• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial molecular screening of polyimide dielectric towards high-performance organic field-effect transistors

    2024-04-05 02:28:16YngsuangZengHucaoTngJangFeJaoJeYongLeGuoengTanJnsunYundongXuanLqangDeyangWenpngHu
    Chinese Chemical Letters 2024年2期

    Yngsuang Zeng ,Hucao L ,Tng Jang ,Fe Jao ,Je L ,Yong Le ,Guoeng Tan,Jnsun B,Yundong Xuan,Lqang L,*,Deyang J,*,Wenpng Hu

    a Department of Chemistry,Tianjin Key Laboratory of Molecular Optoelectronic Sciences,Institute of Molecular Aggregation Science,Tianjin University,Tianjin 300072,China

    b GPL Photonics Laboratory,State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    c Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    d Department of Chemistry,Tianjin Key Laboratory of Molecular Optoelectronic Sciences,School of Science,Collaborative Innovation Center of Chemical Science and Engineering,Tianjin University,Tianjin 300072,China

    e Joint School of National University of Singapore and Tianjin University,Fuzhou 350207,China

    f Fachgebiet Angewandte Nanophysik,Institut für Physik & IMN MacroNano,Technische Universit?t Ilmenau,Ilmenau 98693,Germany

    g State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    h Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    i University of Chinese Academy of Sciences,Beijing 100101,China

    Keywords: Interfacial molecular screening Polyimide dielectrics Organic semiconductors Interface engineering Thin-film transistors

    ABSTRACT The compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport.However,it is still a highly challenging mission to clearly clarify the relationship between the dielectric layers and the chemical structure of semiconductors,especially vacuum-deposited small molecules.Here,interfacial molecular screening of polyimide (Kapton) dielectric in organic field-effect transistors (OFETs) is comprehensively studied.It is found that the semiconducting small molecules with alkyl side chains prefer to form a high-quality charge transport layer on polyimide (PI) dielectrics compared with the molecules without alkyl side chains.On this basis,the fabricated transistors could reach the mobility of 1.2 cm2 V-1 s-1 the molecule with alkyl side chains on bare PI dielectric.What is more,the compatible semiconductor and dielectric would further produce a low activation energy (EA) of 3.01 meV towards efficient charge transport even at low temperature (e.g.,100 K,0.9 cm2 V-1 s-1).Our research provides a guiding scheme for the construction of high-performance thin-film field-effect transistors based on PI dielectric layer at room and low temperatures.

    Interfaces in organic electronics play a pivotal role in modulating the device performance,which has been fully verified in the past three decades [1-6].Thereinto,the introduction of polymer dielectrics into organic devices offers more possibility of tuning the device interface and then optimizing the device performance due to designable monomeric structures and adjustable surface characteristics [7].Despite remarkable progress in achieving effi-cient charge transport has been made on polymer dielectric,the reported studies mainly discussed the performance of a certain organic semiconductor (OSC) on either dielectric layer with variable interfaces [8-11],or a fixed dielectric layer [12-14],resulting in the unclear relationship between the dielectrics and chemical structures of semiconductors.Therefore,to further investigate the selectivity of specific dielectric layer to semiconducting molecules is necessary,which would help more effectively screen the dielectric and semiconductor materials with better compatibility for highperformance organic devices.As one of the earliest polymer dielectrics used in organic field-effect transistors,polyimide (PI) with satisfactory advantages of high/low temperature stability,solvent resistance and excellent stability [15-18],has exhibited promising applications in today’s microelectronics [6,7].However,it is worth noting that most of the devices based on bare PI dielectrics show lower mobility than thin-film amorphous silicon devices of 0.5-1 cm2V-1s-1[17,19-21],only a few cases of modified PI could obtain the mobility exceeding 1 cm2V-1s-1(Fig.S1 in Supporting information) [22-25].On this basis,how to correctly evaluate the compatibility of bare PI with semiconductors and improve the device performance is becoming the key point.

