• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-density triple-phase contact points for enhanced photocatalyticCO2 reduction to methanol

    2024-04-05 02:28:14HnwenJinKimingDengTongyuWngChengxiHungFngWuHilingHuoBoOuyngXunLiuJingjingErjunKnAngLi
    Chinese Chemical Letters 2024年2期

    Hnwen Jin ,Kiming Deng ,Tongyu Wng ,Chengxi Hung ,Fng Wu ,Hiling Huo ,Bo Ouyng,Xun Liu,Jingjing M,Erjun Kn,*,Ang Li,*

    a MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    b College of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China

    c State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University,Yinchuan 750021,China

    Keywords: Photocatalysis CO2 reduction reaction Photocatalyst Triple-phase contact points Methanol

    ABSTRACT The efficiency of photocatalytic CO2 reduction reaction (PCRR) is restricted by the low solubility and mobility of CO2 in water,poor CO2 adsorption capacity of catalyst,and competition with hydrogen evolution reaction (HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points (TPCPs) of CO2 (gas phase),H2O(liquid phase),and catalysts (solid phase) near the surface of the catalyst,enabling direct delivery of highly concentrated CO2 molecules to the active reaction sites,resulting in higher CO2 and lower H+ surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO2 adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO2 (o-HPT) with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO2 (o-MacPT) or mesoporous TiO2 (o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5 μmol g-1 h-1 from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.

    Clean energy and carbon neutrality have become significant worldwide in solving the problem of global warming caused by excessive reliance on fossil fuels [1,2].Therefore,the photocatalytic CO2reduction reaction (PCRR) is increasingly recognized as a crucial method to convert CO2into valuable products to recover CO2[3-6].Methanol is an essential product of the PCRR due to its ease of liquefaction for storage and transportation and its potential as an ideal fuel and intermediate chemical feedstock [7-9].

    The aqueous solution is an ideal reaction medium for PCRR since water serves as a source of readily available hydrogen and is chemically mild.However,PCRR efficiency in aqueous solution is restricted by the low solubility and mobility of CO2in water,poor CO2adsorption capacity of catalyst,and the competition of hydrogen evolution reaction (HER) [10,11].In principle,CO2reduction reaction (CRR) is a triple-phase heterogeneous reaction [12].Researchers identified that a significant factor limiting the efficiency of CRR is the local concentration of CO2in the reaction interface[13].As reported by Sanderetal.,the ratio of CO2molecules to H2O molecules at 1 atm pressure is approximately 1:1300 [14],indicating that the CO2supply during a significant portion of the reaction time is insufficient,particularly when the diffusion rate of CO2in aqueous solution is sluggish.

    Some researchers have proposed that the hydrophobic surface enables efficient triple-phase contact points (TPCPs) of CO2(gas phase),H2O (liquid phase),and catalyst (solid phase) near the surface of the catalyst,which enables the direct delivery of highly concentrated gas-phase CO2molecules to the surface of catalysts.Wangetal.revealed that controlling the triphase contact boundary by tuning the wetting state of the electrode is essential for gas-consuming reactions [15].Lietal.broke the mass-transfer limitation of CO2,inhibited the HER,and enhanced the PCRR by creating a photocatalyst with a hydrophobic surface [11].Wakerleyet al.reported that hierarchically structured Cu dendrites with superhydrophobic surfaces increased the concentration of CO2at the interface and consequently increased CO2reduction selectivity [12].With higher CO2and lower H+surface concentrations,the TPCPs act as ideal reaction points with enhanced PCRR and suppressed HER [16,17].However,most initial triple-phase photocatalysts can only offer limited TPCPs per unit volume,which may be responsible for the limited catalytic efficiency [18-20].

    Fig.1.(a) Schematic of HPT monolithic catalysts.Cross-section structural schematics of (b) HPT and (c) o-HPT.(d) Scanning electron microscope (SEM) image of HPT.Schematics of the local section of (e) HPT and (f) o-HPT.The purple points refer to the triple-phase contact points.

