• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced visible-light photocatalytic hydrogen evolution using two-dimensional carbon nitride sheets with the removal of amine groups

    2024-04-05 02:28:40YuZhngLitingWuShopngWngDingyiYngHunLingYizhngWuJinHoYouqingWngJinkLiuYongWng
    Chinese Chemical Letters 2024年2期

    Yu Zhng ,Liting Wu ,Shopng Wng ,Dingyi Yng ,Hun Ling ,Yizhng Wu ,Jin Ho,Youqing Wng,Jink Liu,Yong Wng,c,*

    a Department of Physics,Shaanxi University of Science and Technology,Xi’an 710021,China

    b School of Advanced Materials and Nanotechnology,Academy of Advanced Interdisciplinary Research,Xidian University,Xi’an 710126,China

    c The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,Xidian University,Xi’an 710126,China

    d Collaborative Innovation Center of Advanced Microstructures,National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    e State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University,Yinchuan 750021,China

    Keywords: 2D carbon nitride sheets Rapid thermal annealing DFT calculations Visible-light absorption visible-light photocatalysis

    ABSTRACT Two-dimensional (2D) carbon nitride sheets (CNs) with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.

    Hydrogen (H2) generationviaphotocatalytic water splitting is a promising sustainable energy production method for addressing energy shortages and escalating environmental concerns [1-4].To realize the practical benefits of this technology,reliable,highefficiency and low-cost semiconductor photocatalysts must be developed [5-7].Carbon nitride (CN) has sparked substantial interest as a metal-free semiconductor photocatalyst during the last decade due to its easy availability,low cost,excellent physicochemical stability and appealing electronic structure [8-11].Unfortunately,due to the highly stacked layers,the bulk CN has a small surface area and quick electron-hole pair recombination,resulting in low photocatalytic activity [12,13].Delaminating the bulk CN into atomically thin two-dimensional (2D) CN nanosheets (CNs) is a promising strategy for improving photocatalytic activity.CNs exhibit more exposed active sites,a larger specific surface area,shorter charge diffusion distances and improved photo-electronic properties as compared to bulk CNs [14-18].However,due to the significantly increased bandgap caused by the strong quantum size effect,the use of atomically thin 2D CNs in photocatalysis is still unsatisfied [18,19].More importantly,its incomplete polymerization with a large number of non-condensed surface amino groups results in an abundance of hydrogen bonding in the material layer [20,21].These hydrogen bonds link the chains of polymer melon units.However,due to the weak interlayer force of hydrogen bonds,charge transfer between melon chains is difficult,resulting in poor interlayer transport [21-23].As a result,CNs have a poor ability to transfer charge carriers and a limited capacity for photocatalysis.

    To overcome these challenges,a range of techniques have been proposed,including coupling with aromatic compounds,heteroatom doping and fabrication defects [21,24-27].To some extent,these approaches can boost CN absorbance and broaden its restricted visible-light absorption spectrum,hence improving photocatalytic efficacy.However,its complex procedures impeded its wider application.As a result,an efficient and facile strategy for extending CNs’visible-light absorption was required.A quick (5-min) annealing process was used to synthesise CNs with broad visible-light absorption.According to experimental and theoretical investigations,rapid heat annealing selectively breaks hydrogen bonds and uncondensed amine groups are removed to produce new N=CH-N bonds.By removing the amine group,the band gap of CNs can be reduced from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Meanwhile,after annealing,the CNs were deformed,which can separate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs was boosted by 8.38 times,reaching 6284.47 μmol g-1h-1.

    An atomic force microscope (AFM) and transmission electron microscopy (TEM) were used to examine the surface morphology of the samples.We discovered that the CNs have a lateral dimension ranging from tens of nanometers to around one hundred nanometers (Fig.S1 in Supporting information),as previously described for atomically thin 2D CNs [18,28].The thickness of CNs-640 after 5 min of thermal annealing was approximately 1 nm,as shown in Fig.1a.Additionally,the TEM result in Fig.1b shows similar morphology to that of CNs.Furthermore,the electron energy loss spectrum (EELS) in Figs.1c-f confirmed the presence and consistent distribution of carbon and nitrogen elements in CNs-640.

    Fig.1.AFM image and its cross-section height profile along the white line (a),TEM image (b),energy filtered STEM image (c) and EELS elemental mapping images of C and N (d-f) for CNs-640.

