• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-density triple-phase contact points for enhanced photocatalyticCO2 reduction to methanol

    2024-04-05 02:28:14HnwenJinKimingDengTongyuWngChengxiHungFngWuHilingHuoBoOuyngXunLiuJingjingErjunKnAngLi
    Chinese Chemical Letters 2024年2期

    Hnwen Jin ,Kiming Deng ,Tongyu Wng ,Chengxi Hung ,Fng Wu ,Hiling Huo ,Bo Ouyng,Xun Liu,Jingjing M,Erjun Kn,*,Ang Li,*

    a MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,School of Science,Nanjing University of Science and Technology,Nanjing 210094,China

    b College of Information Science and Technology,Nanjing Forestry University,Nanjing 210037,China

    c State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,Ningxia University,Yinchuan 750021,China

    Keywords: Photocatalysis CO2 reduction reaction Photocatalyst Triple-phase contact points Methanol

    ABSTRACT The efficiency of photocatalytic CO2 reduction reaction (PCRR) is restricted by the low solubility and mobility of CO2 in water,poor CO2 adsorption capacity of catalyst,and competition with hydrogen evolution reaction (HER).Recently,hydrophobic modification of the catalyst surface has been proposed as a potential solution to induce the formation of triple-phase contact points (TPCPs) of CO2 (gas phase),H2O(liquid phase),and catalysts (solid phase) near the surface of the catalyst,enabling direct delivery of highly concentrated CO2 molecules to the active reaction sites,resulting in higher CO2 and lower H+ surface concentrations.The TPCPs thus act as the ideal reaction points with enhanced PCRR and suppressed HER.However,the initial synthesis of triple-phase photocatalysts tends to possess a lower bulk density of TPCPs due to the simple structure leading to limited active points and CO2 adsorption sites.Here,based on constructing a hydrophobic hierarchical porous TiO2 (o-HPT) with interconnected macropores and mesopores structure,we have significantly increased the density of TPCPs in a unit volume of the photocatalyst.Compared with hydrophobic macroporous TiO2 (o-MacPT) or mesoporous TiO2 (o-MesPT),the o-HPT with increased TPCP density leads to enhanced photoactivity,enabling a high methanol production rate with 1111.5 μmol g-1 h-1 from PCRR.These results emphasize the significance of high-density TPCPs design and propose a potential path for developing efficient PCRR systems.

    Clean energy and carbon neutrality have become significant worldwide in solving the problem of global warming caused by excessive reliance on fossil fuels [1,2].Therefore,the photocatalytic CO2reduction reaction (PCRR) is increasingly recognized as a crucial method to convert CO2into valuable products to recover CO2[3-6].Methanol is an essential product of the PCRR due to its ease of liquefaction for storage and transportation and its potential as an ideal fuel and intermediate chemical feedstock [7-9].

    The aqueous solution is an ideal reaction medium for PCRR since water serves as a source of readily available hydrogen and is chemically mild.However,PCRR efficiency in aqueous solution is restricted by the low solubility and mobility of CO2in water,poor CO2adsorption capacity of catalyst,and the competition of hydrogen evolution reaction (HER) [10,11].In principle,CO2reduction reaction (CRR) is a triple-phase heterogeneous reaction [12].Researchers identified that a significant factor limiting the efficiency of CRR is the local concentration of CO2in the reaction interface[13].As reported by Sanderetal.,the ratio of CO2molecules to H2O molecules at 1 atm pressure is approximately 1:1300 [14],indicating that the CO2supply during a significant portion of the reaction time is insufficient,particularly when the diffusion rate of CO2in aqueous solution is sluggish.

    Some researchers have proposed that the hydrophobic surface enables efficient triple-phase contact points (TPCPs) of CO2(gas phase),H2O (liquid phase),and catalyst (solid phase) near the surface of the catalyst,which enables the direct delivery of highly concentrated gas-phase CO2molecules to the surface of catalysts.Wangetal.revealed that controlling the triphase contact boundary by tuning the wetting state of the electrode is essential for gas-consuming reactions [15].Lietal.broke the mass-transfer limitation of CO2,inhibited the HER,and enhanced the PCRR by creating a photocatalyst with a hydrophobic surface [11].Wakerleyet al.reported that hierarchically structured Cu dendrites with superhydrophobic surfaces increased the concentration of CO2at the interface and consequently increased CO2reduction selectivity [12].With higher CO2and lower H+surface concentrations,the TPCPs act as ideal reaction points with enhanced PCRR and suppressed HER [16,17].However,most initial triple-phase photocatalysts can only offer limited TPCPs per unit volume,which may be responsible for the limited catalytic efficiency [18-20].

