• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxide-supported metal catalysts for anaerobic NAD+ regeneration with concurrent hydrogen production

    2024-04-05 02:28:16JinweiLiJosephBurnettCludiMrtinezMcisRussellHoweXiodongWng
    Chinese Chemical Letters 2024年2期

    Jinwei Li ,Joseph W.H.Burnett ,Cludi Mrtinez Mcis ,Russell F.Howe ,Xiodong Wng,*

    a Chemical Engineering,School of Engineering,Lancaster University,Lancaster LA1 4YW,United Kingdom

    b Chemistry Department,University of Aberdeen,Aberdeen AB24 3UE,United Kingdom

    Keywords: NAD+ regeneration Heterogeneous catalyst Hydrogenase mimic Hydrogen binding energy Hydrogen production

    ABSTRACT We report SiO2-supported monometallic Pt,Pd,Au,Ni,Cu and Co catalysts for proton-driven NAD+ regeneration,co-producing H2.All metals are fully selective to NAD+ where the order of turnover frequencies(Pt >Pd >Cu >Au,Ni and Co) coincides with those otherwise observed in electrochemical hydrogen evolution reactions.This has revealed that NADH is capable of converting the metal sites into a “cathode”without an external potential and the NADH to NAD+ reaction involves transferring electron and hydrogen atom separately.Electron-deficient Ptδ+(on CeO2) enhances TOF and the heterogeneous Pt/CeO2 catalyst is recyclable without losing any activity/selectivity.

    Biocatalysis using enzymes has attracted increasing interest in recent decades due to its outstanding activity and chemo-,regioand stereo-selectivity in biosensor,pharmaceutical and organic synthesis [1,2].As most enzymes intrinsically work under benign conditions,they are also able to lower energy costs,avoid extreme pH requirements as well as reduce environmental hazards [3-8].Dehydrogenases (DHs) are a group of important enzymes that catalyze reversible oxidative transformations of hydroxyls and amines(Fig.1a),some of which are novel reaction routes over conventional organic synthesis.The usage of DHs is limited by their dependence on the NAD(P)H/NAD(P)+cofactor pair (Fig.1b),which act as an electron carrier and is consumed stoichiometrically in enzymatic redox reactions.Due to the high cost of these cofactors (e.g.,$1400 and $2600 per mol of NAD+and NADH,respectively) [9],a regeneration system is essential to make these biosynthetic processes viable (Fig.1c) [10,11].Compared to the commercial uses of NAD(P)H and its regeneration,less attention has been paid to the regeneration of NAD(P)+,hampering the application of DH-catalyzed oxidative transformations [12].

    Fig.1.Schematic of dehydrogenases (DHs)-catalyzed oxidative biotransformations(a),molecular structure of cofactors (b) and catalytic NAD+ regeneration (c).Solid and dash arrows in (a) represent reversible oxidative and reductive transformations catalyzed by DHs,respectively.R: adenine dinucleotide.

    To date,enzymatic NAD+regeneration using a second enzyme as the regeneration catalyst (e.g.,lactate dehydrogenases,glutamate dehydrogenases,and particularly,NADH oxidases (NOXs)) has been mostly studied [13-16].Although NOXs can generate H2O (from O2) as a clean product [15],the costliness,instability,and difficulty in downstream separation of enzymes remain challenging.New catalytic regeneration approaches based on homogeneous [17,18],electro-[19-21],and photo-catalysis [22-25] have been reported but are still at developmental stages.Improvements are required in regeneration efficiency (selectivity and activity),ease of preparation/separation,and system compatibility [21,26-28].

    The use of solid catalysts for NAD+regeneration is a newly developed method where only supported Au,Pt and graphene oxide(Cu2+ion-doped) have so far been studied [29-31].The advantages of using supported metal catalysts lie in their low-cost preparation/setup,ease of separation,recyclability and scaling-up,and stable physicochemical properties.The previously reported catalytic systems were only active when using strong oxidant,molecular O2.We have recently established a new regeneration pathway employing activated carbon supported Pt that promoted NAD+regeneration using the readily available solution protons and concurrently produce H2(Eq.1) [32].Oxidizing NADH with a proton is more challenging as the latter is a significantly weaker oxidant than O2but it offers the possibility of avoiding the O2-liquid interfacial issues of deactivation [33-38] and has better potential for large scale applications with the further benefit of producing H2.

