• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxide-supported metal catalysts for anaerobic NAD+ regeneration with concurrent hydrogen production

    2024-04-05 02:28:16JinweiLiJosephBurnettCludiMrtinezMcisRussellHoweXiodongWng
    Chinese Chemical Letters 2024年2期

    Jinwei Li ,Joseph W.H.Burnett ,Cludi Mrtinez Mcis ,Russell F.Howe ,Xiodong Wng,*

    a Chemical Engineering,School of Engineering,Lancaster University,Lancaster LA1 4YW,United Kingdom

    b Chemistry Department,University of Aberdeen,Aberdeen AB24 3UE,United Kingdom

    Keywords: NAD+ regeneration Heterogeneous catalyst Hydrogenase mimic Hydrogen binding energy Hydrogen production

    ABSTRACT We report SiO2-supported monometallic Pt,Pd,Au,Ni,Cu and Co catalysts for proton-driven NAD+ regeneration,co-producing H2.All metals are fully selective to NAD+ where the order of turnover frequencies(Pt >Pd >Cu >Au,Ni and Co) coincides with those otherwise observed in electrochemical hydrogen evolution reactions.This has revealed that NADH is capable of converting the metal sites into a “cathode”without an external potential and the NADH to NAD+ reaction involves transferring electron and hydrogen atom separately.Electron-deficient Ptδ+(on CeO2) enhances TOF and the heterogeneous Pt/CeO2 catalyst is recyclable without losing any activity/selectivity.

    Biocatalysis using enzymes has attracted increasing interest in recent decades due to its outstanding activity and chemo-,regioand stereo-selectivity in biosensor,pharmaceutical and organic synthesis [1,2].As most enzymes intrinsically work under benign conditions,they are also able to lower energy costs,avoid extreme pH requirements as well as reduce environmental hazards [3-8].Dehydrogenases (DHs) are a group of important enzymes that catalyze reversible oxidative transformations of hydroxyls and amines(Fig.1a),some of which are novel reaction routes over conventional organic synthesis.The usage of DHs is limited by their dependence on the NAD(P)H/NAD(P)+cofactor pair (Fig.1b),which act as an electron carrier and is consumed stoichiometrically in enzymatic redox reactions.Due to the high cost of these cofactors (e.g.,$1400 and $2600 per mol of NAD+and NADH,respectively) [9],a regeneration system is essential to make these biosynthetic processes viable (Fig.1c) [10,11].Compared to the commercial uses of NAD(P)H and its regeneration,less attention has been paid to the regeneration of NAD(P)+,hampering the application of DH-catalyzed oxidative transformations [12].

    Fig.1.Schematic of dehydrogenases (DHs)-catalyzed oxidative biotransformations(a),molecular structure of cofactors (b) and catalytic NAD+ regeneration (c).Solid and dash arrows in (a) represent reversible oxidative and reductive transformations catalyzed by DHs,respectively.R: adenine dinucleotide.

    To date,enzymatic NAD+regeneration using a second enzyme as the regeneration catalyst (e.g.,lactate dehydrogenases,glutamate dehydrogenases,and particularly,NADH oxidases (NOXs)) has been mostly studied [13-16].Although NOXs can generate H2O (from O2) as a clean product [15],the costliness,instability,and difficulty in downstream separation of enzymes remain challenging.New catalytic regeneration approaches based on homogeneous [17,18],electro-[19-21],and photo-catalysis [22-25] have been reported but are still at developmental stages.Improvements are required in regeneration efficiency (selectivity and activity),ease of preparation/separation,and system compatibility [21,26-28].

    The use of solid catalysts for NAD+regeneration is a newly developed method where only supported Au,Pt and graphene oxide(Cu2+ion-doped) have so far been studied [29-31].The advantages of using supported metal catalysts lie in their low-cost preparation/setup,ease of separation,recyclability and scaling-up,and stable physicochemical properties.The previously reported catalytic systems were only active when using strong oxidant,molecular O2.We have recently established a new regeneration pathway employing activated carbon supported Pt that promoted NAD+regeneration using the readily available solution protons and concurrently produce H2(Eq.1) [32].Oxidizing NADH with a proton is more challenging as the latter is a significantly weaker oxidant than O2but it offers the possibility of avoiding the O2-liquid interfacial issues of deactivation [33-38] and has better potential for large scale applications with the further benefit of producing H2.

