• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microfluidic separation of particles by synergistic effect ofgeometry-induced hydrodynamics and magnetic field

    2024-04-05 02:28:30DuQioHongxiLiWeipingZhuLiliZhuDnyngZhoHonglinLi
    Chinese Chemical Letters 2024年2期

    Du Qio ,Hongxi Li,* ,Weiping Zhu ,Lili Zhu ,Dnyng Zho ,Honglin Li,c

    a Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of Education,Dalian University of Technology,Dalian 116023,China

    b Shanghai Key Laboratory of New Drug Design,School of Pharmacy,East China University of Science and Technology,Shanghai 200237,China

    c Lingang Lab,Shanghai 200031,China

    Keywords: Microfluidic Particle separation Synergistic effect Hydrodynamics Magnetic field Numerical calculation

    ABSTRACT Microfluidic combined with magnetic field have been demonstrated to be the promising solutions for fast and low-damage particles separation.However,the difficulties in the precise layout of magnets and accurate prediction of particle trajectories lead to under and over separation of target particles.A novel particle separation lab-on-chip (LOC) prototype integrated with microstructures and micropolar arrays is designed and characterized.Meanwhile,a numerical model for the separation of magnetic particles by the synergistic effect of geometry-induced hydrodynamics and magnetic field is constructed.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed to implement accurate prediction of particle trajectories.It is found that the separation efficiency of magnetic particles increased from 50.2% to 91.7% and decreased from 88.6% to 85.7% in the range of depth factors from 15 μm to 27 μm and width factors from 30 μm to 60 μm,respectively.In particular,the combined effect of the offset distance of permanent magnets and the distance from the main flow channel exhibits a significant difference from the conventional perception.Finally,the developed LOC prototype was generalized for extension to arbitrary systems.This work provides a new insight and robust method for the microfluidic separation of magnetic particles.

    Precise separation of bioparticles from complex biofluids has been a landmark in the development of modern biological and medical applications,with rapidly expanding demand to date for de-laboratoryization in areas such as CAR-T cell immunotherapy[1],exosome-based disease diagnosis [2],and circulating tumor cell (CTC) enrichment [3].Recently,lab-on-chip (LOC) combined with microfluidic has shown potential for cell and particle separation [4-8] as an alternative to manual execution with high precision and efficiency.Meanwhile,active and passive microfluidic methods based on different dynamic mechanisms have been developed for the physical and biological properties of the target particles.

    Passive methods mostly achieve particle size-based separations using hydrodynamic effects induced by the geometric characteristics of microfluidic channels in LOC [9-12],such as hydrodynamic focusing [13,14],inertial migration [15,16],and deterministic lateral displacement [17].Geometry-induced hydrodynamic effects provide a simple solution for the separation of target particles.However,the inherent drawbacks of the hydrodynamics-induced particle attachment and low flexibility make it difficult to precisely manipulate the separation process and limit effective separation.As a complement to passive methods,active microfluidic separation [18-20] allows for more flexible control of motion paths to achieve separation process based on target particle biochemistry.In particular,the magnetic field-based operation provides an effi-cient way to separate particles without injury [21].Combining permanent magnets directly with the microfluidic channel by external connection [22-24] is the simplest implementation.Nevertheless,the complexity and sensitivity of the magnetophoretic system makes it difficult to find a balance between multi-impact factors,which leads to over and under deflection of target particles.Besides,manual adjustment of the permanent magnet distribution is unable to accurately predict the particle motion path,resulting in difficult and inefficient particle separation operations.There is no doubt that the layout of permanent magnets and the prediction of particle paths are essential for effective and accurate microfluidic particle separation.

    The constitutive equation of magnetic particle transport [25] is one of the effective approaches to the above problem,but it seems difficult to extend to magnetophoretic systems with arbitrary geometrical coupling due to the lack of magnetic field variation and hydrodynamic considerations so far.Multi-physics field computational modeling based on real systems demonstrates potential for magnetophoretic particle dynamics prediction [26-28].Outokeshetal.[29] proposed that particle multi-process sorting and enrichment be integrated into a numerical model for predicting the trajectories of particles inside droplets.Abhisheketal.[30] performed simultaneous separation operations on two different types of magnetic particles in a free-flow microchannel and numerically investigated the effects of operating parameters on particle separation and capture in a magnetophoretic system.Jiaetal.[31] proposed the use of curved comb structure combined with magnetophoresis technique to achieve size-based separation of magnetic particles.Although numerous useful results have been obtained in magnetophoretic separation of magnetic particles,most interest has focused on particle size-based manipulations.Considerably less attention has been paid to the efficient separation by using the synergistic effect of geometry-induced hydrodynamic and magnetic field to constrain the particle motion trajectory.The combination shows unprecedented potential for accurate particle separation,yet no relevant reports have been seen available.