    Carbon has been an excellent carrier for cofactor regeneration due to its own capability in electron transfer [39,40].However,this makes it difficult to decouple the effects of the support and the metal (i.e.,Pt,Pd,etc.) which hinders understanding of the role of the metal sites.In this work,we aim to address this gap of knowledge in proton-driven NAD(P)+regeneration.For the first time,a group of monometallic catalysts comprising Pt,Pd,Au,Ni,Cu or Co supported on non-conductive metal oxides (SiO2,MgO and CeO2)have been examined,with the role of metal revealed.Very surprisingly,with its capacity of donating electrons,NADH has effectively made a thermal/heterogeneous catalytic process “electrocatalytic”,governed by the hydrogen evolution reactions.

    Full details of the materials used,catalyst preparation and characterization procedures are given in Supporting information.Catalysts were characterized by chemical analysis,X-ray powder diffraction,transmission electron microscopy,surface area and pore size analysis,and hydrogen temperature-programmed reduction.NAD+regeneration reactions were performed as described in Supporting information.The NADH concentration and conversion were determined by tracing the UV absorbance at 340 nm while the NAD+concentration and selectivity were monitored using enzymatic assays described in Supporting information and in our previous work [41].The reaction rate constants (k) were determined following first order kinetics.Turnover frequencies (TOF: NADH reacted per surface metal atom per hour) were calculated from the rate constants and the mean particle sizes obtained from TEM analysis,assuming spherical particles.The amount of hydrogen produced was measured volumetrically as described in Supporting information,and the gas composition confirmed by gas chromatography.

    Table 1 summarizes the characterization data for the SBA-15 supported Pt,Pd,Au,Ni,Co and Cu catalysts tested for NAD+regeneration in this work.All catalysts showed similar distributions of metal particle sizes (TEM images in Fig.2) and mean particle diameters of around 4 nm,and nitrogen adsorption/desorption showed negligible pore blockage of the SBA-15 following addition of metal.

    Table 1Catalyst characterization of all supported metal catalysts used.

    Fig.2.Representative TEM images and size distribution histograms of the reduced catalysts: Pt (a),Pd (b),Au (c),Ni (d),Co (e) and Cu (f) on SBA-15.

    The data shown in Fig.3a are NADH conversions after 1 h of reaction at pH 7.As illustrated in Fig.3a,only SBA-15 supported Pt,Pd and Cu give NADH conversions significantly higher than that seen in the absence of catalyst.The uncatalyzed decay of NADH is due to hydration of C=C bonds in the nicotinamide ring,which causes an increase in absorbance at around 290 nm and does not form NAD+[42,43].Fig.S4 (Supporting information)illustrates this (homogeneously) acid catalyzed undesirable reaction.Fig.3b shows time dependence of the UV-vis spectrum during NADH conversion over Pt/SBA-15 at pH 7.The decreasing absorbance at 340 nm due to the nicotinamide ring is not accompanied by any change at 290 nm,indicating that the undesired hydration reaction does not occur in the presence of the heterogeneous catalyst.Fig.3c plots NADH concentrationversustime at three different pHs and the corresponding first order plots are given in Fig.3d.Clearly,an acidic environment gave the highest conversion(i.e.,80% at pH 5,30% at pH 7 and 15% at pH 9).The obvious promoting effect of acidic conditions indicates the participation of H+in the regeneration reaction.A further regeneration test in DMSO,a non-proton polar solvent,was carried out in lieu of buffer solution.Since DMSO is incapable of providing H+,the NADH concentration remained unchanged after 1 h,showing the need of protons for the reaction to occur in contrast to the results obtained for the reaction in a phosphate buffer (Fig.S5 in Supporting information).Interestingly,a significant consumption (seen from 340 nm)was observed after an addition (1 mL) of concentrated phosphoric acid.These results further confirm the essential role of protons in the concerted NADH conversion,rather than a sequential step.Nevertheless,the peak rise at 290 nm was also observed which is an indicator of NADH decay product.This process was inevitable as the concentrated acid also contained water resulting in the hydration of NADH.However,this effect was inconsequential as it happens at a lower rate than that of the catalytic NAD+regeneration (Fig.3d and Fig.S4c).The first order kinetics demonstrated here is contrast with the second order kinetics reported for the oxygen-assisted NADH oxidation over platinum nanoparticles [31],suggesting a different reaction mechanism is operating.The selectivity of the NADH conversion to NAD+was determined by enzymatic assay of the NAD+concentration.For example,converting 0.255 mmol/L of NADH over Pt/SBA-15 at pH 7 for 1 h (Fig.3a) produced 0.250 mmol/L of NAD+,indicating close to 100% selectivity.

