• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu single atoms embedded on hollow g-C3N4 nanospheres with enhanced charge transfer and separation for efficient photocatalysis

    2024-04-05 02:28:42LinlinZhngJinjunLioYkunLiWeiSunChengjunGe
    Chinese Chemical Letters 2024年2期

    Linlin Zhng ,Jinjun Lio,* ,Ykun Li ,Wei Sun ,Chengjun Ge,*

    a Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province,School of Ecology and Environment,Hainan University,Haikou 570228,China

    b Shandong Ocean Chemical Industry Scientific Research Institute,Weifang 262737,China

    Keywords: g-C3N4 Cu single atom Hollow nanospheres Charge transfer pathways Photocatalytic hydrogen production

    ABSTRACT Establishing an effective charge transfer mechanism in carbon nitride (g-C3N4) to enhance its photocatalytic activity remains a limiting nuisance.Herein,the combination design of a single Cu atom with hollow g-C3N4 nanospheres (Cu-N3 structure) has been proven to offer significant opportunities for this crucial challenge.Moreover,this structure endows two pathways for charge transfer in the reaction,namely,the N atoms in the three-dimensional planar structure are only bonded with a single Cu atom,and charge transfer occurs between the plane and the layered structure due to the bending of the interlayered g-C3N4 hollow nanospheres.Notably,Cu-N3 and hollow nanosphere structures have been certified to greatly enhance the efficiency of photogenerated carrier separation and transfer between the layers and planes by ultrafast spectral analysis.As a result,this catalyst possesses unparalleled photocatalytic efficiency.Specifically,the hydrogen production rate up to 2040 μmol h-1 g-1,which is 51 times that of pure C3N4 under visible light conditions.The photocatalytic degradation performance of tetracycline and oxidation performance of benzene is also expressed,with a degradation rate of 100%,a conversion of 97.3% and a selectivity of 99.9%.This work focuses on the structure-activity relationship to provide the possibilities for the development of potential photocatalytic materials.

    Photocatalysis is a promising new energy conversion technology and pollutant treatment technology [1-4].Polymeric carbon nitride (g-C3N4),as a common organic semiconductor photocatalysts,has been applied in the fields of energy and environmental remediation due to its visible light responsiveness,robust stability,high wear resistance,excellent physicochemical properties and low synthesis cost [5-9].However,the low charge separation and transfer efficiency of bulk C3N4restrict its further development [10-13].To overcome the challenge of constraints and enhance unsatisfactory performance,various effective strategies have been probed,such as the establishment of defects,doping of heterogeneous elements,construction of heterojunctions,and nanostructures [14-19].Nevertheless,it is imperative to develop and use multiple charge transport tunnels.

    The ultra-high conductivity metal seems to be the best candidate for modifying g-C3N4.In particular,the introduction of atomsized metals can not only maximize the utilization of metals but also improve the charge separation and transfer efficiency of g-C3N4[20-23].For example,various noble or non-noble metal single atoms (Au,Pt,Pd,Cu,Co,etc.) have been immobilized on g-C3N4,because these metal atoms can be anchored at rich N sites[24-26].The metal atom fixed carbon nitride can effectively improve photocatalytic performance because the atom acts as an effective electron acceptor in the separation and transfer of photogenerated carriers in the plane [27-30].Thus,the introduction of metal atoms in the g-C3N4plane of the pyrazine (herbicide) conjugate can change the spatial charge transfer pathway [31].However,in-plane doping alone is insufficient to further promote photocatalytic performance,among which,the most effective challenge is to improve the charge transfer between layers (adjacent layers of g-C3N4).This is mainly because the intrinsic planar layered structure of g-C3N4is destroyed along with the weakening of electron transfer in the flat layer [32,33].The basic understanding is that the electronic structure of g-C3N4consists of sp2hybridπdelocalized electrons and lone electrons in N-pz orbit [34,35].Bending the structure of g-C3N4from the plane structure to the spherical structure will cause the electronic structure to deform and compress in the mixed intermediateness between sp2and sp3,further causing the delocalizedπelectrons to migrate from the concave to the convex [36,37].The formation of a hollow spherical structure is an effective method for bending layered g-C3N4.This will eventually result in a significant potential difference between the inner and outer surfaces of the g-C3N4hollow nanospheres due to the uneven distribution of electrons.Therefore,the potential difference of g-C3N4hollow nanospheres as the motive power will stimulate the e-to conquer the electrostatic barrier of the interlayer and shift to the outer layer of g-C3N4hollow nanospheres [38,39].In addition,the hollow nanosphere structure can enhance the light scattering and photosensitivity of g-C3N4or their composites.In a word,hollow sphere structure is an effective method to improve photocatalytic performance,which has been widely proved.