    In this paper,a novel particle separation LOC prototype integrated with microstructures and micropolar arrays is designed and characterized.By designing the correspondence between microstructure and micropoles,the synergistic effect of magnetic field and geometry-induced hydrodynamics is cleverly achieved.Meanwhile,a numerical model for the separation of magnetic particles by the synergistic effect in a microfluidic channel is constructed using a multi-physics field coupled modeling technique.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed to implement accurate prediction of particle trajectories and separation of magnetic particles.The system was finally generalized dimensionlessly to predict the particle trajectories in arbitrary systems.

    A Y-shaped sorting structure containing a microstructure and an array of micropoles is constructed as examining the synergistic effect of geometry-induced hydrodynamics and magnetic fields on particle separation is of primary interest.As shown in Fig.1,the inlet of the mixed particle sample shows a 90° angle with the inlet of the buffer solution,with flow rates ofV1=7.5×10-5m/s andV2=1.5×10-4m/s,respectively.A series of rectangular microstructures are integrated on one side of the main flow channel,and the geometric characteristics of the cells can be characterized by a width factorWand a depth factorh.Ldenotes the length of the separation area.W*indicates the flow channel width in the transition area andW*=40 μm.The square neodymium iron boron (Nd-FeB) micropole array withH=12 kA/m is integrated on the other side at a distancedfrom the main flow channel,with an initial position directly opposite the rectangular microstructure.Wmdenotes the width of the permanent magnet,andWm=40 μm.Woffdenotes the distance that the micropoles deviate from their initial position,one that will be discussed to investigate the effect of micropole layouts.The waste outlet and the target particle collection outlet are arranged downstream of the main flow channel with the same angle of 90°.The outlet widthWout=40 μm is kept the same as the inlet widthWin.

    Fig.1.Schematic diagram of geometry-induced hydrodynamic and magnetic field synergistic magnetophoretic separation.Fdrag denotes drag force,Fm denotes magnetic force,and Fwl denotes wall lift force.The dashed line indicates that the wall lift force only works when the particles are in contact with the wall.Fp is pressure gradient force.Fsl is saffman lift force.The Magnetization intensity of the micropole is H.The microchannel,magnet and particles are not drawn to scale.

    The local force balance of the two particles is shown in the detailed diagram.The operation claims effective separation only when the magnetic particle trajectory falls within the magnetophoretic width threshold [32].The density of magnetic particles is defined as 2200 kg/m3with the particle size is 4 μm,and the relative magnetic permeability of the particles is 2000.The density of non-magnetic particles is 1050 kg/m3with the particle size is 2 μm,and the relative magnetic permeability of the particles is 1.Separation efficiencyΨis defined as the ratio of the number of magnetic particlesPoexiting the target particle outlet to the total magnetic particlesPtot:

    As attention is focused on sparse flow,which is achieved in practical applications by a dilution step,the carrier phase affects the particle motion mainly by drag force,without enough inertia of the particles to significantly perturb the fluid.Therefore,other forces with second-order effects,e.g.,interparticle forces,particleto-fluid forces,are allowed to be ignored as their contribution to the present study is much less than the burdens [33].In addition,the magnetic field strength is sufficiently small that the temperature change caused by the magnetic field is neglected and the thermophoretic force is not taken into account in the controlling equation of particle motion.Considering such a system modeling,it is effective to first solve for the flow and magnetic fields and then calculate the trajectories of the discrete particles.The numerical implementation can be found in the supplementary data.Grid convergence analysis and model validation show that the present numerical model is a quantitative fit to the experiment,as shown in Figs.S1-S3 (Supporting information).

    The background magnetic field and the geometric-induced flow field characteristics are visually characterized,as shown in Fig.S4a (Supporting information).The flow velocity is affected by the fluid dynamics induced by the geometric features of the contraction and expansion.Considering only the flow effect,the particles will be moved near the microstructure side due to the laminar flow regime,which is influenced by the fluid drag forceFdragand the flow focusing effect of the sheath flow.When the centerline of the micropole coincides with that of the expansion region,the magnetic induction intensity is significantly focused and enhanced in the expansion region,and it is attenuated in the constriction region,as shown in the inset of Fig.S4b (Supporting information),which is called the orthogonal synergy effect.The velocity is minimized while the magnetic induction intensity is in the highest state.It can be expected that the flow velocity of magnetic particles decreases in the expansion region,while the magnetic field force is significant leading to a deflection of the motion path.The magnetic particles are accelerated by the traction force when they pass through the contracting region,where the magnetic field is relatively weak and only a small path deflection occurs.Non-magnetic particles still follow the flow field because they are not subject to magnetic field forces.