    Here,three groups of organic small molecules with and without alkyl chains are used as active layers to vapor-deposit onto bare PI for constructing thin-film devices.It was found that bare PI had a molecule-selective interface,which preferred to select the semiconducting molecules with alkyl chains forming efficient conducting channel for high charge transport possibly due to the strong intermolecular interactions at the interface.As a result,the mobility of devices with bare PI and alkyl-chains-based molecular structure could reach 1.2 cm2V-1s-1,which is one of the highest mobilities of thin film transistors based on bare PI dielectric reported in the existing literature (Fig.S1).Simultaneously,a low activation energy (EA) of 3.01 meV was achieved,demonstrating a low degree of disorder present in the films of molecules with alkyl side chains on the surface of the PI dielectric.In addition,the better compatibility of bare PI with semiconductors could also promote the device with efficient charge transport at low temperature(e.g.,100 K) and obtain a relatively stable device at low temperature.The selectivity relationship between PI and semiconductors provides an instructive strategy for the application of PI dielectric in high-performance organic thin-film transistors at room and low temperatures.

    As shown in Fig.1a,the OFET device with bottom-gate topcontact (BGTC) structure was used to study the molecule-screening interface of bare PI dielectric layer.Here,three groups of representative organic small molecules with and without alkyl chains were selected (Fig.1a).Vacuum-deposited method is an effective approach to investigate the interface effect of the device due to the sensitivity of molecular growth to the device interface [5,13].First of all,the surface morphology of the semiconductor layer on the PI dielectric layer was analyzed by atomic force microscopy(AFM).As shown in Fig.S2 (Supporting information),the roughness of interface based on organic semiconductors without alkyl side chains (e.g.,DPA,DNTT and 2,6-DNA) was larger than those with alkyl side chains (e.g.,C6DPA,C10DNTT,C10-2,6-DNA).Obviously,more ordered morphology of thin films was observed from deposited molecules with alkyl side chains on PI (Fig.S3 in Supporting information).As a result,it is clearly shown in Fig.1b that the devices using semiconductors without alkyl side chains exhibited suppressed mobility of~10-3cm2V-1s-1due to the weak interaction between the PI strands and the semiconductors [26],but those semiconductors with alkyl side chains could construct efficient conducting channel on bare PI for up to three orders of magnitude higher performance possibly due to the strong interaction between the PI strands and the semiconductors.The representative transfer and output curves based on different semiconductors were shown in Figs.1c-e and Fig.S4 (Supporting information),respectively.What is more,from the analysis of the transfer curve (Figs.1c-e),not only the output current but also the on/off ratio has been improved by several orders of magnitude using organic semiconductors with alkyl side chains.In order to verify the uniqueness of molecule-screening PI interface,bi-polymer dielectrics on the basis of polystyrene (PS) and polyphenylene ether(PPO) as the buffer layers to modify the PI were used to prepare the OFET device (Fig.2a).It was obvious that the introduction of PPO and PS buffer layers could enhance the device mobility based on some small molecules,but the existence of PPO and PS would change the screening characteristics of molecules at the interface(Figs.2b and c,Figs.S5 and S6 in Supporting information).These results could further suggest that the apparent difference in the device mobility based on bare PI was attributable to the selective interaction between PI and semiconductor molecules.

    Fig.1.(a) Schematic diagram of organic thin-film FETs with BGTC and different semiconductor molecular structures.(b) Mobility distribution of transistors based on different semiconductors and bare PI.The typical transfer curves of transistors based on bare PI dielectrics using (c) DPA and C6DPA,(d) DNTT and C10DNTT,(e) 2,6-DNA and C10-2,6-DNA as active layers.

    Fig.2.(a) Schematic diagram of the device with buffer layers.Mobility distribution of transistors based on different semiconductors and (b) PPO/PI and (c) PS/PI.(d)Schematic diagram of organic single crystal transistor devices constructed by transferring pre-grown organic single crystals and gold electrodes,respectively.Transfer curves of devices with pre-grown (e) DPA,(f) C6DPA and (g) DNTT single crystals transferred onto PI dielectric,respectively.Inset: optical images of the fabricated single crystal OFETs.Scale bar: 90 μm.

    Subsequently,we transferred organic single crystals with order molecular stacking on bare PI surface to further investigate its interface effect.The details about the fabrication of single crystal are shown in the experimental section in Supporting information [27].Here,DPA,C6DPA and DNTT were chosen as examples to prepare the single-crystal OFETs (Fig.2d).In this kind of device,the source/drain gold electrodes were constructed by transferring the gold film by mechanical probes [28].The typical transfer and output curves of single-crystal devices were shown in Figs.2e and f,and Figs.S7a and b (Supporting information),respectively,compared to C6DPA device (μ=1.06 cm2V-1s-1),DPA device(μ=4.08 cm2V-1s-1) exhibited even better charge transport performance.In addition,DNTT single crystal devices also had higher mobility (μ=1.71 cm2V-1s-1) compared with thin-film devices(Fig.2g and Fig.S7c in Supporting information).These results showed that the PI interface could also produce efficient charge transport based on organic semiconductors with order molecular stacking (e.g.,single crystal),but this interface had an influence on the directly vacuum-deposited growth of molecules with different chemical structures.

