• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oligomeric donor with appropriate crystallinity for organic solar cells

    2024-04-05 02:28:20KaimingYangMinLvYanhongChangKunLuZhixiangWei
    Chinese Chemical Letters 2024年2期

    Kaiming Yang ,Min Lv ,Yanhong Chang ,Kun Lu ,Zhixiang Wei

    a CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c Department of Environmental Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    d Beijing Key Laboratory of Resource Treatment of Typical Industrial Pollutants,Beijing 100083,China

    Keywords: Linked donor unit Oligomeric donors Crystallinity regulation Organic solar cells

    ABSTRACT Improving the performance of all-small-molecule organic solar cells (ASM-OSCs) largely depends on the design and application of novel donors with appropriate crystallinity.Extending molecular conjugation is an effective method for regulating molecular stacking and crystallinity.In this work,we successfully designed and synthesized two novel acceptor-donor-donor-donor-acceptor (A-D-D-D-A) type oligomeric donors with three dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b’]dithiophene (DTBDT) as the central unit,named as 3DTBDT-Cl and 3DTBDT,depending on with and without chlorine substitution on the thiophene side chains.We found that the introduction of chlorine atoms makes the blend films display stronger crystallinity but with large-scale phase separation morphology and more defects,which eventually leads to a power conversion efficiency (PCE) of only 10.83%,whereas the blend films based 3DTBDT with appropriate crystallinity achieved 13.74% PCE.Compared with 3DTBDT-Cl/L8-BO,the 3DTBDT/L8-BO films exhibited a nanoscale bi-continuous interpenetrating network morphology with a smaller domain size and more suitable crystallinity,which guarantees the corresponding devices obtained more efficient exciton dissociation,efficient charge transport,reduced bimolecular recombination,and performed more balanced carrier mobility.These results demonstrated that regulating the crystallinity of oligomeric donors to obtain the desired phase separation morphology in the blend films could facilitate further improving the performance of ASM-OSCs.

    Solution-processed bulk heterojunction (BHJ) organic solar cells(OSCs) have become research frontiers in recent decades because of their unique advantages,such as low cost,flexibility and solution processability [1-8].Thanks to the synthesis of new photovoltaic materials and optimization of device processes,especially the development and application of new Y series non-fullerene small molecule acceptors [9-14],the PCE of single junction polymer organic solar cells (PSCs) have exceeded 19% [15-18].However,while polymeric donors have high efficiency and outstanding process film-forming,batch-to-batch production issues potentially limit their industrial applications.Compared with polymers,small or oligomeric donors can resolve these problems in the production process more effectively duo to their definite molecular structure[19,20].In recent years,the PCE of all-small-molecule organic solar cells (ASM-OSCs) have also achieved more than 17% [21,22],but their performance still lags behind that of PSCs.This is mainly due to the short and similar molecular structures of A-π-D-π-A type donors and acceptors,which have similar physical and chemical properties,making it difficult to regulate the crystallinity of donor and acceptor materials,and it is not easy to form a blend film morphology of nanoscale interpenetrating network structures,resulting in relatively low short circuit current (JSC) and fill factor (FF).

    The regulation of nanomorphology is highly dependent on the crystallinity of the molecule itself and the compatibility of small molecule donors (SMDs) and acceptors.Broadening the conjugation of the molecular plane is a common and effective method to regulate the crystallinity of donors.Lietal.designed and synthesized two A-π-D-π-A type small donors H11 and H12,with and without thiophene conjugated side chains on the benzo[1,2-b:4,5-b’]dithiophene (BDT) unit,respectively [23].Compared to the H12,the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption,low-lying HOMO energy level,higher hole mobility and ordered bimodal crystallite packing in the blend films,which leads to the corresponding devices achieve a higher PCE of 9.73%.Houetal.synthesized an A-π-D-π-A type SMD (named as B1) based on phenyl-substituted BDT central unit,which improved crystalline properties and increased intermolecularπ-πinteraction,in comparison with those of its corresponding thiophene-substitute BDT-based counterpart [24].After the effective modulation of the active layer morphology,charge separation and transport efficiencies were greatly improved,and ASM-OSCs achieved a higher PCE of 15.3%.

    Expanding the fused rings of central core can also enhance crystallinity [25,26].To our knowledge,dithieno[2,3-d:2′,3′-d’]benzo[1,2-b:4,5-b’]dithiophene (DTBDT) unit holds an extended conjugation length,therefore a stronger electron donating ability and carrier mobility,making it a highly desirable small molecule donor unit in donors.In recent years,a series of DTBDT-based SMDs have been synthesized,resulting in continuous enhancements of the efficiency of ASM-OSCs [27-30].In particular,we synthesized a series of SMDs ZR1,ZR1-Cl,and ZR1-S-Cl based on DTBDT in 2020 [27].By introducing chlorine and sulfur chlorine atoms to improve the crystallinity of SMDs further,a bicontinuous interpenetrating network was formed in the ZR1-SCl/IDIC-4Cl blend films,achieving the highest PCE of 12.05%.On this basis,developing novel oligomeric donors with more suitable crystallinity and a longer conjugated backbone is expected to be an effective strategy for realizing high-performance ASM-OSCs.