    The crystal structure of CNs was analysed using X-ray powder diffraction (XRD) patterns at different annealing temperatures for 5 min,as shown in Fig.2a and Fig.S2 (Supporting information).The strength of the characteristic peaks at 13° (100) and 27.6°(002) progressively decreased with increasing annealing temperature,implying that the interlayer hydrogen bonds were gradually broken [29,30].The peaks almost completely vanished when the temperature reached 680°C,indicating that the hydrogen bonds were completely broken and the periodic structure of CNs was destroyed.The yield of CNs gradually decreases at each temperature also further verified the structure of CNs was destroyed (Table S1 in Supporting information).The peak at 476.2 cm-1was observed in the Raman spectrum,which is the characteristic peak of CNs (Fig.S3 in Supporting information) [16,21].The Fourier transform infrared (FTIR) spectra of the samples showed that the feature bands were enhanced at 810 cm-1and decreased between 3100 cm-1and 3300 cm-1compared to CNs,as shown in Fig.2b and Fig.S4 (Supporting information).

    Fig.2.XRD patterns (a),FTIR spectra (b),solid NMR spectra of 13C (c),C 1s XPS spectra (d),N 1s XPS spectra (e),UV-vis absorption spectra (f),transformed Kubelka-Munk vs. light energy plots (g),UPS spectra (h) and transient photocurrent responses under visible light (i) for CNs and CNs-640.

    It can be concluded that selective hydrogen bond destruction affects the periodic arrangement of melon chains within layers and reduces the number of uncondensed amine groups.The atomic structure’s framework is then preserved [29,31-33].The sample with an annealing temperature of 680°C has almost no characteristic bands,indicating that the structure has been destroyed,as indicated by the XRD results.The13C nuclear magnetic resonance(NMR) results in Fig.2c show that after annealing at 640°C,the ratio of the peak intensity of CN3to that of CN2(NHX) increases from 0.57 to 0.81,ascribed to the loss of uncondensed amine groups[14,34].Based on the results discussed above,it is clear that the hydrogen bonds were selectively destructed during annealing,and the uncondensed amine groups were lost.

    X-ray photoelectron spectroscopy (XPS) measurements were used to further investigate the surface chemical properties of the as-prepared samples.As illustrated in Fig.2d,two peaks in the C 1s spectrum were observed at 284.6 eV and 287.94 eV,which are attributed to C-C and N=C-N,respectively [35,36].In addition,a CNs-640 peak at 285.8 eV emerged,corresponding to an N=CH-N bond [14,24].The C-N=C (398.4 eV),NC3(399.5 eV) and NHX(400.7 eV) bands are assigned to the N 1s spectrum (Fig.2e)[37,38].Meanwhile,the NHX/N2C peak area ratio of CNs decreased from 0.153 to 0.144,and the NHX/NC3ratio decreased from 0.774 to 0.731 (Table S2 in Supporting information),indicating that the more uncondensed amino groups in CNs,the more amine groups were lost during annealing [14,39].According to the experimental findings,the amine group can be removed from the melon strands during rapid thermal annealing by breaking hydrogen bonds,the long-range atomic order structure of the chain between layers was disrupted,and a new N=CH-N bond is formed.

    We used UV-visible absorption spectroscopy (UV-vis) to determine the optical properties of samples.The absorption edge of CNs is 415 nm,as shown in Figs.2f and g and Figs.S5 and S6,and the corresponding band gap is calculated as 3.06 eV from the Kubelka-Munk (K-M) curve.With increasing temperature and rapid thermal annealing,the absorption edge can be red-shifted to 576 nm,and the band gap can be narrowed to 2.60 eV.This suggests that removing the amine group can narrow the bandgap and significantly improve the use of solar light with a broader band.The narrowing of the bandgap can effectively promote the effective separation between photoexcited electrons and holes,which is crucial for improving photocatalytic performance [40,41].Fig.2h depicts the high and low kinetic energy regions of CNs and CNs-640,where the incident photon energy is 40.8 eV,and the conduction band minimum of CNs-640 is 0.66 eV higher than that of CNs (Table S3 in Supporting information) [42-44].The enhancement of the conduction band minimum can provide the driving force for the photocatalytic reduction of hydrogen protons,ultimately improving the efficiency of H2production [45,46].Furthermore,CNs-640 has a higher photocurrent density than CNs (Fig.2i),suggesting that the rapid thermal annealing process improves charge transfer and separation,both of which are beneficial to photocatalytic activity.