    Carbon has been an excellent carrier for cofactor regeneration due to its own capability in electron transfer [39,40].However,this makes it difficult to decouple the effects of the support and the metal (i.e.,Pt,Pd,etc.) which hinders understanding of the role of the metal sites.In this work,we aim to address this gap of knowledge in proton-driven NAD(P)+regeneration.For the first time,a group of monometallic catalysts comprising Pt,Pd,Au,Ni,Cu or Co supported on non-conductive metal oxides (SiO2,MgO and CeO2)have been examined,with the role of metal revealed.Very surprisingly,with its capacity of donating electrons,NADH has effectively made a thermal/heterogeneous catalytic process “electrocatalytic”,governed by the hydrogen evolution reactions.

    Full details of the materials used,catalyst preparation and characterization procedures are given in Supporting information.Catalysts were characterized by chemical analysis,X-ray powder diffraction,transmission electron microscopy,surface area and pore size analysis,and hydrogen temperature-programmed reduction.NAD+regeneration reactions were performed as described in Supporting information.The NADH concentration and conversion were determined by tracing the UV absorbance at 340 nm while the NAD+concentration and selectivity were monitored using enzymatic assays described in Supporting information and in our previous work [41].The reaction rate constants (k) were determined following first order kinetics.Turnover frequencies (TOF: NADH reacted per surface metal atom per hour) were calculated from the rate constants and the mean particle sizes obtained from TEM analysis,assuming spherical particles.The amount of hydrogen produced was measured volumetrically as described in Supporting information,and the gas composition confirmed by gas chromatography.

    Table 1 summarizes the characterization data for the SBA-15 supported Pt,Pd,Au,Ni,Co and Cu catalysts tested for NAD+regeneration in this work.All catalysts showed similar distributions of metal particle sizes (TEM images in Fig.2) and mean particle diameters of around 4 nm,and nitrogen adsorption/desorption showed negligible pore blockage of the SBA-15 following addition of metal.

    Table 1Catalyst characterization of all supported metal catalysts used.

    Fig.2.Representative TEM images and size distribution histograms of the reduced catalysts: Pt (a),Pd (b),Au (c),Ni (d),Co (e) and Cu (f) on SBA-15.

    The data shown in Fig.3a are NADH conversions after 1 h of reaction at pH 7.As illustrated in Fig.3a,only SBA-15 supported Pt,Pd and Cu give NADH conversions significantly higher than that seen in the absence of catalyst.The uncatalyzed decay of NADH is due to hydration of C=C bonds in the nicotinamide ring,which causes an increase in absorbance at around 290 nm and does not form NAD+[42,43].Fig.S4 (Supporting information)illustrates this (homogeneously) acid catalyzed undesirable reaction.Fig.3b shows time dependence of the UV-vis spectrum during NADH conversion over Pt/SBA-15 at pH 7.The decreasing absorbance at 340 nm due to the nicotinamide ring is not accompanied by any change at 290 nm,indicating that the undesired hydration reaction does not occur in the presence of the heterogeneous catalyst.Fig.3c plots NADH concentrationversustime at three different pHs and the corresponding first order plots are given in Fig.3d.Clearly,an acidic environment gave the highest conversion(i.e.,80% at pH 5,30% at pH 7 and 15% at pH 9).The obvious promoting effect of acidic conditions indicates the participation of H+in the regeneration reaction.A further regeneration test in DMSO,a non-proton polar solvent,was carried out in lieu of buffer solution.Since DMSO is incapable of providing H+,the NADH concentration remained unchanged after 1 h,showing the need of protons for the reaction to occur in contrast to the results obtained for the reaction in a phosphate buffer (Fig.S5 in Supporting information).Interestingly,a significant consumption (seen from 340 nm)was observed after an addition (1 mL) of concentrated phosphoric acid.These results further confirm the essential role of protons in the concerted NADH conversion,rather than a sequential step.Nevertheless,the peak rise at 290 nm was also observed which is an indicator of NADH decay product.This process was inevitable as the concentrated acid also contained water resulting in the hydration of NADH.However,this effect was inconsequential as it happens at a lower rate than that of the catalytic NAD+regeneration (Fig.3d and Fig.S4c).The first order kinetics demonstrated here is contrast with the second order kinetics reported for the oxygen-assisted NADH oxidation over platinum nanoparticles [31],suggesting a different reaction mechanism is operating.The selectivity of the NADH conversion to NAD+was determined by enzymatic assay of the NAD+concentration.For example,converting 0.255 mmol/L of NADH over Pt/SBA-15 at pH 7 for 1 h (Fig.3a) produced 0.250 mmol/L of NAD+,indicating close to 100% selectivity.

