• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced measurement precision with continuous interrogation during dynamical decoupling

    2024-03-25 09:30:48JunZhang張軍PengDu杜鵬LeiJing敬雷PengXu徐鵬LiYou尤力andWenxianZhang張文獻
    Chinese Physics B 2024年3期
    關鍵詞:徐鵬張軍文獻

    Jun Zhang(張軍), Peng Du(杜鵬), Lei Jing(敬雷), Peng Xu(徐鵬),Li You(尤力), and Wenxian Zhang(張文獻),3,?

    1Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education,and School of Physics and Technology,Wuhan University,Wuhan 430072,China

    2State Key Laboratory of Low-Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    3Wuhan Institute of Quantum Technology,Wuhan 430206,China

    Keywords: quantum sensing, continuous interrogation, quantum magnetometer, dynamical decoupling,Heisenberg limit

    1.Introduction

    As one of the most studied control methods, dynamical decoupling (DD) can actively suppress noise to preserve coherence of a quantum system,[1,2]e.g., in trapped ions,[3-7]solid-state spins,[8-15]superconducting quantum circuits,[16-18]and ultracold atomic gases.[19-22]Despite its successes,DD has found only a few usages in precision measurement of a DC signal.[23]While unwanted and unknown stochastic noises are suppressed by periodically refocusing a quantum state to the initial one with DD,[19,24]a DC (or low frequency AC) signal sensed from phase interrogation by a quantum state provides no net accumulated phase.[25]Such a dilemmatic situation is unfortunate,especially since the effect of achieving beyond standard quantum limit (SQL) precision could obviously benefit from entangled or squeezed quantum states that are otherwise easily decohered.[26-32]

    This work studies the application of DD to precision measurement by suppressing noise while reaping up a gain from continuous sensing of a weak DC (or low frequency AC) signal.[25]To explain our idea, let us recall an athlete in a 5-10-5 shuttle run.After start, his/her displacement increases while running forward.When he/she comes around after touching the turn-around lines, however, the displacement with respect to the initial line decreases and eventually becomes zero upon returning back to the start line, although the net distance covered continuously grows after repeated line touchings at both ends.Analogously, the interrogated signal and the accompanying noise accumulate during the first half of a DD cycle, but are both compensated for by the complementary second half period.To obtain a net phase accumulation of a DC signal, one could simply flip the signal’s phase but not that of the noise during the second half as illustrated in Fig.1, provided the signal was known.Such a simple (alternately repeated) phase flip could help to recover the DC signal by allowing the consequent interrogation to last for many DD cycles while the noise remains suppressed.We refer the above described manipulation protocol as the phase relay method(PRM).If implemented this way,DD,which has been demonstrated successfully for high frequency AC signal measurements in a variety of physical systems,[4,14,15,19,24,33-38]will also be applicable to the measurement of DC (and lowfrequency AC)signals.

    2.Continuous interrogation during DD

    We illustrate the PRM by applying it to measure a weak DC magnetic field using an atomic spinor Bose-Einstein condensate through Ramsey interferometry.[39]The condensate is assumed to consist ofN=1000087Rb atoms, which comes with a strong repulsive spin independent interaction in addition to a weak ferromagnetic spin exchange interaction.For small or moderate sizedNand with the condensate in an optical trap,its Hamiltonian under the single spatial mode approximation reduces toH=-c′2J2+γB·J,after constant terms are dropped,[40,41]wherec′2denotes the spin exchange interaction strength with the collective condensate spinJ=∑Ni=1Fifrom spinFiforith atom,γthe atomic gyromagnetic ratio,andBthe total magnetic field which possibly includes a fixed known bias fieldB0,a fixed weak but unknown DC magnetic fieldb0(the signal to be measured),and stray stochastic magnetic fieldb(noise)to be suppressed by DD.We consider the simple case of the bias and the signal field along the samezaxis direction, while the stray field is randomly directed with random amplitude(|b|<bcupto a cutoff amplitudebc).

    2.1.Noise suppression with uniaxial DD

    The condensate spin decoheres by the stray magnetic field,which eventually limits the optimal achievable sensitivity of the magnetometer.Although the dephasing noise model may give analytical results as derived in Appendix B,we consider a more realistic stray-field model.Including the stray magnetic field,the Hamiltonian becomes

    wherebx,y,z ∈[-bc,bc]and a bias fieldB0?b0,cis required.To suppress decoherence from the stray field, many DD schemes can be applied.[2,42-50]We adopt a uniaxial DD protocol which is robust and easy to implement experimentally.[51]

    Here we emphasize that the spin exchange termc′2J2is the natural ingredient of the spinor BEC, and thus it can not be excluded from the Hamiltonian (1), even though it has no contribution to the results of our calculation.Specifically,we consider a ferromagnetic interactionc′2<0,which ensures the validity of the single mode approximation utilized in deriving the system Hamiltonian.