    To further explore the separation and recombination of photogenerated carriers in the samples after rapid thermal annealing,we performed surface photovoltage (SPV) measurements as shown in Fig.3.We discovered from Figs.3a-c that light had little effect on the intensity of CNs.The CNs-640 sample showed a differential surface potential change of 6.61 mV after rapid thermal annealing (Figs.3d-f).As a result,rapid thermal annealing may be used to suppress photogenerated carrier recombination.According to the above experimental findings,quick thermal annealing can selectively break hydrogen bonds and form N=CH-N bonds,remove amine groups and narrow the band gap,increase visible-light absorption and facilitate photogenerated carrier separation.

    Fig.3.SPV images of CNs under dark conditions (a),under illumination (b) and corresponding surface potential (c).SPV images of CNs under dark conditions (d),under illumination (e) and corresponding surface potential (f).

    To further understand the photocatalytic ability of the sample after rapid thermal annealing,the first-principles density functional theory (DFT) calculations were performed as shown in Fig.4.We can see in Figs.4a and b that the 2D planar CNs were distorted after 5 ps of simulated annealing at 913 K.By removing NH3molecules,the sample condenses,increasing the C/N ratio while decreasing the H content.As a result,interchain -NHbonds are generated at 913 K,leading to the deformation of the triazine/heptazine unit,thereby deforming the 2D planar structure of CNs [47].This structural distortion phenomenon disrupts local symmetry in the form of C and N atoms,separating electron and hole spatial positions and improving visible-light absorption effi-ciency [48,49].The band gaps of CNs and CNs-640 are 2.23 and 1.67 eV,respectively,as shown in Figs.4c and d.Clearly,rapid thermal annealing reduces the band gap of CNs-640.As a result,CNs-640 is expected to have more charge carriers,which will improve photoresponsivity.Based on the above experimental and computational results,we can conclude that removing amine groups after rapid thermal annealing can narrow the band gap of CNs and facilitate photogenerated carrier separation.Then,to improve hydrogen production efficiency,visible-light absorption can be increased.

    Fig.4.Side views of the optimized structure of CNs (a) and CNs-640 (b).Density of states (DOS) of CNs (c) and CNs-640 (d).

    We used 10 vol% TEOA as a sacrificial agent and 3 wt% Pt cocatalyst to examine the photocatalytic hydrogen generation activities of the samples under visible-light irradiation (λ>420 nm).As illustrated in Fig.5a and Fig.S7 (Supporting information).The yield of the samples increased gradually as the rapid thermal annealing temperature was raised.When the temperature reached 640°C,CNs-640 produced 25,137.89 μmol/g) of H2,which was 8.38 times that of CNs (only 2998.95 μmol/g).The yield of structurally altered CNs-680,on the other hand,was extremely low at 484.92 μmol/g.The corresponding hydrogen production rate,shown in Fig.5b and Fig.S8 (Supporting information),where the CNs-640 was 6284.47 μmol g-1h-1(CNs was 749.74 μmol g-1h-1).Furthermore,CNs-640 demonstrated good photocatalytic stability,with no discernible drop in photocatalytic H2production over four cycles(Fig.5c).As shown in Fig.5d,the activity of CNs-640 is consistent with its optical absorption spectrum at different wavelengths,implying that photo-induced electrons in CNs-640 are primarily responsible for driving H2evolution.The H2production rates of typical photocatalysts reported so far are summarised in Fig.5e and Table S4 (Supporting information),and the samples used in this paper produce more hydrogen.As a result,rapid thermal annealing of the samples increased visible-light absorption,promoted photogenerated carrier separation and improved the photocatalytic hydrogen evolution reaction.

    Fig.5.Hydrogen evolution (a) and hydrogen evolution rate (b) for CNs and CNs-640.Stability of hydrogen evolution (c) and wavelength dependent photocatalytic hydrogen production rate (d) for CNs-640.Comparison of hydrogen evolution with CNs-640 over reported CN photocatalyst with Pt as cocatalyst (e) [14,50-63].

