• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oligomeric donor with appropriate crystallinity for organic solar cells

    2024-04-05 02:28:20KaimingYangMinLvYanhongChangKunLuZhixiangWei
    Chinese Chemical Letters 2024年2期

    Kaiming Yang ,Min Lv ,Yanhong Chang ,Kun Lu ,Zhixiang Wei

    a CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience,National Center for Nanoscience and Technology,Beijing 100190,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c Department of Environmental Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China

    d Beijing Key Laboratory of Resource Treatment of Typical Industrial Pollutants,Beijing 100083,China

    Keywords: Linked donor unit Oligomeric donors Crystallinity regulation Organic solar cells

    ABSTRACT Improving the performance of all-small-molecule organic solar cells (ASM-OSCs) largely depends on the design and application of novel donors with appropriate crystallinity.Extending molecular conjugation is an effective method for regulating molecular stacking and crystallinity.In this work,we successfully designed and synthesized two novel acceptor-donor-donor-donor-acceptor (A-D-D-D-A) type oligomeric donors with three dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b’]dithiophene (DTBDT) as the central unit,named as 3DTBDT-Cl and 3DTBDT,depending on with and without chlorine substitution on the thiophene side chains.We found that the introduction of chlorine atoms makes the blend films display stronger crystallinity but with large-scale phase separation morphology and more defects,which eventually leads to a power conversion efficiency (PCE) of only 10.83%,whereas the blend films based 3DTBDT with appropriate crystallinity achieved 13.74% PCE.Compared with 3DTBDT-Cl/L8-BO,the 3DTBDT/L8-BO films exhibited a nanoscale bi-continuous interpenetrating network morphology with a smaller domain size and more suitable crystallinity,which guarantees the corresponding devices obtained more efficient exciton dissociation,efficient charge transport,reduced bimolecular recombination,and performed more balanced carrier mobility.These results demonstrated that regulating the crystallinity of oligomeric donors to obtain the desired phase separation morphology in the blend films could facilitate further improving the performance of ASM-OSCs.

    Solution-processed bulk heterojunction (BHJ) organic solar cells(OSCs) have become research frontiers in recent decades because of their unique advantages,such as low cost,flexibility and solution processability [1-8].Thanks to the synthesis of new photovoltaic materials and optimization of device processes,especially the development and application of new Y series non-fullerene small molecule acceptors [9-14],the PCE of single junction polymer organic solar cells (PSCs) have exceeded 19% [15-18].However,while polymeric donors have high efficiency and outstanding process film-forming,batch-to-batch production issues potentially limit their industrial applications.Compared with polymers,small or oligomeric donors can resolve these problems in the production process more effectively duo to their definite molecular structure[19,20].In recent years,the PCE of all-small-molecule organic solar cells (ASM-OSCs) have also achieved more than 17% [21,22],but their performance still lags behind that of PSCs.This is mainly due to the short and similar molecular structures of A-π-D-π-A type donors and acceptors,which have similar physical and chemical properties,making it difficult to regulate the crystallinity of donor and acceptor materials,and it is not easy to form a blend film morphology of nanoscale interpenetrating network structures,resulting in relatively low short circuit current (JSC) and fill factor (FF).

    The regulation of nanomorphology is highly dependent on the crystallinity of the molecule itself and the compatibility of small molecule donors (SMDs) and acceptors.Broadening the conjugation of the molecular plane is a common and effective method to regulate the crystallinity of donors.Lietal.designed and synthesized two A-π-D-π-A type small donors H11 and H12,with and without thiophene conjugated side chains on the benzo[1,2-b:4,5-b’]dithiophene (BDT) unit,respectively [23].Compared to the H12,the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption,low-lying HOMO energy level,higher hole mobility and ordered bimodal crystallite packing in the blend films,which leads to the corresponding devices achieve a higher PCE of 9.73%.Houetal.synthesized an A-π-D-π-A type SMD (named as B1) based on phenyl-substituted BDT central unit,which improved crystalline properties and increased intermolecularπ-πinteraction,in comparison with those of its corresponding thiophene-substitute BDT-based counterpart [24].After the effective modulation of the active layer morphology,charge separation and transport efficiencies were greatly improved,and ASM-OSCs achieved a higher PCE of 15.3%.

    Expanding the fused rings of central core can also enhance crystallinity [25,26].To our knowledge,dithieno[2,3-d:2′,3′-d’]benzo[1,2-b:4,5-b’]dithiophene (DTBDT) unit holds an extended conjugation length,therefore a stronger electron donating ability and carrier mobility,making it a highly desirable small molecule donor unit in donors.In recent years,a series of DTBDT-based SMDs have been synthesized,resulting in continuous enhancements of the efficiency of ASM-OSCs [27-30].In particular,we synthesized a series of SMDs ZR1,ZR1-Cl,and ZR1-S-Cl based on DTBDT in 2020 [27].By introducing chlorine and sulfur chlorine atoms to improve the crystallinity of SMDs further,a bicontinuous interpenetrating network was formed in the ZR1-SCl/IDIC-4Cl blend films,achieving the highest PCE of 12.05%.On this basis,developing novel oligomeric donors with more suitable crystallinity and a longer conjugated backbone is expected to be an effective strategy for realizing high-performance ASM-OSCs.