    Here,by constructing a hydrophobic hierarchical porous TiO2(o-HPT) with a composite structure of macropores and mesopores,we have significantly increased the density of TPCPs in a unit volume of photocatalyst (Figs.1a-f),which enables a high methanol production rate with 1111.5 μmol g-1h-1from PCRR.The hierarchical porous TiO2(HPT) could provide sufficient active reaction points and enable efficient transport of guest species to framework binding sites [21-24].We also synthesized mesoporous TiO2(MesPT,Figs.2a-c) or macroporous TiO2(MacPT,Figs.2d-f) as comparative photocatalysts.Hydrophobic modification of MesPT(o-MesPT) or MacPT (o-MacPT) can only increase the TPCP density to a lesser extent due to their single porous structure.The TPCPs can only be formed on the surface of hydrophobic materials [11,12] due to the CO2adsorption sites on hydrophilic materials being occupied by water,making it impossible to gather high concentrations of CO2[25].Consequently,TPCPs are only formed at the depth of the surface of the material,which limits the density of TPCPs on o-MesPT (Fig.2c).And o-MacPT can only generate TPCPs in the form of CO2bubbles on the surface (Fig.2f) [11].

    Fig.2.Schematics of (a) MesPT,(d) MacPT.Cross-section structural schematics of (b) MesPT,(c) o-MesPT,(e) MacPT,(f) o-MacPT.The purple points in (c) and (f) refer to the triple-phase contact points.

    The HPT catalyst was synthesized by spontaneous hydrolysis of titanium isopropoxide (TTIP) in an ammonia solution and then calcinated at 450 °C for 4 h (Section S2 in Supporting information) [26,27].Most synthesized particles possess macropore channels (Figs.S1a and c in Supporting information).Furthermore,o-HPT was obtained by modifying with PDMS under UV light irradiation (Fig.S2 in Supporting information) [28].The formation of well-aligned tubular macrochannel arrays is due to the hydrolysis reaction of TTIP with water.This reaction leads to the generation of nanograins that accumulate and form mesopores [29,30].The resulting macro-mesoporous architecture boasts a high specific surface area (SA) and volume.

    The comparative photocatalyst MesPT was synthesized by the hydrolysis of TTIP ethanol solution in distilled water and then applied hydrothermal in the same condition as HPT (Section S3 in Supporting information).MacPT was synthesized by the calcination of the precursor at a higher temperature of 600 °C to collapse its mesoporous structure (Section S4 in Supporting information).With a further increase in temperature above 700 °C,the macropores will also begin to collapse due to crystal phase changes (Fig.S3 in Supporting information) [24].The hydrophobic modification was also then conducted in MesPT and MacPT.

    Scanning electron microscope (SEM) images in Figs.3a and b show that HPT and o-HPT possess homogenous wormhole-like ordered macrochannel arrays with typical macropore diameters ranging from 0.6 μm to 1.8 μm (Fig.S4a in Supporting information).The macropores dramatically expand the scope for HPT to build complex catalytic reaction environments.Moreover,the N2adsorption and desorption isotherms in Fig.3c show that HPT and o-HPT exhibit type IV isotherms with hysteresis loops at 0.60<P/P0<1.This indicates the existence of mesopores and which are produced by the agglomeration of nanoparticles [31,32].This could be proved in cross-sectional transmission electron microscopy (TEM)images (Figs.S5a and b in Supporting information).The result can be further confirmed by corresponding pore-size distribution curves of HPT and o-HPT in Fig.3h.Both HPT and o-HPT possess mesopores of relatively uniform size,mainly from 10 nm to 20 nm and average pore size around 11 nm (Table S1 in Supporting information).These results indicate that we have succeeded in synthesizing macro-mesoporous interconnected structure catalysts.The unique three-dimensional tubular structures are expected to significantly decrease the transport resistance of reactants passing through the macrochannel wall and introduce light inside the catalyst bulk,thereby enhancing the reaction rate [33-35].

    Fig.3.SEM images and water contact angles (inset) of (a) HPT,(b) o-HPT,(d) MesPT,(e) o-MesPT,(f) MacPT,(g) MacPT.(c) N2 adsorption and desorption isotherms of HPT and o-HPT,MesPT and o-MesPT,MacPT,and o-MacPT.(h) pore size distribution curves and (i) X-rays diffraction (XRD) patterns of all six catalysts.The unmodified HPT,MesPT,and MacPT are all hydrophilic,in contrast,o-HPT,o-MesPT,and o-MacPT all exhibit excellent hydrophobicity.XRD patterns show that all the catalysts are anatase crystal structures.(j) Critical burst-through pressure of water for the o-HPT as a function of its pore radius r.Range A is the size distribution range of mesopores,and Range B is the size distribution range of macropores.Mes.and Mac.are the shorts for mesopore and macropore,respectively.Inset: schematic of the liquid-gas interface inside the pore with a contact angle θa greater than 90°.

