• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced visible-light photocatalytic hydrogen evolution using two-dimensional carbon nitride sheets with the removal of amine groups

    2024-04-05 02:28:40YuZhngLitingWuShopngWngDingyiYngHunLingYizhngWuJinHoYouqingWngJinkLiuYongWng
    Chinese Chemical Letters 2024年2期

    Yu Zhng ,Liting Wu ,Shopng Wng ,Dingyi Yng ,Hun Ling ,Yizhng Wu ,Jin Ho,Youqing Wng,Jink Liu,Yong Wng,c,*

    a Department of Physics,Shaanxi University of Science and Technology,Xi’an 710021,China

    b School of Advanced Materials and Nanotechnology,Academy of Advanced Interdisciplinary Research,Xidian University,Xi’an 710126,China

    c The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,Xidian University,Xi’an 710126,China

    d Collaborative Innovation Center of Advanced Microstructures,National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    e State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University,Yinchuan 750021,China

    Keywords: 2D carbon nitride sheets Rapid thermal annealing DFT calculations Visible-light absorption visible-light photocatalysis

    ABSTRACT Two-dimensional (2D) carbon nitride sheets (CNs) with atomically thin structures are regarded as one of the most promising materials for solar energy conversion.However,due to their substantially enlarged bandgap caused by the strong quantum size effect and their incomplete polymerisation with a large number of non-condensed surface amino groups,the practical applicability of CNs in photocatalysis is limited.In this study,CNs with broad visible-light absorption were synthesised using a 5-min fast thermal annealing.The removal of uncondensed amine groups reduces the bandgap of CNs from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Interestingly,the CNs were distorted after annealing,which can differentiate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs rose by 8.38 times.This research presents a dependable and speedy method for creating highly effective visible-light photocatalysts with narrowed bandgaps and improved visible-light absorption.

    Hydrogen (H2) generationviaphotocatalytic water splitting is a promising sustainable energy production method for addressing energy shortages and escalating environmental concerns [1-4].To realize the practical benefits of this technology,reliable,highefficiency and low-cost semiconductor photocatalysts must be developed [5-7].Carbon nitride (CN) has sparked substantial interest as a metal-free semiconductor photocatalyst during the last decade due to its easy availability,low cost,excellent physicochemical stability and appealing electronic structure [8-11].Unfortunately,due to the highly stacked layers,the bulk CN has a small surface area and quick electron-hole pair recombination,resulting in low photocatalytic activity [12,13].Delaminating the bulk CN into atomically thin two-dimensional (2D) CN nanosheets (CNs) is a promising strategy for improving photocatalytic activity.CNs exhibit more exposed active sites,a larger specific surface area,shorter charge diffusion distances and improved photo-electronic properties as compared to bulk CNs [14-18].However,due to the significantly increased bandgap caused by the strong quantum size effect,the use of atomically thin 2D CNs in photocatalysis is still unsatisfied [18,19].More importantly,its incomplete polymerization with a large number of non-condensed surface amino groups results in an abundance of hydrogen bonding in the material layer [20,21].These hydrogen bonds link the chains of polymer melon units.However,due to the weak interlayer force of hydrogen bonds,charge transfer between melon chains is difficult,resulting in poor interlayer transport [21-23].As a result,CNs have a poor ability to transfer charge carriers and a limited capacity for photocatalysis.

    To overcome these challenges,a range of techniques have been proposed,including coupling with aromatic compounds,heteroatom doping and fabrication defects [21,24-27].To some extent,these approaches can boost CN absorbance and broaden its restricted visible-light absorption spectrum,hence improving photocatalytic efficacy.However,its complex procedures impeded its wider application.As a result,an efficient and facile strategy for extending CNs’visible-light absorption was required.A quick (5-min) annealing process was used to synthesise CNs with broad visible-light absorption.According to experimental and theoretical investigations,rapid heat annealing selectively breaks hydrogen bonds and uncondensed amine groups are removed to produce new N=CH-N bonds.By removing the amine group,the band gap of CNs can be reduced from 3.06 eV to 2.60 eV,increasing their absorption of visible light.Meanwhile,after annealing,the CNs were deformed,which can separate the spatial positions of electrons and holes,enhancing the visible-light absorption efficiency.As a result,when exposed to visible light,the photocatalytic hydrogen production activity of atomically thin 2D CNs was boosted by 8.38 times,reaching 6284.47 μmol g-1h-1.