    Fig.3.NAD+ regeneration promoted by the SBA-15 supported metal catalysts: NADH conversions over different metals (a),UV-vis spectrum scans of NAD+ regeneration over Pt/SBA-15 (b),temporal NADH concentration and conversion at different pH over Pt/SBA-15 (c) and first order kinetic plots (d).Reaction conditions: 37°C,0.5 mmol/L NADH,pH 7 (for a and b),100 mL/min N2 flow,1 h,60 mg (a,b) or 30 mg (c,d) of catalyst.

    In a separate (scaled up) experiment,the production of hydrogen during the reaction was measured.After 12 h of reaction at pH 7 with 120 mg of catalyst and an initial NADH concentration of 2 mmol/L,the amount of hydrogen produced (4.2 mL) was close to that expected (4.8 mL) for the observed NADH conversion of 2 mmol/L and the reaction stoichiometry in Eq.1.Thus,despite the weaker oxidation potential than O2(0.82 V forE0(O2/H2O)vs.-0.41 V forE0(H+/H2),at pH 7) [44],H+was able to drive the regeneration in the presence of Pt.Opposed to the existing O2-assisted attempts on supported Au and Pt,the catalyst in this work functionally mimicked (NAD(H)-linked) hydrogenases which catalyze the conversion of NADH to NAD+and H2(Eq.1).

    Two possible scenarios for the mechanism of the reaction in Eq.1 are illustrated in Fig.4.The first (Fig.4a) involves a direct hydride transfer to a proton to form H2at the platinum,while the second (Fig.4b) is an indirect hydride transfer and involves the electron and the extracted/adsorbed hydrogen atom being transferred separately to a proton to form hydrogen.The observed sequence of activities of the different metals supported on SBA-15(Pt>>Pd>Cu>Ni,Co,Au) is in excellent agreement with that of the electrochemical hydrogen evolution reaction (HER) in which electrons are combined with protons at a cathode to form hydrogen,viaeither the Volmer-Heyrovsky (Eqs.2 and 3) or the Volmer-Tafel (Eqs.2 and 4) sequences [45-48].

    Fig.4.Plausible reaction pathway of NAD+ regeneration over a metal surface.The gray rectangle and star (*) represent metal particle and its surface site,respectively.

    The hydrogen binding energy (HBE) has been well established for correlating with the HER activity of metals [45-48].The high HER activity of platinum is attributed to the optimum hydrogen binding affinity as revealed in the volcano plots (Fig.S6 in Supporting information).NADH is a well-known electron donor in nature.When it is continuously supplied/activated on a metal site such as platinum,the surface environment may be considered as mimicking an electrochemical HER at a cathode.Given the excellent agreement in the trends of metal activity between the two types of reaction,it may be argued that a mechanism for NAD+regeneration involving steps equivalent to the HER (Fig.4b) is plausible.The metal acts as a reservoir to accommodate hydrogen atoms (Had)and transfer electrons.Concertedly,an electron from NADH combines with a proton from the solution which then reacts with Hadto release H2(i.e.,the Volmer-Heyrovsky process (Eqs.2 and 3).Alternatively,two Hadcan also react to form H2(i.e.,the Volmer-Tafel process (Eqs.2 and 4).The key is that both processes rely on Hadinstead of hydride as an intermediate.Indeed,Attardetal.claimed that the formation of hydride on Pt (i.e.,Fig.4a) is thermodynamically unfavorable in aqueous solutions,further supporting the above analysis [49].The rate determining step of this NADH to NAD+conversion is therefore the HER,as opposed to NADH adsorption/activation or NAD+desorption.