    MesPT exhibits smaller particles of TiO2in contrast to HPT(Figs.3d and e).The TEM image (Fig.S5c in Supporting information) displays the absence of macropores within MesPT,and it is composed of interconnected small TiO2particles similar to HPT(Fig.S5d in Supporting information).The N2adsorption-desorption isotherms of MesPT and o-MesPT in Fig.3c show comparable type IV isotherms with HPT and o-HPT,which means that MesPT and HPT have a similar mesoporous structure and pore size (Table S1).

    Additionally,the SEM and TEM images of MacPT show a high density of macrochannel arrays throughout the catalysts (Figs.3f and g,Fig.S5e in Supporting information).The average macropores size of MacPT is 1.37 μm (Fig.S4b in Supporting information).The N2adsorption-desorption isotherm of MacPT and o-MacPT shows low adsorption at low relative pressure,which indicates the lack of mesopores [24,31].However,there is a small hysteresis at higher relative pressure,which means MacPT and o-MacPT possess a small proportion of larger-size mesopores,consistent with pore size distribution curves and the dramatic decrease in both pore volume and BET specific areas (Table S1).According to the previous studies by Yuetal.,further heating at 600 °C caused a more severe collapse of the mesoporous framework,resulting in MacPT possessing much fewer mesopores than HPT and MesPT [21,24].The mercury intrusion porosimetry (MIP) measurements of HPT and MacPT show that the injection of mercury into the materials mainly occurred at low pressure,suggesting the existence of macropores in these materials.The amount of mercury injected into the MesPT did not increase rapidly at low pressure,indicating no macropores within the MesPT (Fig.S6 in Supporting information).

    Fig.3i shows the X-ray diffraction (XRD) patterns,all corresponding to anatase TiO2(JCPDS No.86-1157),and hydrophobic modification has little effect on the crystal structure.The highresolution transmission electron microscopy (HRTEM) images of HPT and o-HPT show a lattice spacing of (101) plane of the anatase crystal structure of TiO2.o-HPT shows a PDMS layer with only a thickness of 1.1 nm (Figs.S7a and b in Supporting information).The thickness of the PDMS layer has a significant influence on photocatalytic performance [36].The X-ray photoelectron spectroscopy(XPS) full spectrum of o-HPT shows two new peaks corresponding to silicon (Si 2s,Si 2p),indicating the presence of siliconcontaining PDMS graft on HPT (Fig.S8 in Supporting information).Moreover,only the outermost surface is hydrophobic;the inside of the mesopore remains intact (Fig.S9 in Supporting information).

    The hydrophobicity of catalysts was measured utilizing contactangle measurement.The results indicate that after hydrophobic modification,all the resulting materials demonstrate excellent hydrophobicity (the inset of Figs.3b,e,g,and Fig.S10 in Supporting information).To verify that TPCPs can be formed in mesopores,Lietal.calculated the anti-flooding capability of the pores(Fig.S11 and Section S8 in Supporting information),which illustrates the robustness of pores in maintaining the triple-phase contact in an aqueous solution [13].The theoretical model was proposed according to the Young-Laplace equation (Eq.1,the inset of Fig.3j),

    whereσis the surface tension of the liquid,Ris the mean radius of curvature of the interface,θais the contact angle,andris the pore channel radius.For the macropores of o-HPT with a mean pore size of 1.13 μm,the critical burst through pressure during this range is all below the pressure of the reactor with~80 kPa(Fig.3j).However,for mesopores with pore sizes in the nanometre scale,the critical burst through pressure up to~103kPa (Fig.3j),which means it is tough for water to enter deep inside the mesopores [37,38].Therefore o-HPT combines the two kinds of pore structures resulting in a higher density of TPCPs than the other two comparative photocatalysts.

    We conducted CO2adsorption tests under reactive situations(Fig.S13 and Section S9 in Supporting information) to investigate the effect of hydrophobic treatment of HPT on CO2adsorption.The results of the tests showed that the hydrophobic treatment of o-HPT promoted the dissolution rate and the final dissolution amount of CO2in water.This finding is consistent with previous studies proposed by other researchers,which suggest that mesoporous material hydrophobization could mitigate the negative effects of water on CO2adsorption [39-41].