    By denoting theπ-pulse alongx-axis byX, the evolution operator for a unit cycle becomesU2τ=XUτXUτ=exp(-i2τˉH), whereUτ= exp(-iτH) withτthe duration between pulses and ˉHthe time averaged Hamiltonian over a whole cycle.Under the magic conditionτ=2mπ/(γB0)(form=1,2,3,...),the uniaxial DD is capable of efficiently suppressing decoherence from the stray magnetic field, because the effective coupling between the condensate spin and the stray magnetic field is reduced by a factor of(bz/B0),leading to ˉH ≈-c′2J2+(bz/B0)γbyJy.[51]Further suppression of the stray magnetic field is achieved if a refined uniaxial DD protocol,the balanced uniaxial DD(BUni-DD)[XˉUτXˉUτXUτXUτ],is employed,whereUτ(ˉUτ)denotes free evolution with a positive (negative) bias field.The latter leads to the BUni-DD periodT=4τand the magic conditionγB0τ=2mπremains needed.It is easy to find that the average Hamiltonian further improves to ˉH ≈-c′2J2+O((bc/B0)2).

    2.2.Phase relay method

    To estimate the signal field amplitude with Ramsey interferometry,the condensate spin is initially prepared to align alongx-direction.During the interrogation timet,it processes along the direction of the bias and signal field sum which provides an accumulated time phaseφ=γ(B0+b0)twithB0=|B0| andb0=|b0|.By measuring precisely this phaseφat timet, the signal field can be determined.Experimentally, this is accomplished by measuringJy, they-component of the collective spin, which oscillates with time as shown in Fig.1.The estimated phase between 0 and 2πis extracted by fitting the observed data to a sinusoidal function.For longer interrogation time, this phase will exceed 2π.Consequently,one would hope to keep track of indexing the number of oscillation cycles in order to continuously interrogate a monotonically increased phase instead of a zigzagged one chopped into[0,2π].During interrogation,the stray magnetic field stochastically disturbs the measured phase and introduces an uncertainty Δφ, which leads to an uncertainty in the signal Δb0.Such effects from the stray magnetic field can be suppressed by periodically executed DD pulses,for example,with instantaneousπrotations of the spin alongx-axis, or spin flips.As numerical results verified in Fig.1,effects of the noise are indeed suppressed significantly.Unfortunately,the interrogated phase from the bias plus the signal field is also refocused by the above DD pulses, i.e., the net phase accumulation after complete cycles of DD diminishes,making it difficult to estimate the signal field.

    Fig.1.Phase relay method.(a)Numerically simulated mean(blue solid line)and the standard deviation(gray shaded region)for observable Jy without DD.(b) The same as in (a) but with DD shown by the red solid line (mean) and the gray shaded region (one standard deviation).The applied pulse interval is τ =0.1 ms.The standard deviation is found to be strongly suppressed after one DD cycle T =4τ.(c)Phase φ extracted directly from the simulation(a) (yellow dash-dotted line)and with hypothetical accumulation taking into account the indexed number of oscillations(blue solid line).The standard deviation of the phase (shaded in gray) is multiplied by 10 for better viewing.The phase increases linearly and the standard deviation grows monotonically with time.(d)Phase extracted directly from the experimental observable(b)(purple dash-dotted line) and after applying the PRM (red solid line).The standard deviation of the phase(shaded gray)is multiplied by 100.Similarly,the phase after PRM increases linearly and the standard deviation is strongly suppressed after each DD cycle.

    While BUni-DD protocol discussed above suppresses the stray magnetic field,the signal field is also suppressed unfortunately as the accumulated phase nearly zeros out after each DD cycle.However,the signal field differs from the stray magnetic field because it is by definition nonzero and we further note that the pulse interval for the DD pulse sequenceτis exactly known.These features(knowledge)provide us an opportunity to continuously accumulate the phase associated with the signal by the phase relay method(PRM),inspired by the 5-10-5 shuttle run.