    The trajectory of the particles subjected to the synergistic effect of the magnetic field and the geometry-induced flow field is depicted as shown in Fig.S5a (Supporting information),an oscillatory deflection along the Y-direction occurs under the constraint of the contraction geometry and magnetic field force.Oscillatory flow characteristics extend the coupling time over a limited separation length while reducing sensitivity to inappropriate operating parameters.The non-magnetic particle exhibits oscillatory acceleration dynamics,as shown in Fig.S5b (Supporting information),which implicates that the separation of impurity particles can be accelerated by increasing the main channel length.On the other hand,it is expected that the velocity of magnetic particles has no significant fluctuations with the synergistic effect of geometryinduced hydrodynamics and magnetic field,which allows to the robust operation of the system.The fluctuations of the magnetophoretic force shows a similar trend to the distribution of the magnetic flux density (Fig.S4b),with the particles suffering the greatest magnetophoretic force at the outer edge of the micropolar array and decreasing rapidly after separation.

    Rectangular microstructures provide geometric constraints inducing specific hydrodynamics.First,the width factorW=40 μm is fixed and the trajectory of the magnetic particles is shown in Fig.2a whenh=15,20,25 and 27 μm.All snapshots are captured after 20 s of stable system operation.With the increase of depth factorh,the number of magnetic particles flowing out through the target particle collection outlet increases and the separation efficiency improves.The combination of the depth factor,which provides a geometric constraint on particle excursions in the Y-direction,and the geometry-induced hydrodynamics,which lengthens the particle’s travel distance and brings the particle closer to the strong magnetic field,enables particles with a wider distribution to obtain additional deflection capability.The magnetophoretic distribution width factorκis proposed to characterize the distribution width of magnetic particles in the outlet channel.κis defined as the ratio of the distribution range of magnetic particles parallel to the outlet channel cross-sectionWcto the outlet channel widthWout:

    Fig.2.(a) The instantaneous trajectory of magnetic particles after stable operation of the system for 20 s when h=15,20,25,and 27 μm.The red one indicates magnetic particles,and the blue one indicates non-magnetic particles.Effect of h on (b) magnetophoretic distribution width and (c) separation efficiency when W=20 μm,d=30 μm,and Woff=50 μm.The inset shows the distribution of the magnetic particle motion path at the outlet.

    As shown in Fig.2b,the magnetophoresis distribution width increases with increasinghand gradually tends to a constant value.Despite the fact that the increasinghwill lead to more efficient particle separation,the particles will be captured by the wall beyond a specific threshold.The trapped particles will accumulate on the wall under the magnetic field,which in turn decreases the magnetic particle separation efficiency [34].This conclusion can also be obtained from the inset of Fig.2b.Fig.2c demonstrates the variation of magnetic particle separation efficiency withh.It is clear that the separation efficiencyΨincreases from 50.2% to 91.7%with the increase ofhin the range of parameters studied.However,the contribution ofhto separation efficiency will no longer be significant whenh>25 μm,since a highhin practical applications leads to a narrow main channel width,which is prone to damage by aggregation and extrusion of particles or cells.

    Next,the depth factorh=20 μm is fixed and the trajectory of the magnetic particles is shown in Fig.3a whenW=30,40,50,and 60 μm.The number of particles exiting the target outlet decreases over the parameter range of width factorWfrom 30 μm to 60 μm.The geometry-induced hydrodynamics dominates the trajectory of the particles under the condition of largeWcompared to the magnetic field force,resulting in larger Y-directional excursions and longer particle motion distances.However,it is clear that the particle excursion is less sensitive toWcompared toh.Therefore,the hydrodynamics induced by the width factor is convenient to implement coupling with the magnetic field to separate the magnetic particles precisely.The magnetophoretic distribution width tends to decrease linearly with increasing width factorWwith low sensitivity.In the range of available parameters,Wincreases by 50%,whileκdecreases by only 13%.Unexpectedly,the effect ofWon the magnetophoretic distribution range demonstrates a different behavior from that ofh.The magnetophoretic distribution width tends to exhibit uniform boundary shrinkage with the exception ofW=50 μm when an increase inW,which is attributed to the numerical error.Simultaneously,we find that whenWreaches the threshold value,the separation efficiency remains approximately 85%,and the separation efficiency decreases sharply by 3% asWincreases from 30 μm to 40 μm.Nevertheless,it does not mean that the lower theW,the higher the separation efficiency.Because our study shows that the particles are strongly attached to the wall by the magnetic field whenWis reduced to 0 (i.e.,no microstructure and the width of the main flow channel is reduced to half of the present).