    Other characterizations were performed to further study the impact of PDMS modification on the surface properties of TiO2.All samples exhibit typical bandgap energy of anatase TiO2and remained unaffected after hydrophobic modification (Figs.S14a and b in Supporting information).Additionally,photoluminescence spectra (PL) were used to investigate charge separation efficiency(Fig.S14c in Supporting information),with more vigorous PL intensity indicating the poorer ability of separate charges [42-44].The results show that PDMS modification did not significantly affect the charge separation efficiency.Fourier transform infrared spectrometer (FT-IR) spectroscopy (Fig.S14d in Supporting information)test shows that the presence of -CH3in the grafted PDMS framework contributed to the hydrophobicity of the o-HPT [28,36,45].

    The photoactivity of all the photocatalysts was investigated in KHCO3(0.1 mol/L) and Na2SO3(0.1 mol/L) aqueous solution under full spectrum irradiation.Na2SO3is a sacrificial reagent for capturing photogenerated holes.Fig.4 shows that CH3OH is the primary CO2reduction product,along with a small amount of CH4.In addition,negligible amounts of other carbon derivative products,aside from CH3OH and CH4,could be detected (Figs.S15 and S16 in Supporting information).HPT shows the best photocatalytic performance among the hydrophilic catalysts,and the yield of CH3OH is 450 μmol g-1h-1.This effectively highlights the importance of the hierarchical macro-mesoporous structure for PCRR.

    Fig.4.Photocatalytic CO2 reduction performance.

    After hydrophobic modification,all three kinds of catalysts showed varying degrees of improvement in the reaction rate.o-HPT had the maximum reaction rate reaching 1111.5 μmol g-1h-1.Pure TiO2is limited by its large band gap and low electron transport rate,the performance of PCRR is generally inferior.Most research has focused on loading noble metals and constructing heterogeneous structures to improve performance [46-49].We have succeeded in making o-HPT perform better than many TiO2-based catalysts by constructing high-density TPCPs (generally 48.2-454.6 μmol g-1h-1) [17,50-55],which proves the effectiveness of our strategy.

    The significantly enhanced photoactivity of o-HPT can be attributed to the increased density of TPCPs.As the schematic we presented based on the above findings in this study (Figs.1 and 2),HPT exploits the advantage of each porous structure and avoids the disadvantages.Macroporous channels could introduce light inside and transport reactants to the reaction sites [21,35],which addresses the problem of MesPT bulk that cannot be effectively used internally (Figs.2b and c).The mesopores help to address the lack of sufficient active sites and CO2adsorption sites of MacPT to build high-density TPCPs after hydrophobic modification (Figs.2e and f).Therefore by possessing macrochannels density as high as 5 × 107cm-2with walls covered with macropores (Section S10 in Supporting information),o-HPT could generate the maximum TPCPs in a unit volume compared to the other two hydrophobic porous structure photocatalysts (o-MesPT and o-MacPT).This results in the highest PCRR methanol production rate.We also performed PCRR tests on hydrophobic P25 (o-P25),which had the lowest performance,demonstrating the importance of porous structure for improving PCRR performance (Fig.S17 in Supporting information).

    To clarify the origin carbon source of the CH3OH and CH4formed on o-HPT,three control experiments were conducted (Fig.S18 in Supporting information): (1) CO2reduction with H2O using o-HPT without light;(2) CO2reduction with H2O using light without o-HPT;(3) Reduction of H2O without CO2and KHCO3over o-HPT with light.The absence of CH3OH and CH4in three control experiments indicates CH3OH and CH4result from the photocatalytic reduction of CO2with H2O on o-HPT.

    In conclusion,we present a promising approach to designing efficient photocatalysts for triple-phase catalytic reactions by emphasizing the importance of high-density TPCPs.We substantially increase TPCP density by constructing hydrophobic hierarchical porous photocatalysts.Compared to catalysts with only mesopores or macropores,o-HPT demonstrates a synergistic effect of macro-mesoporous structure and hydrophobicity.The high density of TPCPs greatly benefits the performance of PCRR as these points serve as effective active sites,resulting in a significantly enhanced methanol production rate.This work presents a promising approach to designing efficient photocatalysts for triple-phase reactions system.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge the National Natural Science Foundation of China (Nos.22008121,11774173,51790492),the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (No.T2125004),the Fundamental Research Funds for the Central Universities (Nos.30920032204,30920041115),the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No.2022-K12),Funding of NJUST (No.TSXK2022D002) for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108651.