    Therefore,we prepared hollow g-C3N4nanospheres (HC3N4)and loaded Cu single atoms as electron acceptors on the surface of Cu-HC3N4.Multiple testing methods demonstrated that single Cu atoms were embedded in the C3N4plane,and had an enormous capacity to enhance charge separation and transfer within the plane.The hollow nanosphere structure enhanced charge separation and transfer in the interlayer.Therefore,under visible light irradiation,Cu single atom-modified,hollow g-C3N4nanospheres exhibited excellent performance in the selective oxidation of benzene to phenol and photocatalytic hydrogen evolution.The molecular structure engineering strategy of introducing the bending of the delocalizedπelectrons of g-C3N4provided a new option for promoting oriented charge transfer between nanolayers and is applicable to other single-atom functional materials.

    As shown in Fig.1a,we used SiO2as the hard template to synthesize HC3N4nanospheres by thermal polymerization.Then,monoatomic copper is loaded,and finally hollow carbon nitride loaded with monoatomic copper is formed.Single atoms of copper show bright spots in high resolution high angle ring dark field(HAADF) to determine whether it exists.As shown in Fig.1b,multiple bright spots with uniform size and uniform distribution are presented,proving that the product contains Cu in the form of a single atom.Furthermore,the synthesized HC3N4is composed of C,N and Cu elements and proved by element mapping.More excitingly,it can be observed that Cu is uniformly distributed on the entire carbon nitride carrier.The loaded copper content was monitored as 0.50±0.02 wt% by inductively coupled plasma atomic emission spectrometry (ICP-AES).As displayed in Fig.S2 (Supporting information),the Cu-HC3N4is the nanospheres structure.Furthermore,it can be seen from the mapping image and Fig.1c that the prepared sample is a hollow nanosphere structure.And the Cu element is evenly distributed in the hollow spherical shell.

    Fig.1.(a) Scheme of Cu single atom doted HC3N4.(b) HAADF-STEM,HADDF,mapping image of Cu single atom HC3N4.(c) TEM of Cu-HC3N4 composite.(d) XRD patterns for C3N4,HC3N4 and Cu-HC3N4 composite.

    Fig.1d shows the XRD patterns of HC3N4with Cu single atom loadings,C3N4and HC3N4.For C3N4,a very distinct XRD diffraction peak situated at 27.7°,which is attributed to the interlayer stacked reflectance of the conjugated aromatic hydrocarbon system[5].The signature peak at 2θis the typical (002) peak to indicate the graphite material [40].Otherwise,for HC3N4,the peak with intensity slightly higher than the noise appears at 2θof 13.3°,showing an in-plane repeated structural unit of tri-s-triazine.It can be seen that compared with C3N4,hollow g-C3N4nanospheres have a less porous and layered structure.Compared with the former two,there is almost no (100) peak in Cu-HC3N4,which proves that the aromatic structure is destroyed [9].Fig.S3 (Supporting information) gives the FTIR spectroscopy to clarify the structural composition of the synthesized photocatalyst.It is obvious that all the synthesized photocatalysts display the analogous FT-IR signals.Specifically,the characteristic peak loaded at 813 cm-1represents the condensed heptazine heterocyclic ring (C6N7).The peaks at 1545 cm-1,1328 cm-1,and 1232 cm-1correspond to C=N(sp2),C-N(sp2) in the heptazine unit and the C-NH-C bond in melamine,respectively,which prove the composition of the basic heptazine unit of g-C3N4[41-45].The pronounced broad spectral band is in the range of 3000-3800 cm-1,which is mainly due to the N-H band formed by the uncondensed amine group and the ·OH formed by the adsorption of H2O on the surface [5].