    The electronic properties of oxide supported platinum catalysts are known to be influenced by the nature of the support [50,51].In Fig.5a,we have compared the conversion of NADH under the same reaction conditions over SBA-15,CeO2and MgO supported platinum.All three catalysts contain similar platinum loadings and the mean particle sizes,and particle size distributions are closely similar (see TEM analyses in Figs.S7c and d in Supporting information),ruling out any effect of particle size on the activity.Additionally,the effect of the oxide supports (coming from different porous structure) was also discarded by examining NADH conversion over bare supports,as shown in Fig.S8 (Supporting information).The TOFs calculated from first order plots are respectively 39,30 and 9 h-1for Pt supported on CeO2,SBA-15 and MgO.All three catalysts were completely selective to NAD+as determined by enzymatic assays.XPS spectra in the 4f region (Fig.5b) show that platinum on CeO2was electron deficient relative to metallic platinum black (Pt 4f7/2binding energy of 72.5 eV compared with 71.6 eV for platinum(0),Fig.S9 in Supporting information),whereas platinum on SBA-15 has a 4f7/2binding energy of 71.6 eV and platinum on MgO 71.4 eV.We suggested that the electron deficient nature of the platinum on CeO2led to a reduced hydrogen binding strength,favoring the desorption of hydrogen.Fig.5c shows the correlation between TOF and Pt 4f7/2binding energy.A similar conclusion has been reported concerning the advantage of electron deficient platinum for HER kinetics [52-54].

    Fig.5.NADH conversion over Pt/CeO2,Pt/MgO and Pt/SBA-15 catalysts (a),Pt 4f XPS spectra of the catalysts (b),correlation of TOF with binding energy (c) and catalyst recycle test with Pt/CeO2 (d).Reaction conditions: 0.5 mmol/L NADH,100 mL 0.1 mol/L pH 7 PBS,37°C,700 rpm stir,100 mL/min N2,60 (for a) or 120 mg (for d)catalyst.Error bars obtained from three independent experiments.

    Finally,we tested the recyclability of the heterogeneous supported Pt catalyst using the most active Pt/CeO2as representative.To reach a full conversion,double amount of catalyst (120 mg) was used,and reactions were run with three fresh batches of NADH feed.Results are shown in Fig.5d.After the first run,a conversion of 100% was reached in 1.5 h and the doubled initial reaction rate (0.019 mmol L-1h-1) compared to 0.009 mmol L-1h-1(Fig.5a)confirmed that the reactions were still operating under kinetic control region (i.e.,catalyst was not in excess).The unchanged performance in the three successive reactions proved that there was no catalyst deactivation (e.g.,leaching,fouling or poisoning).In addition,ICP analysis of the spent catalyst shows that the Pt loading was unchanged (1.10vs.1.08 wt%) before and after reactions(Table 1).

    For the first time,we proved the feasibility of H2productionviaH+-driven NAD+regeneration catalyzed by oxide-supported metal catalysts.Pt was shown as the most promising active phase among tested metals (Au,Pd,Ni,Cu and Co,all supported on SBA-15),where NADH was converted to NAD+with full selectivity.The trend of metal activity was found following the well-established HER volcano pattern correlated with hydrogen binding energy,confirming a hydrogen-electron transfer mechanism (as opposed to hydride transfer) regarding the hydrogen formation.Electronic structure of the Pt nanoparticles (tuned by using SBA-15,MgO and CeO2) was important for catalysis where electron-deficient Pt on nonconductive metal oxides favors the activity.This may be due to the lowered hydrogen binding strength with Pt.The results shed light on the design of heterogeneous catalytic systems for protondriven NAD+regeneration as well as a potential route for H2production by bio-oxidation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the EPSRC New Horizons grants(Nos.EP/V048635/1 and EP/X018172/1).We are also grateful for support from the UK Catalysis Hub funded by EPSRC grant reference EP/R026645/1.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108737.