    Fig.1.(a) Schematic of HPT monolithic catalysts.Cross-section structural schematics of (b) HPT and (c) o-HPT.(d) Scanning electron microscope (SEM) image of HPT.Schematics of the local section of (e) HPT and (f) o-HPT.The purple points refer to the triple-phase contact points.

    Here,by constructing a hydrophobic hierarchical porous TiO2(o-HPT) with a composite structure of macropores and mesopores,we have significantly increased the density of TPCPs in a unit volume of photocatalyst (Figs.1a-f),which enables a high methanol production rate with 1111.5 μmol g-1h-1from PCRR.The hierarchical porous TiO2(HPT) could provide sufficient active reaction points and enable efficient transport of guest species to framework binding sites [21-24].We also synthesized mesoporous TiO2(MesPT,Figs.2a-c) or macroporous TiO2(MacPT,Figs.2d-f) as comparative photocatalysts.Hydrophobic modification of MesPT(o-MesPT) or MacPT (o-MacPT) can only increase the TPCP density to a lesser extent due to their single porous structure.The TPCPs can only be formed on the surface of hydrophobic materials [11,12] due to the CO2adsorption sites on hydrophilic materials being occupied by water,making it impossible to gather high concentrations of CO2[25].Consequently,TPCPs are only formed at the depth of the surface of the material,which limits the density of TPCPs on o-MesPT (Fig.2c).And o-MacPT can only generate TPCPs in the form of CO2bubbles on the surface (Fig.2f) [11].

    Fig.2.Schematics of (a) MesPT,(d) MacPT.Cross-section structural schematics of (b) MesPT,(c) o-MesPT,(e) MacPT,(f) o-MacPT.The purple points in (c) and (f) refer to the triple-phase contact points.

    The HPT catalyst was synthesized by spontaneous hydrolysis of titanium isopropoxide (TTIP) in an ammonia solution and then calcinated at 450 °C for 4 h (Section S2 in Supporting information) [26,27].Most synthesized particles possess macropore channels (Figs.S1a and c in Supporting information).Furthermore,o-HPT was obtained by modifying with PDMS under UV light irradiation (Fig.S2 in Supporting information) [28].The formation of well-aligned tubular macrochannel arrays is due to the hydrolysis reaction of TTIP with water.This reaction leads to the generation of nanograins that accumulate and form mesopores [29,30].The resulting macro-mesoporous architecture boasts a high specific surface area (SA) and volume.

    The comparative photocatalyst MesPT was synthesized by the hydrolysis of TTIP ethanol solution in distilled water and then applied hydrothermal in the same condition as HPT (Section S3 in Supporting information).MacPT was synthesized by the calcination of the precursor at a higher temperature of 600 °C to collapse its mesoporous structure (Section S4 in Supporting information).With a further increase in temperature above 700 °C,the macropores will also begin to collapse due to crystal phase changes (Fig.S3 in Supporting information) [24].The hydrophobic modification was also then conducted in MesPT and MacPT.

    Scanning electron microscope (SEM) images in Figs.3a and b show that HPT and o-HPT possess homogenous wormhole-like ordered macrochannel arrays with typical macropore diameters ranging from 0.6 μm to 1.8 μm (Fig.S4a in Supporting information).The macropores dramatically expand the scope for HPT to build complex catalytic reaction environments.Moreover,the N2adsorption and desorption isotherms in Fig.3c show that HPT and o-HPT exhibit type IV isotherms with hysteresis loops at 0.60<P/P0<1.This indicates the existence of mesopores and which are produced by the agglomeration of nanoparticles [31,32].This could be proved in cross-sectional transmission electron microscopy (TEM)images (Figs.S5a and b in Supporting information).The result can be further confirmed by corresponding pore-size distribution curves of HPT and o-HPT in Fig.3h.Both HPT and o-HPT possess mesopores of relatively uniform size,mainly from 10 nm to 20 nm and average pore size around 11 nm (Table S1 in Supporting information).These results indicate that we have succeeded in synthesizing macro-mesoporous interconnected structure catalysts.The unique three-dimensional tubular structures are expected to significantly decrease the transport resistance of reactants passing through the macrochannel wall and introduce light inside the catalyst bulk,thereby enhancing the reaction rate [33-35].