    Based on the SMDs ZR1-Cl,we designed and synthesized a novel linked-DTBDT type oligomeric donor 3DTBDT-Cl using a DTBDT unit with a larger conjugation plane instead of the original double thiopheneπ-bridge in ZR1-Cl (Fig.1a).The 3DTBDTCl/L8-BO based devices only yielded a low PCE of 10.83% due to excessive phase separation of the blend films caused by the undue crystallinity of 3DTBDT-Cl.Therefore,the oligomeric donor 3DTBDT was synthesized to reduce the crystallinity by removing the chlorine atoms later.As we expected,the removal of chlorine atoms successfully endowed the oligomeric 3DTBDT with appropriate crystallinity.After blending with L8-BO,high-quality films were obtained with smoother surface,appropriate crystallinity,and more uniform nanofiber phase separation structure.Therefore,the devices showed more effective exciton dissociation and charge collection,higher carrier mobility,longer charge lifetime,and effective inhibition of bimolecular recombination.As a result,the optimized 3DTBDT/L8-BO-based devices obtained a higher FF of 70.98%,JSCof 22.84 mA/cm2,and PCE of 13.74%.The results indicated that the blend films with appropriate crystallinity and phase separa-tion could be achieved by slightly changing the structures of the oligomeric donors,thereby achieving higher photovoltaic performance in ASM-OSCs.

    Fig.1.(a) Molecular structures of SMDs ZR1-Cl,oligomeric donors 3DTBDT-Cl and 3DTBDT,and small molecule acceptor L8-BO.(b,c) Normalized UV-vis absorption spectra of 3DTBDT-Cl,3DTBDT,L8-BO in solution and thin films.(d) Energy diagrams of 3DTBDT-Cl,3DTBDT,L8-BO.

    The synthetic routes of the oligomeric donors 3DTBDT-Cl and 3DTBDT are presented in Scheme S1 (Supporting information).And the detailed synthesis methods,1H nuclear magnetic resonance (1H NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis were clearly provided in Supporting information.The optical absorption properties of 3DTBDT-Cl and 3DTBDT were investigated using an ultraviolet-visible (UV-vis) spectrophotometer.In the chloroform solution state,the absorption of 3DTBDT was broader than that of 3DTBDT-Cl,but there was no significant shoulder peak,which means that the two donors did not form the pre-aggregated state(Fig.1b).In the thin film state,both donors performed significantly red-shifted and strong shoulder peaks,indicating that both donors achieved strong intermolecular interaction in the films (Fig.1c).Likewise,we found that the absorption edges of 3DTBDT-Cl and 3DTBDT films were located at 620 nm and 633 nm,corresponding to the optical bandgap of 1.93 eV and 1.74 eV,respectively.In summary,3DTBDT showed a broader absorption spectrum and narrower optical bandgap in the film state,and effectively provides complementary absorption for L8-BO,which is beneficial to achieve highJSCin devices.

    The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the oligomeric donors 3DTBDT-Cl,3DTBDT and acceptor L8-BO in the films were determined by cyclic voltammetry (CV) measurements with Ag/Ag+as the reference electrode (Fig.S3 in Supporting information).Based on the equationEHOMO/LUMO=-(Eox/red-EFc/Fc1/2+4.8) eV,the HOMO/LUMO of the 3DTBDT-Cl,3DTBDT and L8-BO were calculated to be -5.48/-3.55,-5.33/-3.59 and -5.67/-3.92 eV (Fig.1d)[31,32].Apparently,the identical end-group in both donors provides similar LUMO energy levels,whereas introducing chlorine atoms weakens the electron-donating ability within the 3DTBDTCl,resulting in a lower HOMO energy level and a wider band gap,which is consistent with the UV-vis results.The lower HOMO energy level of 3DTBDT-Cl will help the 3DTBDT-Cl/L8-BO based devices to obtain higherVOC.

    To investigate the device performance,we used L8-BO as the acceptor and fabricated OSCs using a conventional architecture of ITO/PEDOT:PSS/active layer/PDINO/Ag.The optimal preparation conditions for the active layer were determined by adjusting the concentration of the solution after mixing with the acceptor,the D/A ratio,the rotational speed of the film,the type of interfacial layer,and the thermal annealing temperature.The detailed optimization conditions and results are summarized in Tables S6-S9(Supporting information).As shown in the current density-voltage(J-V) plots (Fig.2a) and the summary of the detailed parameters (Table 1),the 3DTBDT-Cl/L8-BO based devices revealed a relatively low PCE of 10.83%,aJSCof 18.80 mA/cm2,an FF of 62.62%and a higherVOCof 0.920 V.However,the 3DTBDT/L8-BO devices exhibited significantly enhanced PCE of 13.74%,with aJSCof 22.84 mA/cm2,a FF of 70.98%,and aVOCof 0.847 V.Fig.2b showed the external quantum efficiency (EQE) spectra of the two optimized systems,it can be seen that all the blends exhibited a broad absorption range from 300 nm to 930 nm,with the maximum value of 66.09% and 80.74% for 3DTBDT-Cl and 3DTBDT based devices,respectively.The error betweenJSCcalculated from the EQE curve and the corresponding values measured from theJ-Vtests is within 5%,proving the reliability of the measured device performance.