    Fig.3.(a) The instantaneous trajectory of magnetic particles after stable operation of the system for 20 s when W=30,40,50,and 60 μm.The red one indicates magnetic particles,and the blue one indicates non-magnetic particles.Effect of W on (b) magnetophoretic distribution width and (c) separation efficiency when h=20 μm,d=30 μm,and Woff=50 μm.The inset shows the distribution of the magnetic particle motion path at the outlet.

    In contrast to the orthogonal synergy,the offset synergy refers to the fact that the micropolar centerline is staggered by a specific offset distanceWofffrom the expansion region,rather than coinciding with the centerline of the expansion region.Here,we fix the depth factorhand the width factorWto investigate the effect of offset distanceWoffand the distance of permanent magnets from the main channeldon the particle separation efficiency.Fig.4 shows the variation curves of magnetophoretic distribution width factorκand particle separation efficiencyΨwith offset distance for variousd.We obtained similar conclusions as forhandW,where the magnetophoresis distribution width is in good agreement with the separation efficiency of magnetic particles.Over a certain range,both the magnetophoretic distribution width factorκand the magnetic particle separation efficiencyΨincrease with the increase of the offset distance.Instead,the separation efficiency decreases once a specific critical value is reached.Moreover,the critical value ofWoffincreases with the increase ofdfrom 29 μm to 31 μm.The decrease in the width of the magnetophoretic distribution in the studied parameter range was attributed to two factors.On the one hand,the offset distance is too large and the strong superimposed magnetic field acts on the contraction channel region.The high flow velocity of particles in the constriction channel with a short offset time fails to reach within the capture range of the collection channel.On the other hand,it is trapped on the wall by the magnetic field,which leads to a further reduction in the number of magnetic particles being separated.It is a consensus that the farther the permanent magnet is from the main channel,the smaller the offset distance of magnetic particles in the flow channel.Unexpectedly the offset synergistic effect of permanent magnet layout and geometry-induced hydrodynamics will instead overturn the conventional perception.It is possible to assume that there is an equilibrium value betweenWoffanddthat determines both the separation efficiency of the particles and the robust operation of the system.As shown in Fig.4b,the intersection of the three curves is the so-called equilibrium point,and the area filled by its conjunction has been filled with the base color to indicate the interval of stable system operation.

    Fig.4.Effect of Woff on (a) magnetophoretic distribution width and (b) separation efficiency when d=29,30,31 μm,W=40 μm and h=20 μm.The area filled by the base color shows the range of parameters for the stable operation of the system.

    Finally,the present model of magnetophoretic separation of particles is further generalized by dimensionless characterization of the system’s characteristic parameters.In this study,it is reasonable that the wall-induced lift is selectively ignored because the magnetic particles are separated before the range of allowable execution is reached.Besides,the virtual mass force only plays a significant role when the particle has a large acceleration,which is also neglected for the convenience of generalization.Therefore,the dominant forces acting on the particles include the drag forceFdrag,the Saffman lift forceFsland the magnetic field forceFm.With derivation and reasonable simplification,the velocity of the particle is expressed as:

    whereλ=μπ+krpkdenotes the velocity gradient in the microfluidic channel.χdenotes magnetic susceptibility andχ=μr-1.

    The magnetic field generated by a permanent magnet is scaled asH≈(d-y)2.When the distancedbetween the permanent magnet and the main channel is much larger than the width of the main channel with microstructure,dH2/dycan be expressed as

    Then,the offset timetoffaffected by the strong magnetic field can be approximated astoff=n·wherendenotes the number of permanent magnet,anddenotes average speed of magnetic particles,which is due to the properties induced by the geometric effects (as shown in the inset of Fig.S4b).Finally,the offset distance of the particle can be dimensionless as:

    where ?h=h/W*,εdenotes a dimensionless scaling constant.Scottetal.[35] show the detailed calculation procedure of the dimensionless scaling parameters.Similarly,εcan be given by the following equation:

    whereη==Woff/L.The lower wall surface of the main channel entrance is defined as the coordinate origin andn=5 in this study.The simulation result of the magnetic particle offset position is compared with the dimensionless model in good agreement as shown in Fig.5 whenh=20 μm.

    Fig.5.Dimensionless position yd plotted versus dimensionless design parameters.The theoretical model is plotted with a solid line and ε ≈0.025.