    Fig.3.SEM images and water contact angles (inset) of (a) HPT,(b) o-HPT,(d) MesPT,(e) o-MesPT,(f) MacPT,(g) MacPT.(c) N2 adsorption and desorption isotherms of HPT and o-HPT,MesPT and o-MesPT,MacPT,and o-MacPT.(h) pore size distribution curves and (i) X-rays diffraction (XRD) patterns of all six catalysts.The unmodified HPT,MesPT,and MacPT are all hydrophilic,in contrast,o-HPT,o-MesPT,and o-MacPT all exhibit excellent hydrophobicity.XRD patterns show that all the catalysts are anatase crystal structures.(j) Critical burst-through pressure of water for the o-HPT as a function of its pore radius r.Range A is the size distribution range of mesopores,and Range B is the size distribution range of macropores.Mes.and Mac.are the shorts for mesopore and macropore,respectively.Inset: schematic of the liquid-gas interface inside the pore with a contact angle θa greater than 90°.

    MesPT exhibits smaller particles of TiO2in contrast to HPT(Figs.3d and e).The TEM image (Fig.S5c in Supporting information) displays the absence of macropores within MesPT,and it is composed of interconnected small TiO2particles similar to HPT(Fig.S5d in Supporting information).The N2adsorption-desorption isotherms of MesPT and o-MesPT in Fig.3c show comparable type IV isotherms with HPT and o-HPT,which means that MesPT and HPT have a similar mesoporous structure and pore size (Table S1).

    Additionally,the SEM and TEM images of MacPT show a high density of macrochannel arrays throughout the catalysts (Figs.3f and g,Fig.S5e in Supporting information).The average macropores size of MacPT is 1.37 μm (Fig.S4b in Supporting information).The N2adsorption-desorption isotherm of MacPT and o-MacPT shows low adsorption at low relative pressure,which indicates the lack of mesopores [24,31].However,there is a small hysteresis at higher relative pressure,which means MacPT and o-MacPT possess a small proportion of larger-size mesopores,consistent with pore size distribution curves and the dramatic decrease in both pore volume and BET specific areas (Table S1).According to the previous studies by Yuetal.,further heating at 600 °C caused a more severe collapse of the mesoporous framework,resulting in MacPT possessing much fewer mesopores than HPT and MesPT [21,24].The mercury intrusion porosimetry (MIP) measurements of HPT and MacPT show that the injection of mercury into the materials mainly occurred at low pressure,suggesting the existence of macropores in these materials.The amount of mercury injected into the MesPT did not increase rapidly at low pressure,indicating no macropores within the MesPT (Fig.S6 in Supporting information).

    Fig.3i shows the X-ray diffraction (XRD) patterns,all corresponding to anatase TiO2(JCPDS No.86-1157),and hydrophobic modification has little effect on the crystal structure.The highresolution transmission electron microscopy (HRTEM) images of HPT and o-HPT show a lattice spacing of (101) plane of the anatase crystal structure of TiO2.o-HPT shows a PDMS layer with only a thickness of 1.1 nm (Figs.S7a and b in Supporting information).The thickness of the PDMS layer has a significant influence on photocatalytic performance [36].The X-ray photoelectron spectroscopy(XPS) full spectrum of o-HPT shows two new peaks corresponding to silicon (Si 2s,Si 2p),indicating the presence of siliconcontaining PDMS graft on HPT (Fig.S8 in Supporting information).Moreover,only the outermost surface is hydrophobic;the inside of the mesopore remains intact (Fig.S9 in Supporting information).

    The hydrophobicity of catalysts was measured utilizing contactangle measurement.The results indicate that after hydrophobic modification,all the resulting materials demonstrate excellent hydrophobicity (the inset of Figs.3b,e,g,and Fig.S10 in Supporting information).To verify that TPCPs can be formed in mesopores,Lietal.calculated the anti-flooding capability of the pores(Fig.S11 and Section S8 in Supporting information),which illustrates the robustness of pores in maintaining the triple-phase contact in an aqueous solution [13].The theoretical model was proposed according to the Young-Laplace equation (Eq.1,the inset of Fig.3j),

    whereσis the surface tension of the liquid,Ris the mean radius of curvature of the interface,θais the contact angle,andris the pore channel radius.For the macropores of o-HPT with a mean pore size of 1.13 μm,the critical burst through pressure during this range is all below the pressure of the reactor with~80 kPa(Fig.3j).However,for mesopores with pore sizes in the nanometre scale,the critical burst through pressure up to~103kPa (Fig.3j),which means it is tough for water to enter deep inside the mesopores [37,38].Therefore o-HPT combines the two kinds of pore structures resulting in a higher density of TPCPs than the other two comparative photocatalysts.