    In summary,rapid thermal annealing was used to successfully prepare highly efficient visible-light photocatalysts.When exposed to visible light,atomically thin 2D CNs exhibit photocatalytic hydrogen production activity of 6284.47 μmol g-1h-1,which is 8.38 times greater than that of CNs.Experiment results and theoretical studies show that hydrogen bonds can be selectively broken by rapid thermal annealing to form new N=CH-N bonds and uncondensed amine groups can be removed to reduce the bandgap of CNs from 3.06 eV to 2.60 eV,enhancing their visible-light absorption.After annealing,the CNs were distorted,which separates the spatial positions of electrons and holes,improving the visiblelight absorption efficiency.This research provides a dependable and rapid method for developing highly efficient visible-light photocatalysts with narrowed bandgaps and enhanced visible-light absorption.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.12104352 and 12204294),Fundamental Research Funds for the Central Universities (Nos.XJS212208 and 2020BJ-56),and Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering (No.2022-K67),the Natural Science Foundation of Shaanxi Province(Nos.2019JCW-17 and 2020JCW-15).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108551.

    老汉色∧v一级毛片| 午夜福利视频在线观看免费| 高清视频免费观看一区二区| 国产精品 国内视频| 国产成人免费观看mmmm| 免费一级毛片在线播放高清视频 | 啦啦啦中文免费视频观看日本| 亚洲欧美精品综合一区二区三区| avwww免费| 免费观看人在逋| 亚洲av成人精品一二三区| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 国产av国产精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 看免费成人av毛片| 国产成人av教育| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品电影小说| 乱人伦中国视频| 高清视频免费观看一区二区| 别揉我奶头~嗯~啊~动态视频 | 美女国产高潮福利片在线看| 另类精品久久| 我要看黄色一级片免费的| 一级毛片电影观看| 国产成人av教育| 亚洲欧美一区二区三区黑人| 色网站视频免费| 国产精品av久久久久免费| 男女下面插进去视频免费观看| 成人国语在线视频| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| 午夜老司机福利片| 亚洲中文日韩欧美视频| 91成人精品电影| 午夜福利免费观看在线| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看| 99热国产这里只有精品6| 亚洲精品久久午夜乱码| 91字幕亚洲| 岛国毛片在线播放| 色婷婷av一区二区三区视频| 亚洲av片天天在线观看| 国产在线一区二区三区精| 午夜福利免费观看在线| 久久久久视频综合| 欧美精品亚洲一区二区| 熟女av电影| 亚洲精品自拍成人| 在线观看国产h片| 久热爱精品视频在线9| av欧美777| av网站免费在线观看视频| 中文精品一卡2卡3卡4更新| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 国产伦人伦偷精品视频| 日韩大码丰满熟妇| 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 纯流量卡能插随身wifi吗| 日本欧美视频一区| 国产免费现黄频在线看| 母亲3免费完整高清在线观看| 极品人妻少妇av视频| 真人做人爱边吃奶动态| 国产精品免费视频内射| 中文字幕亚洲精品专区| 少妇被粗大的猛进出69影院| 最近中文字幕2019免费版| 免费看十八禁软件| 天天躁夜夜躁狠狠久久av| 日本午夜av视频| 一区二区三区四区激情视频| 亚洲熟女毛片儿| 国产精品麻豆人妻色哟哟久久| 狠狠婷婷综合久久久久久88av| 日韩大片免费观看网站| 国产精品免费视频内射| 九草在线视频观看| 少妇人妻 