    Table 1Detailed photovoltaic parameters of the OSCs based oligomeric donors.a

    Fig.2.(a) Optimized J-V curves for conventional devices.(b) EQE corresponding to devices.(c) Transient photovoltage (TPV) curves of optimal devices.(d) Transient photocurrent (TPC) curves of optimal devices.

    Whereafter,the difference in energy loss between 3DTBDTCl and 3DTBDT-based devices was investigated.According to the Shockley-Queisser (SQ) limit [33,34],they dividedElossin OSCs into three parts:Eloss=qΔVOC=Eg-qVOC=ΔE1+ΔE2+ΔE3,whereEgis the photovoltaic energy bandgap extracted from the derivation of the EQEPVcurve.ΔE1is originated from the radiative recombination above the band gap,which is unavoidable for any type of solar cell,so theΔE1value (0.265 eV) is almost the same for the two devices.ΔE2is due to the extra radiative recombination below the band gap and OSCs have a large loss of this fraction due to the presence of CT states,which can be reduced by raising the CT state [35-37].TheECTcan estimate from normalized fourier-transform photocurrent spectroscopy external quantum efficiency (FTPS-EQE) curves and electroluminescence (EL) spectra of devices (Fig.S5 in Supporting information).As shown in Table S2 (Supporting information),theΔECT(Eg-ECT) for 3DTBDT-Cl/L8-BO (0.016 eV) is significantly lower than 3DTBDT/L8-BO (0.042 eV),which indicates a lowerΔE2value for 3DTBDT-Cl/L8-BO (0.089 eV),whereas a highΔE2for 3DTBDT/L8-BO (0.112 eV) systems.ΔE3(ΔE3=[-kT/qln (EQEEL)]) is observed due to nonradiative recombination,wherekis the Boltzmann constant,Tis the Kelvin temperature,EQEELis the electroluminescence in the dark state,and the luminescence efficiency of the device is directly related to the nonradiative recombination [38].The EQEELof the two devices are shown in Fig.S6 (Supporting information),compared with 3DTBDT/L8-BO,3DTBDT-Cl/L8-BO exhibited a higher EQEELvalue of 1.18 × 10-3and a smallerΔE3value of 0.174 eV,which can be explained lowerΔECTendowed a stronger coupling between singlet and CT states,indicating the nonradiative recombination loss was reduced in the corresponding system.The total voltage loss of the 3DTBDT-Cl based device is smaller at 0.528 V,which explains the higherVOCobtained for the corresponding device.However,theJSCand FF were limited by the unsuitable blend film morphology.

    In order to gain more insight into the charge extraction/ recombination dynamics of devices,we used transient photovoltage(TPV) and transient photocurrent (TPC) tests [39].The carrier lifetimes can be extracted from fitting the TPV decay dynamics.We found that the carrier lifetime of 3DTBDT/L8-BO (27 μs) was much longer than that of 3DTBDT-Cl/L8-BO (10 μs) (Fig.2c).The longer charge lifetime also implies less charge recombination.As shown in Fig.2d,by fitting the transient TPC decay dynamics,the charge extraction time is found to be 38 ns for 3DTBDT/L8-BO and 40 ns for 3DTBDT-Cl/L8-BO system.The shorter charge extraction time of 3DTBDT-based devices is due to the higher carrier mobility and the excellent charge properties,which facilitated charge collection and ensured that the corresponding devices obtained higher FF and improved absorption photon utilization (JSC).These results were further validated by the exploration of molecular stacking and morphology.

    To investigate the effect of charge transport properties of the devices,we used the space-charge limited current (SCLC) method to measure the hole mobility (μh) and electron mobility (μe)of the blend films.As shown in Fig.3a,theμhandμeof the 3DTBDT-Cl/L8-BO based device are 2.112 × 10-4cm2V-1s-1and 1.765 × 10-4cm2V-1s-1,respectively,with aμh/μeratio of 1.2.By contrast,3DTBDT/L8-BO not only afforded increased hole and electron mobilities of 2.867 × 10-4cm2V-1s-1and 2.524 × 10-4cm2V-1s-1,respectively,but also had a more balancedμh/μeratio of 1.1,which indicates that the devices displayed a more balanced hole and electron transport capability.The increase of FF andJSCcan attribute to the improvement of charge transport performance.The relatively low and unbalanced hole and electron mobility for 3DTBDT-Cl/L8-BO based device leads to more charge recombination,which results in lower FF andJSC.

    Fig.3.(a) Hole and electron mobility of optimized devices.(b) JSC and (c) VOC versus the natural logarithm of the light intensities of optimized devices.(d) Dependence of the photocurrent density (Jph) on the effective voltage (Veff).