    Based on the SMDs ZR1-Cl,we designed and synthesized a novel linked-DTBDT type oligomeric donor 3DTBDT-Cl using a DTBDT unit with a larger conjugation plane instead of the original double thiopheneπ-bridge in ZR1-Cl (Fig.1a).The 3DTBDTCl/L8-BO based devices only yielded a low PCE of 10.83% due to excessive phase separation of the blend films caused by the undue crystallinity of 3DTBDT-Cl.Therefore,the oligomeric donor 3DTBDT was synthesized to reduce the crystallinity by removing the chlorine atoms later.As we expected,the removal of chlorine atoms successfully endowed the oligomeric 3DTBDT with appropriate crystallinity.After blending with L8-BO,high-quality films were obtained with smoother surface,appropriate crystallinity,and more uniform nanofiber phase separation structure.Therefore,the devices showed more effective exciton dissociation and charge collection,higher carrier mobility,longer charge lifetime,and effective inhibition of bimolecular recombination.As a result,the optimized 3DTBDT/L8-BO-based devices obtained a higher FF of 70.98%,JSCof 22.84 mA/cm2,and PCE of 13.74%.The results indicated that the blend films with appropriate crystallinity and phase separa-tion could be achieved by slightly changing the structures of the oligomeric donors,thereby achieving higher photovoltaic performance in ASM-OSCs.

    Fig.1.(a) Molecular structures of SMDs ZR1-Cl,oligomeric donors 3DTBDT-Cl and 3DTBDT,and small molecule acceptor L8-BO.(b,c) Normalized UV-vis absorption spectra of 3DTBDT-Cl,3DTBDT,L8-BO in solution and thin films.(d) Energy diagrams of 3DTBDT-Cl,3DTBDT,L8-BO.

    The synthetic routes of the oligomeric donors 3DTBDT-Cl and 3DTBDT are presented in Scheme S1 (Supporting information).And the detailed synthesis methods,1H nuclear magnetic resonance (1H NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis were clearly provided in Supporting information.The optical absorption properties of 3DTBDT-Cl and 3DTBDT were investigated using an ultraviolet-visible (UV-vis) spectrophotometer.In the chloroform solution state,the absorption of 3DTBDT was broader than that of 3DTBDT-Cl,but there was no significant shoulder peak,which means that the two donors did not form the pre-aggregated state(Fig.1b).In the thin film state,both donors performed significantly red-shifted and strong shoulder peaks,indicating that both donors achieved strong intermolecular interaction in the films (Fig.1c).Likewise,we found that the absorption edges of 3DTBDT-Cl and 3DTBDT films were located at 620 nm and 633 nm,corresponding to the optical bandgap of 1.93 eV and 1.74 eV,respectively.In summary,3DTBDT showed a broader absorption spectrum and narrower optical bandgap in the film state,and effectively provides complementary absorption for L8-BO,which is beneficial to achieve highJSCin devices.

    The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the oligomeric donors 3DTBDT-Cl,3DTBDT and acceptor L8-BO in the films were determined by cyclic voltammetry (CV) measurements with Ag/Ag+as the reference electrode (Fig.S3 in Supporting information).Based on the equationEHOMO/LUMO=-(Eox/red-EFc/Fc1/2+4.8) eV,the HOMO/LUMO of the 3DTBDT-Cl,3DTBDT and L8-BO were calculated to be -5.48/-3.55,-5.33/-3.59 and -5.67/-3.92 eV (Fig.1d)[31,32].Apparently,the identical end-group in both donors provides similar LUMO energy levels,whereas introducing chlorine atoms weakens the electron-donating ability within the 3DTBDTCl,resulting in a lower HOMO energy level and a wider band gap,which is consistent with the UV-vis results.The lower HOMO energy level of 3DTBDT-Cl will help the 3DTBDT-Cl/L8-BO based devices to obtain higherVOC.

    To investigate the device performance,we used L8-BO as the acceptor and fabricated OSCs using a conventional architecture of ITO/PEDOT:PSS/active layer/PDINO/Ag.The optimal preparation conditions for the active layer were determined by adjusting the concentration of the solution after mixing with the acceptor,the D/A ratio,the rotational speed of the film,the type of interfacial layer,and the thermal annealing temperature.The detailed optimization conditions and results are summarized in Tables S6-S9(Supporting information).As shown in the current density-voltage(J-V) plots (Fig.2a) and the summary of the detailed parameters (Table 1),the 3DTBDT-Cl/L8-BO based devices revealed a relatively low PCE of 10.83%,aJSCof 18.80 mA/cm2,an FF of 62.62%and a higherVOCof 0.920 V.However,the 3DTBDT/L8-BO devices exhibited significantly enhanced PCE of 13.74%,with aJSCof 22.84 mA/cm2,a FF of 70.98%,and aVOCof 0.847 V.Fig.2b showed the external quantum efficiency (EQE) spectra of the two optimized systems,it can be seen that all the blends exhibited a broad absorption range from 300 nm to 930 nm,with the maximum value of 66.09% and 80.74% for 3DTBDT-Cl and 3DTBDT based devices,respectively.The error betweenJSCcalculated from the EQE curve and the corresponding values measured from theJ-Vtests is within 5%,proving the reliability of the measured device performance.