    We conducted CO2adsorption tests under reactive situations(Fig.S13 and Section S9 in Supporting information) to investigate the effect of hydrophobic treatment of HPT on CO2adsorption.The results of the tests showed that the hydrophobic treatment of o-HPT promoted the dissolution rate and the final dissolution amount of CO2in water.This finding is consistent with previous studies proposed by other researchers,which suggest that mesoporous material hydrophobization could mitigate the negative effects of water on CO2adsorption [39-41].

    Other characterizations were performed to further study the impact of PDMS modification on the surface properties of TiO2.All samples exhibit typical bandgap energy of anatase TiO2and remained unaffected after hydrophobic modification (Figs.S14a and b in Supporting information).Additionally,photoluminescence spectra (PL) were used to investigate charge separation efficiency(Fig.S14c in Supporting information),with more vigorous PL intensity indicating the poorer ability of separate charges [42-44].The results show that PDMS modification did not significantly affect the charge separation efficiency.Fourier transform infrared spectrometer (FT-IR) spectroscopy (Fig.S14d in Supporting information)test shows that the presence of -CH3in the grafted PDMS framework contributed to the hydrophobicity of the o-HPT [28,36,45].

    The photoactivity of all the photocatalysts was investigated in KHCO3(0.1 mol/L) and Na2SO3(0.1 mol/L) aqueous solution under full spectrum irradiation.Na2SO3is a sacrificial reagent for capturing photogenerated holes.Fig.4 shows that CH3OH is the primary CO2reduction product,along with a small amount of CH4.In addition,negligible amounts of other carbon derivative products,aside from CH3OH and CH4,could be detected (Figs.S15 and S16 in Supporting information).HPT shows the best photocatalytic performance among the hydrophilic catalysts,and the yield of CH3OH is 450 μmol g-1h-1.This effectively highlights the importance of the hierarchical macro-mesoporous structure for PCRR.

    Fig.4.Photocatalytic CO2 reduction performance.

    After hydrophobic modification,all three kinds of catalysts showed varying degrees of improvement in the reaction rate.o-HPT had the maximum reaction rate reaching 1111.5 μmol g-1h-1.Pure TiO2is limited by its large band gap and low electron transport rate,the performance of PCRR is generally inferior.Most research has focused on loading noble metals and constructing heterogeneous structures to improve performance [46-49].We have succeeded in making o-HPT perform better than many TiO2-based catalysts by constructing high-density TPCPs (generally 48.2-454.6 μmol g-1h-1) [17,50-55],which proves the effectiveness of our strategy.

    The significantly enhanced photoactivity of o-HPT can be attributed to the increased density of TPCPs.As the schematic we presented based on the above findings in this study (Figs.1 and 2),HPT exploits the advantage of each porous structure and avoids the disadvantages.Macroporous channels could introduce light inside and transport reactants to the reaction sites [21,35],which addresses the problem of MesPT bulk that cannot be effectively used internally (Figs.2b and c).The mesopores help to address the lack of sufficient active sites and CO2adsorption sites of MacPT to build high-density TPCPs after hydrophobic modification (Figs.2e and f).Therefore by possessing macrochannels density as high as 5 × 107cm-2with walls covered with macropores (Section S10 in Supporting information),o-HPT could generate the maximum TPCPs in a unit volume compared to the other two hydrophobic porous structure photocatalysts (o-MesPT and o-MacPT).This results in the highest PCRR methanol production rate.We also performed PCRR tests on hydrophobic P25 (o-P25),which had the lowest performance,demonstrating the importance of porous structure for improving PCRR performance (Fig.S17 in Supporting information).

    To clarify the origin carbon source of the CH3OH and CH4formed on o-HPT,three control experiments were conducted (Fig.S18 in Supporting information): (1) CO2reduction with H2O using o-HPT without light;(2) CO2reduction with H2O using light without o-HPT;(3) Reduction of H2O without CO2and KHCO3over o-HPT with light.The absence of CH3OH and CH4in three control experiments indicates CH3OH and CH4result from the photocatalytic reduction of CO2with H2O on o-HPT.