    Fig.4.2D GIWAXs images of (a) 3DTBDT-Cl pure film,(b) 3DTBDT pure film,(c) 3DTBDT-Cl/L8-BO blend film,(d) 3DTBDT/L8-BO blend film,and (e) corresponding 1D curves for GIWAXs,(f) d-spacing and crystal coherence length (CCL) in π-π stacking direction.AFM height images of (g) 3DTBDT-Cl/L8-BO blend film and (i) 3DTBDT/L8-BO blend film.TEM images of (h) 3DTBDT-Cl/L8-BO blend film and (j) 3DTBDT/L8-BO blend film.All blend films are prepared under optimal conditions.

    The charge recombination mechanism can be explored by investigating the dependence ofJSCandVOCon incident light intensity (Plight).The dependence ofJsconPlightis defined by the equationJSC∝(Plight)α,αrefers to the exponential factor,and the closer its value is to 1.0,the lower the probability of bimolecular recombination and the higher the charge collection efficiency [40].Theαvalues based on 3DTBDT-Cl/L8-BO and 3DTBDT/L8-BO based devices are 0.978 and 0.991,respectively,indicating that bimolecular recombination can be effectively suppressed in 3DTBDT/L8-BO blended film (Fig.3b).The dependence ofVOConPlightis described by the equationVOC∝nkT/qln(Plight),kis the Boltzmann constant,Tis the absolute temperature,andqis the elementary charge [41].Thenvalues of 3DTBDT-Cl/L8-BO and 3DTBDT/L8-BO based devices are 1.07 and 1.10,respectively (Fig.3c).This result indicated that the devices based on oligomeric donor 3DTBDT is beneficial to suppress the trap-assisted recombination and obtained higherJSCand FF.

    To investigate the exciton dissociation and charge collection characteristics processes of the optimal devices,the relationship between the photocurrent density (Jph) and effective voltage (Veff)were characterized (Fig.3d).Jphis defined asJL-JD,whereJLandJDare the current densities under illumination and in the dark,respectively.Veff=V0-Vapp,whereV0is the voltage when theJph=0 andVapprepresents the applied voltage bias [42].WhenVeffreaches 2 V,it is assumed that the excitons are completely dissociated into free charge carriers and collected by the electrode at this high voltage to obtain a saturated current density(Jsat).The exciton dissociation probability (Pdiss) and charge collection efficiency (Pcoll) are calculated by theJph/Jsatvalues under short-circuit and maximum power output conditions,respectively(Fig.3d).Compared with the 3DTBDT-Cl/L8-BO based devices (Pdissof 92.20% andPcollof 72.71%),3DTBDT/L8-BO based device displayed much higherPdiss(95.32%) andPcoll(83.52%).The significant increase inPdissandPcollbased on 3DTBDT/L8-BO is attributed to its lowerμe/μhratio,higher and more balanced hole and electron transport capacity,and better nanoscale bi-continuous interpenetrating network morphology.

    Grazing incidence wide-angle X-ray scattering (GIWAXs) was used to reveal the crystallinity and stacking pattern of the pure and blend films.The 2D scattering patterns and corresponding cutline profiles in the in-plane (IP) and out-of-plane (OOP) directions are shown in Figs.4a-f.From the diffraction patterns of two pure films,we can clearly see that both 3DTBDT-Cl and 3DTBDT exhibit theπ-π(010) diffraction peaks in the IP direction and lamella stacking (100),(200),and (010) peaks in the OOP direction,indicating that they have molecular stacking patterns with edge-on and faceon mode.The Scheller equation was used to calculate the crystal coherence length (CCL),and the average size of the crystallites was studied.The CCL of 3DTBDT-Cl in the pure film was 25.10 ?A,while that of 3DTBDT was 21.33 ?A,these findings demonstrate that 3DTBDT-Cl is slightly more crystalline in nature than 3DTBDT.After blending with L8-BO,both blend films exhibited a strong (010)diffraction peak in the OOP direction,as well as a significantly weakened (100) peak and a disappeared (200) peak.Therefore,both systems showed a clear and strong face-on dominant orientation induced by the L8-BO,which facilitates the charge transport in OSCs towards the electrodes.Compared with 3DTBDT-Cl/L8-BO films (d=3.81 ?A,CCL=18.91 ?A),3DTBDT/L8-BO films in the OOP direction showed a shorter CCL (d=3.67 ?A,CCL=12.48 ?A),which indicated that the 3DTBDT/L8-BO films can obtain more suitable crystallinity.

    The surface tensions (γ) of the donor and acceptor can be obtained by measuring the contact angles (CAs) of droplets with different polarities on the corresponding film surfaces.Fig.S7 and Table S5 (Supporting information) showed the CAs of water and glycerol droplets on the surfaces of 3DTBDT-Cl,3DTBDT and L8-BO pure films.Then using Young’s equation,theγvalues of the three materials can be calculated as 15.17,16.07 and 17.75 mN/m[43].The results revealed that the surface tension of 3DTBDT with ordinary alkyl side chains is close to that of L8-BO.According to the Flory-Huggins theory,the interaction parameter (χ) between 3DTBDT and L8-BO was calculated to be only 0.04,indicating that they have significant compatibility [44].The introduction of chlorine atoms reduced the surface tension of 3DTBDT-Cl and increased theχvalue with the acceptor to 0.10.The reducedχvalue indicated better compatibility between the donor and acceptor,providing a driving force for the morphology modulation of the D/A blend film.

    Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to investigate the effect of active layer morphology on device performance.The AFM height image(Figs.4g and i) displayed the mean-square roughness (Rq) of the 3DTBDT-Cl/L8-BO film was 1.47 nm,which revealed the existence of excessive aggregation in the blend films due to the stronger stacking and crystallinity of the donors,while a smallerRqof 0.85 nm was observed in the 3DTBDT/L8-BO film,indicating that the optimized 3DTBDT/L8-BO film exhibited a smoother surface,which is conducive to the formation of better contact between the film and the electrode,thus promoting charge extraction.The TEM images (Figs.4h and j) were consistent with the AFM.It can be seen that the 3DTBDT-Cl/L8-BO film showed large-scale phase separation and more defects while 3DTBDT/L8-BO film formed a suitable nano-scale bi-continuous interpenetrating network that can facilitate charge separation and carrier transport,directly related to the higherJSCand FF in their corresponding devices.Although the optimized 3DTBDT-Cl/L8-BO film has stronger crystallinity,there is no obvious fiber structure or suitable phase separation,which explains the lowerJSCand FF values.

    In summary,we designed and synthesized two linked-DTBDT type oligomeric donors 3DTBDT-Cl and 3DTBDT,with and without chlorine atoms on the thiophene side chains,respectively.Compared to 3DTBDT-Cl,pure and blend films of 3DTBDT exhibit more appropriate crystallinity.Due to the excessive aggregation of the donors in the blend film,the 3DTBDT-Cl/L8-BO based device with only 10.83% PCE,18.80 mA/cm2JSCand 62.62% FF,while the 3DTBDT-based device obtained 13.74% PCE,22.84 mA/cm2Jsc and 70.98% of FF.Compared to 3DTBDT-Cl/L8-BO blend films,the 3DTBDT/L8-BO blend films with nanofiber structure achieved a smoother surface,proper crystallinity,and more uniform phase separation,which provides more efficient exciton dissociation and collection,reduced bimolecular recombination and more balanced carrier mobility.Therefore,3DTBDT/L8-BO achieved better FF,JSC,and PCE.These results suggest that obtaining appropriate crystallinity and phase separation morphology in blend film by regulating the crystallinity of oligomeric donors is an effective approach to achieving high-performance ASM-OSCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge financial support provided by the National Natural Science Foundation of China (No.51973043),and the Chinese Academy of Sciences (No.GJHZ2092-019).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109018.