    Fig.3.NAD+ regeneration promoted by the SBA-15 supported metal catalysts: NADH conversions over different metals (a),UV-vis spectrum scans of NAD+ regeneration over Pt/SBA-15 (b),temporal NADH concentration and conversion at different pH over Pt/SBA-15 (c) and first order kinetic plots (d).Reaction conditions: 37°C,0.5 mmol/L NADH,pH 7 (for a and b),100 mL/min N2 flow,1 h,60 mg (a,b) or 30 mg (c,d) of catalyst.

    In a separate (scaled up) experiment,the production of hydrogen during the reaction was measured.After 12 h of reaction at pH 7 with 120 mg of catalyst and an initial NADH concentration of 2 mmol/L,the amount of hydrogen produced (4.2 mL) was close to that expected (4.8 mL) for the observed NADH conversion of 2 mmol/L and the reaction stoichiometry in Eq.1.Thus,despite the weaker oxidation potential than O2(0.82 V forE0(O2/H2O)vs.-0.41 V forE0(H+/H2),at pH 7) [44],H+was able to drive the regeneration in the presence of Pt.Opposed to the existing O2-assisted attempts on supported Au and Pt,the catalyst in this work functionally mimicked (NAD(H)-linked) hydrogenases which catalyze the conversion of NADH to NAD+and H2(Eq.1).

    Two possible scenarios for the mechanism of the reaction in Eq.1 are illustrated in Fig.4.The first (Fig.4a) involves a direct hydride transfer to a proton to form H2at the platinum,while the second (Fig.4b) is an indirect hydride transfer and involves the electron and the extracted/adsorbed hydrogen atom being transferred separately to a proton to form hydrogen.The observed sequence of activities of the different metals supported on SBA-15(Pt>>Pd>Cu>Ni,Co,Au) is in excellent agreement with that of the electrochemical hydrogen evolution reaction (HER) in which electrons are combined with protons at a cathode to form hydrogen,viaeither the Volmer-Heyrovsky (Eqs.2 and 3) or the Volmer-Tafel (Eqs.2 and 4) sequences [45-48].

    Fig.4.Plausible reaction pathway of NAD+ regeneration over a metal surface.The gray rectangle and star (*) represent metal particle and its surface site,respectively.

    The hydrogen binding energy (HBE) has been well established for correlating with the HER activity of metals [45-48].The high HER activity of platinum is attributed to the optimum hydrogen binding affinity as revealed in the volcano plots (Fig.S6 in Supporting information).NADH is a well-known electron donor in nature.When it is continuously supplied/activated on a metal site such as platinum,the surface environment may be considered as mimicking an electrochemical HER at a cathode.Given the excellent agreement in the trends of metal activity between the two types of reaction,it may be argued that a mechanism for NAD+regeneration involving steps equivalent to the HER (Fig.4b) is plausible.The metal acts as a reservoir to accommodate hydrogen atoms (Had)and transfer electrons.Concertedly,an electron from NADH combines with a proton from the solution which then reacts with Hadto release H2(i.e.,the Volmer-Heyrovsky process (Eqs.2 and 3).Alternatively,two Hadcan also react to form H2(i.e.,the Volmer-Tafel process (Eqs.2 and 4).The key is that both processes rely on Hadinstead of hydride as an intermediate.Indeed,Attardetal.claimed that the formation of hydride on Pt (i.e.,Fig.4a) is thermodynamically unfavorable in aqueous solutions,further supporting the above analysis [49].The rate determining step of this NADH to NAD+conversion is therefore the HER,as opposed to NADH adsorption/activation or NAD+desorption.