    X-ray absorption spectroscopy (XAS) was used to determine the valence structure and coordination environment of Cu in the synthesized Cu-HC3N4sample.As displayed in Fig.2a,the absorption edge of the Cu-HC3N4sample is located between the absorption edges of CuO and Cu2O (Cu K-edge X-ray absorption near edge structure spectrum,XANES),demonstrating the presence of Cu+(the predominant oxidation state) and Cu2+in Cu-HC3N4[20,31].The absorption edge of the Cu-HC3N4migrated to a higher energy than that of Cu foil,indicating that Cu is oxidized in Cu-HC3N4[26].The FT value of the EXAFS results at the Cu K edge shows that a distinct symmetrical peak of the Cu foil at ≈2.2 ?A is attributed to the Cu-Cu bond (Fig.2b),which is not found in Cu-HC3N4.On the contrary,a very obvious peak appears at ≈1.4 ?A,which is attributed to the Cu-N bond.The chemical structure of the Cu-HC3N4sample was further determined by X-ray photoelectron spectroscopy (XPS).Fig.2c presents the survey XPS spectra of all synthesized material,and it is detected that the material has two characteristic peaks of C and N elements.It is worth noting that a slight or negligible Cu signal is present in Cu-HC3N4material,proving that the Cu element content in the sample is low.Two significant characteristic peaks of 284.8 and 288.3 eV appeared in the C 1s high-resolution XPS spectrum (Fig.2d),indicating the presence of C-C and sp2bond carbon (N-C=N) in the g-C3N4skeleton,respectively [9].The high-resolution spectrum of N 1s shows characteristic peaks at 401.3,400.2,and 398.6 eV in the g-C3N4sample (Fig.2e),corresponding to graphical nitrogen,pyrrole nitrogen,and pyridine nitrogen,respectively [9].Not surprisingly,the N 1s binding energy of Cu-HC3N4is slightly higher than that of C3N4,indicating the slight decrease in the electron density of the pyridine N atom,which is attributed to its interaction with the Cu atom.Hence,the Cu atom is immobilized on the pyridine N atom in g-C3N4to form a stable structure.For Cu-HC3N4,in the Cu 2p high-resolution spectrum,in addition to containing Cu+,it also shows two characteristic peaks of Cu2+corresponding to 935.0 and 955.0 eV,and the ratio of Cu2+to Cu+is~2 (Fig.2f) [28].The above results indicate the existence of single-atom copper.

    Fig.2.(a) Cu K-edge XANES spectra.(b) FT-EXAFS spectra.(c) XPS survey spectra and corresponding high-resolution XPS spectra of (d) C 1s,(e) N 1s and (f) Cu 2p.

    The optical properties and light harvesting ability of C3N4,HC3N4and Cu-HC3N4were studied by UV-vis diffuse reflectance spectroscopy.As presented in Fig.3a,the UV-vis absorption edges of all samples are analyzed as follows: The absorption edge of C3N4is located at 458 nm,while the HC3N4and Cu-HC3N4are redshifted to 465 and 468 nm,respectively.In addition,all materials show tailing absorption in the visible region,which is attributed to the Cu single atom and hollow structure.The reaction of Cu atoms on the surface properties of hollow g-C3N4nanospheres was investigated by N2adsorption tests.As shown in Fig.3b,HC3N4and Cu-HC3N4samples express the traditional type IV isotherms and have high adsorption capacity,especially at high (P/P0>0.8) relative pressure.The BET specific surface areas of HC3N4and Cu-HC3N4samples are 45.2 and 100.4 m2/g,which are 4.8 and 10.6 times that of g-C3N4(9.4 m2/g),respectively.The Cu-HC3N4sample with such a high specific surface area is derived from its unique hollow nanospheres morphology,which provides more active sites for utilization.

    Fig.3.(a) UV-vis DRS of C3N4,HC3N4,and Cu-HC3N4.(b) Nitrogen adsorption desorption isotherm,(c) steady-state PL spectra,(d) time-resolved PL spectra,(e) transient photocurrent responses and (f) Nyquist plots of C3N4,HC3N4, Cu-C3N4,and Cu-HC3N4.

    As shown in Fig.3c,a significant photoluminescence (PL)quenching occurs in the steady-state PL emission spectra of the Cu-HC3N4heterostructure relative to Cu-C3N4,HC3N4,and C3N4,indicating the intrinsic radiative recombination of the photogenerated electron-hole pairs in C3N4,HC3N4,and Cu-C3N4.It follows that the PL quenching on C3N4and HC3N4may be caused by the introduction of Cu atoms.In addition,compared with C3N4,the PL intensity of HC3N4also decreases,which indicates that C3N4can effectively improve the charge transport between the interface layers after surface bendingviahollow structure,and effectively inhibit the carrier recombination.Furthermore,as seen in Fig.3d and Table S4 (Supporting information),the time-resolved transient PL decay spectra by the position of the corresponding steady-state emission peaks show that the Cu-HC3N4heterostructure has a longer charge carrier average lifetime (τavg) relative to Cu-C3N4,HC3N4,and C3N4,which indicates the presence of more efficient charge transfer in Cu-HC3N4.By using a pump pulse at 400 nm wavelength,electrons are effectively promoted from the valence band to the conduction band of g-C3N4.As shown by the results,a very similar TA spectrum characterized by the detection of bleaching signals appears in the detection range of 450-760 nm wavelengths.A global fitting procedure to retrieve the characteristic relaxation time constants was performed to eliminate the avoidable effects of different probe wavelengths on the recovery kinetics.The average time constants for C3N4,HC3N4,Cu-C3N4,and Cu-HC3N4are 112,93,86,and 68 ps,respectively,as shown in Fig.S4 (Supporting information).The fit results converge to a long-lived plateau with a certain amplitude,which reflects the longer lifetime of the charge recombination process on the nano-microsecond time scale.And the average recovery lifetime is an obvious indicator to assess the separation/transfer efficiency of photogenerated charge carriers.By comparing the average recovery lifetime cases of HC3N4and Cu-HC3N4,a decrease can be observed.This may be due to the fact that Cu-N3opens an additional in-plane channel for electron transfer which shortens the average recovery lifetime.There is also a decrease in the average recovery lifetime of Cu-HC3N4compared to Cu-C3N4,which may be due to the hollow nanosphere structure opening an additional interlayer channel for electron transfer.