    高清在线视频一区二区三区 | 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 97热精品久久久久久| 卡戴珊不雅视频在线播放| 久久九九热精品免费| 狂野欧美白嫩少妇大欣赏| 亚洲一区高清亚洲精品| 亚洲不卡免费看| 亚洲在线观看片| 欧美高清成人免费视频www| 看免费成人av毛片| 国产高潮美女av| 国产精品av视频在线免费观看| 国产蜜桃级精品一区二区三区| 天堂√8在线中文| 亚洲av第一区精品v没综合| 免费大片18禁| 亚洲欧洲日产国产| 三级国产精品欧美在线观看| 不卡一级毛片| 精品人妻视频免费看| 国产成人91sexporn| 精品久久久久久久久av| 亚洲婷婷狠狠爱综合网| 桃色一区二区三区在线观看| 十八禁国产超污无遮挡网站| 国产伦一二天堂av在线观看| 啦啦啦观看免费观看视频高清| 亚洲av中文字字幕乱码综合| 看片在线看免费视频| 欧美日韩国产亚洲二区| av天堂中文字幕网| 三级国产精品欧美在线观看| 亚洲一区二区三区色噜噜| 午夜福利高清视频| 男人舔奶头视频| 久久久久久久久大av| 黄色视频,在线免费观看| 嫩草影院入口| 一区二区三区免费毛片| 插阴视频在线观看视频| 一本久久中文字幕| 成人亚洲精品av一区二区| 亚洲丝袜综合中文字幕| 在线a可以看的网站| 一进一出抽搐gif免费好疼| 精品久久久久久久久亚洲| 久久精品国产清高在天天线| 国产高清视频在线观看网站| 亚洲精品粉嫩美女一区| 欧美日韩乱码在线| 少妇裸体淫交视频免费看高清| 亚洲欧洲日产国产| 天美传媒精品一区二区| 综合色丁香网| 欧美一区二区亚洲| av在线天堂中文字幕| 免费看美女性在线毛片视频| 国产成人a∨麻豆精品| 欧美成人一区二区免费高清观看| 欧美成人一区二区免费高清观看| 国产人妻一区二区三区在| 最近的中文字幕免费完整| 欧美日本视频| 91狼人影院| 久久精品91蜜桃| 国产精品av视频在线免费观看| 久久久精品94久久精品| 校园人妻丝袜中文字幕| 国产成人a∨麻豆精品| 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 一边亲一边摸免费视频| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 亚洲成人久久性| 又粗又硬又长又爽又黄的视频 | 久久精品国产亚洲av天美| 少妇高潮的动态图| 亚洲一级一片aⅴ在线观看| 亚洲欧美清纯卡通| 亚洲丝袜综合中文字幕| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 精品99又大又爽又粗少妇毛片| 欧美不卡视频在线免费观看| av国产免费在线观看| 日本爱情动作片www.在线观看| 性欧美人与动物交配| 麻豆成人av视频| 91aial.com中文字幕在线观看| 一个人免费在线观看电影| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 亚洲av电影不卡..在线观看| 亚洲性久久影院| 国产成人精品久久久久久| 午夜福利在线在线| 99久久中文字幕三级久久日本| 欧美性感艳星| 亚洲最大成人手机在线| 如何舔出高潮| 内射极品少妇av片p| 中文字幕av成人在线电影| 黑人高潮一二区| 国产成人影院久久av| 亚洲人与动物交配视频| 久久久久久久久久久丰满| 欧美激情久久久久久爽电影| 日本与韩国留学比较| 九九热线精品视视频播放| 精品一区二区三区视频在线| 亚洲美女搞黄在线观看| 国产成人午夜福利电影在线观看| 国产高潮美女av| 国产精品一及| av在线播放精品| 秋霞在线观看毛片| 国产在视频线在精品| 精品少妇黑人巨大在线播放 | 成人毛片60女人毛片免费| 亚洲自拍偷在线| 九九热线精品视视频播放| 久久九九热精品免费| 又黄又爽又刺激的免费视频.| 婷婷亚洲欧美| 中文欧美无线码| 国产一区二区亚洲精品在线观看| 日韩成人av中文字幕在线观看| 国产人妻一区二区三区在| 中文字幕人妻熟人妻熟丝袜美| 色5月婷婷丁香| 老熟妇乱子伦视频在线观看| 精华霜和精华液先用哪个| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 国内精品一区二区在线观看| 免费看a级黄色片| 国产国拍精品亚洲av在线观看| 性插视频无遮挡在线免费观看| 午夜激情福利司机影院| 高清毛片免费看| 99久久精品一区二区三区| 亚洲国产精品合色在线| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 舔av片在线| 精品一区二区三区视频在线| 男女那种视频在线观看| 色综合色国产| 久久精品人妻少妇| 免费av毛片视频| 最近中文字幕高清免费大全6| 国产亚洲精品久久久com| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99 | 一本一本综合久久| 老女人水多毛片| 免费无遮挡裸体视频| 久久人人精品亚洲av| 日韩欧美一区二区三区在线观看| 国产男人的电影天堂91| 中国美女看黄片| 日本三级黄在线观看| 国产精品乱码一区二三区的特点| 国产精品久久久久久亚洲av鲁大| 国产av不卡久久| 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 欧美区成人在线视频| 亚洲av男天堂| 亚洲国产精品成人综合色| 亚洲人成网站在线播| 精品国内亚洲2022精品成人| 久久久久久久久中文| 亚洲性久久影院| 免费看光身美女| 悠悠久久av| 成人鲁丝片一二三区免费| 午夜激情欧美在线| 中文字幕制服av| 欧美潮喷喷水| 国产欧美日韩精品一区二区| 可以在线观看毛片的网站| 日韩大尺度精品在线看网址| 啦啦啦观看免费观看视频高清| 联通29元200g的流量卡| 麻豆一二三区av精品| 免费av观看视频| 亚洲无线观看免费| 亚洲,欧美,日韩| 久久鲁丝午夜福利片| av天堂中文字幕网| 女同久久另类99精品国产91| 高清午夜精品一区二区三区 | 校园人妻丝袜中文字幕| 亚洲精品久久国产高清桃花| 日韩 亚洲 欧美在线| 欧美成人精品欧美一级黄| 成年av动漫网址| 日本成人三级电影网站| 亚洲自偷自拍三级| 51国产日韩欧美| 久久久欧美国产精品| 亚洲中文字幕日韩| 国产探花极品一区二区| 一个人看视频在线观看www免费| 国产伦理片在线播放av一区 | 欧美最黄视频在线播放免费| 干丝袜人妻中文字幕| 国产一级毛片在线| 国产精品永久免费网站| 丝袜喷水一区| 国产av麻豆久久久久久久| 