    TheEAcalculated from temperature-variable experiments is an important factor to assess the degree of disorder presented at the interface [29,30].Based on the low-temperature stability of PI dielectric layer [17,29],the devices using different semiconductors were carried out temperature-variable electrical tests (Fig.S8 in Supporting information).The temperature-dependent mobility curves showed the typical hopping mode in all kinds of devices because of the decreasing values of mobility with the decrease of the temperatures (Fig.S9 in Supporting information).According to theμ=μ0·exp(-EA/kBT) [29],whereμis carrier mobility at different temperatures,EAis activation energy,kBis Boltzmann constant,andTis thermodynamic temperature.The calculatedEAconsistently indicated that the values of devices using organic semiconductors with alkyl side chains (C6DPA,11.20 meV,Fig.3a;C10DNTT,3.01 meV,Fig.3b),were significantly lower than that using organic semiconductors without alkyl side chains (DPA,24.15 meV,Fig.S10 in Supporting information;DNTT,40.4 meV[31]).The calculated value ofEAcould clearly indicate that the organic semiconductors with alkyl chains preferred to form highquality packing of semiconductor molecules and a lower degree of interface energy disorder at the interface of PI.It was worth noting that our fabricated devices exhibited one of the lowest values ofEA(3.01 meV) compared with the previous reports [11,30,32-39] as shown in Table S1 (Supporting information),which demonstrated that our devices could still maintain efficient charge transfer,even at low temperatures.For example,the device based on C10DNTT on bare PI dielectric showed the mobility of 1.2 cm2V-1s-1at 300 K,and then,the decrease of temperatures only reduced the mobility by 25%,maintaining 0.9 cm2V-1s-1at 100 K (Fig.S9b in Supporting information).More excitingly,the device using C10DNTT and PS/PI dielectric could still maintain the mobility about 1.0 cm2V-1s-1at 100 K (Fig.S11 in Supporting information).This efficient charge transport performance at low temperature indicated the excellent compatibility of the low temperature resistance of PI and high-quality stacking of C10DNTT for further low-temperature applications.In addition,we also found that PI-based devices all showed atmospheric stability after one year(Fig.4a).Moreover,the efficient charge transport would contribute to the high-performance optical figures of merit in organic phototransistors (OPTs) [35,40].We fabricated the thin film OPTs using bare PI dielectric and the semiconductors with alkyl side chains and high mobility (e.g.,C6DPA,C10DNTT).The best value of calculated optical figures of merit,including photosensitivity (P),photoresponsivity (R) and detectivity (D*),were plotted in Figs.4b and c.It was clearly seen that the OPTs using bare PI dielectric and the semiconductors with alkyl side chains showed higher performance than that with bare PI dielectric and alkyl-side-chains-free semiconductors [31].Furthermore,the switching performance based on semiconductors with alkyl side chains was also higher than that devices using semiconductors without alkyl side chains,as shown in Figs.S12-S14 (Supporting information),respectively.

    Fig.3.Fitting results of low temperature mobility and temperature according to Arrhenius formula.(a) C6DPA/bare PI and C6DPA/PS/PI,(b) C10DNTT/bare PI and C10DNTT/PS/PI.

    Fig.4.(a) The stability performance of device mobility based on bare PI and different semiconductors.The best value of photosensitivity (P),photoresponsivity (R) and detectivity (D*) using (b) DPA and C6DPA;(c) DNTT and C10DNTT.

    Although the potential application of polyimide dielectric in organic field-effect transistors has been verified,the device performance based on polyimide dielectric still lagged behind other dielectric materials.In this work,we have found there is interfacial molecular screening of polyimide dielectric on semiconductors in organic field-effect transistors.On this basis,the molecules without alkyl side chains are difficult to form an ordered layered stack during vacuum deposition,leading to suppressed electrical properties.Comparatively,the polyimide dielectric layer could induce the semiconductor molecules with alkyl side chains with order packing,resulting in excellent electrical properties.The compatibility between the polyimide and semiconductor with alkyl side chains promotes the combined devices maintaining excellent performance even at low temperature.Our research showed that the compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport,and is also the basis for exploiting more complex device applications.