    Furthermore,chrono-measuredI-tcurves under chopper illumination conditions were used to characterize the photo-response of C3N4,HC3N4,Cu-C3N4,and Cu-HC3N4catalysts.As shown in Fig.3e,the Cu-HC3N4catalyst has a higher photocurrent value relative to the pristine HC3N4and Cu-C3N4,indicating that the Cu-HC3N4catalyst has a higher electron-hole separation efficiency.A rapid improvement in charge transfer capability was also confirmed by electrochemical impedance spectroscopy (EIS).The small arc radius of the Nyquist plot of the Cu-HC3N4electrode was used to characterize the rapid interfacial charge transfer between Cu-HC3N4and the dielectric (Fig.3f).The results shown above further demonstrate that the hollow structure has the positive effect of promoting the separation of photogenerated carriers within the face and between the layers,thereby also improving the performance of single-atom Cu-HC3N4photocatalysts.

    The photocatalytic hydrogen evolution experiments were implemented by using methanol as an electron donor and platinum as a co-catalyst under visible light (λ>420 nm) irradiation.Hydrogen evolution rates were about 20 μmol/h for C3N4,68 μmol/h for HC3N4,378 μmol/h for Cu-C3N4,and 1020 μmol/h for Cu-HC3N4(Figs.4a and b).Cu-HC3N4has a relatively good activity as a good performing photocatalyst over a longer period of time (Fig.4c).It is because of the high planar and interlayer conductivity generated by Cu-N3and hollow nanostructures,which allow rapid migration of photogenerated electron-hole pairs and inhibit charge recombination,the photocatalytic activity of Cu-HC3N4is higher than that of C3N4,HC3N4and Cu-C3N4.Besides,the effect of the number of Cu single atoms on the product hydrogen evolution can also be seen by Fig.S5 (Supporting information),where the loading of Cu should not exceed 0.50 wt%,otherwise there is a significant decrease in activity,which is due to the aggregation of copper atoms making the utilization of copper atoms less efficient.

    Fig.4.(a) Average hydrogen production rates and (b) H2 evolution under visible light irradiation.(c) Cycling tests of photocatalytic hydrogen generation of Cu-HC3N4.(d) Photocatalytic TC degradation.(e) Cycling tests of photocatalytic TC degradation of Cu-HC3N4.(f) The effects of scavengers on the photocatalytic TC degradation (catalysts=50 mg,scavenger=10 mmol/L).

    As shown in Fig.4d,the photocatalytic performance of the Cu-HC3N4sample was verified by tetracycline (TC) photocatalytic degradation in an aqueous solution under visible light irradiation,where the photoelectrons generated by the photocatalyst were transferred to copper ions for efficient copper cycling,enabling the continuation of the reaction.In addition to this,the holes generated by light can also produce certain radicals.Therefore,singleatom copper and hollow structure modified photocatalytic materials can generate free radicals better due to their higher charge separation properties.Under dark conditions,the adsorption of the model pollutant TC on the surfaces of C3N4,HC3N4,Cu-C3N4and Cu-HC3N4after 10 min was not different compared to the results of BET.Under visible light irradiation,the absorption intensity of TC decreases with time,indicating the appearance of photo-oxidation of TC,and suggesting that Cu-HC3N4has the best photocatalytic degradation,which is caused by the combined effect of the unitary copper and hollow nanosphere structure.The total organic carbon removal rate is displayed in Fig.S6 (Supporting information),and the results indicate that the removal of organic carbon is similar to the degradation outcomes,with Cu-HC3N4exhibiting the highest removal rate.This suggests that it has superior photocatalytic degradation performance.