国产精品人妻久久久久久| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| 亚洲av一区综合| 亚洲欧美精品综合久久99| 国产精品麻豆人妻色哟哟久久 | 国产亚洲91精品色在线| 国产一区二区亚洲精品在线观看| 欧美一区二区亚洲| 亚洲四区av| 一进一出抽搐动态| 欧美丝袜亚洲另类| 午夜福利成人在线免费观看| 高清在线视频一区二区三区 | 亚洲人成网站在线观看播放| 国产午夜精品久久久久久一区二区三区| 91在线精品国自产拍蜜月| 国产真实乱freesex| 国产探花在线观看一区二区| 岛国毛片在线播放| 国产高清激情床上av| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 日韩在线高清观看一区二区三区| 久久精品久久久久久噜噜老黄 | 麻豆国产av国片精品| 中文字幕久久专区| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 免费看av在线观看网站| 婷婷亚洲欧美| 日韩三级伦理在线观看| 精品一区二区三区视频在线| 欧美日韩国产亚洲二区| eeuss影院久久| 国产精华一区二区三区| 免费观看精品视频网站| 免费看a级黄色片| 亚洲欧美日韩卡通动漫| 在线播放国产精品三级| 国产熟女欧美一区二区| 国产亚洲91精品色在线| 国产日本99.免费观看| 日本熟妇午夜| 丰满的人妻完整版| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 亚洲性久久影院| 两个人的视频大全免费| av又黄又爽大尺度在线免费看 | 变态另类丝袜制服| 国产美女午夜福利| 日韩国内少妇激情av| 成人国产麻豆网| 久久午夜福利片| 久久久久久久久久久丰满| 欧美三级亚洲精品| 色综合站精品国产| 热99re8久久精品国产| 日韩一区二区视频免费看| www日本黄色视频网| 欧美xxxx黑人xx丫x性爽| 国产精品麻豆人妻色哟哟久久 | 最近手机中文字幕大全| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| videossex国产| 99久久人妻综合| 不卡一级毛片| 色综合站精品国产| 干丝袜人妻中文字幕| 国产精品国产高清国产av| 精品国产三级普通话版| 日本一二三区视频观看| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| 国内精品一区二区在线观看| 九九久久精品国产亚洲av麻豆| 最后的刺客免费高清国语| 国产色爽女视频免费观看| 悠悠久久av| 国产精品女同一区二区软件| 国产精品久久电影中文字幕| 日本-黄色视频高清免费观看| av又黄又爽大尺度在线免费看 | 校园人妻丝袜中文字幕| 麻豆成人午夜福利视频| 青春草视频在线免费观看| 国产精品一区二区在线观看99 | 精品日产1卡2卡| 在线观看66精品国产| 国产黄a三级三级三级人| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱 | 成年av动漫网址| 夜夜看夜夜爽夜夜摸| 日韩三级伦理在线观看| 毛片一级片免费看久久久久| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 老司机福利观看| 小说图片视频综合网站| 国产一区二区激情短视频| 亚洲美女搞黄在线观看| 免费观看a级毛片全部| 国产精品一区www在线观看| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 啦啦啦韩国在线观看视频| 91麻豆精品激情在线观看国产| 女的被弄到高潮叫床怎么办| av免费观看日本| 韩国av在线不卡| 日本免费一区二区三区高清不卡| 简卡轻食公司| 日韩av不卡免费在线播放| 国产淫片久久久久久久久| 国产熟女欧美一区二区| 99久久精品国产国产毛片| 亚洲av二区三区四区| 岛国在线免费视频观看| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 日韩成人伦理影院| 中国国产av一级| 麻豆一二三区av精品| 亚洲国产欧洲综合997久久,| 天堂网av新在线| 亚州av有码| 日韩欧美国产在线观看| 97超视频在线观看视频| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件| 亚洲av不卡在线观看| 精品人妻视频免费看| 欧美丝袜亚洲另类| 国产精品无大码| 国产精品一二三区在线看| 国产免费一级a男人的天堂| 99久国产av精品国产电影| 欧美区成人在线视频| videossex国产| 国产精品一区二区在线观看99 | 久久久成人免费电影| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 99久国产av精品| av免费观看日本| 国产精品久久久久久久久免| 亚洲精品成人久久久久久| 美女cb高潮喷水在线观看| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 波多野结衣巨乳人妻| 国产精品一及| 少妇熟女欧美另类| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 午夜精品一区二区三区免费看| 男人舔奶头视频| 成人无遮挡网站| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 国产单亲对白刺激| 12—13女人毛片做爰片一| 中国美女看黄片| 97超碰精品成人国产| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区| 人妻夜夜爽99麻豆av| 一边摸一边抽搐一进一小说| 久久久久久久久久成人| 九色成人免费人妻av| 午夜福利成人在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 日本免费a在线| 又黄又爽又刺激的免费视频.| 亚洲精品成人久久久久久| 一进一出抽搐动态| 在线观看免费视频日本深夜| a级毛片a级免费在线| 乱码一卡2卡4卡精品| 深夜a级毛片| 国产亚洲精品久久久com| 伦理电影大哥的女人| 一级二级三级毛片免费看| 美女被艹到高潮喷水动态| av免费在线看不卡| 国产日本99.