    In this study,a novel particle separation LOC prototype integrated with microstructures and micropolar arrays is designed and characterized.By designing the correspondence between microstructure and micropoles,the synergistic effect of magnetic field and geometry-induced hydrodynamics is cleverly achieved.The effect of geometry and magnetic field layout on particle deflection is systematically analyzed.With other factors constant,Ψincreases from 50.2% to 91.7% with increasinghand decreases from 88.6%to 85.7% with increasingWover the studied parameter range.Besides,Ψincreases when in the range of 10-60 μm forWoffand then decreases beyond a specific critical value.Unexpectedly,we found that in the range ofWoffparameters studied,dincreasing from 29 μm to 31 μm leads to an increase in particle separation efficiency instead,which is counterintuitive.It means that it is allowed to adjust the layout of the permanent magnets coupled with geometry-induced hydrodynamics to optimize the separation performance of the system.Furthermore,the dimensionlessness of the system allows the prediction of the offset distance of magnetic particles at arbitrary scales,with further expansion of the applicability of the system.It is foreseen that the synergistic effect of geometryinduced hydrodynamics and magnetic field provides a novel and robust approach that will be an attractive addition to microfluidic magnetic particle sorting methods.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11502044,U1906233),the Fundamental Research Funds for the Central Universities (No.DUT22JC08),the Liaoning Province’s Xing Liao Talents Program (No.XLYC2002108)and the Dalian City Supports Innovation and Entrepreneurship Projects for High-level Talents (No.2021RD16).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108646.