    The stable photocatalytic performance of Cu-HC3N4was demonstrated by stability testing (Fig.4e),proving the successful preparation of a single-atom photocatalyst with excellent performance.XRD and FTIR tests were performed for the samples recovered after the test (Fig.S7 in Supporting information).As shown in Fig.S7b,there was no significant change in the spectra before and after the tests,which further verified that the photocatalyst has good stability.Furthermore,as shown in Fig.4f,it can be seen that BQ has the greatest impact on performance,indicating that·O2-is the main reactive oxygen species.As benzene is an important reagent for the synthesis of many chemicals,the photocatalytic oxidation activity of Cu-HC3N4can be tested by whether it can selectively oxidize benzene to phenol,and the conversion of benzene to phenol cannot occur in the absence of the catalyst (Fig.S8 in Supporting information).Compared to C3N4,HC3N4and Cu-C3N4,the conversion and selectivity of Cu-HC3N4were improved to 97.3%and 99.9%,respectively,under visible light conditions,providing a more excellent performance.The sample recovery was tested after the experiment (Fig.S9 in Supporting information),and Cu-HC3N4also has good stability for phenol production,as evidenced by hydrogen evolution and TC degradation experiments.

    In general,the photocatalytic process involves several steps:First,light is absorbed by the prepared Cu-C3N4photocatalyst,generating an excited state called an electron-hole pair.Second,the electron and hole are separated and migrate to a reaction site on the photocatalyst surface,where the hollow sphere structure and Cu single atoms can effectively promote the separation of photogenerated charge carriers (Fig.S10 in Supporting information).Third,the reactant molecules or ions adsorb onto the photocatalyst surface,and the larger specific surface area of the hollow sphere structure can increase the adsorption of reactant molecules.Fourth,the electrons on the photocatalyst surface react with the adsorbed reactant molecules or ions,causing them to undergo redox reactions.Fifth,the products of the redox reactions desorb from the photocatalyst surface,completing the photocatalysis process.

    In summary,we propose a simple pre-assembly strategy to prepare porous and hollow nanospheres g-C3N4photocatalysts with unique Cu-N3species and high active site accessibility.Interestingly,compared with HC3N4and Cu-C3N4,the developed Cu-HC3N4catalyst exhibits excellent photocatalytic performance,especially in the photocatalytic degradation of TC and the selective oxidation of benzene to phenol.The atomically dispersed,anchored peculiar Cu-N3species is responsible for the prominent catalytic behavior.This study not only affords a neoteric and highly active catalyst for photocatalytic hydrogen production,but also provides a new way to design and fabricate single-atom catalysts in various g-C3N4micro/nanostructures by changing the metal and/or adjusting the structure of pre-organized supramolecular aggregates.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Hainan Province Science and Technology Special Fund (No.ZDYF2022SHFZ094),National Natural Science Foundation of China (No.22166016),Hainan Provincial Key Research and Development Program (No.ZDYF2020222),and the open-ended fund of Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (No.AFEPER202205).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108568.