    An atomic force microscope (AFM) and transmission electron microscopy (TEM) were used to examine the surface morphology of the samples.We discovered that the CNs have a lateral dimension ranging from tens of nanometers to around one hundred nanometers (Fig.S1 in Supporting information),as previously described for atomically thin 2D CNs [18,28].The thickness of CNs-640 after 5 min of thermal annealing was approximately 1 nm,as shown in Fig.1a.Additionally,the TEM result in Fig.1b shows similar morphology to that of CNs.Furthermore,the electron energy loss spectrum (EELS) in Figs.1c-f confirmed the presence and consistent distribution of carbon and nitrogen elements in CNs-640.

    Fig.1.AFM image and its cross-section height profile along the white line (a),TEM image (b),energy filtered STEM image (c) and EELS elemental mapping images of C and N (d-f) for CNs-640.

    The crystal structure of CNs was analysed using X-ray powder diffraction (XRD) patterns at different annealing temperatures for 5 min,as shown in Fig.2a and Fig.S2 (Supporting information).The strength of the characteristic peaks at 13° (100) and 27.6°(002) progressively decreased with increasing annealing temperature,implying that the interlayer hydrogen bonds were gradually broken [29,30].The peaks almost completely vanished when the temperature reached 680°C,indicating that the hydrogen bonds were completely broken and the periodic structure of CNs was destroyed.The yield of CNs gradually decreases at each temperature also further verified the structure of CNs was destroyed (Table S1 in Supporting information).The peak at 476.2 cm-1was observed in the Raman spectrum,which is the characteristic peak of CNs (Fig.S3 in Supporting information) [16,21].The Fourier transform infrared (FTIR) spectra of the samples showed that the feature bands were enhanced at 810 cm-1and decreased between 3100 cm-1and 3300 cm-1compared to CNs,as shown in Fig.2b and Fig.S4 (Supporting information).

    Fig.2.XRD patterns (a),FTIR spectra (b),solid NMR spectra of 13C (c),C 1s XPS spectra (d),N 1s XPS spectra (e),UV-vis absorption spectra (f),transformed Kubelka-Munk vs. light energy plots (g),UPS spectra (h) and transient photocurrent responses under visible light (i) for CNs and CNs-640.

    It can be concluded that selective hydrogen bond destruction affects the periodic arrangement of melon chains within layers and reduces the number of uncondensed amine groups.The atomic structure’s framework is then preserved [29,31-33].The sample with an annealing temperature of 680°C has almost no characteristic bands,indicating that the structure has been destroyed,as indicated by the XRD results.The13C nuclear magnetic resonance(NMR) results in Fig.2c show that after annealing at 640°C,the ratio of the peak intensity of CN3to that of CN2(NHX) increases from 0.57 to 0.81,ascribed to the loss of uncondensed amine groups[14,34].Based on the results discussed above,it is clear that the hydrogen bonds were selectively destructed during annealing,and the uncondensed amine groups were lost.

    X-ray photoelectron spectroscopy (XPS) measurements were used to further investigate the surface chemical properties of the as-prepared samples.As illustrated in Fig.2d,two peaks in the C 1s spectrum were observed at 284.6 eV and 287.94 eV,which are attributed to C-C and N=C-N,respectively [35,36].In addition,a CNs-640 peak at 285.8 eV emerged,corresponding to an N=CH-N bond [14,24].The C-N=C (398.4 eV),NC3(399.5 eV) and NHX(400.7 eV) bands are assigned to the N 1s spectrum (Fig.2e)[37,38].Meanwhile,the NHX/N2C peak area ratio of CNs decreased from 0.153 to 0.144,and the NHX/NC3ratio decreased from 0.774 to 0.731 (Table S2 in Supporting information),indicating that the more uncondensed amino groups in CNs,the more amine groups were lost during annealing [14,39].According to the experimental findings,the amine group can be removed from the melon strands during rapid thermal annealing by breaking hydrogen bonds,the long-range atomic order structure of the chain between layers was disrupted,and a new N=CH-N bond is formed.