视频| 大片免费播放器 马上看| 精品人妻1区二区| 欧美日韩亚洲综合一区二区三区_| 十分钟在线观看高清视频www| 婷婷色综合www| 亚洲欧美色中文字幕在线| 男女下面插进去视频免费观看| 欧美中文综合在线视频| 黄色 视频免费看| 九草在线视频观看| 亚洲国产av影院在线观看| 黄片播放在线免费| 久久午夜综合久久蜜桃| 亚洲精品久久久久久婷婷小说| 18禁黄网站禁片午夜丰满| 人人妻人人澡人人看| 免费观看av网站的网址| 亚洲人成77777在线视频| 亚洲av日韩在线播放| 只有这里有精品99| 国产精品三级大全| 欧美精品亚洲一区二区| 赤兔流量卡办理| 亚洲激情五月婷婷啪啪| 国产亚洲午夜精品一区二区久久| 久久青草综合色| 成年人午夜在线观看视频| 国产高清视频在线播放一区 | 午夜视频精品福利| 国产精品久久久人人做人人爽| 日本欧美视频一区| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 国产一区二区在线观看av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月婷婷丁香| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 久久影院123| 午夜视频精品福利| 色网站视频免费| 观看av在线不卡| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美亚洲二区| 男女边摸边吃奶| 91老司机精品| 国产精品麻豆人妻色哟哟久久| 伊人亚洲综合成人网| 黄片播放在线免费| 午夜影院在线不卡| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 精品人妻1区二区| 天天操日日干夜夜撸| 亚洲欧洲精品一区二区精品久久久| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 麻豆国产av国片精品| 99九九在线精品视频| 国产又爽黄色视频| 一区在线观看完整版| 精品国产国语对白av| 国产又爽黄色视频| 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 亚洲中文av在线| 首页视频小说图片口味搜索 | 国产一区二区三区av在线| 大片免费播放器 马上看| 美女中出高潮动态图| 电影成人av| 国产99久久九九免费精品| 午夜福利视频在线观看免费| 亚洲色图 男人天堂 中文字幕| 美女福利国产在线| 国产午夜精品一二区理论片| 少妇人妻 视频| 五月天丁香电影| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美在线一区| 久久久久久人人人人人| 香蕉丝袜av| 国产高清videossex| 亚洲精品国产区一区二| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 亚洲欧美中文字幕日韩二区| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 国产av国产精品国产| 久久国产精品男人的天堂亚洲| 亚洲美女黄色视频免费看| netflix在线观看网站| 美女中出高潮动态图| 男人操女人黄网站| 九色亚洲精品在线播放| 亚洲九九香蕉| 国产高清国产精品国产三级| 无遮挡黄片免费观看| 亚洲精品日韩在线中文字幕| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 亚洲免费av在线视频| 少妇 在线观看| 国产免费现黄频在线看| 黑人猛操日本美女一级片| 999久久久国产精品视频| 满18在线观看网站| 丝袜美足系列| 国产精品国产av在线观看| 国产国语露脸激情在线看| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 青草久久国产| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 波多野结衣av一区二区av| 久久九九热精品免费| 一本综合久久免费| 美女高潮到喷水免费观看| 国产精品三级大全| 国产一区有黄有色的免费视频| 久久精品亚洲av国产电影网| 9热在线视频观看99| 亚洲国产日韩一区二区| 国产片内射在线| 成人国产一区最新在线观看 | 国产高清视频在线播放一区 | 国产精品 欧美亚洲| 亚洲专区中文字幕在线| 免费看十八禁软件| a级毛片黄视频| 视频区欧美日本亚洲| 日本猛色少妇xxxxx猛交久久| 成人国产一区最新在线观看 | 男人舔女人的私密视频| 成年人黄色毛片网站| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 亚洲精品av麻豆狂野| 亚洲国产看品久久| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 狠狠婷婷综合久久久久久88av| 久久久久久久精品精品| 赤兔流量卡办理| e午夜精品久久久久久久| 性色av一级| 亚洲国产精品一区二区三区在线| 欧美日韩国产mv在线观看视频| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 中文字幕亚洲精品专区| 久久99精品国语久久久| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 搡老乐熟女国产| 91成人精品电影| 日本色播在线视频| 亚洲欧美激情在线| 日韩av在线免费看完整版不卡| av国产久精品久网站免费入址| 国产91精品成人一区二区三区 | 午夜老司机福利片| 欧美成人精品欧美一级黄| 大型av网站在线播放| 