    青春草国产在线视频| 亚洲久久久国产精品| 最近最新中文字幕大全免费视频 | 啦啦啦视频在线资源免费观看| 久久人人爽人人片av| tube8黄色片| 日本黄色日本黄色录像| 哪个播放器可以免费观看大片| 日韩av免费高清视频| 免费在线观看视频国产中文字幕亚洲 | 日韩大码丰满熟妇| 精品一区在线观看国产| 亚洲欧美激情在线| 成人午夜精彩视频在线观看| 最新的欧美精品一区二区| 熟女少妇亚洲综合色aaa.| 高清欧美精品videossex| 飞空精品影院首页| 国产欧美亚洲国产| 国产麻豆69| 日日摸夜夜添夜夜爱| 亚洲精品在线美女| 欧美老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 丰满乱子伦码专区| 国产精品免费视频内射| 另类亚洲欧美激情| 亚洲美女黄色视频免费看| 激情五月婷婷亚洲| 久久人人爽人人片av| 国产精品国产av在线观看| 国产精品久久久久久人妻精品电影 | 老司机靠b影院| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 日韩av免费高清视频| 久久久久网色| 国产又色又爽无遮挡免| 免费人妻精品一区二区三区视频| 成人18禁高潮啪啪吃奶动态图| 亚洲在久久综合| 亚洲精品视频女| 国产成人啪精品午夜网站| 男人爽女人下面视频在线观看| 国产精品久久久av美女十八| 精品国产乱码久久久久久男人| 日韩一卡2卡3卡4卡2021年| 久久韩国三级中文字幕| 国产野战对白在线观看| 黄色视频不卡| 色吧在线观看| 欧美乱码精品一区二区三区| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯 | 美国免费a级毛片| 99久久人妻综合| 午夜福利,免费看| 免费人妻精品一区二区三区视频| 中文字幕av电影在线播放| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 日本vs欧美在线观看视频| 久久精品国产综合久久久| 久久精品国产a三级三级三级| 亚洲av日韩精品久久久久久密 | 午夜激情久久久久久久| 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 亚洲国产精品999| 大香蕉久久成人网| 国产成人免费无遮挡视频| 成年av动漫网址| 午夜福利免费观看在线| xxx大片免费视频| av女优亚洲男人天堂| 男女无遮挡免费网站观看| 成人毛片60女人毛片免费| 色综合欧美亚洲国产小说| 丝袜脚勾引网站| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 亚洲色图综合在线观看| 国产亚洲av片在线观看秒播厂| 国产av码专区亚洲av| 成人国产av品久久久| 亚洲av日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 天天躁日日躁夜夜躁夜夜| 十八禁高潮呻吟视频| 精品国产露脸久久av麻豆| 亚洲精品乱久久久久久| 女性被躁到高潮视频| h视频一区二区三区| a级毛片在线看网站| 亚洲欧洲精品一区二区精品久久久 | 国产av一区二区精品久久| 麻豆av在线久日| 成人18禁高潮啪啪吃奶动态图| 亚洲av综合色区一区| 日本黄色日本黄色录像| 可以免费在线观看a视频的电影网站 | 成人亚洲欧美一区二区av| 国产97色在线日韩免费| a 毛片基地| 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 欧美日韩视频精品一区| 一级毛片我不卡| 波多野结衣av一区二区av| 成年美女黄网站色视频大全免费| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利影视在线免费观看| 久久久欧美国产精品| 国产精品无大码| 9色porny在线观看| 国产在线一区二区三区精| 欧美日韩亚洲综合一区二区三区_| 国产一区亚洲一区在线观看| 日韩中文字幕欧美一区二区 | 国产欧美日韩综合在线一区二区| 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看| 99香蕉大伊视频| av卡一久久| 欧美av亚洲av综合av国产av | 中文字幕制服av| 波野结衣二区三区在线| 欧美成人午夜精品| 伊人久久大香线蕉亚洲五| 十八禁网站网址无遮挡| 色精品久久人妻99蜜桃| 黄色毛片三级朝国网站| 国产野战对白在线观看| 大香蕉久久成人网| 美国免费a级毛片| 秋霞伦理黄片| 最黄视频免费看| 丝袜美足系列| 另类亚洲欧美激情| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲 | 久久久久精品性色| 性高湖久久久久久久久免费观看| 夫妻午夜视频| 亚洲图色成人| 最新的欧美精品一区二区| av在线播放精品| 在线观看人妻少妇| 青草久久国产| 不卡av一区二区三区| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| av在线老鸭窝| 国产黄色免费在线视频| 亚洲欧美一区二区三区久久| 美女扒开内裤让男人捅视频| 中国国产av一级| av天堂久久9| av不卡在线播放| 97在线人人人人妻| 亚洲视频免费观看视频| 成人毛片60女人毛片免费| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 老汉色∧v一级毛片| 亚洲第一青青草原| 母亲3免费完整高清在线观看| 最近最新中文字幕免费大全7| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 久久免费观看电影| 男女国产视频网站| 青春草国产在线视频| 黄片小视频在线播放| av福利片在线| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 国产成人啪精品午夜网站| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 久久久欧美国产精品| 少妇人妻 视频| 久久久久网色| 成人免费观看视频高清| 中文字幕最新亚洲高清| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区| 精品一区在线观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 日韩伦理黄色片| 热99国产精品久久久久久7| 国产精品二区激情视频| 国产成人啪精品午夜网站| 