    We used UV-visible absorption spectroscopy (UV-vis) to determine the optical properties of samples.The absorption edge of CNs is 415 nm,as shown in Figs.2f and g and Figs.S5 and S6,and the corresponding band gap is calculated as 3.06 eV from the Kubelka-Munk (K-M) curve.With increasing temperature and rapid thermal annealing,the absorption edge can be red-shifted to 576 nm,and the band gap can be narrowed to 2.60 eV.This suggests that removing the amine group can narrow the bandgap and significantly improve the use of solar light with a broader band.The narrowing of the bandgap can effectively promote the effective separation between photoexcited electrons and holes,which is crucial for improving photocatalytic performance [40,41].Fig.2h depicts the high and low kinetic energy regions of CNs and CNs-640,where the incident photon energy is 40.8 eV,and the conduction band minimum of CNs-640 is 0.66 eV higher than that of CNs (Table S3 in Supporting information) [42-44].The enhancement of the conduction band minimum can provide the driving force for the photocatalytic reduction of hydrogen protons,ultimately improving the efficiency of H2production [45,46].Furthermore,CNs-640 has a higher photocurrent density than CNs (Fig.2i),suggesting that the rapid thermal annealing process improves charge transfer and separation,both of which are beneficial to photocatalytic activity.

    To further explore the separation and recombination of photogenerated carriers in the samples after rapid thermal annealing,we performed surface photovoltage (SPV) measurements as shown in Fig.3.We discovered from Figs.3a-c that light had little effect on the intensity of CNs.The CNs-640 sample showed a differential surface potential change of 6.61 mV after rapid thermal annealing (Figs.3d-f).As a result,rapid thermal annealing may be used to suppress photogenerated carrier recombination.According to the above experimental findings,quick thermal annealing can selectively break hydrogen bonds and form N=CH-N bonds,remove amine groups and narrow the band gap,increase visible-light absorption and facilitate photogenerated carrier separation.

    Fig.3.SPV images of CNs under dark conditions (a),under illumination (b) and corresponding surface potential (c).SPV images of CNs under dark conditions (d),under illumination (e) and corresponding surface potential (f).

    To further understand the photocatalytic ability of the sample after rapid thermal annealing,the first-principles density functional theory (DFT) calculations were performed as shown in Fig.4.We can see in Figs.4a and b that the 2D planar CNs were distorted after 5 ps of simulated annealing at 913 K.By removing NH3molecules,the sample condenses,increasing the C/N ratio while decreasing the H content.As a result,interchain -NHbonds are generated at 913 K,leading to the deformation of the triazine/heptazine unit,thereby deforming the 2D planar structure of CNs [47].This structural distortion phenomenon disrupts local symmetry in the form of C and N atoms,separating electron and hole spatial positions and improving visible-light absorption effi-ciency [48,49].The band gaps of CNs and CNs-640 are 2.23 and 1.67 eV,respectively,as shown in Figs.4c and d.Clearly,rapid thermal annealing reduces the band gap of CNs-640.As a result,CNs-640 is expected to have more charge carriers,which will improve photoresponsivity.Based on the above experimental and computational results,we can conclude that removing amine groups after rapid thermal annealing can narrow the band gap of CNs and facilitate photogenerated carrier separation.Then,to improve hydrogen production efficiency,visible-light absorption can be increased.

    Fig.4.Side views of the optimized structure of CNs (a) and CNs-640 (b).Density of states (DOS) of CNs (c) and CNs-640 (d).