午夜日韩欧美国产| www.av在线官网国产| 国产人伦9x9x在线观看| avwww免费| 操美女的视频在线观看| 亚洲 国产 在线| 在线观看免费日韩欧美大片| 欧美日韩精品网址| 满18在线观看网站| 欧美人与性动交α欧美软件| 国产av精品麻豆| 天堂8中文在线网| 久久狼人影院| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 亚洲人成电影免费在线| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 99久久99久久久精品蜜桃| 精品人妻熟女毛片av久久网站| 免费久久久久久久精品成人欧美视频| 国产成人欧美| 在线观看免费日韩欧美大片| 日韩一区二区三区影片| 亚洲一码二码三码区别大吗| 又黄又粗又硬又大视频| 国产男女超爽视频在线观看| 精品高清国产在线一区| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 精品国产一区二区三区四区第35| 桃花免费在线播放| 精品亚洲乱码少妇综合久久| 国产麻豆69| 美女视频免费永久观看网站| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 51午夜福利影视在线观看| 丝袜美足系列| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 精品人妻熟女毛片av久久网站| 国产人伦9x9x在线观看| 午夜福利一区二区在线看| 91麻豆av在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成国产人片在线观看| 在线亚洲精品国产二区图片欧美| 久久99精品国语久久久| 国产精品一二三区在线看| 日韩人妻精品一区2区三区| 超碰成人久久| 男女之事视频高清在线观看 | 男女床上黄色一级片免费看| 黄片播放在线免费| 欧美激情 高清一区二区三区| 夫妻午夜视频| 精品国产一区二区三区四区第35| 国产男人的电影天堂91| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 在线亚洲精品国产二区图片欧美| 国产熟女午夜一区二区三区| 飞空精品影院首页| 日本午夜av视频| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 狂野欧美激情性bbbbbb| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 免费看十八禁软件| 亚洲成人免费电影在线观看 | 成年av动漫网址| 一区在线观看完整版| 激情视频va一区二区三区| 日韩一本色道免费dvd| 9热在线视频观看99| 亚洲国产精品一区二区三区在线| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 高清欧美精品videossex| 成在线人永久免费视频| 一本大道久久a久久精品| 精品国产一区二区三区久久久樱花| 高清不卡的av网站| 90打野战视频偷拍视频| 亚洲欧美一区二区三区久久| 香蕉丝袜av| 一区二区三区乱码不卡18| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 一本一本久久a久久精品综合妖精| av天堂久久9| 午夜免费男女啪啪视频观看| 制服人妻中文乱码| 亚洲,欧美,日韩| 青春草亚洲视频在线观看| 国产不卡av网站在线观看| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 免费在线观看完整版高清| 亚洲国产精品一区三区| www.999成人在线观看| 人人澡人人妻人| 亚洲国产精品999| av网站在线播放免费| 国产成人系列免费观看| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| av一本久久久久| 亚洲人成网站在线观看播放| 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| 一区二区三区四区激情视频| 国产成人精品在线电影| 夜夜骑夜夜射夜夜干| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o | 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡 | 99精品久久久久人妻精品| 久久久久久久大尺度免费视频| 国产欧美日韩综合在线一区二区| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| av网站在线播放免费| 一区二区日韩欧美中文字幕| 久久ye,这里只有精品| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 男女床上黄色一级片免费看| 99国产精品99久久久久| 香蕉丝袜av| 色婷婷久久久亚洲欧美| 中国美女看黄片| 韩国高清视频一区二区三区| 在线观看免费午夜福利视频| 成人国产一区最新在线观看 | 国产又色又爽无遮挡免| 午夜免费鲁丝| 免费高清在线观看日韩| 老司机亚洲免费影院| 交换朋友夫妻互换小说| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 晚上一个人看的免费电影| 最黄视频免费看| 亚洲av在线观看美女高潮| 日本wwww免费看| 伊人久久大香线蕉亚洲五| 两人在一起打扑克的视频| 国产精品久久久av美女十八| www.