    久久久久久久久久人人人人人人| 一级片'在线观看视频| 亚洲精品,欧美精品| av福利片在线| 亚洲怡红院男人天堂| 国产亚洲午夜精品一区二区久久| 国产黄片视频在线免费观看| 亚洲综合色惰| 亚洲天堂av无毛| 精品国产一区二区三区久久久樱花| 亚洲av综合色区一区| av国产精品久久久久影院| 少妇被粗大猛烈的视频| 两个人的视频大全免费| av视频免费观看在线观看| 男人狂女人下面高潮的视频| 一二三四中文在线观看免费高清| 高清av免费在线| 欧美xxⅹ黑人| 精品少妇黑人巨大在线播放| 伊人久久精品亚洲午夜| 99热这里只有精品一区| 国产精品99久久99久久久不卡 | 女性生殖器流出的白浆| 国产一区二区三区综合在线观看 | 亚洲欧美精品专区久久| 欧美日韩在线观看h| 国产熟女午夜一区二区三区 | 一本一本综合久久| 久久国产乱子免费精品| 免费av不卡在线播放| 性色av一级| 成人国产av品久久久| 亚洲av日韩在线播放| av专区在线播放| 亚洲精品国产av蜜桃| 国产精品一区www在线观看| 久久6这里有精品| 九色成人免费人妻av| 青春草亚洲视频在线观看| 三级经典国产精品| 久久毛片免费看一区二区三区| 97精品久久久久久久久久精品| 精品国产国语对白av| 一级二级三级毛片免费看| a级毛片在线看网站| 国产免费又黄又爽又色| 免费观看性生交大片5| av在线播放精品| 色婷婷久久久亚洲欧美| 日本猛色少妇xxxxx猛交久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品一区二区三区在线| 国产成人freesex在线| 国产色爽女视频免费观看| 国精品久久久久久国模美| 好男人视频免费观看在线| 亚洲国产精品一区三区| 亚洲内射少妇av| 777米奇影视久久| 国产精品成人在线| av又黄又爽大尺度在线免费看| 午夜免费鲁丝| 午夜视频国产福利| 国产伦精品一区二区三区四那| 女性生殖器流出的白浆| 男女边摸边吃奶| 街头女战士在线观看网站| freevideosex欧美| 国产成人免费观看mmmm| 亚州av有码| 一区二区三区四区激情视频| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人综合另类久久久| 最近最新中文字幕免费大全7| 又粗又硬又长又爽又黄的视频| 一区二区av电影网| 日韩大片免费观看网站| 有码 亚洲区| 观看美女的网站| 亚洲va在线va天堂va国产| 国产亚洲精品久久久com| 亚洲精品中文字幕在线视频 | 人妻一区二区av| 蜜桃在线观看..| 国产精品.久久久| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av | 亚洲精品一二三| 日产精品乱码卡一卡2卡三| 少妇裸体淫交视频免费看高清| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 各种免费的搞黄视频| 99久国产av精品国产电影| 日韩电影二区| 中文欧美无线码| 视频中文字幕在线观看| av线在线观看网站| 91久久精品电影网| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 看十八女毛片水多多多| 一边亲一边摸免费视频| 精品一区二区三区视频在线| 精品人妻熟女毛片av久久网站| 69精品国产乱码久久久| 高清欧美精品videossex| 日韩视频在线欧美| 国产一区二区三区av在线| 国产av国产精品国产| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 国产亚洲欧美精品永久| 另类精品久久| 你懂的网址亚洲精品在线观看| 日韩中文字幕视频在线看片| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 最近最新中文字幕免费大全7| 国产精品嫩草影院av在线观看| 久久婷婷青草| 国产欧美日韩综合在线一区二区 | 十八禁网站网址无遮挡 | 亚洲三级黄色毛片| 欧美精品一区二区免费开放| 丰满少妇做爰视频| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 色吧在线观看| 最近中文字幕高清免费大全6| 午夜老司机福利剧场| 久久热精品热| 五月开心婷婷网| 久久99一区二区三区| 亚洲国产av新网站| www.