    We used 10 vol% TEOA as a sacrificial agent and 3 wt% Pt cocatalyst to examine the photocatalytic hydrogen generation activities of the samples under visible-light irradiation (λ>420 nm).As illustrated in Fig.5a and Fig.S7 (Supporting information).The yield of the samples increased gradually as the rapid thermal annealing temperature was raised.When the temperature reached 640°C,CNs-640 produced 25,137.89 μmol/g) of H2,which was 8.38 times that of CNs (only 2998.95 μmol/g).The yield of structurally altered CNs-680,on the other hand,was extremely low at 484.92 μmol/g.The corresponding hydrogen production rate,shown in Fig.5b and Fig.S8 (Supporting information),where the CNs-640 was 6284.47 μmol g-1h-1(CNs was 749.74 μmol g-1h-1).Furthermore,CNs-640 demonstrated good photocatalytic stability,with no discernible drop in photocatalytic H2production over four cycles(Fig.5c).As shown in Fig.5d,the activity of CNs-640 is consistent with its optical absorption spectrum at different wavelengths,implying that photo-induced electrons in CNs-640 are primarily responsible for driving H2evolution.The H2production rates of typical photocatalysts reported so far are summarised in Fig.5e and Table S4 (Supporting information),and the samples used in this paper produce more hydrogen.As a result,rapid thermal annealing of the samples increased visible-light absorption,promoted photogenerated carrier separation and improved the photocatalytic hydrogen evolution reaction.

    Fig.5.Hydrogen evolution (a) and hydrogen evolution rate (b) for CNs and CNs-640.Stability of hydrogen evolution (c) and wavelength dependent photocatalytic hydrogen production rate (d) for CNs-640.Comparison of hydrogen evolution with CNs-640 over reported CN photocatalyst with Pt as cocatalyst (e) [14,50-63].

    In summary,rapid thermal annealing was used to successfully prepare highly efficient visible-light photocatalysts.When exposed to visible light,atomically thin 2D CNs exhibit photocatalytic hydrogen production activity of 6284.47 μmol g-1h-1,which is 8.38 times greater than that of CNs.Experiment results and theoretical studies show that hydrogen bonds can be selectively broken by rapid thermal annealing to form new N=CH-N bonds and uncondensed amine groups can be removed to reduce the bandgap of CNs from 3.06 eV to 2.60 eV,enhancing their visible-light absorption.After annealing,the CNs were distorted,which separates the spatial positions of electrons and holes,improving the visiblelight absorption efficiency.This research provides a dependable and rapid method for developing highly efficient visible-light photocatalysts with narrowed bandgaps and enhanced visible-light absorption.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.12104352 and 12204294),Fundamental Research Funds for the Central Universities (Nos.XJS212208 and 2020BJ-56),and Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering (No.2022-K67),the Natural Science Foundation of Shaanxi Province(Nos.2019JCW-17 and 2020JCW-15).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108551.