    The electronic properties of oxide supported platinum catalysts are known to be influenced by the nature of the support [50,51].In Fig.5a,we have compared the conversion of NADH under the same reaction conditions over SBA-15,CeO2and MgO supported platinum.All three catalysts contain similar platinum loadings and the mean particle sizes,and particle size distributions are closely similar (see TEM analyses in Figs.S7c and d in Supporting information),ruling out any effect of particle size on the activity.Additionally,the effect of the oxide supports (coming from different porous structure) was also discarded by examining NADH conversion over bare supports,as shown in Fig.S8 (Supporting information).The TOFs calculated from first order plots are respectively 39,30 and 9 h-1for Pt supported on CeO2,SBA-15 and MgO.All three catalysts were completely selective to NAD+as determined by enzymatic assays.XPS spectra in the 4f region (Fig.5b) show that platinum on CeO2was electron deficient relative to metallic platinum black (Pt 4f7/2binding energy of 72.5 eV compared with 71.6 eV for platinum(0),Fig.S9 in Supporting information),whereas platinum on SBA-15 has a 4f7/2binding energy of 71.6 eV and platinum on MgO 71.4 eV.We suggested that the electron deficient nature of the platinum on CeO2led to a reduced hydrogen binding strength,favoring the desorption of hydrogen.Fig.5c shows the correlation between TOF and Pt 4f7/2binding energy.A similar conclusion has been reported concerning the advantage of electron deficient platinum for HER kinetics [52-54].

    Fig.5.NADH conversion over Pt/CeO2,Pt/MgO and Pt/SBA-15 catalysts (a),Pt 4f XPS spectra of the catalysts (b),correlation of TOF with binding energy (c) and catalyst recycle test with Pt/CeO2 (d).Reaction conditions: 0.5 mmol/L NADH,100 mL 0.1 mol/L pH 7 PBS,37°C,700 rpm stir,100 mL/min N2,60 (for a) or 120 mg (for d)catalyst.Error bars obtained from three independent experiments.

    Finally,we tested the recyclability of the heterogeneous supported Pt catalyst using the most active Pt/CeO2as representative.To reach a full conversion,double amount of catalyst (120 mg) was used,and reactions were run with three fresh batches of NADH feed.Results are shown in Fig.5d.After the first run,a conversion of 100% was reached in 1.5 h and the doubled initial reaction rate (0.019 mmol L-1h-1) compared to 0.009 mmol L-1h-1(Fig.5a)confirmed that the reactions were still operating under kinetic control region (i.e.,catalyst was not in excess).The unchanged performance in the three successive reactions proved that there was no catalyst deactivation (e.g.,leaching,fouling or poisoning).In addition,ICP analysis of the spent catalyst shows that the Pt loading was unchanged (1.10vs.1.08 wt%) before and after reactions(Table 1).

    For the first time,we proved the feasibility of H2productionviaH+-driven NAD+regeneration catalyzed by oxide-supported metal catalysts.Pt was shown as the most promising active phase among tested metals (Au,Pd,Ni,Cu and Co,all supported on SBA-15),where NADH was converted to NAD+with full selectivity.The trend of metal activity was found following the well-established HER volcano pattern correlated with hydrogen binding energy,confirming a hydrogen-electron transfer mechanism (as opposed to hydride transfer) regarding the hydrogen formation.Electronic structure of the Pt nanoparticles (tuned by using SBA-15,MgO and CeO2) was important for catalysis where electron-deficient Pt on nonconductive metal oxides favors the activity.This may be due to the lowered hydrogen binding strength with Pt.The results shed light on the design of heterogeneous catalytic systems for protondriven NAD+regeneration as well as a potential route for H2production by bio-oxidation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the EPSRC New Horizons grants(Nos.EP/V048635/1 and EP/X018172/1).We are also grateful for support from the UK Catalysis Hub funded by EPSRC grant reference EP/R026645/1.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108737.