    久久久久久久午夜电影| 久久久久久国产a免费观看| 日本免费a在线| 亚洲成av人片免费观看| 99热这里只有精品一区 | 午夜福利在线在线| 天堂√8在线中文| 欧美成人一区二区免费高清观看 | 一进一出好大好爽视频| 国产精品 国内视频| 无人区码免费观看不卡| 日日夜夜操网爽| 黄色成人免费大全| av国产免费在线观看| 久久香蕉国产精品| 在线观看免费午夜福利视频| 窝窝影院91人妻| 99视频精品全部免费 在线 | 中文字幕高清在线视频| 欧美+亚洲+日韩+国产| 岛国视频午夜一区免费看| 色播亚洲综合网| 狂野欧美白嫩少妇大欣赏| 国产在线精品亚洲第一网站| 麻豆成人av在线观看| 中文字幕人成人乱码亚洲影| 俄罗斯特黄特色一大片| 美女高潮的动态| 丁香六月欧美| 日本黄色视频三级网站网址| 久久久久亚洲av毛片大全| 欧美在线黄色| 久久中文看片网| 亚洲五月天丁香| 色av中文字幕| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 香蕉丝袜av| aaaaa片日本免费| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 久久中文看片网| 18禁裸乳无遮挡免费网站照片| 欧美中文综合在线视频| 日本成人三级电影网站| 美女高潮喷水抽搐中文字幕| 在线观看日韩欧美| 少妇的逼水好多| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 欧美丝袜亚洲另类 | 一夜夜www| 桃色一区二区三区在线观看| 免费在线观看视频国产中文字幕亚洲| 午夜福利欧美成人| 老鸭窝网址在线观看| 人妻久久中文字幕网| 又黄又粗又硬又大视频| 91av网一区二区| 在线观看美女被高潮喷水网站 | 国产视频一区二区在线看| 欧美在线黄色| 欧美xxxx黑人xx丫x性爽| 色av中文字幕| 亚洲国产高清在线一区二区三| 97超视频在线观看视频| 精品免费久久久久久久清纯| 别揉我奶头~嗯~啊~动态视频| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 天堂动漫精品| 精品无人区乱码1区二区| 免费一级毛片在线播放高清视频| ponron亚洲| 久久久水蜜桃国产精品网| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 国内少妇人妻偷人精品xxx网站 | 久久香蕉精品热| 国产欧美日韩一区二区三| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 午夜视频精品福利| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久 | 国产单亲对白刺激| 天天一区二区日本电影三级| 免费av毛片视频| 色精品久久人妻99蜜桃| 亚洲天堂国产精品一区在线| 三级国产精品欧美在线观看 | 国产伦在线观看视频一区| 免费看a级黄色片| 听说在线观看完整版免费高清| 精品一区二区三区四区五区乱码| 日本熟妇午夜| 中文字幕人成人乱码亚洲影| 最近最新中文字幕大全免费视频| 熟女少妇亚洲综合色aaa.| 亚洲色图av天堂| 美女午夜性视频免费| 欧美日韩乱码在线| 久99久视频精品免费| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 99热只有精品国产| 黄色片一级片一级黄色片| 亚洲人成网站高清观看| 欧美+亚洲+日韩+国产| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 岛国在线观看网站| 国产精品一及| 国产成人av教育| netflix在线观看网站| 久久人人精品亚洲av| 18禁美女被吸乳视频| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 久久久久九九精品影院| 国产精品电影一区二区三区| 99re在线观看精品视频| 最近在线观看免费完整版| 99久久精品一区二区三区| 国产精品影院久久| 两个人视频免费观看高清| 午夜成年电影在线免费观看| 午夜福利在线观看免费完整高清在 | 99久国产av精品| 白带黄色成豆腐渣| 国产私拍福利视频在线观看| tocl精华| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片| 毛片女人毛片| 好看av亚洲va欧美ⅴa在| 午夜a级毛片| 欧美乱妇无乱码| 成人精品一区二区免费| 美女午夜性视频免费| 性色avwww在线观看| 怎么达到女性高潮| 男女下面进入的视频免费午夜| 欧美xxxx黑人xx丫x性爽| 看免费av毛片| 精华霜和精华液先用哪个| 欧美黑人巨大hd| 男女那种视频在线观看| 亚洲精品一区av在线观看| 91在线精品国自产拍蜜月 | 日本成人三级电影网站| 成人特级av手机在线观看| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 