    岛国在线观看网站| 亚洲精品国产av蜜桃| 国产免费一区二区三区四区乱码| 久久久久国产一级毛片高清牌| 亚洲黑人精品在线| 欧美黑人欧美精品刺激| 亚洲成人免费av在线播放| 秋霞在线观看毛片| 黄色毛片三级朝国网站| 亚洲成国产人片在线观看| 国产黄色免费在线视频| 国产一区二区三区综合在线观看| 国产日韩欧美在线精品| 国产一级毛片在线| 在线 av 中文字幕| 久久久久久久精品精品| 中文字幕色久视频| 黄片大片在线免费观看| 欧美激情高清一区二区三区| 久久av网站| 亚洲国产毛片av蜜桃av| 超碰97精品在线观看| 欧美精品啪啪一区二区三区 | 色婷婷久久久亚洲欧美| 黑人欧美特级aaaaaa片| 亚洲综合色网址| av福利片在线| 男女边摸边吃奶| 国内毛片毛片毛片毛片毛片| 亚洲国产精品999| 天天躁狠狠躁夜夜躁狠狠躁| 国产无遮挡羞羞视频在线观看| 不卡av一区二区三区| 免费在线观看日本一区| 国产精品 欧美亚洲| 国产一区二区在线观看av| 18在线观看网站| 久久99一区二区三区| 人人妻人人澡人人爽人人夜夜| 18禁国产床啪视频网站| 国产日韩欧美在线精品| 成年av动漫网址| 99热全是精品| 亚洲自偷自拍图片 自拍| 国产av国产精品国产| 男女国产视频网站| 可以免费在线观看a视频的电影网站| 欧美人与性动交α欧美精品济南到| 亚洲黑人精品在线| 久久人妻福利社区极品人妻图片| 亚洲久久久国产精品| 午夜福利乱码中文字幕| 国产亚洲精品第一综合不卡| 亚洲国产欧美日韩在线播放| 狂野欧美激情性bbbbbb| 夜夜骑夜夜射夜夜干| 久久 成人 亚洲| 50天的宝宝边吃奶边哭怎么回事| 夫妻午夜视频| av又黄又爽大尺度在线免费看| 三级毛片av免费| 手机成人av网站| 欧美日韩国产mv在线观看视频| 脱女人内裤的视频| 搡老乐熟女国产| 2018国产大陆天天弄谢| 国产成人免费观看mmmm| 最黄视频免费看| 久久精品亚洲av国产电影网| a级毛片在线看网站| 免费观看人在逋| 老司机影院毛片| 日韩三级视频一区二区三区| 宅男免费午夜| 久久精品aⅴ一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 乱人伦中国视频| 亚洲国产成人一精品久久久| 啦啦啦啦在线视频资源| 一级a爱视频在线免费观看| 国产老妇伦熟女老妇高清| netflix在线观看网站| 日日摸夜夜添夜夜添小说| 50天的宝宝边吃奶边哭怎么回事| 国产高清国产精品国产三级| 夫妻午夜视频| 免费久久久久久久精品成人欧美视频| 各种免费的搞黄视频| 国产一区二区在线观看av| bbb黄色大片| 欧美人与性动交α欧美精品济南到| 免费人妻精品一区二区三区视频| 国产精品久久久久久人妻精品电影 | 国产男女内射视频| 日韩中文字幕视频在线看片| 亚洲av男天堂| 极品人妻少妇av视频| 99热国产这里只有精品6| 后天国语完整版免费观看| 免费高清在线观看视频在线观看| 老鸭窝网址在线观看| 亚洲七黄色美女视频| 免费观看av网站的网址| 亚洲九九香蕉| 国产男女超爽视频在线观看| 90打野战视频偷拍视频| 女人久久www免费人成看片| 国产精品.久久久| 国产一区二区激情短视频 | 久久国产精品人妻蜜桃| 精品一区在线观看国产| 久久久精品94久久精品| 欧美另类一区| 熟女少妇亚洲综合色aaa.| 久久久久视频综合| 可以免费在线观看a视频的电影网站| 一本—道久久a久久精品蜜桃钙片| 夜夜夜夜夜久久久久| 女人精品久久久久毛片| 国产97色在线日韩免费| 爱豆传媒免费全集在线观看| 爱豆传媒免费全集在线观看| 老司机午夜福利在线观看视频 | 亚洲一码二码三码区别大吗| 永久免费av网站大全| 老鸭窝网址在线观看| 亚洲精华国产精华精| 日韩人妻精品一区2区三区| 视频在线观看一区二区三区| 亚洲精品日韩在线中文字幕| 免费高清在线观看视频在线观看| 在线观看免费日韩欧美大片| tocl精华| 国产成人av教育| 夜夜夜夜夜久久久久| 亚洲精品乱久久久久久| 久久久国产一区二区| 国产男女内射视频| 国产片内射在线| 精品一区二区三区av网在线观看 | 一区在线观看完整版| 精品熟女少妇八av免费久了| 三级毛片av免费| 最新在线观看一区二区三区| 十分钟在线观看高清视频www| 久久久久国产一级毛片高清牌| 美女扒开内裤让男人捅视频| 久久久久精品国产欧美久久久 | 国产视频一区二区在线看| 欧美日韩黄片免| 亚洲 国产 在线| 女人高潮潮喷娇喘18禁视频| 搡老岳熟女国产| 国产av一区二区精品久久| 久久av网站| 伊人亚洲综合成人网| 国产免费福利视频在线观看| 国产精品久久久久久人妻精品电影 | tube8黄色片| 青春草视频在线免费观看| 另类亚洲欧美激情| 99re6热这里在线精品视频| videosex国产| 中文字幕人妻丝袜制服| 欧美精品一区二区大全| 