三上悠亚av全集在线观看| 国产精品久久久久久人妻精品电影 | 久久狼人影院| 日日撸夜夜添| 欧美成人精品欧美一级黄| 精品免费久久久久久久清纯 | 男人舔女人的私密视频| 亚洲激情五月婷婷啪啪| 一本久久精品| 十八禁网站网址无遮挡| 日韩av免费高清视频| 18禁观看日本| 欧美日韩成人在线一区二区| 丝袜脚勾引网站| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 精品亚洲乱码少妇综合久久| 婷婷色综合大香蕉| 秋霞在线观看毛片| 久久精品国产亚洲av高清一级| 久久青草综合色| 我的亚洲天堂| 日韩电影二区| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 亚洲av中文av极速乱| 天天躁日日躁夜夜躁夜夜| 亚洲男人天堂网一区| 精品午夜福利在线看| 精品少妇一区二区三区视频日本电影 | 久久久精品国产亚洲av高清涩受| 韩国av在线不卡| 大陆偷拍与自拍| 91老司机精品| 久久久欧美国产精品| 最新在线观看一区二区三区 | videos熟女内射| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区| 国产精品女同一区二区软件| 热99久久久久精品小说推荐| 狂野欧美激情性xxxx| 如何舔出高潮| 91aial.com中文字幕在线观看| 亚洲四区av| 在线天堂中文资源库| 夫妻午夜视频| 男人添女人高潮全过程视频| 一本—道久久a久久精品蜜桃钙片| 国产一级毛片在线| 日韩大码丰满熟妇| 最近2019中文字幕mv第一页| 亚洲七黄色美女视频| 啦啦啦在线免费观看视频4| 赤兔流量卡办理| 国产成人欧美在线观看 | 90打野战视频偷拍视频| 国产99久久九九免费精品| 两个人免费观看高清视频| 国产97色在线日韩免费| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 满18在线观看网站| 一本大道久久a久久精品| 黄色一级大片看看| 日韩成人av中文字幕在线观看| 男女无遮挡免费网站观看| 日韩一卡2卡3卡4卡2021年| 亚洲av综合色区一区| a级毛片在线看网站| 又黄又粗又硬又大视频| 久久国产精品大桥未久av| 亚洲国产精品一区三区| 免费看不卡的av| 精品久久蜜臀av无| 男人舔女人的私密视频| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 久久精品国产综合久久久| 欧美日本中文国产一区发布| 欧美日韩视频高清一区二区三区二| 成年动漫av网址| 精品一区二区免费观看| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 亚洲婷婷狠狠爱综合网| 成人免费观看视频高清| 91精品国产国语对白视频| 国产毛片在线视频| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 各种免费的搞黄视频| 韩国精品一区二区三区| 精品国产一区二区久久| 免费黄网站久久成人精品| 亚洲熟女精品中文字幕| 在线免费观看不下载黄p国产| 久久99一区二区三区| 美国免费a级毛片| 久久久国产精品麻豆| 综合色丁香网| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 国产伦理片在线播放av一区| 丰满迷人的少妇在线观看| 国产日韩欧美亚洲二区| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 99精品久久久久人妻精品| 另类精品久久| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| h视频一区二区三区| 国产一区二区三区av在线| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| 纵有疾风起免费观看全集完整版| 久久影院123| 国产乱人偷精品视频| 久久免费观看电影| 一二三四中文在线观看免费高清| 美女午夜性视频免费| 中文字幕人妻熟女乱码| 国产精品嫩草影院av在线观看| 一本一本久久a久久精品综合妖精| 99久久精品国产亚洲精品| 久久人人爽人人片av| 亚洲人成77777在线视频| 免费av中文字幕在线| 国产欧美日韩一区二区三区在线| 亚洲av日韩在线播放| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 精品国产乱码久久久久久小说| a 毛片基地| 国产免费现黄频在线看| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 国产视频首页在线观看| 亚洲视频免费观看视频| 亚洲情色 制服丝袜| 熟女av电影| 制服人妻中文乱码| 欧美黑人欧美精品刺激| av国产精品久久久久影院| 日本黄色日本黄色录像| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| av卡一久久| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 国产高清不卡午夜福利| 国产精品久久久久成人av| 精品国产乱码久久久久久男人| 一区二区三区乱码不卡18| 午夜福利在线免费观看网站| 最近手机中文字幕大全| 国产成人精品久久二区二区91 | 久久久国产精品麻豆| 热re99久久国产66热| 国产精品一区二区在线观看99| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| 男女免费视频国产| 一级a爱视频在线免费观看| 色精品久久人妻99蜜桃| 激情视频va一区二区三区| av在线观看视频网站免费| 国产日韩欧美视频二区| 制服诱惑二区| 九九爱精品视频在线观看| 久久久精品国产亚洲av高清涩受| 91成人精品电影| 可以免费在线观看a视频的电影网站 | 一区二区av电影网| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 亚洲国产日韩一区二区| 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 欧美 亚洲 国产 日韩一| 大话2 男鬼变身卡| 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 欧美成人精品欧美一级黄| 99热国产这里只有精品6| 伊人久久大香线蕉亚洲五| 精品一区二区免费观看| 国产xxxxx性猛交| 