色视频.com| 国产一区亚洲一区在线观看| 免费av中文字幕在线| 18禁在线播放成人免费| 久久午夜福利片| 少妇人妻精品综合一区二区| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 在线天堂最新版资源| 亚洲欧美精品专区久久| 国产亚洲午夜精品一区二区久久| 成人无遮挡网站| 免费看日本二区| 欧美97在线视频| 成年人免费黄色播放视频 | 成人黄色视频免费在线看| 黄色毛片三级朝国网站 | 成人18禁高潮啪啪吃奶动态图 | 一级毛片aaaaaa免费看小| 国产极品天堂在线| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 街头女战士在线观看网站| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 国产精品麻豆人妻色哟哟久久| 国产黄色免费在线视频| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 美女国产视频在线观看| 久久精品国产亚洲网站| 高清午夜精品一区二区三区| 天堂8中文在线网| 日日啪夜夜爽| 久久99蜜桃精品久久| 热re99久久国产66热| 成年女人在线观看亚洲视频| 一区在线观看完整版| 最近手机中文字幕大全| 伊人久久精品亚洲午夜| 欧美国产精品一级二级三级 | 自拍欧美九色日韩亚洲蝌蚪91 | 日日撸夜夜添| 性色av一级| 欧美区成人在线视频| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 婷婷色麻豆天堂久久| 久久韩国三级中文字幕| 另类亚洲欧美激情| 丰满人妻一区二区三区视频av| 一级黄片播放器| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 日本午夜av视频| 我要看黄色一级片免费的| 国产精品人妻久久久久久| 免费播放大片免费观看视频在线观看| 一级黄片播放器| 黑丝袜美女国产一区| 日韩强制内射视频| 国产一区有黄有色的免费视频| freevideosex欧美| 最近手机中文字幕大全| 国产探花极品一区二区| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| a级片在线免费高清观看视频| 亚洲怡红院男人天堂| 少妇 在线观看| 欧美最新免费一区二区三区| 一级二级三级毛片免费看| 精品亚洲成国产av| 欧美日韩视频精品一区| 亚洲精品第二区| 亚洲成色77777| 国产视频首页在线观看| 精品久久久噜噜| 成人黄色视频免费在线看| 男人和女人高潮做爰伦理| 中文资源天堂在线| 男女边吃奶边做爰视频| 中文在线观看免费www的网站| 国产精品国产三级专区第一集| 精品国产国语对白av| 日韩成人伦理影院| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有精品一区| 深夜a级毛片| 老司机亚洲免费影院| 九草在线视频观看| 青春草亚洲视频在线观看| tube8黄色片| 国产 一区精品| 老司机亚洲免费影院| 看免费成人av毛片| 青春草亚洲视频在线观看| 少妇精品久久久久久久| 亚洲欧美成人综合另类久久久| 在线免费观看不下载黄p国产| 亚洲成色77777| 一级二级三级毛片免费看| 午夜影院在线不卡| 又大又黄又爽视频免费| 久久人人爽人人片av| av.在线天堂| av国产精品久久久久影院| 秋霞伦理黄片| 大码成人一级视频| 97在线人人人人妻| 欧美bdsm另类| 成人二区视频| 国产极品天堂在线| 欧美精品亚洲一区二区| 成年美女黄网站色视频大全免费 | 熟妇人妻不卡中文字幕| 亚洲精品久久久久久婷婷小说| 一本久久精品| 看十八女毛片水多多多| 偷拍熟女少妇极品色| 亚洲第一av免费看| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| av网站免费在线观看视频| 一区二区三区免费毛片| 熟女av电影| 成人国产麻豆网| 视频中文字幕在线观看| 国产熟女午夜一区二区三区 | 黑人高潮一二区| 人妻 亚洲 视频| 日韩在线高清观看一区二区三区| 九草在线视频观看| 日本av免费视频播放| 多毛熟女@视频| 国产中年淑女户外野战色| 精品视频人人做人人爽| 天天操日日干夜夜撸| 激情五月婷婷亚洲| 亚洲成人一二三区av| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 成人无遮挡网站| 欧美xxxx性猛交bbbb| 国产成人精品一,二区| 熟女电影av网| 欧美精品国产亚洲| av不卡在线播放| 欧美精品人与动牲交sv欧美| 久久久国产精品麻豆| 精品人妻偷拍中文字幕| 欧美少妇被猛烈插入视频| 男人爽女人下面视频在线观看| 久久久久国产精品人妻一区二区| 中文资源天堂在线| 在线观看免费日韩欧美大片 | 日韩中文字幕视频在线看片| 日韩亚洲欧美综合| 久久这里有精品视频免费| 少妇人妻一区二区三区视频| 久久99热这里只频精品6学生| 久久久久久伊人网av| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲日产国产| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 777米奇影视久久| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区国产| 欧美+日韩+精品| 