    国产精品一区二区免费欧美| 午夜免费激情av| 91av网站免费观看| 亚洲一码二码三码区别大吗| 日日干狠狠操夜夜爽| 90打野战视频偷拍视频| 国产精品自产拍在线观看55亚洲| videosex国产| 成人免费观看视频高清| 老汉色av国产亚洲站长工具| 亚洲av美国av| 欧美黑人欧美精品刺激| 成年人免费黄色播放视频| 午夜福利在线免费观看网站| 亚洲黑人精品在线| www国产在线视频色| 亚洲国产欧美网| 精品一区二区三区视频在线观看免费 | 成人国产一区最新在线观看| 长腿黑丝高跟| 亚洲五月婷婷丁香| 正在播放国产对白刺激| 午夜激情av网站| 免费少妇av软件| 欧美日韩乱码在线| 两人在一起打扑克的视频| 中文字幕高清在线视频| 老熟妇仑乱视频hdxx| 亚洲成av片中文字幕在线观看| 欧美在线一区亚洲| 老司机福利观看| 日韩国内少妇激情av| 亚洲成人精品中文字幕电影 | 久久热在线av| 一级黄色大片毛片| 一区二区日韩欧美中文字幕| 69av精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 欧美av亚洲av综合av国产av| 久久人妻福利社区极品人妻图片| 国产极品粉嫩免费观看在线| av国产精品久久久久影院| 999精品在线视频| 亚洲久久久国产精品| 91国产中文字幕| 91大片在线观看| 亚洲精品成人av观看孕妇| 午夜福利一区二区在线看| 免费搜索国产男女视频| 欧美日韩亚洲国产一区二区在线观看| 757午夜福利合集在线观看| 亚洲国产精品999在线| 91av网站免费观看| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 国产视频一区二区在线看| 丰满的人妻完整版| 免费看十八禁软件| 在线播放国产精品三级| 一二三四在线观看免费中文在| 黄色女人牲交| 人成视频在线观看免费观看| 久久亚洲真实| 国产亚洲欧美精品永久| 精品第一国产精品| 亚洲av五月六月丁香网| 日韩欧美一区视频在线观看| 18美女黄网站色大片免费观看| 黑人猛操日本美女一级片| 香蕉久久夜色| 精品国产亚洲在线| 亚洲专区中文字幕在线| 国产乱人伦免费视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线美女| 亚洲专区中文字幕在线| 日韩精品免费视频一区二区三区| 国产午夜精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 成人18禁在线播放| 窝窝影院91人妻| 欧美国产精品va在线观看不卡| 一级a爱视频在线免费观看| 午夜精品国产一区二区电影| 国产一卡二卡三卡精品| 在线观看午夜福利视频| 国产精品永久免费网站| 国产亚洲av高清不卡| a级片在线免费高清观看视频| 黄片大片在线免费观看| 亚洲精品久久午夜乱码| 日韩欧美国产一区二区入口| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 9热在线视频观看99| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 不卡一级毛片| 国产午夜精品久久久久久| 精品久久久久久电影网| 一本综合久久免费| 一级a爱片免费观看的视频| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 久久这里只有精品19| 午夜福利影视在线免费观看| 99re在线观看精品视频| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 日本免费一区二区三区高清不卡 | 黄色视频,在线免费观看| 大型av网站在线播放| 午夜精品久久久久久毛片777| 欧美中文日本在线观看视频| 国产人伦9x9x在线观看| 亚洲一区二区三区不卡视频| 999精品在线视频| 国产三级在线视频| 91精品三级在线观看| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品在线福利| 日韩一卡2卡3卡4卡2021年| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 不卡一级毛片| 欧美av亚洲av综合av国产av| 久久中文看片网| 久久人妻熟女aⅴ| 国产精品秋霞免费鲁丝片| 久久人妻av系列| 少妇 在线观看| 亚洲成人免费av在线播放| 一区二区日韩欧美中文字幕| 亚洲狠狠婷婷综合久久图片| 天堂中文最新版在线下载| 一级作爱视频免费观看| √禁漫天堂资源中文www| 怎么达到女性高潮| 色老头精品视频在线观看| 久久婷婷成人综合色麻豆| 婷婷六月久久综合丁香| 中文字幕人妻丝袜制服| 国产色视频综合| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 999精品在线视频| av欧美777| 性色av乱码一区二区三区2| 麻豆国产av国片精品| 久久人妻av系列| 国产精品国产高清国产av| 亚洲国产毛片av蜜桃av| 少妇裸体淫交视频免费看高清 | 新久久久久国产一级毛片| 免费搜索国产男女视频| xxxhd国产人妻xxx| 亚洲成人免费av在线播放| 午夜福利在线观看吧| 精品国内亚洲2022精品成人| 国产av在哪里看| 久久久久久久久久久久大奶| 黄色怎么调成土黄色| 国产野战对白在线观看| 国产黄色免费在线视频| 久久国产亚洲av麻豆专区| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 真人做人爱边吃奶动态| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 久久精品aⅴ一区二区三区四区| 一区在线观看完整版| 欧美人与性动交α欧美软件| 日韩欧美三级三区| 亚洲欧美激情综合另类| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 久久久国产成人精品二区 | 女警被强在线播放| 岛国在线观看网站| 亚洲精品美女久久av网站| 久久草成人影院| 妹子高潮喷水视频| 国产精品九九99| 久久午夜亚洲精品久久| 亚洲精品国产色婷婷电影| 777久久人妻少妇嫩草av网站| 一级a爱片免费观看的视频| 成在线人永久免费视频| 国产色视频综合| 正在播放国产对白刺激| 又黄又爽又免费观看的视频| av中文乱码字幕在线| 成人免费观看视频高清| 中文字幕人妻熟女乱码| 国产精品电影一区二区三区| 老汉色∧v一级毛片| 两个人免费观看高清视频| 天堂中文最新版在线下载| 欧美丝袜亚洲另类 | 国产精品九九99| 成熟少妇高潮喷水视频| 午夜视频精品福利| 亚洲精品中文字幕一二三四区| 精品第一国产精品| 精品久久久久久,| 91国产中文字幕| 日韩免费高清中文字幕av| 亚洲,欧美精品.