中国美女看黄片| 制服诱惑二区| 色婷婷av一区二区三区视频| 亚洲综合色网址| 搡老乐熟女国产| 中文字幕av电影在线播放| 国产亚洲精品一区二区www | 免费高清在线观看视频在线观看| 麻豆国产av国片精品| 菩萨蛮人人尽说江南好唐韦庄| 国产男人的电影天堂91| 高清在线国产一区| 久久青草综合色| 一本综合久久免费| a 毛片基地| 国产成人欧美| 国产亚洲av片在线观看秒播厂| 日韩精品免费视频一区二区三区| 久久中文看片网| 人人妻人人澡人人爽人人夜夜| 高清黄色对白视频在线免费看| 桃红色精品国产亚洲av| 日本wwww免费看| 日本猛色少妇xxxxx猛交久久| 91老司机精品| 亚洲欧美一区二区三区久久| a 毛片基地| 少妇粗大呻吟视频| 免费黄频网站在线观看国产| 国产不卡av网站在线观看| 成人免费观看视频高清| 国产成人精品无人区| 欧美成狂野欧美在线观看| 菩萨蛮人人尽说江南好唐韦庄| 高清av免费在线| 脱女人内裤的视频| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 成人亚洲精品一区在线观看| 久久久国产成人免费| 欧美精品av麻豆av| 欧美乱码精品一区二区三区| 成年av动漫网址| 捣出白浆h1v1| cao死你这个sao货| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲 | 成年动漫av网址| 亚洲性夜色夜夜综合| 18禁国产床啪视频网站| 美女中出高潮动态图| 久久狼人影院| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| 免费观看人在逋| 亚洲人成电影观看| 各种免费的搞黄视频| 我的亚洲天堂| 亚洲av片天天在线观看| 免费在线观看视频国产中文字幕亚洲 | 欧美黄色片欧美黄色片| 国产免费福利视频在线观看| 制服诱惑二区| 日韩大片免费观看网站| 高潮久久久久久久久久久不卡| 亚洲av成人一区二区三| 一级黄色大片毛片| 十八禁高潮呻吟视频| 成年动漫av网址| 亚洲久久久国产精品| 黑丝袜美女国产一区| 满18在线观看网站| 日韩大片免费观看网站| 91精品国产国语对白视频| 人妻人人澡人人爽人人| 亚洲全国av大片| 日本精品一区二区三区蜜桃| 久久中文看片网| 老汉色av国产亚洲站长工具| 亚洲国产日韩一区二区| 国产一区二区三区在线臀色熟女 | 在线观看一区二区三区激情| 精品国产一区二区三区四区第35| 欧美午夜高清在线| 久久久久精品人妻al黑| 女人久久www免费人成看片| 欧美日韩亚洲综合一区二区三区_| 亚洲av日韩在线播放| 18在线观看网站| 波多野结衣一区麻豆| 久久精品久久久久久噜噜老黄| av片东京热男人的天堂| 国产激情久久老熟女| 久久ye,这里只有精品| 国产1区2区3区精品| 777久久人妻少妇嫩草av网站| 青春草视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 日韩一卡2卡3卡4卡2021年| 91精品伊人久久大香线蕉| 欧美精品亚洲一区二区| 亚洲专区中文字幕在线| 成年动漫av网址| 久久女婷五月综合色啪小说| 免费看十八禁软件| 亚洲av男天堂| 午夜成年电影在线免费观看| 国产99久久九九免费精品| 欧美日韩国产mv在线观看视频| 一本久久精品| 一边摸一边抽搐一进一出视频| 男女午夜视频在线观看| 久久av网站| 亚洲性夜色夜夜综合| 一级,二级,三级黄色视频| 波多野结衣一区麻豆| 高清av免费在线| 国产成人av激情在线播放| 国产免费一区二区三区四区乱码| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 性色av一级| 人人妻,人人澡人人爽秒播| 成年动漫av网址| 黄片小视频在线播放| 天天操日日干夜夜撸| 在线观看免费日韩欧美大片| 免费不卡黄色视频| 男女国产视频网站| 美女福利国产在线| 久久精品亚洲熟妇少妇任你| 99热全是精品| 欧美精品高潮呻吟av久久| 岛国毛片在线播放| 1024视频免费在线观看| 亚洲色图 男人天堂 中文字幕| 视频区图区小说| 狂野欧美激情性xxxx| 久久午夜综合久久蜜桃| 99国产精品99久久久久| 日韩 亚洲 欧美在线| 日韩欧美国产一区二区入口| 少妇被粗大的猛进出69影院| 国产精品一区二区在线观看99| 肉色欧美久久久久久久蜜桃| 中文欧美无线码| 亚洲免费av在线视频| 精品第一国产精品| 99国产精品一区二区三区| 国产精品一二三区在线看| 91成人精品电影| www.av在线官网国产| 欧美日韩成人在线一区二区| 久久久国产一区二区| 国产在视频线精品| 18禁观看日本| 精品少妇黑人巨大在线播放| 国产黄色免费在线视频| 欧美中文综合在线视频| 老司机影院成人| 免费少妇av软件| 