亚洲av日韩精品久久久久久密| 久久久国产成人精品二区| av福利片在线观看| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 曰老女人黄片| 亚洲中文av在线| 欧美中文日本在线观看视频| 小说图片视频综合网站| 国产精品av久久久久免费| 成人亚洲精品av一区二区| 精品国产亚洲在线| 欧美成人性av电影在线观看| 天堂网av新在线| 国产男靠女视频免费网站| 欧美黑人巨大hd| 国产精品电影一区二区三区| 巨乳人妻的诱惑在线观看| 国产精华一区二区三区| 91在线观看av| 久久99热这里只有精品18| 1024手机看黄色片| 婷婷亚洲欧美| 国产精品自产拍在线观看55亚洲| 男女那种视频在线观看| 日本与韩国留学比较| 欧美黑人巨大hd| 国产精品电影一区二区三区| 99久久精品热视频| 国产精品美女特级片免费视频播放器 | 色吧在线观看| 99热6这里只有精品| 曰老女人黄片| 变态另类丝袜制服| 特大巨黑吊av在线直播| 亚洲中文字幕一区二区三区有码在线看 | www.熟女人妻精品国产| 免费看a级黄色片| 国模一区二区三区四区视频 | 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| 一级a爱片免费观看的视频| a在线观看视频网站| 中文字幕av在线有码专区| 午夜福利欧美成人| aaaaa片日本免费| 日本成人三级电影网站| a级毛片a级免费在线| 欧美日韩福利视频一区二区| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 国产人伦9x9x在线观看| www日本黄色视频网| 一本久久中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线观看网站| 国产69精品久久久久777片 | 国内精品久久久久久久电影| 久久精品91蜜桃| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 亚洲成a人片在线一区二区| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 亚洲 国产 在线| 色播亚洲综合网| 波多野结衣巨乳人妻| 黄色女人牲交| www国产在线视频色| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 看免费av毛片| 丰满人妻一区二区三区视频av | 日韩欧美在线二视频| 嫩草影视91久久| 久久久久久久精品吃奶| 亚洲专区字幕在线| 国产三级黄色录像| 午夜精品一区二区三区免费看| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲av嫩草精品影院| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 午夜福利视频1000在线观看| 黄色成人免费大全| 99国产精品一区二区蜜桃av| 亚洲专区字幕在线| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| 一区福利在线观看| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 国产精品99久久久久久久久| 成人特级av手机在线观看| 一本精品99久久精品77| 美女午夜性视频免费| 国产麻豆成人av免费视频| 女同久久另类99精品国产91| av视频在线观看入口| 国产欧美日韩精品一区二区| 丰满人妻一区二区三区视频av | 九色国产91popny在线| 久久国产乱子伦精品免费另类| 亚洲国产色片| 身体一侧抽搐| 国产精品 国内视频| 搡老熟女国产l中国老女人| 97超视频在线观看视频| 国产人伦9x9x在线观看| 草草在线视频免费看| 亚洲欧美激情综合另类| 国内少妇人妻偷人精品xxx网站 | 少妇人妻一区二区三区视频| 在线观看日韩欧美| 麻豆久久精品国产亚洲av| 色播亚洲综合网| 在线观看舔阴道视频| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 午夜影院日韩av| 久9热在线精品视频| 一个人看的www免费观看视频| 国产精品九九99| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 最近最新免费中文字幕在线| 99精品在免费线老司机午夜| 最新中文字幕久久久久 | 国产高清视频在线播放一区| 国产成人影院久久av| 免费看光身美女| 露出奶头的视频| 日本一本二区三区精品| 最新中文字幕久久久久 | 男人舔女人的私密视频| 操出白浆在线播放| 亚洲成人久久性| a在线观看视频网站| 手机成人av网站| 亚洲性夜色夜夜综合| 国产欧美日韩精品一区二区| 国产黄a三级三级三级人| 真实男女啪啪啪动态图| 国产高清激情床上av| 色视频www国产| 91字幕亚洲| 久久性视频一级片| 熟女电影av网| 中国美女看黄片| 国产精品乱码一区二三区的特点| 国产精品爽爽va在线观看网站| 精品久久久久久久久久免费视频| 欧美黄色片欧美黄色片| 91老司机精品| 97超视频在线观看视频| 日本一本二区三区精品| 亚洲,欧美精品.