    Table 1Detailed photovoltaic parameters of the OSCs based oligomeric donors.a

    Fig.2.(a) Optimized J-V curves for conventional devices.(b) EQE corresponding to devices.(c) Transient photovoltage (TPV) curves of optimal devices.(d) Transient photocurrent (TPC) curves of optimal devices.

    Whereafter,the difference in energy loss between 3DTBDTCl and 3DTBDT-based devices was investigated.According to the Shockley-Queisser (SQ) limit [33,34],they dividedElossin OSCs into three parts:Eloss=qΔVOC=Eg-qVOC=ΔE1+ΔE2+ΔE3,whereEgis the photovoltaic energy bandgap extracted from the derivation of the EQEPVcurve.ΔE1is originated from the radiative recombination above the band gap,which is unavoidable for any type of solar cell,so theΔE1value (0.265 eV) is almost the same for the two devices.ΔE2is due to the extra radiative recombination below the band gap and OSCs have a large loss of this fraction due to the presence of CT states,which can be reduced by raising the CT state [35-37].TheECTcan estimate from normalized fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) curves and electroluminescence (EL) spectra of devices (Fig.S5 in Supporting information).As shown in Table S2 (Supporting information),theΔECT(Eg-ECT) for 3DTBDT-Cl/L8-BO (0.016 eV) is significantly lower than 3DTBDT/L8-BO (0.042 eV),which indicates a lowerΔE2value for 3DTBDT-Cl/L8-BO (0.089 eV),whereas a highΔE2for 3DTBDT/L8-BO (0.112 eV) systems.ΔE3(ΔE3=[-kT/qln (EQEEL)]) is observed due to nonradiative recombination,wherekis the Boltzmann constant,Tis the Kelvin temperature,EQEELis the electroluminescence in the dark state,and the luminescence efficiency of the device is directly related to the nonradiative recombination [38].The EQEELof the two devices are shown in Fig.S6 (Supporting information),compared with 3DTBDT/L8-BO,3DTBDT-Cl/L8-BO exhibited a higher EQEELvalue of 1.18 × 10-3and a smallerΔE3value of 0.174 eV,which can be explained lowerΔECTendowed a stronger coupling between singlet and CT states,indicating the nonradiative recombination loss was reduced in the corresponding system.The total voltage loss of the 3DTBDT-Cl based device is smaller at 0.528 V,which explains the higherVOCobtained for the corresponding device.However,theJSCand FF were limited by the unsuitable blend film morphology.

    In order to gain more insight into the charge extraction/ recombination dynamics of devices,we used transient photovoltage(TPV) and transient photocurrent (TPC) tests [39].The carrier lifetimes can be extracted from fitting the TPV decay dynamics.We found that the carrier lifetime of 3DTBDT/L8-BO (27 μs) was much longer than that of 3DTBDT-Cl/L8-BO (10 μs) (Fig.2c).The longer charge lifetime also implies less charge recombination.As shown in Fig.2d,by fitting the transient TPC decay dynamics,the charge extraction time is found to be 38 ns for 3DTBDT/L8-BO and 40 ns for 3DTBDT-Cl/L8-BO system.The shorter charge extraction time of 3DTBDT-based devices is due to the higher carrier mobility and the excellent charge properties,which facilitated charge collection and ensured that the corresponding devices obtained higher FF and improved absorption photon utilization (JSC).These results were further validated by the exploration of molecular stacking and morphology.

    To investigate the effect of charge transport properties of the devices,we used the space-charge limited current (SCLC) method to measure the hole mobility (μh) and electron mobility (μe)of the blend films.As shown in Fig.3a,theμhandμeof the 3DTBDT-Cl/L8-BO based device are 2.112 × 10-4cm2V-1s-1and 1.765 × 10-4cm2V-1s-1,respectively,with aμh/μeratio of 1.2.By contrast,3DTBDT/L8-BO not only afforded increased hole and electron mobilities of 2.867 × 10-4cm2V-1s-1and 2.524 × 10-4cm2V-1s-1,respectively,but also had a more balancedμh/μeratio of 1.1,which indicates that the devices displayed a more balanced hole and electron transport capability.The increase of FF andJSCcan attribute to the improvement of charge transport performance.The relatively low and unbalanced hole and electron mobility for 3DTBDT-Cl/L8-BO based device leads to more charge recombination,which results in lower FF andJSC.