    草草在线视频免费看| 超碰av人人做人人爽久久| 亚洲国产精品合色在线| 美女 人体艺术 gogo| 国产精品三级大全| 亚洲性夜色夜夜综合| 一a级毛片在线观看| 我的老师免费观看完整版| 国产爱豆传媒在线观看| 亚洲精品亚洲一区二区| 五月伊人婷婷丁香| 亚洲自偷自拍三级| 日日摸夜夜添夜夜爱| 一区二区三区四区激情视频 | 久久综合国产亚洲精品| 在线观看美女被高潮喷水网站| 97在线视频观看| 激情 狠狠 欧美| 日韩强制内射视频| 久久韩国三级中文字幕| 99riav亚洲国产免费| 一夜夜www| 国产一区二区三区在线臀色熟女| 天堂动漫精品| 波野结衣二区三区在线| 亚洲精品日韩在线中文字幕 | 亚洲人成网站在线播| 亚洲av成人精品一区久久| 国产伦在线观看视频一区| 变态另类成人亚洲欧美熟女| 日本与韩国留学比较| 日韩制服骚丝袜av| 国产精品av视频在线免费观看| 婷婷精品国产亚洲av| 精品熟女少妇av免费看| 大香蕉久久网| 悠悠久久av| 国产三级在线视频| 悠悠久久av| 91av网一区二区| 国产私拍福利视频在线观看| 亚洲最大成人av| 观看美女的网站| 成人无遮挡网站| 人妻少妇偷人精品九色| 国产精品一二三区在线看| 男插女下体视频免费在线播放| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 99久久精品国产国产毛片| 亚洲高清免费不卡视频| 性插视频无遮挡在线免费观看| 日产精品乱码卡一卡2卡三| 在线观看66精品国产| 亚洲欧美清纯卡通| 欧美日韩乱码在线| 欧美一区二区亚洲| 最后的刺客免费高清国语| 亚洲欧美清纯卡通| 精品99又大又爽又粗少妇毛片| 国产精品美女特级片免费视频播放器| 一级毛片我不卡| 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| 女的被弄到高潮叫床怎么办| 久久久精品大字幕| 波多野结衣巨乳人妻| 色综合色国产| 国产av在哪里看| 亚洲成人久久性| 日韩人妻高清精品专区| 丰满的人妻完整版| 国产高清视频在线观看网站| 成人午夜高清在线视频| 1024手机看黄色片| 亚洲国产精品国产精品| 久久亚洲国产成人精品v| 国产精品一区二区三区四区免费观看 | 成人特级av手机在线观看| 亚洲国产精品成人综合色| 丝袜美腿在线中文| 免费在线观看成人毛片| 国产高清三级在线| 伊人久久精品亚洲午夜| 在线观看av片永久免费下载| 免费不卡的大黄色大毛片视频在线观看 | 国产在线男女| 一个人看的www免费观看视频| 国产亚洲精品久久久久久毛片| 三级男女做爰猛烈吃奶摸视频| 国产综合懂色| 白带黄色成豆腐渣| 国产男靠女视频免费网站| av中文乱码字幕在线| 人人妻,人人澡人人爽秒播| 寂寞人妻少妇视频99o| 久久久午夜欧美精品| 午夜a级毛片| 日韩人妻高清精品专区| 99久久精品热视频| 国产黄色小视频在线观看| 欧美成人a在线观看| 一本一本综合久久| 欧美中文日本在线观看视频| 美女高潮的动态| 国产在线精品亚洲第一网站| 在线播放无遮挡| av福利片在线观看| 久久这里只有精品中国| 少妇猛男粗大的猛烈进出视频 | 中文字幕免费在线视频6| 中文字幕av在线有码专区| 网址你懂的国产日韩在线| 久久欧美精品欧美久久欧美| 日韩欧美三级三区| 插阴视频在线观看视频| 亚洲在线观看片| 国产女主播在线喷水免费视频网站 | 欧美xxxx性猛交bbbb| 亚洲精华国产精华液的使用体验 | 日韩强制内射视频| 晚上一个人看的免费电影| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 国产一区二区三区av在线 | 日韩 亚洲 欧美在线| 18+在线观看网站| 亚洲成人精品中文字幕电影| 性色avwww在线观看| 99热这里只有是精品50| 国产精品福利在线免费观看| 色播亚洲综合网| 国产在视频线在精品| 日本熟妇午夜| 不卡一级毛片| 日产精品乱码卡一卡2卡三| 亚洲精品色激情综合| 国产高清有码在线观看视频| 麻豆av噜噜一区二区三区| 级片在线观看| 国产白丝娇喘喷水9色精品| 国产视频一区二区在线看| 亚洲av电影不卡..在线观看| 欧美成人一区二区免费高清观看| 1024手机看黄色片| a级毛片a级免费在线| 欧美日本亚洲视频在线播放| 可以在线观看毛片的网站| 久久天躁狠狠躁夜夜2o2o| 国产一区二区在线观看日韩| 亚洲第一区二区三区不卡| .