    Acknowledgments

    The authors are grateful to acknowledge financial support from National Key Research and Development Program(Nos.2021YFA0717900,2022YFE0124200),National Natural Science Foundation of China (Nos.62004138,52273190,61905121,U2241221),and Haihe Laboratory of Sustainable Chemical Transformations.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108796.

    亚洲五月天丁香| 99国产精品一区二区蜜桃av| 91狼人影院| 97超级碰碰碰精品色视频在线观看| 男女视频在线观看网站免费| 搡老妇女老女人老熟妇| 日本免费a在线| 观看美女的网站| 乱人视频在线观看| 国产精品日韩av在线免费观看| 床上黄色一级片| 搡老岳熟女国产| 亚洲自拍偷在线| 国产极品精品免费视频能看的| 伦精品一区二区三区| 欧美高清性xxxxhd video| 国产精品人妻久久久影院| 成人三级黄色视频| 热99在线观看视频| 91麻豆精品激情在线观看国产| 欧美性猛交黑人性爽| 日日干狠狠操夜夜爽| 一本久久中文字幕| 能在线免费观看的黄片| 给我免费播放毛片高清在线观看| av卡一久久| videossex国产| 简卡轻食公司| 国产欧美日韩一区二区精品| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 国产私拍福利视频在线观看| 国国产精品蜜臀av免费| 亚洲精品粉嫩美女一区| 久久久久久久久久黄片| 久久婷婷人人爽人人干人人爱| 黄片wwwwww| 午夜a级毛片| 国产成人91sexporn| 熟女电影av网| 欧美日韩一区二区视频在线观看视频在线 | 免费在线观看影片大全网站| 级片在线观看| 啦啦啦观看免费观看视频高清| 久久鲁丝午夜福利片| 在线天堂最新版资源| 久久久午夜欧美精品| 在线a可以看的网站| 午夜免费男女啪啪视频观看 | 国产三级在线视频| 九九在线视频观看精品| 中国美白少妇内射xxxbb| 国产又黄又爽又无遮挡在线| 在线看三级毛片| 日韩欧美精品免费久久| or卡值多少钱| 99久久中文字幕三级久久日本| 美女免费视频网站| 色噜噜av男人的天堂激情| 91久久精品电影网| 97人妻精品一区二区三区麻豆| 成人av一区二区三区在线看| 成人鲁丝片一二三区免费| 欧美成人a在线观看| 亚洲最大成人手机在线| 亚洲美女视频黄频| 少妇的逼好多水| 日日摸夜夜添夜夜爱| 免费搜索国产男女视频| 成年免费大片在线观看| 十八禁国产超污无遮挡网站| 亚洲在线观看片| 欧美激情久久久久久爽电影| 成人特级黄色片久久久久久久| 国产乱人视频| 色噜噜av男人的天堂激情| 精品午夜福利在线看| 狠狠狠狠99中文字幕| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| av中文乱码字幕在线| 一级毛片久久久久久久久女| 人妻久久中文字幕网| 国内精品一区二区在线观看| 国产不卡一卡二| 色播亚洲综合网| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区 | 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| 乱码一卡2卡4卡精品| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 亚洲欧美日韩东京热| 少妇被粗大猛烈的视频| 日本欧美国产在线视频| 少妇的逼水好多| 午夜福利在线在线| 免费人成视频x8x8入口观看| 成人综合一区亚洲| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产综合懂色| 国产高清视频在线播放一区| 久久久精品94久久精品| 成熟少妇高潮喷水视频| 网址你懂的国产日韩在线| 国产成人91sexporn| 久久国内精品自在自线图片| 亚洲成av人片在线播放无| 亚洲乱码一区二区免费版| 日韩成人av中文字幕在线观看 | 亚洲自偷自拍三级| 久久精品夜色国产| 搞女人的毛片| 久久久久久久久久黄片| 精品无人区乱码1区二区| 久久久久久久久久成人| 最新中文字幕久久久久| 最近在线观看免费完整版| 少妇的逼水好多| 少妇人妻一区二区三区视频| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 人人妻,人人澡人人爽秒播| 免费观看人在逋| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 亚洲熟妇熟女久久| aaaaa片日本免费| 看免费成人av毛片| 久久精品影院6| 日韩 亚洲 欧美在线| 日韩成人伦理影院| 香蕉av资源在线| 别揉我奶头~嗯~啊~动态视频| 