    Fig.3.(a) Hole and electron mobility of optimized devices.(b) JSC and (c) VOC versus the natural logarithm of the light intensities of optimized devices.(d) Dependence of the photocurrent density (Jph) on the effective voltage (Veff).

    Fig.4.2D GIWAXs images of (a) 3DTBDT-Cl pure film,(b) 3DTBDT pure film,(c) 3DTBDT-Cl/L8-BO blend film,(d) 3DTBDT/L8-BO blend film,and (e) corresponding 1D curves for GIWAXs,(f) d-spacing and crystal coherence length (CCL) in π-π stacking direction.AFM height images of (g) 3DTBDT-Cl/L8-BO blend film and (i) 3DTBDT/L8-BO blend film.TEM images of (h) 3DTBDT-Cl/L8-BO blend film and (j) 3DTBDT/L8-BO blend film.All blend films are prepared under optimal conditions.

    The charge recombination mechanism can be explored by investigating the dependence ofJSCandVOCon incident light intensity (Plight).The dependence ofJsconPlightis defined by the equationJSC∝(Plight)α,αrefers to the exponential factor,and the closer its value is to 1.0,the lower the probability of bimolecular recombination and the higher the charge collection efficiency [40].Theαvalues based on 3DTBDT-Cl/L8-BO and 3DTBDT/L8-BO based devices are 0.978 and 0.991,respectively,indicating that bimolecular recombination can be effectively suppressed in 3DTBDT/L8-BO blended film (Fig.3b).The dependence ofVOConPlightis described by the equationVOC∝nkT/qln(Plight),kis the Boltzmann constant,Tis the absolute temperature,andqis the elementary charge [41].Thenvalues of 3DTBDT-Cl/L8-BO and 3DTBDT/L8-BO based devices are 1.07 and 1.10,respectively (Fig.3c).This result indicated that the devices based on oligomeric donor 3DTBDT is beneficial to suppress the trap-assisted recombination and obtained higherJSCand FF.

    To investigate the exciton dissociation and charge collection characteristics processes of the optimal devices,the relationship between the photocurrent density (Jph) and effective voltage (Veff)were characterized (Fig.3d).Jphis defined asJL-JD,whereJLandJDare the current densities under illumination and in the dark,respectively.Veff=V0-Vapp,whereV0is the voltage when theJph=0 andVapprepresents the applied voltage bias [42].WhenVeffreaches 2 V,it is assumed that the excitons are completely dissociated into free charge carriers and collected by the electrode at this high voltage to obtain a saturated current density(Jsat).The exciton dissociation probability (Pdiss) and charge collection efficiency (Pcoll) are calculated by theJph/Jsatvalues under short-circuit and maximum power output conditions,respectively(Fig.3d).Compared with the 3DTBDT-Cl/L8-BO based devices (Pdissof 92.20% andPcollof 72.71%),3DTBDT/L8-BO based device displayed much higherPdiss(95.32%) andPcoll(83.52%).The significant increase inPdissandPcollbased on 3DTBDT/L8-BO is attributed to its lowerμe/μhratio,higher and more balanced hole and electron transport capacity,and better nanoscale bi-continuous interpenetrating network morphology.

    Grazing incidence wide-angle X-ray scattering (GIWAXs) was used to reveal the crystallinity and stacking pattern of the pure and blend films.The 2D scattering patterns and corresponding cutline profiles in the in-plane (IP) and out-of-plane (OOP) directions are shown in Figs.4a-f.From the diffraction patterns of two pure films,we can clearly see that both 3DTBDT-Cl and 3DTBDT exhibit theπ-π(010) diffraction peaks in the IP direction and lamella stacking (100),(200),and (010) peaks in the OOP direction,indicating that they have molecular stacking patterns with edge-on and faceon mode.The Scheller equation was used to calculate the crystal coherence length (CCL),and the average size of the crystallites was studied.The CCL of 3DTBDT-Cl in the pure film was 25.10 ?A,while that of 3DTBDT was 21.33 ?A,these findings demonstrate that 3DTBDT-Cl is slightly more crystalline in nature than 3DTBDT.After blending with L8-BO,both blend films exhibited a strong (010)diffraction peak in the OOP direction,as well as a significantly weakened (100) peak and a disappeared (200) peak.Therefore,both systems showed a clear and strong face-on dominant orientation induced by the L8-BO,which facilitates the charge transport in OSCs towards the electrodes.Compared with 3DTBDT-Cl/L8-BO films (d=3.81 ?A,CCL=18.91 ?A),3DTBDT/L8-BO films in the OOP direction showed a shorter CCL (d=3.67 ?A,CCL=12.48 ?A),which indicated that the 3DTBDT/L8-BO films can obtain more suitable crystallinity.