    We now examine the interrogated phase accumulation associated with the signal in the first DD cycle,over a period of 4τ(see Fig.2).For the sake of clarity, we neglect the stray magnetic field at this stage.During the first quarter,the phase of the signalφs(τ)=γb0τaccumulates linearly.Att=τ,an instantaneousXpulse then flips the condensate spin and the phase changes to-φs(τ).During the second quarter,the signal’s phase evolves linearly back to 0, i.e.,φs(2τ)=0.This phase pattern repeats in the third and the fourth quarters as in the first and the second quarters,respectively.The total interrogated phase during a whole DD cycle vanishes.

    Fig.2.The PRM protocol.A roughly estimated phase-shift θ0 is obtained by linear least square fitting (red dots) to a few data points extracted from preliminary measurements of the observable during the first quarter period.One then extracts estimated phases φs(t) (green dots)and shifts them according to θ0 and the cycle indexing number n(purple dots), during the whole BUni-DD sequence.The blue dashed line illustrates the relayed phase based on the preliminary estimated θ0.An improved estimate for θ0 is obtained by a least square linear fit to all the relayed data from many BUni-DD cycles(black line).The slope of the fitted black line denotes a refined estimate of the signal field b0.

    As shown in Fig.2,an immediate method to continuously interrogate the signal phase during the BUni-DD cycle is to shift the phase duringt ∈[τ,3τ]by a fixed amountθ0and by 2θ0during the last quartert ∈[3τ,4τ] respectively, providedθ0=γb0τfrom the signal fieldb0was known.For thenth DD cycle,the required phase shift of the first quarter becomes(2n-2)θ0,the second and the third quarter(2n-1)θ0,and the fourth quarter 2nθ0.In practice,we would first obtain a crude estimate to the phase shiftθ0by running a few preliminary experiments without DD pulses, then followed by optimizations, and finally determineθ0more precisely.One plausible approach is shown in Fig.2 which obtains the shifted phase data(by varyingθ0)during the first and the last quarters of the whole DD sequence, and optimizes with least square fitting.Afterwards,a refined and more accurateθ0may be determined and likewise the signal field is determined more precisely.

    Including the stray magnetic field, our numerical simulations confirm that the PRM remains effective.For practical implementations, the PRM protocol can be summarized explicitly by the following steps.

    (i) Take a few measurements of〈Jy〉 to obtain〈Jy〉(t) at short time.

    (ii) Extract the phaseφs(t) from the experiment data, fit linearly the phase-time curve,and find out a crude estimate for the phase-shiftθ0,which is similar to the adjustment of fire in military.

    (iii)Take more measurements of〈Jy〉(t)at the beginning,in the middle,and at the end of the BUni-DD sequence.

    (iv)Extract phasesφs(t)from the larger data set,and relay/shift measured phases accordingly with the knowledge of the cycle indexing numbernandθ0.

    (v)Optimizeθ0with a least-square linear fit.

    (vi)Derive the signal fieldb0.

    With the PRM,the phase relays continuously during a DD cycle,as shown schematically in Fig.1,which can be further optimized by least square fitting the data over many DD cycles.Consequently, the net phase from the bias and signal fields continuously integrates while the stochastic contributions from noise are averaged out after repeated DD cycles,thus the measurement precision of a weak DC signal is enhanced.

    3.Heisenberg limit magnetometer with spin squeezing

    To evaluate the achievable precision after an interrogation timet, we calculate the signal-field sensitivity for measuring the weak magnetic field according to

    We consider an SSS with averaged spin point along thexaxis,while the squeezing direction is along they-axis,orthogonal to the averaged spin.Such a state is readily prepared experimentally in a spinor87Rb atomic condensate.[28,52,53]We setω0=γB0=2π×10 kHz corresponding to a bias field ofB0=14.3 mG(γ=0.70 MHz/G).The cutoff field is taken to be at a nominal laboratory noise levelbc=0.1 mG (with an angular frequency 2π×70 Hz).As for the signal,we assumeb0=1.6μG,which serves to demonstrate quantum enhanced precision.The pulse interval of BUni-DD isτ=0.1 ms, satisfying the magic conditionω0τ=2π.After repeated simulation runs with random stray magnetic fieldbof uniformly distributed componentsbx,y,z ∈[-bc,bc], we compute the observable〈Jy〉and its standard deviation,extract the phase,derive the signal’s phase and its standard deviation, and finally determine the sensitivityη(Fig.3).