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 国产在线免费精品| 一本久久精品| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 69精品国产乱码久久久| 亚洲专区中文字幕在线 | 精品人妻在线不人妻| 中文字幕最新亚洲高清| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 美女大奶头黄色视频| 久热爱精品视频在线9| 最新的欧美精品一区二区| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 久久狼人影院| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 国产精品久久久人人做人人爽| 久久热在线av| 国产免费现黄频在线看| 老司机亚洲免费影院| 麻豆av在线久日| 蜜桃国产av成人99| 少妇人妻久久综合中文| 日韩精品免费视频一区二区三区| 国产精品女同一区二区软件| 90打野战视频偷拍视频| 五月天丁香电影| 18在线观看网站| 欧美成人精品欧美一级黄| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 大片电影免费在线观看免费| 1024香蕉在线观看| 丁香六月欧美| 欧美激情高清一区二区三区 | 精品免费久久久久久久清纯 | 老司机影院毛片| 午夜老司机福利片| 熟妇人妻不卡中文字幕| 91国产中文字幕| 在线免费观看不下载黄p国产| 在线看a的网站| 国产在视频线精品| 久久国产精品大桥未久av| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 精品久久蜜臀av无| 丁香六月天网| 桃花免费在线播放| 亚洲国产精品国产精品| 中文欧美无线码| 妹子高潮喷水视频| 欧美在线一区亚洲| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区av网在线观看 | 国产爽快片一区二区三区| 交换朋友夫妻互换小说| 高清欧美精品videossex| 夫妻性生交免费视频一级片| 综合色丁香网| kizo精华| 午夜久久久在线观看| 久热这里只有精品99| 2018国产大陆天天弄谢| 欧美精品高潮呻吟av久久| 日日撸夜夜添| 亚洲av成人不卡在线观看播放网 | 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 久久精品aⅴ一区二区三区四区| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 午夜日本视频在线| 午夜激情av网站| 高清黄色对白视频在线免费看| 欧美乱码精品一区二区三区| 国产男女超爽视频在线观看| 中文字幕av电影在线播放| 国产在线视频一区二区| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 伦理电影免费视频| 精品人妻在线不人妻| 日韩av免费高清视频| 国产精品香港三级国产av潘金莲 | 亚洲国产精品一区三区| 免费看不卡的av| 多毛熟女@视频| 午夜免费观看性视频| 国产成人啪精品午夜网站| 男女无遮挡免费网站观看| 国产男女内射视频| 欧美黑人精品巨大| 国产片内射在线| 久久av网站| 天堂8中文在线网| 男女床上黄色一级片免费看| 搡老乐熟女国产| 亚洲国产精品999| 两个人看的免费小视频| 熟女av电影| 久久99热这里只频精品6学生| 捣出白浆h1v1| 日日爽夜夜爽网站| 国产免费现黄频在线看| 丰满少妇做爰视频| 免费观看人在逋| 亚洲四区av| 国产精品久久久久久人妻精品电影 | 美女福利国产在线| av有码第一页| 高清不卡的av网站| 欧美日本中文国产一区发布| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 一级毛片电影观看| 久久久精品免费免费高清| 国产精品三级大全| 亚洲人成网站在线观看播放| 欧美久久黑人一区二区| 国产探花极品一区二区| av国产精品久久久久影院| 女性生殖器流出的白浆| 一级毛片我不卡| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 婷婷色麻豆天堂久久| 97人妻天天添夜夜摸| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 国产黄频视频在线观看| 欧美亚洲日本最大视频资源| av福利片在线| 久久久久久人妻| 国产麻豆69| 新久久久久国产一级毛片| 精品久久久久久电影网| 在线观看人妻少妇| 中文字幕色久视频| 亚洲欧美色中文字幕在线| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| 91老司机精品| 91精品三级在线观看| 啦啦啦在线免费观看视频4| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放| 久久国产亚洲av麻豆专区| 欧美最新免费一区二区三区| 美国免费a级毛片| 国产av码专区亚洲av| 亚洲四区av| 久久99一区二区三区| 国产精品99久久99久久久不卡 | 日韩免费高清中文字幕av| 欧美激情高清一区二区三区 | 国产成人精品在线电影| 嫩草影院入口| 欧美最新免费一区二区三区| 久久精品国产综合久久久| 香蕉丝袜av| 久久久久网色| 日韩人妻精品一区2区三区| 少妇人妻精品综合一区二区| 最新的欧美精品一区二区| 99热全是精品| 国产熟女午夜一区二区三区| www.自偷自拍.com| 操美女的视频在线观看| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 亚洲国产看品久久| 一边亲一边摸免费视频| 午夜福利乱码中文字幕| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 无遮挡黄片免费观看| 国产精品人妻久久久影院| av在线老鸭窝| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 久久影院123| 国产在线视频一区二区| 精品少妇内射三级| 你懂的网址亚洲精品在线观看| 超碰成人久久| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 一区二区av电影网| 国产亚洲精品第一综合不卡| 一级毛片 在线播放| 一级爰片在线观看| 一级毛片电影观看| 欧美黄色片欧美黄色片|