人人妻人人看人人澡| 97人妻精品一区二区三区麻豆| 六月丁香七月| 日韩欧美在线乱码| 男女做爰动态图高潮gif福利片| 国内精品宾馆在线| 欧美人与善性xxx| 亚洲美女视频黄频| 美女 人体艺术 gogo| 成人永久免费在线观看视频| 日韩欧美三级三区| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 97在线视频观看| 免费看日本二区| av福利片在线观看| 国产一区二区三区在线臀色熟女| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 成年女人永久免费观看视频| 又爽又黄无遮挡网站| 在线观看66精品国产| 床上黄色一级片| 成年女人毛片免费观看观看9| 亚洲专区国产一区二区| 麻豆国产97在线/欧美| 又爽又黄无遮挡网站| 在线观看免费视频日本深夜| 国产成人福利小说| 精品午夜福利视频在线观看一区| 成年女人看的毛片在线观看| or卡值多少钱| 精品一区二区三区av网在线观看| 国产精品福利在线免费观看| 久久午夜亚洲精品久久| 亚洲成av人片在线播放无| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 在线看三级毛片| 亚洲经典国产精华液单| 久久久久久久久大av| 69人妻影院| 观看免费一级毛片| 亚洲av二区三区四区| 欧美bdsm另类| 久久久色成人| 国产精品一区二区三区四区免费观看 | 麻豆av噜噜一区二区三区| 老熟妇乱子伦视频在线观看| 噜噜噜噜噜久久久久久91| 校园春色视频在线观看| 国产一级毛片七仙女欲春2| 嫩草影院精品99| 久久久久久久久久久丰满| 日韩欧美 国产精品| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕 | 国产色爽女视频免费观看| 国产高清视频在线播放一区| 亚洲婷婷狠狠爱综合网| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 欧美一区二区国产精品久久精品| 级片在线观看| 人人妻,人人澡人人爽秒播| 18禁在线无遮挡免费观看视频 | 久久6这里有精品| 亚洲在线观看片| 深夜a级毛片| 成人无遮挡网站| 国产在线男女| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 日韩精品中文字幕看吧| 淫秽高清视频在线观看| 久久久精品大字幕| 久久这里只有精品中国| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 18禁在线播放成人免费| 亚洲人成网站高清观看| 久久亚洲精品不卡| 日本黄色片子视频| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 久久久国产成人免费| 看免费成人av毛片| 我要看日韩黄色一级片| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 乱系列少妇在线播放| 国产黄片美女视频| 一个人免费在线观看电影| 99热这里只有是精品50| 在线观看一区二区三区| 色视频www国产| 在线观看免费视频日本深夜| 日日摸夜夜添夜夜爱| 真人做人爱边吃奶动态| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 特级一级黄色大片| 欧美一区二区国产精品久久精品| 午夜精品一区二区三区免费看| 一级a爱片免费观看的视频| 麻豆国产av国片精品| 国产白丝娇喘喷水9色精品| 淫秽高清视频在线观看| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 韩国av在线不卡| 亚洲人成网站在线播放欧美日韩| 欧美在线一区亚洲| 国产探花极品一区二区| or卡值多少钱| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 18禁在线无遮挡免费观看视频 | 97热精品久久久久久| 亚洲国产日韩欧美精品在线观看| 亚洲国产欧美人成| 国产在线精品亚洲第一网站| 九九久久精品国产亚洲av麻豆| 麻豆乱淫一区二区| 久久精品人妻少妇| 午夜爱爱视频在线播放| 色哟哟哟哟哟哟| 少妇猛男粗大的猛烈进出视频 | 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 人人妻人人澡人人爽人人夜夜 | 人妻丰满熟妇av一区二区三区| 男人舔女人下体高潮全视频| 国产精品伦人一区二区| 国产男靠女视频免费网站| 一本一本综合久久| 亚洲国产高清在线一区二区三| 18禁在线播放成人免费| 亚洲成av人片在线播放无| 亚洲熟妇中文字幕五十中出| 国产精品久久电影中文字幕| 久久精品国产自在天天线| 少妇熟女欧美另类| 日本免费一区二区三区高清不卡| 99在线视频只有这里精品首页| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 免费无遮挡裸体视频| 