国产精品久久| 欧美日韩国产亚洲二区| 熟妇人妻久久中文字幕3abv| 国产 一区 欧美 日韩| 老司机福利观看| 精品久久国产蜜桃| 色哟哟哟哟哟哟| 日韩大尺度精品在线看网址| 一级黄片播放器| 免费搜索国产男女视频| 亚洲真实伦在线观看| 12—13女人毛片做爰片一| 成人欧美大片| 亚洲av成人精品一区久久| 男女那种视频在线观看| 国产又黄又爽又无遮挡在线| 国产91av在线免费观看| 久久草成人影院| 亚洲五月天丁香| 久久精品国产清高在天天线| 久久精品91蜜桃| 国产成人a区在线观看| 看片在线看免费视频| 亚洲国产色片| 一本精品99久久精品77| 在线观看免费视频日本深夜| 欧美日本视频| 国产男靠女视频免费网站| ponron亚洲| 午夜福利高清视频| 国产黄a三级三级三级人| 日日撸夜夜添| 少妇猛男粗大的猛烈进出视频 | 不卡一级毛片| ponron亚洲| 国产高清视频在线播放一区| 18禁黄网站禁片免费观看直播| 少妇丰满av| 国产精品一区二区三区四区久久| 成人漫画全彩无遮挡| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 免费在线观看成人毛片| 久久久久久久久久成人| 国产一区二区在线观看日韩| 亚洲精品影视一区二区三区av| 1024手机看黄色片| 日韩在线高清观看一区二区三区| 久久久久国产精品人妻aⅴ院| 精品一区二区三区人妻视频| 男女边吃奶边做爰视频| 国产淫片久久久久久久久| 国产69精品久久久久777片| 午夜视频国产福利| 91av网一区二区| 亚洲七黄色美女视频| 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| 日韩欧美精品v在线| 天美传媒精品一区二区| 免费黄网站久久成人精品| 国产黄片美女视频| eeuss影院久久| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 亚洲国产日韩欧美精品在线观看| 国产黄片美女视频| 精华霜和精华液先用哪个| 免费大片18禁| 亚洲精品456在线播放app| 赤兔流量卡办理| 国产免费一级a男人的天堂| 久久精品国产清高在天天线| 少妇被粗大猛烈的视频| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 国产成人freesex在线 | av天堂在线播放| 偷拍熟女少妇极品色| 麻豆av噜噜一区二区三区| 国产亚洲精品av在线| 此物有八面人人有两片| 国产黄a三级三级三级人| 亚洲内射少妇av| 成人无遮挡网站| 真实男女啪啪啪动态图| 在线观看66精品国产| 全区人妻精品视频| 丰满的人妻完整版| 最近视频中文字幕2019在线8| 亚洲精品久久国产高清桃花| 尤物成人国产欧美一区二区三区| 看免费成人av毛片| 午夜福利18| 亚洲性夜色夜夜综合| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕 | 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 日韩精品青青久久久久久| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 我的女老师完整版在线观看| 精品久久久久久成人av| 一进一出抽搐gif免费好疼| 欧美zozozo另类| 亚洲av中文字字幕乱码综合| 亚洲av成人av| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 插阴视频在线观看视频| 99久久九九国产精品国产免费| 天堂动漫精品| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 九九在线视频观看精品| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 男女啪啪激烈高潮av片| 一本一本综合久久| 亚洲电影在线观看av| 日日干狠狠操夜夜爽| 久久久精品大字幕| 久久久久久久久久黄片| 日本三级黄在线观看| 男人舔奶头视频| 99riav亚洲国产免费| 色5月婷婷丁香| 床上黄色一级片| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看| 成人鲁丝片一二三区免费| 亚洲成人久久性| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 亚洲内射少妇av| 国产 一区 欧美 日韩| 国产不卡一卡二| 成人av在线播放网站| 全区人妻精品视频| 俺也久久电影网| 看十八女毛片水多多多| 免费人成视频x8x8入口观看| 国产伦一二天堂av在线观看| 欧美性猛交黑人性爽| 国内精品久久久久精免费| 国产成人91sexporn| 久久精品国产99精品国产亚洲性色| 国产午夜福利久久久久久| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜 | 直男gayav资源| 精品人妻视频免费看| 热99re8久久精品国产| 夜夜看夜夜爽夜夜摸| 两个人视频免费观看高清| 91在线观看av| 麻豆国产97在线/欧美| 