| 蜜桃久久精品国产亚洲av| 亚洲美女黄片视频| av片东京热男人的天堂| 久久久久久人人人人人| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 激情在线观看视频在线高清| av视频在线观看入口| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 久久久久免费精品人妻一区二区| or卡值多少钱| 人人妻人人看人人澡| 女生性感内裤真人,穿戴方法视频| 国产 一区 欧美 日韩| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| avwww免费| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 精品一区二区三区视频在线 | 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 岛国视频午夜一区免费看| 国产aⅴ精品一区二区三区波| 国产精品久久久久久精品电影| 午夜福利成人在线免费观看| 国产精品av视频在线免费观看| 亚洲第一欧美日韩一区二区三区| 美女大奶头视频| aaaaa片日本免费| 神马国产精品三级电影在线观看| 99热6这里只有精品| www.自偷自拍.com| 两人在一起打扑克的视频| 国产爱豆传媒在线观看| 久99久视频精品免费| 一区二区三区高清视频在线| 精品熟女少妇八av免费久了| 国产三级中文精品| 精品一区二区三区四区五区乱码| 午夜影院日韩av| e午夜精品久久久久久久| 国产极品精品免费视频能看的| 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 两性夫妻黄色片| 在线观看免费视频日本深夜| 午夜精品在线福利| 999久久久国产精品视频| 麻豆成人午夜福利视频| 97碰自拍视频| 国产精品亚洲av一区麻豆| 女人高潮潮喷娇喘18禁视频| 欧美色欧美亚洲另类二区| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看| 无遮挡黄片免费观看| 日本撒尿小便嘘嘘汇集6| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 国产精品影院久久| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲| 日本在线视频免费播放| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 成年女人永久免费观看视频| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频| 欧美性猛交╳xxx乱大交人| 久久精品国产综合久久久| 亚洲九九香蕉| 欧美不卡视频在线免费观看| a级毛片在线看网站| 国产亚洲av高清不卡| 一边摸一边抽搐一进一小说| 成人特级黄色片久久久久久久| 一本久久中文字幕| 久久久久久人人人人人| 亚洲人成电影免费在线| 此物有八面人人有两片| aaaaa片日本免费| 日韩成人在线观看一区二区三区| www.精华液| 男人舔女人下体高潮全视频| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 脱女人内裤的视频| 欧美性猛交黑人性爽| 久久久久久久久中文| 偷拍熟女少妇极品色| 亚洲一区二区三区不卡视频| 免费搜索国产男女视频| 成年女人看的毛片在线观看| 99久久国产精品久久久| 97人妻精品一区二区三区麻豆| 欧美一级毛片孕妇| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 嫩草影院精品99| 欧美乱色亚洲激情| 91久久精品国产一区二区成人 | 悠悠久久av| 在线免费观看不下载黄p国产 | 午夜久久久久精精品| 国产精品免费一区二区三区在线| 国产伦精品一区二区三区四那| 国产精品自产拍在线观看55亚洲| 麻豆成人av在线观看| 最近视频中文字幕2019在线8| 久久精品亚洲精品国产色婷小说| 欧美在线一区亚洲| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器 | 黄片大片在线免费观看| 亚洲专区中文字幕在线| 美女高潮的动态| 一区福利在线观看| 午夜精品一区二区三区免费看| 亚洲av日韩精品久久久久久密| 成人永久免费在线观看视频| 免费人成视频x8x8入口观看| 亚洲中文字幕一区二区三区有码在线看 | 一二三四在线观看免费中文在| a在线观看视频网站| 一进一出抽搐gif免费好疼| 99久久国产精品久久久| 中文字幕人成人乱码亚洲影| 黑人欧美特级aaaaaa片| 欧美一区二区国产精品久久精品| 