超碰av人人做人人爽久久| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 日本在线视频免费播放| 久久这里只有精品中国| 欧美高清性xxxxhd video| 午夜福利18| 三级毛片av免费| 永久网站在线| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 一区二区三区免费毛片| 婷婷精品国产亚洲av| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 一级毛片电影观看 | 日本一二三区视频观看| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 特级一级黄色大片| 午夜亚洲福利在线播放| 欧美绝顶高潮抽搐喷水| 欧美一区二区亚洲| 伦精品一区二区三区| 欧美性猛交黑人性爽| 欧美一级a爱片免费观看看| www.色视频.com| 国产v大片淫在线免费观看| 午夜福利在线在线| 国产日本99.免费观看| 麻豆久久精品国产亚洲av| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月| 国产精品不卡视频一区二区| 国产一区二区三区在线臀色熟女| 日韩在线高清观看一区二区三区| 国产一区二区三区在线臀色熟女| 在线播放无遮挡| 国国产精品蜜臀av免费| 小蜜桃在线观看免费完整版高清| 麻豆国产97在线/欧美| 精品久久久噜噜| 91麻豆精品激情在线观看国产| 欧美高清性xxxxhd video| eeuss影院久久| 一级av片app| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 日本五十路高清| 51国产日韩欧美| 成人av一区二区三区在线看| 乱系列少妇在线播放| 麻豆久久精品国产亚洲av| 免费观看的影片在线观看| 九九在线视频观看精品| 禁无遮挡网站| av福利片在线观看| 最近手机中文字幕大全| 不卡一级毛片| 亚洲欧美中文字幕日韩二区| 男女啪啪激烈高潮av片| 久久精品国产亚洲网站| 村上凉子中文字幕在线| 极品教师在线视频| 看非洲黑人一级黄片| 久久草成人影院| 亚洲欧美日韩无卡精品| 老司机午夜福利在线观看视频| 午夜影院日韩av| 久久99热6这里只有精品| 亚洲真实伦在线观看| 久久午夜亚洲精品久久| 一个人看视频在线观看www免费| 给我免费播放毛片高清在线观看| 久久久a久久爽久久v久久| 少妇丰满av| 非洲黑人性xxxx精品又粗又长| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 少妇裸体淫交视频免费看高清| 真实男女啪啪啪动态图| 村上凉子中文字幕在线| 午夜精品在线福利| 伦精品一区二区三区| 97超视频在线观看视频| 亚洲欧美精品综合久久99| 国产男靠女视频免费网站| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放 | 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 干丝袜人妻中文字幕| 悠悠久久av| av卡一久久| 中文资源天堂在线| 国产高清视频在线观看网站| 内地一区二区视频在线| 日日啪夜夜撸| 日本欧美国产在线视频| 色综合色国产| 亚洲18禁久久av| 国产久久久一区二区三区| 日本五十路高清| 男人的好看免费观看在线视频| 99久久精品一区二区三区| 18禁黄网站禁片免费观看直播| 男插女下体视频免费在线播放| 真人做人爱边吃奶动态| 久久久久久伊人网av| 12—13女人毛片做爰片一| 美女黄网站色视频| 老司机午夜福利在线观看视频| 亚洲成人久久性| 国产精品久久视频播放| 国产精品亚洲美女久久久| 亚洲av成人av| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 免费观看的影片在线观看| 国产精品国产高清国产av| 中文字幕熟女人妻在线| 精品一区二区三区av网在线观看| 午夜a级毛片| 亚洲成a人片在线一区二区| 悠悠久久av| 午夜老司机福利剧场| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 久久久久国产精品人妻aⅴ院| 性插视频无遮挡在线免费观看| 亚洲专区国产一区二区| 国产欧美日韩一区二区精品| 亚洲精品在线观看二区| 成年女人毛片免费观看观看9| 少妇丰满av| 级片在线观看| 麻豆国产97在线/欧美| 在线国产一区二区在线| av在线播放精品| 亚洲经典国产精华液单| 午夜精品在线福利| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 亚洲av第一区精品v没综合| 一个人看的www免费观看视频| 欧美成人a在线观看| 国产精品亚洲一级av第二区| 国产精品一区www在线观看| av天堂在线播放| 免费看日本二区| 久久婷婷人人爽人人干人人爱| 国产精品一区二区免费欧美| 国产一区二区激情短视频| 亚洲国产日韩欧美精品在线观看| 日韩av在线大香蕉| 亚洲欧美精品自产自拍| 精品无人区乱码1区二区| 91av网一区二区| 九九爱精品视频在线观看| 99热只有精品国产| 亚洲中文日韩欧美视频| 女人十人毛片免费观看3o分钟| 真实男女啪啪啪动态图| 亚洲无线观看免费| 国产黄a三级三级三级人| 久久久久精品国产欧美久久久| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 亚洲av五月六月丁香网| 嫩草影院精品99| 啦啦啦韩国在线观看视频| www.