国产综合懂色| 久久久久久久久大av| 色av中文字幕| 婷婷色综合大香蕉| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 不卡一级毛片| 春色校园在线视频观看| 国产视频一区二区在线看| 69av精品久久久久久| 91在线观看av| a级毛片a级免费在线| 99热精品在线国产| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看 | 国产精品人妻久久久久久| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美| 国产伦精品一区二区三区视频9| 久99久视频精品免费| 国产精品久久久久久久电影| 99riav亚洲国产免费| 日韩欧美在线乱码| a级毛片a级免费在线| 真人做人爱边吃奶动态| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片| 国产男靠女视频免费网站| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 久久亚洲国产成人精品v| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 精品乱码久久久久久99久播| 欧美国产日韩亚洲一区| 国产蜜桃级精品一区二区三区| 中出人妻视频一区二区| 亚洲乱码一区二区免费版| 少妇熟女欧美另类| 蜜臀久久99精品久久宅男| 少妇熟女欧美另类| 午夜福利18| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 日韩 亚洲 欧美在线| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 神马国产精品三级电影在线观看| 国产精品一区www在线观看| 国产高潮美女av| 亚洲欧美日韩高清专用| 国产女主播在线喷水免费视频网站 | 国产av麻豆久久久久久久| 十八禁网站免费在线| av黄色大香蕉| 日韩欧美三级三区| 99热这里只有是精品50| 麻豆国产97在线/欧美| 国产精品野战在线观看| 亚洲性夜色夜夜综合| 少妇的逼水好多| 男女边吃奶边做爰视频| 亚洲国产日韩欧美精品在线观看| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 久久6这里有精品| 看免费成人av毛片| 97热精品久久久久久| 在线天堂最新版资源| 久久九九热精品免费| 我的老师免费观看完整版| 国产真实乱freesex| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 日本-黄色视频高清免费观看| 久久午夜福利片| 网址你懂的国产日韩在线| 18禁在线无遮挡免费观看视频 | 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 少妇人妻精品综合一区二区 | 日产精品乱码卡一卡2卡三| 夜夜夜夜夜久久久久| 国产免费一级a男人的天堂| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 99热全是精品| 久久国产乱子免费精品| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆 | 男人狂女人下面高潮的视频| 欧美bdsm另类| 尤物成人国产欧美一区二区三区| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 国产精品三级大全| 久久久久久久久久成人| 嫩草影院入口| 五月玫瑰六月丁香| 国产在线精品亚洲第一网站| 黑人高潮一二区| 亚洲人成网站高清观看| 国产一区二区在线av高清观看| 国产色婷婷99| 综合色av麻豆| 久久久久国产网址| 亚洲欧美清纯卡通| 日韩人妻高清精品专区| 在线看三级毛片| 18禁黄网站禁片免费观看直播| 久久久国产成人精品二区| 最新中文字幕久久久久| 老师上课跳d突然被开到最大视频| 亚洲欧美成人综合另类久久久 | 1024手机看黄色片| 男人舔奶头视频| 国产69精品久久久久777片| 婷婷色综合大香蕉| 国产aⅴ精品一区二区三区波| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 99久久精品热视频| 99热精品在线国产| 少妇裸体淫交视频免费看高清| 伦精品一区二区三区| 天美传媒精品一区二区| .