| 国产97色在线日韩免费| 午夜两性在线视频| 国产av精品麻豆| 两个人看的免费小视频| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产主播在线观看一区二区| 一个人观看的视频www高清免费观看 | 日本 av在线| 99国产精品免费福利视频| 国产欧美日韩综合在线一区二区| 国产高清国产精品国产三级| 黑人操中国人逼视频| 多毛熟女@视频| 女性被躁到高潮视频| 在线永久观看黄色视频| 国内毛片毛片毛片毛片毛片| 免费在线观看亚洲国产| 99精品在免费线老司机午夜| 国产无遮挡羞羞视频在线观看| av在线播放免费不卡| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美一区二区三区久久| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 久久久久久久精品吃奶| 精品欧美一区二区三区在线| 亚洲av片天天在线观看| 热re99久久精品国产66热6| 国产一卡二卡三卡精品| 99在线视频只有这里精品首页| 丁香六月欧美| 国产深夜福利视频在线观看| 嫩草影院精品99| 操美女的视频在线观看| 国产成+人综合+亚洲专区| 久久国产精品男人的天堂亚洲| 狠狠狠狠99中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片 | 亚洲成人久久性| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9| 亚洲五月色婷婷综合| 国产一区二区在线av高清观看| 日本vs欧美在线观看视频| 亚洲一区二区三区不卡视频| 自线自在国产av| 动漫黄色视频在线观看| 亚洲激情在线av| 亚洲人成电影观看| 欧美久久黑人一区二区| 午夜影院日韩av| 久久人妻福利社区极品人妻图片| 色婷婷av一区二区三区视频| 激情在线观看视频在线高清| 国产精品二区激情视频| 中文字幕人妻熟女乱码| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 国产精品秋霞免费鲁丝片| 91在线观看av| 免费看a级黄色片| 久久精品国产亚洲av高清一级| 欧美另类亚洲清纯唯美| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| 日本wwww免费看| 老司机亚洲免费影院| 免费av毛片视频| 欧美日韩一级在线毛片| 午夜福利影视在线免费观看| 亚洲片人在线观看| 国产色视频综合| 91在线观看av| 一区福利在线观看| 69精品国产乱码久久久| 9191精品国产免费久久| 国产精品香港三级国产av潘金莲| 国产成人影院久久av| 9色porny在线观看| 国产又爽黄色视频| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 国产精品 国内视频| 99国产精品一区二区三区| 久久精品人人爽人人爽视色| 人人妻人人添人人爽欧美一区卜| 国产精品国产av在线观看| 国产亚洲欧美精品永久| 美女大奶头视频| 97超级碰碰碰精品色视频在线观看| 纯流量卡能插随身wifi吗| 青草久久国产| 日韩欧美国产一区二区入口| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 国内毛片毛片毛片毛片毛片| 亚洲欧洲精品一区二区精品久久久| 村上凉子中文字幕在线| 黄色片一级片一级黄色片| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 国产99久久九九免费精品| 一a级毛片在线观看| 99久久精品国产亚洲精品| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 最新美女视频免费是黄的| 欧美黑人精品巨大| 高清av免费在线| 美女大奶头视频| 欧美黄色淫秽网站| 国产野战对白在线观看| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| a在线观看视频网站| 国产精品免费视频内射| 日韩人妻精品一区2区三区| 国产成+人综合+亚洲专区| 成人免费观看视频高清| 看片在线看免费视频| 亚洲精品粉嫩美女一区| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| 午夜老司机福利片| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 又黄又粗又硬又大视频| 在线天堂中文资源库| 老司机福利观看| 999久久久国产精品视频| 欧美日韩乱码在线| 啦啦啦在线免费观看视频4| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 亚洲专区国产一区二区| 国产一区二区激情短视频| 国产成人欧美在线观看| av中文乱码字幕在线| 精品无人区乱码1区二区| ponron亚洲| 在线观看日韩欧美| 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 乱人伦中国视频| 老司机午夜十八禁免费视频| 亚洲伊人色综图| 午夜老司机福利片| av天堂在线播放| av片东京热男人的天堂| 亚洲成人精品中文字幕电影 | 国产精品综合久久久久久久免费 | 国产单亲对白刺激| 日本欧美视频一区| 美女扒开内裤让男人捅视频| avwww免费| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 国产亚洲精品一区二区www| 宅男免费午夜| 久久久久国产一级毛片高清牌| 色哟哟哟哟哟哟| 午夜亚洲福利在线播放| 丰满迷人的少妇在线观看| www.