    The surface tensions (γ) of the donor and acceptor can be obtained by measuring the contact angles (CAs) of droplets with different polarities on the corresponding film surfaces.Fig.S7 and Table S5 (Supporting information) showed the CAs of water and glycerol droplets on the surfaces of 3DTBDT-Cl,3DTBDT and L8-BO pure films.Then using Young’s equation,theγvalues of the three materials can be calculated as 15.17,16.07 and 17.75 mN/m[43].The results revealed that the surface tension of 3DTBDT with ordinary alkyl side chains is close to that of L8-BO.According to the Flory-Huggins theory,the interaction parameter (χ) between 3DTBDT and L8-BO was calculated to be only 0.04,indicating that they have significant compatibility [44].The introduction of chlorine atoms reduced the surface tension of 3DTBDT-Cl and increased theχvalue with the acceptor to 0.10.The reducedχvalue indicated better compatibility between the donor and acceptor,providing a driving force for the morphology modulation of the D/A blend film.

    Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to investigate the effect of active layer morphology on device performance.The AFM height image(Figs.4g and i) displayed the mean-square roughness (Rq) of the 3DTBDT-Cl/L8-BO film was 1.47 nm,which revealed the existence of excessive aggregation in the blend films due to the stronger stacking and crystallinity of the donors,while a smallerRqof 0.85 nm was observed in the 3DTBDT/L8-BO film,indicating that the optimized 3DTBDT/L8-BO film exhibited a smoother surface,which is conducive to the formation of better contact between the film and the electrode,thus promoting charge extraction.The TEM images (Figs.4h and j) were consistent with the AFM.It can be seen that the 3DTBDT-Cl/L8-BO film showed large-scale phase separation and more defects while 3DTBDT/L8-BO film formed a suitable nano-scale bi-continuous interpenetrating network that can facilitate charge separation and carrier transport,directly related to the higherJSCand FF in their corresponding devices.Although the optimized 3DTBDT-Cl/L8-BO film has stronger crystallinity,there is no obvious fiber structure or suitable phase separation,which explains the lowerJSCand FF values.

    In summary,we designed and synthesized two linked-DTBDT type oligomeric donors 3DTBDT-Cl and 3DTBDT,with and without chlorine atoms on the thiophene side chains,respectively.Compared to 3DTBDT-Cl,pure and blend films of 3DTBDT exhibit more appropriate crystallinity.Due to the excessive aggregation of the donors in the blend film,the 3DTBDT-Cl/L8-BO based device with only 10.83% PCE,18.80 mA/cm2JSCand 62.62% FF,while the 3DTBDT-based device obtained 13.74% PCE,22.84 mA/cm2Jsc and 70.98% of FF.Compared to 3DTBDT-Cl/L8-BO blend films,the 3DTBDT/L8-BO blend films with nanofiber structure achieved a smoother surface,proper crystallinity,and more uniform phase separation,which provides more efficient exciton dissociation and collection,reduced bimolecular recombination and more balanced carrier mobility.Therefore,3DTBDT/L8-BO achieved better FF,JSC,and PCE.These results suggest that obtaining appropriate crystallinity and phase separation morphology in blend film by regulating the crystallinity of oligomeric donors is an effective approach to achieving high-performance ASM-OSCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge financial support provided by the National Natural Science Foundation of China (No.51973043),and the Chinese Academy of Sciences (No.GJHZ2092-019).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109018.