精品国产乱码久久久久久小说| 九色成人免费人妻av| 亚洲欧美清纯卡通| 精品亚洲成国产av| 三级国产精品欧美在线观看| 国产高清国产精品国产三级| 成人二区视频| kizo精华| 欧美日韩精品成人综合77777| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 成人无遮挡网站| 日韩视频在线欧美| 久久免费观看电影| xxx大片免费视频| 丝袜在线中文字幕| 久久这里有精品视频免费| 成人毛片60女人毛片免费| 成人18禁高潮啪啪吃奶动态图 | 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 国产一区二区三区综合在线观看 | 色94色欧美一区二区| 777米奇影视久久| 国产美女午夜福利| 午夜福利,免费看| 日本午夜av视频| 精品少妇久久久久久888优播| 纯流量卡能插随身wifi吗| 少妇被粗大的猛进出69影院 | 在线 av 中文字幕| 丝袜喷水一区| 男女边摸边吃奶| 免费观看的影片在线观看| 久久精品国产亚洲av涩爱| 十分钟在线观看高清视频www | 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线观看99| 精品久久国产蜜桃| 久久久久久人妻| 夜夜看夜夜爽夜夜摸| 国产日韩一区二区三区精品不卡 | 国产中年淑女户外野战色| 国产伦精品一区二区三区四那| 最黄视频免费看| 欧美xxxx性猛交bbbb| 精品国产露脸久久av麻豆| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 欧美+日韩+精品| 国产欧美日韩综合在线一区二区 | kizo精华| 3wmmmm亚洲av在线观看| 黄色怎么调成土黄色| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 国国产精品蜜臀av免费| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 女性被躁到高潮视频| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 成人二区视频| 边亲边吃奶的免费视频| 一区二区三区免费毛片| 97超碰精品成人国产| 欧美精品国产亚洲| 欧美 日韩 精品 国产| 久久久久国产网址| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 免费av不卡在线播放| 国产亚洲欧美精品永久| 国产视频内射| 大香蕉久久网| 亚洲精品国产色婷婷电影| 老女人水多毛片| 日韩中字成人| 国产精品国产三级国产专区5o| 国产女主播在线喷水免费视频网站| 中文字幕av电影在线播放| 久久婷婷青草| 精华霜和精华液先用哪个| 三级国产精品片| tube8黄色片| 日韩伦理黄色片| av不卡在线播放| av有码第一页| 成人漫画全彩无遮挡| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 精品一品国产午夜福利视频| 最近最新中文字幕免费大全7| 国产精品99久久99久久久不卡 | kizo精华| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 久久久久久久久久人人人人人人| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看 | 成人美女网站在线观看视频| 久久久久久久久久久久大奶| 春色校园在线视频观看| 熟女av电影| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 欧美精品一区二区免费开放| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 九色成人免费人妻av| 三级国产精品片| 久久久久久久久久久久大奶| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 亚洲国产精品一区三区| 久热这里只有精品99| 日韩中文字幕视频在线看片| 青春草国产在线视频| 黄色日韩在线| 国产男女内射视频| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 黑人猛操日本美女一级片| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 亚洲精品一区蜜桃| 99久久精品热视频| 免费黄网站久久成人精品| 亚洲av欧美aⅴ国产| 亚洲婷婷狠狠爱综合网| 免费人成在线观看视频色| 亚洲国产精品专区欧美| 免费看日本二区| 久久免费观看电影| 亚洲精品国产av成人精品| 欧美激情极品国产一区二区三区 | 狂野欧美激情性xxxx在线观看| 在线精品无人区一区二区三| 一区二区三区免费毛片| 久久久久久久久久久久大奶| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 欧美97在线视频| 成人漫画全彩无遮挡| 性高湖久久久久久久久免费观看| 色婷婷久久久亚洲欧美| 黄片无遮挡物在线观看| 亚洲av在线观看美女高潮| 欧美精品国产亚洲| 麻豆成人av视频| 久久午夜福利片| 交换朋友夫妻互换小说| 国产一级毛片在线| 爱豆传媒免费全集在线观看| 91精品一卡2卡3卡4卡| 中文字幕av电影在线播放| av.