免费观看| 欧美三级亚洲精品| av在线天堂中文字幕| 晚上一个人看的免费电影| 永久网站在线| 欧美激情在线99| 亚洲欧美成人精品一区二区| 国产精品免费一区二区三区在线| 免费在线观看成人毛片| 欧美区成人在线视频| 久久综合国产亚洲精品| 老师上课跳d突然被开到最大视频| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 麻豆成人av视频| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 美女内射精品一级片tv| 欧美高清成人免费视频www| 日韩欧美三级三区| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 精品久久久久久久久av| 精品人妻一区二区三区麻豆| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| www.av在线官网国产| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 少妇丰满av| 韩国av在线不卡| 在线天堂最新版资源| 久久韩国三级中文字幕| 搞女人的毛片| 淫秽高清视频在线观看| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 国产黄片美女视频| 99久国产av精品国产电影| 91午夜精品亚洲一区二区三区| 国产成人影院久久av| 国产精品伦人一区二区| 99热这里只有是精品在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 2022亚洲国产成人精品| 国产男人的电影天堂91| 午夜福利视频1000在线观看| 午夜精品在线福利| 大又大粗又爽又黄少妇毛片口| 婷婷色综合大香蕉| 99在线视频只有这里精品首页| 黄色日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 69av精品久久久久久| 国产精品电影一区二区三区| 亚洲欧美成人综合另类久久久 | 亚洲丝袜综合中文字幕| 97人妻精品一区二区三区麻豆| 麻豆国产av国片精品| 国产极品精品免费视频能看的| 26uuu在线亚洲综合色| 日本一二三区视频观看| 欧美不卡视频在线免费观看| 激情 狠狠 欧美| 亚洲人成网站高清观看| 国产高清激情床上av| 欧美色视频一区免费| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 日韩成人伦理影院| 男女边吃奶边做爰视频| 天堂网av新在线| 免费av毛片视频| 欧美3d第一页| 两个人的视频大全免费| a级毛片a级免费在线| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看 | 真实男女啪啪啪动态图| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 神马国产精品三级电影在线观看| 一本一本综合久久| 国产成人freesex在线| 国产私拍福利视频在线观看| 高清毛片免费看| 久久婷婷人人爽人人干人人爱| 免费看日本二区| 少妇被粗大猛烈的视频| 国产日本99.免费观看| 日日啪夜夜撸| 久久久久九九精品影院| 三级男女做爰猛烈吃奶摸视频| 一边摸一边抽搐一进一小说| 色综合色国产| 免费搜索国产男女视频| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 亚洲国产精品成人综合色| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 久久精品国产亚洲av涩爱 | 亚洲欧美成人精品一区二区| 国产av不卡久久| 国产精品一区www在线观看| av福利片在线观看| 久久6这里有精品| 国产伦在线观看视频一区| 免费av毛片视频| 亚洲人成网站在线播| 美女黄网站色视频| 亚洲在线观看片| av又黄又爽大尺度在线免费看 | 免费看光身美女| 国产精品久久久久久av不卡| 老女人水多毛片| www.色视频.com| 久久精品国产亚洲网站| av在线观看视频网站免费| 午夜激情福利司机影院| 日韩精品有码人妻一区| 国产又黄又爽又无遮挡在线| 亚洲国产欧美人成| 久久久久久久久中文| 亚洲七黄色美女视频| www.av在线官网国产| 一级毛片我不卡| 午夜福利高清视频| 亚洲欧美精品综合久久99| 男女做爰动态图高潮gif福利片| 国产精品野战在线观看| 久久6这里有精品| 91久久精品电影网| 秋霞在线观看毛片| 国产精品一及| 国产伦在线观看视频一区| 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 乱系列少妇在线播放| 欧美日韩精品成人综合77777| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| 成人亚洲欧美一区二区av| 国产精品久久久久久精品电影小说 | 亚洲内射少妇av| 老师上课跳d突然被开到最大视频| 黄片无遮挡物在线观看| 亚洲最大成人手机在线| 欧美日韩一区二区视频在线观看视频在线 | 如何舔出高潮| 久久99热这里只有精品18| 国产激情偷乱视频一区二区| 69av精品久久久久久| 12—13女人毛片做爰片一| 亚洲久久久久久中文字幕| a级毛片a级免费在线| 欧美不卡视频在线免费观看| 国产一区二区激情短视频| 国产精品人妻久久久久久| 欧美xxxx黑人xx丫x性爽| 欧美激情久久久久久爽电影| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 欧美xxxx性猛交bbbb| 99热网站在线观看| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 日韩大尺度精品在线看网址| 美女xxoo啪啪120秒动态图| 亚洲欧美清纯卡通| 亚洲自拍偷在线| 啦啦啦韩国在线观看视频| 久久人人爽人人爽人人片va| h日本视频在线播放| 少妇人妻精品综合一区二区 | 91在线精品国自产拍蜜月| 看黄色毛片网站| 一级二级三级毛片免费看| 亚洲国产高清在线一区二区三| 成人鲁丝片一二三区免费| 男女做爰动态图高潮gif福利片| 亚洲欧美成人精品一区二区| 99riav亚洲国产免费| 色哟哟哟哟哟哟| 欧美成人精品欧美一级黄| 一级毛片电影观看 | 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 老女人水多毛片| 成人午夜高清在线视频| 国产成人一区二区在线| 在线免费十八禁| 日本与韩国留学比较| 欧美zozozo另类| 国产亚洲5aaaaa淫片| 精品久久久久久久久久久久久|