    午夜激情福利司机影院| 成人美女网站在线观看视频| 成人美女网站在线观看视频| 国产伦精品一区二区三区四那| 成人精品一区二区免费| 18+在线观看网站| 亚洲午夜理论影院| 成人国产综合亚洲| 波野结衣二区三区在线| 99视频精品全部免费 在线| 国产一级毛片七仙女欲春2| 三级国产精品欧美在线观看| 精品一区二区三区av网在线观看| 日韩欧美在线二视频| 男人狂女人下面高潮的视频| 特大巨黑吊av在线直播| 99久国产av精品| 中文在线观看免费www的网站| 人妻丰满熟妇av一区二区三区| av在线亚洲专区| 一个人看的www免费观看视频| 白带黄色成豆腐渣| av天堂在线播放| 亚洲精品国产成人久久av| 99精品久久久久人妻精品| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 伦精品一区二区三区| 人人妻,人人澡人人爽秒播| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 亚洲天堂国产精品一区在线| 国产精品一区二区性色av| 国产成年人精品一区二区| 性色avwww在线观看| 高清在线国产一区| 免费无遮挡裸体视频| 成人av一区二区三区在线看| 午夜福利在线在线| 国产精品无大码| 一区福利在线观看| 日韩欧美三级三区| 欧美性感艳星| www.www免费av| 日韩 亚洲 欧美在线| 亚洲精品456在线播放app | 精华霜和精华液先用哪个| 国产私拍福利视频在线观看| 国产精品日韩av在线免费观看| 日本a在线网址| 午夜爱爱视频在线播放| 内地一区二区视频在线| 成人特级黄色片久久久久久久| 国产精品av视频在线免费观看| 夜夜爽天天搞| 亚洲美女搞黄在线观看 | 国产激情偷乱视频一区二区| 中文资源天堂在线| 成年女人看的毛片在线观看| 国产精品av视频在线免费观看| 极品教师在线免费播放| 亚洲av免费高清在线观看| 亚洲一区高清亚洲精品| 赤兔流量卡办理| 国产精品亚洲一级av第二区| 黄片wwwwww| 国产av不卡久久| 丝袜美腿在线中文| 亚洲欧美激情综合另类| 久久精品国产亚洲av天美| 精品久久久久久久人妻蜜臀av| 成年版毛片免费区| 婷婷精品国产亚洲av在线| 男女下面进入的视频免费午夜| 长腿黑丝高跟| 欧美成人a在线观看| 久久久久性生活片| 亚洲av电影不卡..在线观看| 国产大屁股一区二区在线视频| 免费一级毛片在线播放高清视频| 黄色日韩在线| 亚洲av中文av极速乱 | 中出人妻视频一区二区| 中文字幕久久专区| 伊人久久精品亚洲午夜| 成人av一区二区三区在线看| 亚洲国产精品sss在线观看| 亚洲内射少妇av| 禁无遮挡网站| 99热精品在线国产| 午夜福利在线在线| 日本 欧美在线| 精品人妻一区二区三区麻豆 | 两个人的视频大全免费| 日韩精品有码人妻一区| 日韩强制内射视频| 国语对白做爰xxxⅹ性视频网站| 最近最新中文字幕大全电影3| 在线精品无人区一区二区三 | 亚洲欧美一区二区三区国产| 欧美变态另类bdsm刘玥| 欧美精品一区二区免费开放| 观看美女的网站| 亚洲人成网站在线播| 国产av精品麻豆| 在线观看三级黄色| 美女高潮的动态| 国产在线免费精品| 日韩一本色道免费dvd| 久久久久精品久久久久真实原创| 免费观看无遮挡的男女| 免费少妇av软件| 久久精品人妻少妇| 久久国产亚洲av麻豆专区| 建设人人有责人人尽责人人享有的 | 久久久久国产精品人妻一区二区| 在线播放无遮挡| 日日啪夜夜撸| 男女下面进入的视频免费午夜| 99九九线精品视频在线观看视频| 毛片女人毛片| 特大巨黑吊av在线直播| 美女cb高潮喷水在线观看| 建设人人有责人人尽责人人享有的 | 精品亚洲乱码少妇综合久久| 国产成人a区在线观看| 亚洲久久久国产精品| 精品熟女少妇av免费看| 日本午夜av视频| 亚洲av电影在线观看一区二区三区| 亚洲国产色片| 免费少妇av软件| 久久精品国产亚洲av涩爱| 精品国产一区二区三区久久久樱花 | 国产真实伦视频高清在线观看| 2018国产大陆天天弄谢| 少妇熟女欧美另类| 少妇高潮的动态图| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 内射极品少妇av片p| 少妇人妻久久综合中文| 免费在线观看成人毛片| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 一个人看的www免费观看视频| 国产精品人妻久久久影院| 免费黄色在线免费观看| 在线天堂最新版资源| 大片电影免费在线观看免费| 久久久久性生活片| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 91精品国产九色| 高清午夜精品一区二区三区| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 久久久国产一区二区| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | 十分钟在线观看高清视频www | 亚洲国产精品成人久久小说| 秋霞伦理黄片| 免费播放大片免费观看视频在线观看| 狂野欧美激情性bbbbbb| 成人免费观看视频高清| 国产亚洲欧美精品永久| 妹子高潮喷水视频| 国产精品一区二区性色av| 免费大片18禁| 一个人免费看片子| 亚洲熟女精品中文字幕| 精品一区二区三区视频在线| 久久久久久久久久成人| 美女国产视频在线观看| 国产人妻一区二区三区在| 不卡视频在线观看欧美| 九色成人免费人妻av| 中文乱码字字幕精品一区二区三区| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 欧美日韩视频精品一区| 舔av片在线| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 日日啪夜夜撸| 2021少妇久久久久久久久久久| 亚洲精品一二三| 亚洲伊人久久精品综合| 久久久久国产精品人妻一区二区| 成人免费观看视频高清| 青春草亚洲视频在线观看| 亚洲不卡免费看| 22中文网久久字幕| 一区二区三区乱码不卡18| 亚洲精品一二三| 亚洲av.av天堂| 亚洲精品成人av观看孕妇| 波野结衣二区三区在线| 国产视频首页在线观看| 久久精品国产a三级三级三级| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 国产精品不卡视频一区二区| 美女国产视频在线观看| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 久久精品夜色国产| 国产高清不卡午夜福利| 爱豆传媒免费全集在线观看| a 毛片基地| 久久毛片免费看一区二区三区| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 中国国产av一级| 少妇精品久久久久久久| 欧美日韩视频精品一区| 97精品久久久久久久久久精品| 久久女婷五月综合色啪小说| 在线观看国产h片| 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 下体分泌物呈黄色| av.