在线天堂| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 一本色道久久久久久精品综合| 视频中文字幕在线观看| 蜜桃久久精品国产亚洲av| 亚洲熟女精品中文字幕| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 视频中文字幕在线观看| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 日韩中字成人| 婷婷色av中文字幕| 日韩欧美 国产精品| 亚洲综合精品二区| 久久国产精品大桥未久av | 国产淫语在线视频| 97超视频在线观看视频| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 久久久久久人妻| 最黄视频免费看| 中文字幕亚洲精品专区| 一区在线观看完整版| 嘟嘟电影网在线观看| 69精品国产乱码久久久| 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 国产精品伦人一区二区| 哪个播放器可以免费观看大片| 91精品国产九色| 婷婷色综合大香蕉| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 99re6热这里在线精品视频| 亚洲综合精品二区| 久久99蜜桃精品久久| 国产亚洲av片在线观看秒播厂| 欧美另类一区| 波野结衣二区三区在线| 亚洲精品第二区| 亚洲怡红院男人天堂| 午夜视频国产福利| 18禁在线无遮挡免费观看视频| 在线观看av片永久免费下载| 亚洲国产成人一精品久久久| 九色成人免费人妻av| www.av在线官网国产| 麻豆成人午夜福利视频| 日韩伦理黄色片| 亚洲丝袜综合中文字幕| 少妇猛男粗大的猛烈进出视频| 边亲边吃奶的免费视频| 99热这里只有精品一区| 一级毛片电影观看| 久久国产精品大桥未久av | 国产伦精品一区二区三区视频9| 免费人成在线观看视频色| 久久6这里有精品| 交换朋友夫妻互换小说| 精品99又大又爽又粗少妇毛片| 色哟哟·www| 成人亚洲精品一区在线观看| 国产成人aa在线观看| 搡女人真爽免费视频火全软件| 两个人免费观看高清视频 | 日韩一本色道免费dvd| 黑人巨大精品欧美一区二区蜜桃 | 777米奇影视久久| 国产一区二区三区综合在线观看 | 我要看黄色一级片免费的| 黄片无遮挡物在线观看| 久久国产精品男人的天堂亚洲 | 成人18禁高潮啪啪吃奶动态图 | 亚洲美女黄色视频免费看| 少妇精品久久久久久久| 最近中文字幕高清免费大全6| 午夜福利网站1000一区二区三区| 三上悠亚av全集在线观看 | 性高湖久久久久久久久免费观看| 狂野欧美白嫩少妇大欣赏| 日本vs欧美在线观看视频 | 国产高清有码在线观看视频| 男的添女的下面高潮视频| 高清毛片免费看| 久久久久人妻精品一区果冻| av.在线天堂| 欧美日韩亚洲高清精品| 国产精品免费大片| 波野结衣二区三区在线| 国产亚洲一区二区精品| 国产亚洲91精品色在线| 久久久久久久久久久免费av| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www | 亚洲欧洲精品一区二区精品久久久 | 国产精品秋霞免费鲁丝片| 日韩视频在线欧美| 男男h啪啪无遮挡| 国产极品天堂在线| 一级爰片在线观看| 一二三四中文在线观看免费高清| 午夜日本视频在线| 久久精品国产a三级三级三级| 我要看日韩黄色一级片| 亚洲欧美精品自产自拍| 在线亚洲精品国产二区图片欧美 | 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 亚洲在久久综合| 国产 精品1| 亚洲av.av天堂| 国产成人freesex在线| 熟女人妻精品中文字幕| 女人精品久久久久毛片| 亚洲欧美日韩东京热| 久久久久国产精品人妻一区二区| 中国三级夫妇交换| 欧美激情极品国产一区二区三区 | 下体分泌物呈黄色| 国产成人91sexporn| 高清视频免费观看一区二区| 国产精品久久久久久精品电影小说| 99久久精品热视频| 亚洲在久久综合| 国产成人aa在线观看| 丰满人妻一区二区三区视频av| 免费大片黄手机在线观看| 秋霞在线观看毛片| 欧美精品国产亚洲| av福利片在线观看| 亚洲av综合色区一区| 欧美国产精品一级二级三级 | 久久精品久久久久久久性| 2018国产大陆天天弄谢| 黄色日韩在线| 亚洲精品456在线播放app| av一本久久久久|