    In conclusion,we present a promising approach to designing efficient photocatalysts for triple-phase catalytic reactions by emphasizing the importance of high-density TPCPs.We substantially increase TPCP density by constructing hydrophobic hierarchical porous photocatalysts.Compared to catalysts with only mesopores or macropores,o-HPT demonstrates a synergistic effect of macro-mesoporous structure and hydrophobicity.The high density of TPCPs greatly benefits the performance of PCRR as these points serve as effective active sites,resulting in a significantly enhanced methanol production rate.This work presents a promising approach to designing efficient photocatalysts for triple-phase reactions system.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge the National Natural Science Foundation of China (Nos.22008121,11774173,51790492),the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (No.T2125004),the Fundamental Research Funds for the Central Universities (Nos.30920032204,30920041115),the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No.2022-K12),Funding of NJUST (No.TSXK2022D002) for financial support.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108651.

    十分钟在线观看高清视频www| 亚洲精品国产区一区二| 变态另类成人亚洲欧美熟女 | 国产精品自产拍在线观看55亚洲 | 大片电影免费在线观看免费| 午夜福利视频精品| 国产亚洲av高清不卡| 亚洲成人免费av在线播放| 91精品三级在线观看| 人成视频在线观看免费观看| 777米奇影视久久| 日日爽夜夜爽网站| 一区二区三区激情视频| 国产又色又爽无遮挡免费看| 性色av乱码一区二区三区2| 久久性视频一级片| 久久ye,这里只有精品| 免费在线观看视频国产中文字幕亚洲| 乱人伦中国视频| 另类亚洲欧美激情| 欧美在线一区亚洲| 老司机福利观看| 美女福利国产在线| 国产高清视频在线播放一区| 免费在线观看完整版高清| 高清黄色对白视频在线免费看| 国产色视频综合| 18禁裸乳无遮挡动漫免费视频| 久久久久久久久免费视频了| 美女福利国产在线| 国产在线一区二区三区精| 欧美黄色片欧美黄色片| 18禁观看日本| 精品高清国产在线一区| 18禁黄网站禁片午夜丰满| www.999成人在线观看| 蜜桃国产av成人99| 天堂8中文在线网| 最新的欧美精品一区二区| 久久av网站| 日韩免费av在线播放| 天天躁日日躁夜夜躁夜夜| √禁漫天堂资源中文www| 日韩有码中文字幕| 午夜福利视频精品| 黄色 视频免费看| 1024香蕉在线观看| 黄片大片在线免费观看| 欧美久久黑人一区二区| 精品一区二区三区视频在线观看免费 | 一二三四社区在线视频社区8| 天天操日日干夜夜撸| 欧美黄色淫秽网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人不卡在线观看播放网| 午夜福利免费观看在线| 成年人黄色毛片网站| 欧美一级毛片孕妇| 在线 av 中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲av第一区精品v没综合| 精品一区二区三区四区五区乱码| 亚洲午夜理论影院| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| 欧美中文综合在线视频| 欧美日韩av久久| 国产日韩欧美在线精品| 一级片免费观看大全| av又黄又爽大尺度在线免费看| 午夜福利影视在线免费观看| 日本欧美视频一区| 亚洲黑人精品在线| 正在播放国产对白刺激| 国产亚洲一区二区精品| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 亚洲欧美日韩高清在线视频 | 色精品久久人妻99蜜桃| 中文字幕最新亚洲高清| 动漫黄色视频在线观看| 久久久久精品人妻al黑| 免费在线观看黄色视频的| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 国产精品免费一区二区三区在线 | 欧美日韩视频精品一区| 国精品久久久久久国模美| 999久久久精品免费观看国产| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 