色视频.com| 精品午夜福利视频在线观看一区| 国产高潮美女av| 国产成年人精品一区二区| 别揉我奶头 嗯啊视频| 国产不卡一卡二| 99久国产av精品| 深夜a级毛片| 色视频www国产| 午夜福利在线在线| 国产片特级美女逼逼视频| 精品不卡国产一区二区三区| 欧美激情在线99| 中国美白少妇内射xxxbb| 床上黄色一级片| 国产精品一区二区免费欧美| 九九久久精品国产亚洲av麻豆| 精品午夜福利视频在线观看一区| av天堂在线播放| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 毛片一级片免费看久久久久| 人妻制服诱惑在线中文字幕| 99在线人妻在线中文字幕| 亚洲图色成人| 美女免费视频网站| 韩国av在线不卡| 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片| 欧美绝顶高潮抽搐喷水| 亚洲最大成人av| 青春草视频在线免费观看| 国产高清激情床上av| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 日韩欧美精品免费久久| 欧美日本视频| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 精品一区二区免费观看| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 国产黄色视频一区二区在线观看 | 欧美日韩乱码在线| 尾随美女入室| 狂野欧美激情性xxxx在线观看| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 51国产日韩欧美| 精品人妻偷拍中文字幕| 久久午夜亚洲精品久久| 成人特级黄色片久久久久久久| 中国美女看黄片| 一个人看的www免费观看视频| 最近中文字幕高清免费大全6| 特级一级黄色大片| 我要搜黄色片| 国产精品亚洲美女久久久| 一级毛片久久久久久久久女| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 欧美人与善性xxx| av在线播放精品| 亚洲色图av天堂| 午夜福利在线观看吧| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 热99re8久久精品国产| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 国产人妻一区二区三区在| 又黄又爽又免费观看的视频| 日韩成人av中文字幕在线观看 | 久久精品久久久久久噜噜老黄 | 国产精品久久久久久精品电影| 国产综合懂色| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆 | 给我免费播放毛片高清在线观看| 国内精品美女久久久久久| 乱系列少妇在线播放| 午夜福利在线在线| 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看 | 51国产日韩欧美| 日本与韩国留学比较| 欧美成人免费av一区二区三区| 在线观看一区二区三区| 日韩欧美国产在线观看| 哪里可以看免费的av片| 久久人人爽人人爽人人片va| 青春草视频在线免费观看| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 日本a在线网址| 小说图片视频综合网站| 好男人在线观看高清免费视频| 日产精品乱码卡一卡2卡三| 一级av片app| 97人妻精品一区二区三区麻豆| 久久久a久久爽久久v久久| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 亚洲国产精品久久男人天堂| 亚洲性夜色夜夜综合| 日本-黄色视频高清免费观看| 99久国产av精品| 97在线视频观看| 国产视频一区二区在线看| 又爽又黄无遮挡网站| 99在线人妻在线中文字幕| 亚洲经典国产精华液单| 亚洲成a人片在线一区二区| 国产高清视频在线观看网站| 伦理电影大哥的女人| 少妇人妻精品综合一区二区 | 国产黄a三级三级三级人| 国产精品1区2区在线观看.| 国产亚洲欧美98| 亚洲av成人av| 波野结衣二区三区在线| 色视频www国产| 哪里可以看免费的av片| av福利片在线观看| 又爽又黄无遮挡网站| 色哟哟·www| av天堂中文字幕网| 男人狂女人下面高潮的视频| 床上黄色一级片| 在线观看免费视频日本深夜| 国产精品伦人一区二区| 久久久久久久午夜电影| 精品不卡国产一区二区三区| 91精品国产九色| 久久精品综合一区二区三区| 国产亚洲精品久久久久久毛片| 女的被弄到高潮叫床怎么办|