在线天堂| 国产高清有码在线观看视频| 久久精品熟女亚洲av麻豆精品| 亚洲美女视频黄频| 嘟嘟电影网在线观看| 国产高潮美女av| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 日韩三级伦理在线观看| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看| 日韩亚洲欧美综合| 美女脱内裤让男人舔精品视频| 国产综合精华液| 青春草视频在线免费观看| 日韩精品有码人妻一区| 一级黄片播放器| 国产成人精品福利久久| 3wmmmm亚洲av在线观看| 一二三四中文在线观看免费高清| av黄色大香蕉| 欧美日韩一区二区视频在线观看视频在线| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 国产精品一区二区在线不卡| 一级黄片播放器| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 男男h啪啪无遮挡| 99久久人妻综合| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看| 精品人妻熟女av久视频| 国产精品人妻久久久久久| 欧美日韩视频精品一区| 欧美xxxx黑人xx丫x性爽| 日韩视频在线欧美| av播播在线观看一区| 嫩草影院入口| 免费人成在线观看视频色| 欧美日韩在线观看h| 欧美xxxx黑人xx丫x性爽| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 直男gayav资源| 久久99精品国语久久久| 韩国av在线不卡| 永久免费av网站大全| videossex国产| 国产欧美亚洲国产| 校园人妻丝袜中文字幕| 亚洲性久久影院| 欧美另类一区| 午夜视频国产福利| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 国产精品免费大片| 欧美97在线视频| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 日韩在线高清观看一区二区三区| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 黄片wwwwww| 国产69精品久久久久777片| 久久精品人妻少妇| 51国产日韩欧美| 亚洲欧美精品自产自拍| av不卡在线播放| av福利片在线观看| 亚洲国产最新在线播放| 99精国产麻豆久久婷婷| 亚洲va在线va天堂va国产| 欧美人与善性xxx| 久久久久视频综合| 蜜桃亚洲精品一区二区三区| av.在线天堂| 男女边吃奶边做爰视频| 妹子高潮喷水视频| 最近中文字幕2019免费版| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 亚洲av欧美aⅴ国产| 久久6这里有精品| 一级毛片aaaaaa免费看小| 免费观看a级毛片全部| 国模一区二区三区四区视频| 赤兔流量卡办理| 最黄视频免费看| 国产精品嫩草影院av在线观看| 日日摸夜夜添夜夜添av毛片| 各种免费的搞黄视频| 国产在线一区二区三区精| 国内揄拍国产精品人妻在线| 亚洲国产成人一精品久久久| 成人黄色视频免费在线看| 一级黄片播放器| 久久精品人妻少妇| 人妻系列 视频| 日韩av不卡免费在线播放| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 久久久色成人| 午夜福利网站1000一区二区三区| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 中文乱码字字幕精品一区二区三区| 永久网站在线| 国产精品久久久久成人av| 最近中文字幕2019免费版| av国产久精品久网站免费入址| 亚洲成色77777| 天天躁日日操中文字幕| 欧美最新免费一区二区三区| 精品久久久久久久末码| 熟女电影av网| 在线 av 中文字幕| 中文天堂在线官网| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| 久久精品夜色国产| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂 | 街头女战士在线观看网站| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 国产v大片淫在线免费观看| 在线看a的网站| 国产精品精品国产色婷婷| 观看免费一级毛片| 一区在线观看完整版| 国产中年淑女户外野战色| 黑丝袜美女国产一区| 视频中文字幕在线观看| 国产伦精品一区二区三区四那| 久久99热这里只有精品18| 日韩 亚洲 欧美在线| 免费av不卡在线播放| av一本久久久久| 成人综合一区亚洲| av国产免费在线观看| 国产精品久久久久成人av| 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 狠狠精品人妻久久久久久综合| 边亲边吃奶的免费视频| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看 | 哪个播放器可以免费观看大片| 国产美女午夜福利| 国产精品一区二区在线观看99| 美女xxoo啪啪120秒动态图| 日本欧美视频一区| 国产精品av视频在线免费观看| 干丝袜人妻中文字幕| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 久久久久久久久久成人| 精品久久久久久久久av| 亚洲不卡免费看| 日日啪夜夜撸| 黄色视频在线播放观看不卡| 全区人妻精品视频| 人人妻人人添人人爽欧美一区卜 | 午夜福利在线观看免费完整高清在| 黄色怎么调成土黄色| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 