午夜免费鲁丝| 91字幕亚洲| 女人久久www免费人成看片| 久久香蕉激情| 丰满少妇做爰视频| 日本欧美视频一区| 汤姆久久久久久久影院中文字幕| 免费在线观看日本一区| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| av天堂久久9| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 国产免费视频播放在线视频| 国产日韩欧美亚洲二区| 亚洲欧美一区二区三区黑人| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 18在线观看网站| 久久久久久久久免费视频了| av线在线观看网站| 亚洲七黄色美女视频| 精品久久蜜臀av无| 久久国产精品影院| 国产在线视频一区二区| 在线av久久热| 九色亚洲精品在线播放| 在线天堂中文资源库| 国产成人一区二区三区免费视频网站| 精品福利观看| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| 水蜜桃什么品种好| 19禁男女啪啪无遮挡网站| 亚洲国产av影院在线观看| 夜夜骑夜夜射夜夜干| 欧美在线黄色| 成年人黄色毛片网站| 亚洲成人手机| 久久亚洲精品不卡| 后天国语完整版免费观看| 精品国内亚洲2022精品成人 | 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 人人澡人人妻人| 亚洲专区中文字幕在线| cao死你这个sao货| 午夜免费鲁丝| 精品国产一区二区三区四区第35| 在线观看免费日韩欧美大片| 香蕉久久夜色| 91精品三级在线观看| 国产一区二区在线观看av| 女性被躁到高潮视频| 另类亚洲欧美激情| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 99国产综合亚洲精品| av网站在线播放免费| 一边摸一边做爽爽视频免费| 国产在线免费精品| 国产男女内射视频| 久久久久久人人人人人| 黄色视频,在线免费观看| 一级片'在线观看视频| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 欧美精品av麻豆av| 精品亚洲成a人片在线观看| 黄频高清免费视频| 高潮久久久久久久久久久不卡| 欧美日韩亚洲高清精品| 欧美精品一区二区大全| 国产成人免费无遮挡视频| tube8黄色片| 欧美在线一区亚洲| 亚洲中文日韩欧美视频| 在线观看免费视频网站a站| 青草久久国产| av不卡在线播放| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 侵犯人妻中文字幕一二三四区| 久久久久精品人妻al黑| 国产精品 欧美亚洲| 婷婷成人精品国产| 纵有疾风起免费观看全集完整版| 免费一级毛片在线播放高清视频 | 精品一区二区三区av网在线观看 | 两性夫妻黄色片| 香蕉久久夜色| 成年人免费黄色播放视频| 美女主播在线视频| 人人妻人人添人人爽欧美一区卜| 亚洲色图av天堂| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜一区二区| 电影成人av| 大片电影免费在线观看免费| 99久久99久久久精品蜜桃| 999久久久国产精品视频| 亚洲成人国产一区在线观看| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 国产亚洲av高清不卡| av视频免费观看在线观看| 国产一区二区激情短视频| 后天国语完整版免费观看| 国产精品一区二区免费欧美| 999久久久国产精品视频| 91成年电影在线观看| aaaaa片日本免费| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 国产在线观看jvid| 亚洲精品国产精品久久久不卡| 国产熟女午夜一区二区三区| 人人妻人人添人人爽欧美一区卜| 天堂俺去俺来也www色官网| 午夜福利一区二区在线看| 人成视频在线观看免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲va日本ⅴa欧美va伊人久久| 丝袜喷水一区| 国产一区二区激情短视频| 欧美人与性动交α欧美精品济南到| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免费看| 国产精品久久久久久人妻精品电影 | 午夜免费鲁丝| 婷婷成人精品国产| 国产欧美亚洲国产| 国产国语露脸激情在线看| 丁香六月欧美| 新久久久久国产一级毛片| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 亚洲午夜精品一区,二区,三区| 欧美日本中文国产一区发布| 国产人伦9x9x在线观看| 精品一区二区三卡| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片| 亚洲成人手机| 大香蕉久久网| 夫妻午夜视频| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 又紧又爽又黄一区二区| 精品国产一区二区三区久久久樱花| av天堂久久9| 亚洲第一av免费看| 首页视频小说图片口味搜索| 亚洲伊人色综图| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲精品国产色婷小说| 国产在线视频一区二区| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 国产av精品麻豆| 精品国内亚洲2022精品成人 | 国产在线视频一区二区| 91大片在线观看| 国产真人三级小视频在线观看| 国产成人一区二区三区免费视频网站| 女人被躁到高潮嗷嗷叫费观| 十八禁人妻一区二区| 无限看片的www在线观看| www.999成人在线观看| 欧美国产精品一级二级三级| 免费少妇av软件| 18禁黄网站禁片午夜丰满| 成人特级黄色片久久久久久久 | 热re99久久国产66热| 亚洲男人天堂网一区| www.