国产伦一二天堂av在线观看| 夜夜爽天天搞| 999久久久精品免费观看国产| 无人区码免费观看不卡| 色噜噜av男人的天堂激情| 国产aⅴ精品一区二区三区波| 麻豆国产97在线/欧美| 亚洲成av人片在线播放无| 国产成人精品久久二区二区91| 国产精品精品国产色婷婷| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 国产亚洲精品一区二区www| 九九久久精品国产亚洲av麻豆 | 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 真人一进一出gif抽搐免费| 国产精品一区二区精品视频观看| 国内毛片毛片毛片毛片毛片| 人人妻人人看人人澡| 国产三级黄色录像| 波多野结衣巨乳人妻| 久久久久久大精品| 窝窝影院91人妻| 国产精品一区二区三区四区久久| 色综合欧美亚洲国产小说| 亚洲精品在线观看二区| 国产美女午夜福利| 国产高潮美女av| 美女cb高潮喷水在线观看 | a级毛片在线看网站| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 欧美乱色亚洲激情| 黄频高清免费视频| 韩国av一区二区三区四区| 国产精品九九99| 成人欧美大片| 久久香蕉国产精品| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 啦啦啦观看免费观看视频高清| 国产成年人精品一区二区| 亚洲欧美日韩高清在线视频| 岛国视频午夜一区免费看| 国产av麻豆久久久久久久| 观看美女的网站| 全区人妻精品视频| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 国产在线精品亚洲第一网站| 精品国产乱码久久久久久男人| 国产精品98久久久久久宅男小说| 别揉我奶头~嗯~啊~动态视频| 搡老岳熟女国产| 精品一区二区三区av网在线观看| 日本免费a在线| 亚洲电影在线观看av| 夜夜夜夜夜久久久久| 久久天堂一区二区三区四区| 欧美高清成人免费视频www| 免费人成视频x8x8入口观看| 精品电影一区二区在线| 亚洲国产中文字幕在线视频| 国产av不卡久久| 成人高潮视频无遮挡免费网站| 久久午夜亚洲精品久久| 18禁黄网站禁片免费观看直播| 观看免费一级毛片| 在线观看美女被高潮喷水网站 | 亚洲欧美日韩高清在线视频| 18禁美女被吸乳视频| 日本黄大片高清| 亚洲精品456在线播放app | 小蜜桃在线观看免费完整版高清| 嫩草影院入口| 男人舔女人的私密视频| 国产精品 欧美亚洲| 亚洲精品国产精品久久久不卡| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 午夜福利欧美成人| 丁香六月欧美| 精品久久久久久久末码| 成人国产一区最新在线观看| 国产av一区在线观看免费| 色综合站精品国产| 精品福利观看| 精品一区二区三区四区五区乱码| 1024香蕉在线观看| 韩国av一区二区三区四区| 男人的好看免费观看在线视频| 久久人人精品亚洲av| 99热这里只有是精品50| 91在线精品国自产拍蜜月 | 女生性感内裤真人,穿戴方法视频| 激情在线观看视频在线高清| 无人区码免费观看不卡| 香蕉av资源在线| 欧美日韩国产亚洲二区| tocl精华| avwww免费| 少妇的逼水好多| 这个男人来自地球电影免费观看| 久久久久亚洲av毛片大全| 久久午夜综合久久蜜桃| 亚洲九九香蕉| av在线蜜桃| 国产v大片淫在线免费观看| 波多野结衣高清作品| 日本熟妇午夜| 亚洲成人久久爱视频| 国产精品久久久人人做人人爽| 搡老熟女国产l中国老女人| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 亚洲人成网站高清观看| 欧美激情在线99| 国产三级中文精品| 观看免费一级毛片| 91在线精品国自产拍蜜月 | 午夜福利免费观看在线| 亚洲成人免费电影在线观看| 99久久综合精品五月天人人| 久久久久久久午夜电影| 熟女电影av网| 国产v大片淫在线免费观看| 亚洲国产欧美人成| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| 久久久久久国产a免费观看| 精品不卡国产一区二区三区| 国产成人欧美在线观看| 国产一区二区激情短视频| 女同久久另类99精品国产91| 成年女人毛片免费观看观看9| 亚洲av成人av| av天堂中文字幕网| 久久久国产成人精品二区| 久久香蕉国产精品| 九九在线视频观看精品| 久久久国产成人精品二区| 麻豆国产97在线/欧美| 国产视频一区二区在线看| 成年女人毛片免费观看观看9| 国产精品日韩av在线免费观看| 免费av不卡在线播放| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 熟女电影av网| 亚洲av电影不卡..在线观看| 视频区欧美日本亚洲| 精品国产超薄肉色丝袜足j| 亚洲国产中文字幕在线视频| 亚洲九九香蕉| 国产爱豆传媒在线观看|