亚洲欧美精品自产自拍| 成人国产av品久久久| 亚洲av国产av综合av卡| 国产精品 欧美亚洲| av免费在线观看网站| 精品一品国产午夜福利视频| 亚洲一码二码三码区别大吗| 777米奇影视久久| www日本在线高清视频| 欧美97在线视频| 欧美精品人与动牲交sv欧美| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 亚洲国产看品久久| 69av精品久久久久久 | 十分钟在线观看高清视频www| 一级毛片精品| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 在线观看免费午夜福利视频| 一区福利在线观看| 黄频高清免费视频| 久久久久精品国产欧美久久久 | 欧美在线黄色| 99国产精品一区二区蜜桃av | 国产又色又爽无遮挡免| 又大又爽又粗| 91老司机精品| 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 亚洲av男天堂| 中文字幕精品免费在线观看视频| 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 免费观看人在逋| 色综合欧美亚洲国产小说| 曰老女人黄片| 国产又色又爽无遮挡免| 成人手机av| 日日摸夜夜添夜夜添小说| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 亚洲综合色网址| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 亚洲欧洲精品一区二区精品久久久| 麻豆乱淫一区二区| 成人三级做爰电影| 少妇 在线观看| 男女床上黄色一级片免费看| 美女主播在线视频| 精品卡一卡二卡四卡免费| 无遮挡黄片免费观看| 久久99一区二区三区| √禁漫天堂资源中文www| 国产精品国产三级国产专区5o| 国产精品二区激情视频| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 亚洲国产欧美一区二区综合| svipshipincom国产片| 久久久精品区二区三区| 美女高潮到喷水免费观看| 搡老乐熟女国产| 涩涩av久久男人的天堂| 丝袜人妻中文字幕| 99九九在线精品视频| 人妻一区二区av| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 又紧又爽又黄一区二区| 日韩电影二区| 少妇人妻久久综合中文| 18禁观看日本| 黄色视频不卡| 亚洲 欧美一区二区三区| 80岁老熟妇乱子伦牲交| 热99re8久久精品国产| 秋霞在线观看毛片| 日韩人妻精品一区2区三区| a级毛片黄视频| 亚洲av日韩在线播放| 欧美人与性动交α欧美软件| 成在线人永久免费视频| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 91大片在线观看| 80岁老熟妇乱子伦牲交| 久久性视频一级片| netflix在线观看网站| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 9191精品国产免费久久| 久久精品熟女亚洲av麻豆精品| 亚洲美女黄色视频免费看| 精品久久久精品久久久| 久热这里只有精品99| 99香蕉大伊视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕一级| 成人影院久久| www.自偷自拍.com| 亚洲国产欧美一区二区综合| 日日夜夜操网爽| 日韩视频在线欧美| 国产精品偷伦视频观看了| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 别揉我奶头~嗯~啊~动态视频 | 大陆偷拍与自拍| 高清在线国产一区| 丝瓜视频免费看黄片| 电影成人av| 国产成人a∨麻豆精品| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看 | 久久香蕉激情| 国产老妇伦熟女老妇高清| 久久久久精品人妻al黑| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 香蕉丝袜av| 精品第一国产精品| av在线老鸭窝| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看 | e午夜精品久久久久久久| 亚洲av成人一区二区三| 欧美午夜高清在线| e午夜精品久久久久久久| 午夜两性在线视频| 香蕉丝袜av| 色视频在线一区二区三区| 欧美在线黄色| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 亚洲一区二区三区欧美精品| 在线观看舔阴道视频| 