精华液| 熟女av电影| av在线播放精品| 夫妻性生交免费视频一级片| 女性被躁到高潮视频| 国产精品 国内视频| 国产日韩欧美视频二区| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 热re99久久精品国产66热6| av福利片在线| 涩涩av久久男人的天堂| 国产精品三级大全| 亚洲久久久国产精品| 大香蕉久久成人网| 午夜精品国产一区二区电影| 各种免费的搞黄视频| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 国产亚洲欧美在线一区二区| 2021少妇久久久久久久久久久| 电影成人av| 另类精品久久| 免费不卡黄色视频| 巨乳人妻的诱惑在线观看| 亚洲欧洲日产国产| 久久久久精品人妻al黑| 午夜91福利影院| 男女下面插进去视频免费观看| 国产亚洲av高清不卡| 欧美日韩视频精品一区| 国产日韩欧美亚洲二区| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 99久久综合免费| 在线看a的网站| 国产亚洲av高清不卡| 99精品久久久久人妻精品| 丁香六月天网| 夫妻午夜视频| 久久鲁丝午夜福利片| av国产久精品久网站免费入址| 男女下面插进去视频免费观看| 亚洲三区欧美一区| 菩萨蛮人人尽说江南好唐韦庄| 中国国产av一级| www.999成人在线观看| netflix在线观看网站| 高清黄色对白视频在线免费看| 国产日韩欧美视频二区| 日本wwww免费看| 日韩电影二区| 一级毛片女人18水好多 | 亚洲午夜精品一区,二区,三区| 大香蕉久久成人网| 亚洲少妇的诱惑av| 夫妻午夜视频| 欧美激情极品国产一区二区三区| 国产精品熟女久久久久浪| 免费人妻精品一区二区三区视频| 老熟女久久久| 熟女少妇亚洲综合色aaa.| 人妻一区二区av| 精品卡一卡二卡四卡免费| 99国产精品一区二区蜜桃av | 亚洲国产av新网站| 精品视频人人做人人爽| 久久精品久久精品一区二区三区| 性色av乱码一区二区三区2| 国产精品免费视频内射| 黄色片一级片一级黄色片| 美女午夜性视频免费| 国产精品一区二区在线不卡| 免费高清在线观看日韩| 一级a爱视频在线免费观看| 精品国产乱码久久久久久小说| 在线观看一区二区三区激情| 精品一区二区三区av网在线观看 | 涩涩av久久男人的天堂| 国产人伦9x9x在线观看| 夫妻性生交免费视频一级片| 久热爱精品视频在线9| 久久精品久久久久久噜噜老黄| 日韩视频在线欧美| 天堂8中文在线网| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| 性少妇av在线| 亚洲视频免费观看视频| 亚洲国产欧美网| 久久久亚洲精品成人影院| 久久久久久久国产电影| 国产成人啪精品午夜网站| 日韩,欧美,国产一区二区三区| 国产精品久久久久成人av| 在线观看免费日韩欧美大片| 日本91视频免费播放| 国产日韩一区二区三区精品不卡| 叶爱在线成人免费视频播放| 亚洲中文字幕日韩| 亚洲免费av在线视频| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 只有这里有精品99| 免费黄频网站在线观看国产| 黄片播放在线免费| 亚洲欧美精品自产自拍| 久久人人爽人人片av| 午夜老司机福利片| 国产又色又爽无遮挡免| 丰满少妇做爰视频| 日韩大码丰满熟妇| 精品亚洲成国产av| 国产成人av激情在线播放| 国产亚洲精品久久久久5区| 亚洲精品在线美女| 精品欧美一区二区三区在线| 日韩,欧美,国产一区二区三区| 女性被躁到高潮视频| 别揉我奶头~嗯~啊~动态视频 | 欧美xxⅹ黑人| 欧美 日韩 精品 国产| 精品欧美一区二区三区在线| 啦啦啦 在线观看视频| 下体分泌物呈黄色| 精品熟女少妇八av免费久了| 男女无遮挡免费网站观看| 免费一级毛片在线播放高清视频 | 大陆偷拍与自拍| 亚洲三区欧美一区| 各种免费的搞黄视频| 国产欧美日韩精品亚洲av| 99国产精品一区二区三区| 欧美人与性动交α欧美精品济南到| 青春草视频在线免费观看| 久久国产亚洲av麻豆专区| 一级,二级,三级黄色视频| 十八禁高潮呻吟视频| 青春草亚洲视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲少妇的诱惑av| 久久综合国产亚洲精品| 亚洲国产精品一区二区三区在线| 午夜精品国产一区二区电影| www.熟女人妻精品国产| 亚洲人成77777在线视频| 亚洲三区欧美一区| 精品欧美一区二区三区在线| 国产精品九九99| 国产精品熟女久久久久浪| 欧美亚洲 丝袜 人妻 在线| 欧美成人精品欧美一级黄| 国产精品偷伦视频观看了| 男女边吃奶边做爰视频| 久久精品国产a三级三级三级| 精品久久蜜臀av无| 国产一卡二卡三卡精品| 久久国产亚洲av麻豆专区| 黄频高清免费视频| 又黄又粗又硬又大视频| 久久免费观看电影| 悠悠久久av| 91麻豆av在线| 1024香蕉在线观看| av国产久精品久网站免费入址| 一级,二级,三级黄色视频| 亚洲专区中文字幕在线| 日韩中文字幕视频在线看片| 熟女av电影| 精品卡一卡二卡四卡免费| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 人人妻人人澡人人看| 97在线人人人人妻| 日韩av免费高清视频| 亚洲国产精品999| 丰满少妇做爰视频| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 一级毛片电影观看| 成人亚洲精品一区在线观看| 精品福利观看| 在线观看免费午夜福利视频| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 国产亚洲欧美在线一区二区| 久久久久网色| 欧美人与性动交α欧美精品济南到|