国产精品久久| 在现免费观看毛片| 午夜福利在线在线| 成熟少妇高潮喷水视频| 亚洲欧美成人综合另类久久久 | 免费人成视频x8x8入口观看| 婷婷精品国产亚洲av| 午夜免费激情av| 亚洲电影在线观看av| 国产真实乱freesex| 91久久精品电影网| 啦啦啦啦在线视频资源| 草草在线视频免费看| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久久久久| 精品一区二区三区视频在线观看免费| 最后的刺客免费高清国语| 1000部很黄的大片| 夜夜夜夜夜久久久久| 婷婷色综合大香蕉| 中出人妻视频一区二区| 九九久久精品国产亚洲av麻豆| 一本精品99久久精品77| a级毛片免费高清观看在线播放| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| 免费观看在线日韩| 国产视频内射| 精品一区二区免费观看| 看片在线看免费视频| 18禁在线播放成人免费| 亚洲经典国产精华液单| 欧美色视频一区免费| 精品人妻偷拍中文字幕| 色av中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 看黄色毛片网站| 免费看美女性在线毛片视频| 特级一级黄色大片| 日本爱情动作片www.在线观看 | 97热精品久久久久久| 欧美一区二区精品小视频在线| 在线看三级毛片| 热99在线观看视频| 日日摸夜夜添夜夜添小说| 国产精品女同一区二区软件| 欧美区成人在线视频| 日韩 亚洲 欧美在线| eeuss影院久久| 精品久久久久久久久久免费视频| 欧美性猛交黑人性爽| 少妇高潮的动态图| 久久久色成人| 美女大奶头视频| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 亚洲无线观看免费| 一本久久中文字幕| 国产三级在线视频| 日本在线视频免费播放| 国产成人福利小说| 婷婷亚洲欧美| 能在线免费观看的黄片| 一a级毛片在线观看| 又黄又爽又刺激的免费视频.| 97在线视频观看| 99久久九九国产精品国产免费| 禁无遮挡网站| 国产真实伦视频高清在线观看| 直男gayav资源| a级毛片免费高清观看在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国内视频| 国产乱人视频| 亚洲国产精品久久男人天堂| 一级毛片电影观看 | 啦啦啦啦在线视频资源| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 欧美成人a在线观看| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 波多野结衣高清作品| 国产伦一二天堂av在线观看| 国模一区二区三区四区视频| 婷婷精品国产亚洲av在线| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻| 日韩欧美免费精品| 三级男女做爰猛烈吃奶摸视频| 国产人妻一区二区三区在| 91av网一区二区| 免费观看精品视频网站| 国产精品女同一区二区软件| 免费观看在线日韩| 国产v大片淫在线免费观看| 国产欧美日韩精品亚洲av| 人妻制服诱惑在线中文字幕| 1024手机看黄色片| 男女下面进入的视频免费午夜| 日本一本二区三区精品| 嫩草影院新地址| 午夜福利在线观看免费完整高清在 | 亚洲一区高清亚洲精品| 亚洲av.av天堂| 色5月婷婷丁香| 国产亚洲精品久久久com| 午夜影院日韩av| 久久精品国产鲁丝片午夜精品| 97在线视频观看| 国产高清不卡午夜福利| 桃色一区二区三区在线观看| 九九久久精品国产亚洲av麻豆| 可以在线观看毛片的网站| av在线播放精品| 人妻夜夜爽99麻豆av| 校园春色视频在线观看| 国产黄a三级三级三级人| 久久鲁丝午夜福利片| 国产欧美日韩一区二区精品| 国产 一区精品| 国产精品电影一区二区三区| 成人午夜高清在线视频| 日韩av不卡免费在线播放| 亚洲精品乱码久久久v下载方式| 色哟哟·www| 亚洲成人av在线免费| 欧美色欧美亚洲另类二区| 我的女老师完整版在线观看| 欧美绝顶高潮抽搐喷水| 国产精品一区www在线观看| 久久婷婷人人爽人人干人人爱| 欧美潮喷喷水| 国产精品久久久久久av不卡| 日韩精品青青久久久久久| 国产精品永久免费网站| 狂野欧美激情性xxxx在线观看| av天堂中文字幕网| 亚洲一区高清亚洲精品| 国产成年人精品一区二区| 国产精品一区二区三区四区免费观看 | 黄色一级大片看看| 在线免费观看不下载黄p国产| 久久精品夜夜夜夜夜久久蜜豆| 联通29元200g的流量卡| 亚洲国产精品成人综合色| 99国产极品粉嫩在线观看| 午夜久久久久精精品| 少妇裸体淫交视频免费看高清| 寂寞人妻少妇视频99o| 欧洲精品卡2卡3卡4卡5卡区| 精品久久国产蜜桃| 欧美区成人在线视频| 中出人妻视频一区二区| 亚洲熟妇熟女久久| 白带黄色成豆腐渣| 非洲黑人性xxxx精品又粗又长| 婷婷六月久久综合丁香| 久久久久久久久中文| 18禁裸乳无遮挡免费网站照片| 2021天堂中文幕一二区在线观| 一本精品99久久精品77|