精华液| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影免费在线| 国产一区二区三区视频了| 男女边摸边吃奶| 在线十欧美十亚洲十日本专区| 国产精品.久久久| 91大片在线观看| avwww免费| 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 亚洲人成电影观看| 欧美精品啪啪一区二区三区| 久久人妻福利社区极品人妻图片| 一区二区三区乱码不卡18| 黄色视频不卡| 精品国产乱子伦一区二区三区| 久久毛片免费看一区二区三区| 国产欧美日韩综合在线一区二区| 热99国产精品久久久久久7| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 天天影视国产精品| 欧美成人免费av一区二区三区 | 国产真人三级小视频在线观看| 99热网站在线观看| 好男人电影高清在线观看| 亚洲熟女精品中文字幕| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 午夜激情av网站| 亚洲av第一区精品v没综合| 丰满少妇做爰视频| 国产精品av久久久久免费| 啦啦啦在线免费观看视频4| 亚洲成人国产一区在线观看| 午夜成年电影在线免费观看| 国产又爽黄色视频| 午夜激情久久久久久久| 成年动漫av网址| 十分钟在线观看高清视频www| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 国产高清视频在线播放一区| 99热国产这里只有精品6| 日本黄色视频三级网站网址 | 日本一区二区免费在线视频| 日本黄色视频三级网站网址 | 国产麻豆69| 悠悠久久av| 欧美成狂野欧美在线观看| 亚洲熟女毛片儿| 一边摸一边抽搐一进一小说 | 精品人妻在线不人妻| 国产成人欧美在线观看 | 99国产综合亚洲精品| 色综合婷婷激情| 久久av网站| 亚洲国产av影院在线观看| 欧美精品啪啪一区二区三区| 蜜桃在线观看..| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 丝袜喷水一区| 大型av网站在线播放| 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女 | 国产精品九九99| 久久久久视频综合| 又紧又爽又黄一区二区| 欧美日韩av久久| 亚洲熟妇熟女久久| 777米奇影视久久| 欧美 日韩 精品 国产| av网站免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 男女无遮挡免费网站观看| 视频区图区小说| 在线观看66精品国产| 国产精品二区激情视频| 亚洲精品乱久久久久久| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 视频在线观看一区二区三区| 久久精品国产综合久久久| 久久中文看片网| 777米奇影视久久| av线在线观看网站| 久久香蕉激情| 久久国产精品影院| 99国产综合亚洲精品| 午夜久久久在线观看| 黄色成人免费大全| 亚洲中文av在线| 无人区码免费观看不卡 | 视频区欧美日本亚洲| 少妇的丰满在线观看| 飞空精品影院首页| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 亚洲久久久国产精品| 亚洲综合色网址| 男人舔女人的私密视频| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 亚洲av美国av| 国产97色在线日韩免费| 久久久久久免费高清国产稀缺| 欧美激情高清一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 精品卡一卡二卡四卡免费| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 麻豆国产av国片精品| 国产老妇伦熟女老妇高清| 女人久久www免费人成看片| 色尼玛亚洲综合影院| 日韩成人在线观看一区二区三区| 最新的欧美精品一区二区| 欧美 亚洲 国产 日韩一| 欧美黄色片欧美黄色片| 少妇的丰满在线观看| 亚洲精品中文字幕在线视频| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 国产一卡二卡三卡精品| av片东京热男人的天堂| 美女国产高潮福利片在线看| videosex国产| 黄色丝袜av网址大全| 午夜福利视频在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 亚洲成人免费av在线播放| 欧美日韩视频精品一区| 精品久久久精品久久久| 日本黄色视频三级网站网址 | 日韩人妻精品一区2区三区| 成人18禁在线播放| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 国产精品影院久久| 视频在线观看一区二区三区| 高清av免费在线| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 亚洲av电影在线进入| 国产激情久久老熟女| 精品亚洲成国产av| 最黄视频免费看| 黑人巨大精品欧美一区二区mp4| 