| 在线观看66精品国产| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 夜夜爽夜夜爽视频| 日日干狠狠操夜夜爽| 寂寞人妻少妇视频99o| 色视频www国产| 高清日韩中文字幕在线| 日韩成人伦理影院| 亚洲欧美清纯卡通| 2021天堂中文幕一二区在线观| 国产在视频线在精品| 91久久精品国产一区二区三区| 三级经典国产精品| 免费黄色在线免费观看| 久久久久精品久久久久真实原创| 尤物成人国产欧美一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99热6这里只有精品| h日本视频在线播放| 嫩草影院入口| 日本-黄色视频高清免费观看| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| videossex国产| 在线a可以看的网站| 亚洲精品国产av成人精品| 日本黄大片高清| 午夜激情福利司机影院| 只有这里有精品99| 免费黄色在线免费观看| 97人妻精品一区二区三区麻豆| 如何舔出高潮| 黄片wwwwww| 亚洲精品乱码久久久v下载方式| 亚洲av.av天堂| 日韩视频在线欧美| 亚洲中文字幕日韩| 免费大片18禁| 成人高潮视频无遮挡免费网站| 91在线精品国自产拍蜜月| 女人久久www免费人成看片 | 成人欧美大片| 亚洲av电影在线观看一区二区三区 | 蜜臀久久99精品久久宅男| 国产69精品久久久久777片| 久久婷婷人人爽人人干人人爱| 成人综合一区亚洲| 欧美一区二区亚洲| 岛国毛片在线播放| 午夜精品在线福利| 男人舔奶头视频| 99热这里只有精品一区| 欧美精品国产亚洲| 国产免费男女视频| 久久久久九九精品影院| 波多野结衣高清无吗| 中文字幕免费在线视频6| 欧美精品国产亚洲| 国产精品99久久久久久久久| 国模一区二区三区四区视频| 日本免费一区二区三区高清不卡| 久久久国产成人精品二区| 高清日韩中文字幕在线| 日韩欧美在线乱码| 日日摸夜夜添夜夜爱| 国产精品一区二区性色av| 99热全是精品| 最新中文字幕久久久久| 免费人成在线观看视频色| 69人妻影院| 亚洲中文字幕日韩| 国产成人aa在线观看| 久久国产乱子免费精品| 亚洲不卡免费看| 久久人人爽人人爽人人片va| 91狼人影院| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 热99re8久久精品国产| 黄片wwwwww| 国产在视频线在精品| 国产成人精品婷婷| 人人妻人人看人人澡| 日日干狠狠操夜夜爽| 国产精品久久久久久久电影| 国产美女午夜福利| 日本午夜av视频| 亚洲国产精品国产精品| 国产高清视频在线观看网站| 国产激情偷乱视频一区二区| 综合色丁香网| 亚洲成人av在线免费| 日本色播在线视频| 国产片特级美女逼逼视频| 91午夜精品亚洲一区二区三区| a级毛色黄片| 色噜噜av男人的天堂激情| 男女那种视频在线观看| 欧美一区二区国产精品久久精品| 久久久久国产网址| 久久欧美精品欧美久久欧美|