免费在线观看完整版高清| 日韩中文字幕视频在线看片| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 亚洲av男天堂| 亚洲精品国产区一区二| 欧美在线一区亚洲| 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 大码成人一级视频| 男人舔女人的私密视频| 这个男人来自地球电影免费观看| 亚洲精品国产av成人精品| 在线天堂中文资源库| 国产片内射在线| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 一级a爱视频在线免费观看| 日韩欧美免费精品| 国产av国产精品国产| 欧美午夜高清在线| 国产男人的电影天堂91| 国产深夜福利视频在线观看| 中文欧美无线码| 国产精品99久久99久久久不卡| 久久中文字幕一级| 丁香六月欧美| 欧美激情 高清一区二区三区| 午夜激情久久久久久久| 亚洲精品一区蜜桃| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看| 精品少妇内射三级| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 日本91视频免费播放| 三级毛片av免费| 丝袜在线中文字幕| 亚洲人成电影观看| 欧美日韩av久久| 成年美女黄网站色视频大全免费| 国产成人精品久久二区二区免费| 精品少妇黑人巨大在线播放| 国产片内射在线| 精品视频人人做人人爽| 国产精品亚洲av一区麻豆| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 超碰成人久久| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 91精品三级在线观看| 欧美大码av| 两个人免费观看高清视频| 国产男人的电影天堂91| 精品亚洲成国产av| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 久久性视频一级片| 亚洲精品成人av观看孕妇| 永久免费av网站大全| 欧美 亚洲 国产 日韩一| 老司机影院毛片| 91精品伊人久久大香线蕉| 在线天堂中文资源库| 亚洲欧美日韩高清在线视频 | 欧美午夜高清在线| 午夜成年电影在线免费观看| 男女无遮挡免费网站观看| 日韩中文字幕视频在线看片| 日本91视频免费播放| 两人在一起打扑克的视频| 国产精品影院久久| 日本wwww免费看| 丝瓜视频免费看黄片| 一进一出抽搐动态| 狠狠精品人妻久久久久久综合| 别揉我奶头~嗯~啊~动态视频 | 亚洲人成电影观看| 欧美成人午夜精品| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 欧美精品一区二区大全| 久久久久网色| 人成视频在线观看免费观看| 男人爽女人下面视频在线观看| 国产成人精品无人区| 亚洲一区中文字幕在线| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 国产成人精品无人区| 国产精品久久久久久精品电影小说| 大型av网站在线播放| 老司机影院成人| 人成视频在线观看免费观看| 9热在线视频观看99| 久久免费观看电影| 侵犯人妻中文字幕一二三四区| 视频在线观看一区二区三区| 欧美成人午夜精品| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 久久久久久久大尺度免费视频| 免费在线观看黄色视频的| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 青春草视频在线免费观看| svipshipincom国产片| 蜜桃在线观看..| 久久综合国产亚洲精品| 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 色94色欧美一区二区| 人妻人人澡人人爽人人| 亚洲七黄色美女视频| a 毛片基地| 桃红色精品国产亚洲av| 悠悠久久av| 亚洲国产av影院在线观看| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| avwww免费| 成人18禁高潮啪啪吃奶动态图| 国产精品二区激情视频| 久久 成人 亚洲| 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| av网站免费在线观看视频| 一级黄色大片毛片| 男人操女人黄网站| 亚洲av成人不卡在线观看播放网 | 99国产极品粉嫩在线观看| 狂野欧美激情性xxxx| 久久久精品免费免费高清| 久久热在线av| 性高湖久久久久久久久免费观看| 欧美乱码精品一区二区三区| 亚洲一码二码三码区别大吗|