自偷自拍.com| 最近最新免费中文字幕在线| 黄色毛片三级朝国网站| 久久精品国产亚洲av香蕉五月| 99香蕉大伊视频| 老司机在亚洲福利影院| 91成年电影在线观看| 正在播放国产对白刺激| 波多野结衣av一区二区av| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 女生性感内裤真人,穿戴方法视频| 亚洲精品国产色婷婷电影| 午夜影院日韩av| 国产熟女午夜一区二区三区| 激情在线观看视频在线高清| 露出奶头的视频| 国产人伦9x9x在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 色婷婷av一区二区三区视频| 一级a爱片免费观看的视频| 成人三级做爰电影| 国产精品香港三级国产av潘金莲| 国产高清videossex| 黄片小视频在线播放| 淫妇啪啪啪对白视频| 黄色视频不卡| 亚洲av成人一区二区三| а√天堂www在线а√下载| 欧美日韩精品网址| 久久久久九九精品影院| 国产精品综合久久久久久久免费 | 午夜久久久在线观看| 亚洲激情在线av| 亚洲欧美日韩高清在线视频| 女生性感内裤真人,穿戴方法视频| 丝袜美足系列| 久久精品国产亚洲av高清一级| 精品福利观看| 高清毛片免费观看视频网站 | 丝袜人妻中文字幕| 精品国产亚洲在线| 黄色片一级片一级黄色片| 国产三级在线视频| 亚洲avbb在线观看| 欧美激情 高清一区二区三区| 精品国内亚洲2022精品成人| 大陆偷拍与自拍| 女性被躁到高潮视频| 视频在线观看一区二区三区| 老司机在亚洲福利影院| 最近最新中文字幕大全免费视频| av电影中文网址| 国产一区二区三区在线臀色熟女 | 亚洲中文av在线| 久久午夜综合久久蜜桃| 男人舔女人下体高潮全视频| 一区在线观看完整版| 黄色成人免费大全| 中文字幕另类日韩欧美亚洲嫩草| 国产精品野战在线观看 | 国产精品一区二区免费欧美| 久久国产精品男人的天堂亚洲| 精品国产一区二区久久| 久久人人97超碰香蕉20202| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点 | 99在线视频只有这里精品首页| 乱人伦中国视频| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 精品国产国语对白av| 51午夜福利影视在线观看| 色婷婷久久久亚洲欧美| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 久久久国产一区二区| 精品乱码久久久久久99久播| 亚洲av片天天在线观看| av网站免费在线观看视频| 国产乱人伦免费视频| cao死你这个sao货| 亚洲国产精品合色在线| 欧美在线黄色| 天天添夜夜摸| 精品国内亚洲2022精品成人| 日本黄色日本黄色录像| 亚洲精品国产精品久久久不卡| 久久国产精品人妻蜜桃| 午夜福利一区二区在线看| av网站在线播放免费| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 免费看a级黄色片| 99久久国产精品久久久| 午夜精品国产一区二区电影| 两性夫妻黄色片| 一级黄色大片毛片| a级毛片在线看网站| a级毛片黄视频| 精品福利永久在线观看| 美女国产高潮福利片在线看| 日日干狠狠操夜夜爽| 久久精品亚洲熟妇少妇任你| 丝袜美腿诱惑在线| 搡老熟女国产l中国老女人| 日韩视频一区二区在线观看| 色综合婷婷激情| 嫩草影院精品99| 香蕉久久夜色| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 日本a在线网址| 欧美日韩瑟瑟在线播放| 在线看a的网站| 欧美激情久久久久久爽电影 | 高清毛片免费观看视频网站 | 久9热在线精品视频| 波多野结衣av一区二区av| 最新美女视频免费是黄的| 嫩草影院精品99| 久久国产精品影院| 极品人妻少妇av视频| 精品人妻在线不人妻| 久久国产亚洲av麻豆专区| cao死你这个sao货| 纯流量卡能插随身wifi吗| av网站在线播放免费| 亚洲精品美女久久av网站| 欧美国产精品va在线观看不卡| 欧美精品一区二区免费开放| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区av网在线观看| 久久人妻熟女aⅴ| 欧美日韩黄片免| 中文字幕色久视频| 亚洲精品美女久久久久99蜜臀| 又黄又粗又硬又大视频| 久久午夜亚洲精品久久| 久久国产精品男人的天堂亚洲| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 三上悠亚av全集在线观看| 欧美中文综合在线视频| 成人亚洲精品一区在线观看| 又紧又爽又黄一区二区| 两人在一起打扑克的视频| 欧美老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频| 99riav亚洲国产免费| 男女午夜视频在线观看| 久久热在线av| 日本a在线网址| 欧美日韩亚洲高清精品| 亚洲男人的天堂狠狠| 女性生殖器流出的白浆| 亚洲五月色婷婷综合| 两人在一起打扑克的视频| 免费在线观看完整版高清| 亚洲自偷自拍图片 自拍| 后天国语完整版免费观看| 欧美在线黄色| 91精品国产国语对白视频| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av在线| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 女人被躁到高潮嗷嗷叫费观| √禁漫天堂资源中文www| 午夜福利在线免费观看网站| 亚洲三区欧美一区| 亚洲一区高清亚洲精品| 亚洲av成人av| 成年版毛片免费区| 精品久久久久久电影网| 99热只有精品国产| 老司机亚洲免费影院| 国产极品粉嫩免费观看在线| 少妇被粗大的猛进出69影院| 91九色精品人成在线观看| 国产精华一区二区三区| 国产真人三级小视频在线观看| 国产精品野战在线观看 | www.自偷自拍.com| 制服人妻中文乱码| 天堂中文最新版在线下载| 老熟妇仑乱视频hdxx| 国产av一区在线观看免费| 国产有黄有色有爽视频| 超碰97精品在线观看| 精品午夜福利视频在线观看一区| 国产精品日韩av在线免费观看 | 亚洲激情在线av| 国产精品久久久久成人av| 在线观看免费午夜福利视频| 男女做爰动态图高潮gif福利片 | 又紧又爽又黄一区二区| 亚洲成国产人片在线观看| 啦啦啦 在线观看视频| 一级黄色大片毛片| 国产成人欧美在线观看| 国产三级黄色录像| 欧美精品啪啪一区二区三区| 午夜福利在线观看吧| 精品电影一区二区在线| 成人国语在线视频| 亚洲成人免费av在线播放| 精品日产1卡2卡| 宅男免费午夜| 国产99久久九九免费精品| 99在线人妻在线中文字幕| 一级毛片高清免费大全| 日本免费a在线| 黄色成人免费大全| 久99久视频精品免费| 18禁国产床啪视频网站| 又黄又爽又免费观看的视频| 老司机午夜十八禁免费视频| 亚洲精品美女久久久久99蜜臀| av免费在线观看网站|