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| 精品欧美一区二区三区在线| 在线播放国产精品三级| 国产野战对白在线观看| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 男女免费视频国产| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 巨乳人妻的诱惑在线观看| 丰满人妻熟妇乱又伦精品不卡| 高清视频免费观看一区二区| 美女福利国产在线| 亚洲七黄色美女视频| 精品少妇一区二区三区视频日本电影| 青草久久国产| 亚洲精品在线观看二区| 老司机福利观看| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 亚洲av日韩在线播放| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲 丝袜 人妻 在线| 午夜视频精品福利| 亚洲第一欧美日韩一区二区三区 | 无人区码免费观看不卡 | 人人澡人人妻人| 视频区欧美日本亚洲| 欧美 亚洲 国产 日韩一| 1024视频免费在线观看| 天天躁夜夜躁狠狠躁躁| 一级片'在线观看视频| 国产伦理片在线播放av一区| av国产精品久久久久影院| 国内毛片毛片毛片毛片毛片| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 人人妻,人人澡人人爽秒播| 久久久国产一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲成人免费av在线播放| 黑人猛操日本美女一级片| 国产在线视频一区二区| 无限看片的www在线观看| 免费看十八禁软件| 日韩制服丝袜自拍偷拍| 欧美成人免费av一区二区三区 | videosex国产| 老熟妇乱子伦视频在线观看| 久久久国产成人免费| 无遮挡黄片免费观看| 欧美精品av麻豆av| 国产精品一区二区在线观看99| a级毛片黄视频| 国产av又大| 无遮挡黄片免费观看| 国产高清videossex| 日韩三级视频一区二区三区| 无限看片的www在线观看| 国产黄色免费在线视频| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| 岛国毛片在线播放| 在线 av 中文字幕| 免费观看a级毛片全部| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲 | 国产精品久久久人人做人人爽| 黄色怎么调成土黄色| 香蕉丝袜av| 亚洲三区欧美一区| 老司机午夜十八禁免费视频| tube8黄色片| 欧美久久黑人一区二区| 精品国产一区二区三区久久久樱花| 变态另类成人亚洲欧美熟女 | 少妇粗大呻吟视频| 国产精品美女特级片免费视频播放器 | 亚洲性夜色夜夜综合| 青青草视频在线视频观看| 考比视频在线观看| 国产男女内射视频| av在线播放免费不卡| 国产男女内射视频| 两个人免费观看高清视频| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 看免费av毛片| 91精品三级在线观看| 精品国内亚洲2022精品成人 | 亚洲欧美一区二区三区黑人| 在线十欧美十亚洲十日本专区| 亚洲中文av在线| 丝袜美足系列| 最近最新中文字幕大全免费视频| 亚洲欧美精品综合一区二区三区| 最新的欧美精品一区二区| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 自拍欧美九色日韩亚洲蝌蚪91| 80岁老熟妇乱子伦牲交| 我的亚洲天堂| 色94色欧美一区二区| 午夜福利影视在线免费观看| 国产福利在线免费观看视频| 成年版毛片免费区| 久久久久国内视频| 婷婷成人精品国产| 国产精品美女特级片免费视频播放器 | 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 精品人妻熟女毛片av久久网站| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 岛国在线观看网站| 18在线观看网站| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 国产精品久久电影中文字幕 | 国产亚洲精品第一综合不卡| 国产激情久久老熟女| 日韩欧美三级三区| 一级毛片女人18水好多| 90打野战视频偷拍视频| 国产亚洲精品一区二区www | 日韩欧美免费精品| a级毛片黄视频| 男人操女人黄网站| 免费黄频网站在线观看国产| www.精华液| 久久中文看片网| 午夜福利视频精品| 亚洲七黄色美女视频| 久久精品亚洲熟妇少妇任你| 久久人妻熟女aⅴ| 变态另类成人亚洲欧美熟女 | 精品国产乱子伦一区二区三区| 成人免费观看视频高清| 夜夜骑夜夜射夜夜干| 色精品久久人妻99蜜桃| 国产视频一区二区在线看| 亚洲天堂av无毛| 嫩草影视91久久| 成人国产av品久久久| 久久久久国内视频| 每晚都被弄得嗷嗷叫到高潮| 成人国产av品久久久| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美网| 狠狠婷婷综合久久久久久88av| 亚洲欧美精品综合一区二区三区| 亚洲熟女精品中文字幕| 极品少妇高潮喷水抽搐| 国产激情久久老熟女| 91精品三级在线观看| 丰满少妇做爰视频| 久久久久久久久久久久大奶| 国产一区二区三区视频了| 99热网站在线观看| 午夜福利一区二区在线看| 亚洲色图综合在线观看| 一夜夜www| 亚洲五月色婷婷综合| 超色免费av| 新久久久久国产一级毛片| 免费在线观看日本一区|