晚上一个人看的免费电影| 一区二区三区精品91| 中文乱码字字幕精品一区二区三区| 成人亚洲精品一区在线观看 | 99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 男人狂女人下面高潮的视频| 中文欧美无线码| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| av在线播放精品| 人人妻人人爽人人添夜夜欢视频 | 最黄视频免费看| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 成人午夜精彩视频在线观看| 久久人人爽av亚洲精品天堂 | 欧美亚洲 丝袜 人妻 在线| 热re99久久精品国产66热6| 少妇丰满av| 中文在线观看免费www的网站| 亚洲精品色激情综合| a级一级毛片免费在线观看| 欧美性感艳星| 黄色日韩在线| 亚洲国产精品成人久久小说| 国产成人91sexporn| 香蕉精品网在线| 草草在线视频免费看| tube8黄色片| 夫妻午夜视频| 日韩国内少妇激情av| 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 欧美另类一区| 成人午夜精彩视频在线观看| 日韩av免费高清视频| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 丝袜脚勾引网站| 中文天堂在线官网| 一级av片app| 亚洲伊人久久精品综合| av专区在线播放| 久久综合国产亚洲精品| 黑丝袜美女国产一区| 亚洲国产色片| 免费观看a级毛片全部| 又爽又黄a免费视频| 国产亚洲欧美精品永久| 亚洲人成网站在线观看播放| 久久影院123| 18+在线观看网站| 高清不卡的av网站| 人妻夜夜爽99麻豆av| 日韩一区二区三区影片| 草草在线视频免费看| 亚洲三级黄色毛片| 天美传媒精品一区二区| 一个人看的www免费观看视频| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 王馨瑶露胸无遮挡在线观看| 一个人看的www免费观看视频| 18禁在线无遮挡免费观看视频| 人妻夜夜爽99麻豆av| 国产69精品久久久久777片| 久久久成人免费电影| 在线观看免费视频网站a站| 青青草视频在线视频观看| 久久国产精品大桥未久av | 中文字幕人妻熟人妻熟丝袜美| 男女边吃奶边做爰视频| 色综合色国产| 在线免费十八禁| 国产一区二区三区av在线| 涩涩av久久男人的天堂| 亚洲精品国产色婷婷电影| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说 | 性色avwww在线观看| 亚洲激情五月婷婷啪啪| 99热这里只有精品一区| 亚洲内射少妇av| 日韩,欧美,国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久精品人妻少妇| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 国产av一区二区精品久久 | 国产毛片在线视频| 日韩免费高清中文字幕av| 亚洲av中文av极速乱| 亚洲精品乱码久久久v下载方式| 高清av免费在线| 国产一区二区三区综合在线观看 | 色综合色国产| 六月丁香七月| 在线天堂最新版资源| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 日本-黄色视频高清免费观看| 亚洲激情五月婷婷啪啪| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 亚洲国产最新在线播放| 黄色配什么色好看| 啦啦啦视频在线资源免费观看| 网址你懂的国产日韩在线| 少妇猛男粗大的猛烈进出视频| 亚洲色图av天堂| 一区二区三区乱码不卡18| 国产成人精品久久久久久| 黄色视频在线播放观看不卡| 婷婷色麻豆天堂久久| 国产视频内射| 街头女战士在线观看网站| 嘟嘟电影网在线观看| 观看av在线不卡| 欧美高清性xxxxhd video| 亚洲怡红院男人天堂| 精品亚洲成a人片在线观看 | 久久99热6这里只有精品| 街头女战士在线观看网站| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 天堂俺去俺来也www色官网| 只有这里有精品99| 国产v大片淫在线免费观看| 久久久久精品久久久久真实原创| 老熟女久久久| 亚洲av.av天堂| 成人美女网站在线观看视频| 国产精品免费大片| 少妇的逼水好多| 激情 狠狠 欧美| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 国产成人freesex在线| 久久 成人 亚洲| 最近中文字幕2019免费版| 99久国产av精品国产电影| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区国产| 国产极品天堂在线| 天堂俺去俺来也www色官网| 观看av在线不卡| 国产乱人偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 在线精品无人区一区二区三 | 亚洲av二区三区四区| 亚洲综合精品二区| 国产高潮美女av| a级毛色黄片| 欧美bdsm另类| av在线app专区| 精品久久久久久久久av| 伦精品一区二区三区| 91精品国产国语对白视频| 色网站视频免费| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 嘟嘟电影网在线观看| www.色视频.com| 99久久精品一区二区三区| 超碰av人人做人人爽久久| 性高湖久久久久久久久免费观看| 亚洲四区av| 免费高清在线观看视频在线观看| 香蕉精品网在线| 高清日韩中文字幕在线| 在线观看免费视频网站a站| 久久人人爽av亚洲精品天堂 | 在线观看免费高清a一片| 欧美三级亚洲精品| 亚洲欧美一区二区三区国产| 哪个播放器可以免费观看大片| av线在线观看网站| 又粗又硬又长又爽又黄的视频| 欧美日本视频| 国产成人免费无遮挡视频| 精品熟女少妇av免费看| 亚洲欧美日韩另类电影网站 | 亚洲色图综合在线观看| 人体艺术视频欧美日本| 下体分泌物呈黄色| 精品人妻视频免费看| av线在线观看网站| 日韩av免费高清视频| 一个人看视频在线观看www免费| videossex国产| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品古装|