    Fig.3.Precision measurement of a weak DC magnetic field with DD.(a),(b) The average condensate spins (solid lines) and their standard deviations(gray shaded areas)for initial coherent spin state(CSS)versus squeezed spin state (SSS).(c), (d) The signal’s phases φs extracted with PRM from simulated experimental observables in(a)and(b),respectively with b0=160μG in (c) and b0 =1.6 μG in (d).The bias and the cutoff fields are assumed to be B0 =14.3 mG and bc =0.1 mG, respectively.The small standard deviations are multiplied by 50 in order to be clearly visible.(e)The signal field’s sensitivities under DD for CSS(green circles)and SSS(purple triangles),respectively approaching the SQL(black solid line)and HL(red solid line).For comparison,we present the sensitivities without DD pulses for both CSS(blue squares)and SSS(red diamonds)as well in the same figure.The DD pulses are seen to strongly suppress noise and significantly improve sensitivity.

    Fig.4.Sensitivity at short and long times for CSS(purple line)and SSS(green line).The cutoff field assumed bc =0.1 mG.Both states decohere quickly without the application of BUni-DD(a)but maintain their coherence for longer times with the application of BUni-DD (b).The black and the red lines denote SQL and HL,respectively.

    Fig.5.Optimal sensitivities within 200 ms of interrogation time at different noise levels.The optimal sensitivities detected by an initial CSS with (without) DD pulses are denoted by blue triangles (squares); the ones detected by an initial SSS with (without) DD pulses are shown with orange circles (diamonds).As long as the stray magnetic field is lower than the noise threshold ~0.1 mG,noise is strongly suppressed and sensitivities with DD are independent of the noise strength.For comparison, the noise thresholds without DD pulses are numerically found to be ~10-6 mG for an initial CSS and ~10-8 mG for an initial SSS.The vertical line marks a laboratory noise level of 0.01 mG.[19]

    4.Discussion and conclusion

    In conclusion, we propose the PRM which enables continuous interrogation during DD and enhances the system’s coherence during quantum measurements.With this PRM,we numerically show that the sensitivity of a spinor-BECbased magnetometer approaches the SQL with an initial CSS and the HL with an SSS.Remarkably, the simulated optimal sensitivity with only 10000 atoms enters the regime of a fewwithin 200 ms interrogation time, indicating the great potential of enhanced quantum metrology utilizing the spin squeezing and the metrologically-useful-quantum entanglement.The PRM applies not only to the investigated spinor-BEC magnetometer,[19,20]but also to other quantum sensor systems suffering severe decoherence, such as nitrogen vacancy centers in diamond,[8-10,12,13,15]trapped ions,[4-6]and superconducting quantum devices.[16,17]

    Three concerns are experimentally related.(i) At a first glance,the relative stability of the bias fieldb0/B0is roughly 0.01%.Although such a highly stable magnetic field has been realized in recent experiments, where the bias magnetic field is of the order of~1 G and stabilized to a range from 10μG to 0.1 mG,[7,52,53]we note that the magnetic field stability is actually characterized by the stray magnetic field.Thus the ratiobc/B0is about 1%, which is quite easy to realize.(ii) The rapid reversion of the bias field (in the order of~1 μs) was achieved in experiments without introducing adiabatic Landau-Zener transitions between atoms in different spin components.[56]Therefore we may neglect the short reversion time of the bias field during our numerical simulations.(iii) To measure〈Jy〉 in a spin-1 BEC experiment, one may employ continuous measurement using magneto-optical imaging techniques,[55]or projective measurement using the Stern-Gerlach technique after an additionalπ/2 pulse which rotates the condensate spin tozdirection.[52]

    For the purpose of a concise illustration of PRM, we have assumed several idealizations for the magnetic field sensitivities to reach the HL.Specifically, the sensitivity calculations do not take into account any dead time during statepreparation and measurement stage, and assume hard pulses with instantaneous and perfect rotation.Therefore, the sensitivities achieved in practical experiments are not as prominent as predicted here.Nevertheless,our results point out the possibility to suppress noises with DD for a DC magnetometer using PRM.It is worthwhile to design more robust pulse sequences accounting for pulse width and shape,in order to meet practical requirements.

    Appendix A:Parameter estimation and sensitivity

    Under the single mode approximation,[40]the Hamiltonian for the magnetometer based on atomic spin-1 Bose-Einstein condensate is given by

    With the (to be estimated) signal magnetic fieldb0assumed static and pointed along thez-axis, the Hamiltonian in the absence of stray field reduces toH0=-c′2J2+γb0Jz.To estimateb0, a polarized initial stateψ(0), e.g., a coherent spin state (CSS) with its average spin alongx-direction taking the maximum collective spin value〈Jx〉=Jis prepared.It evolves underH0for an interrogation timetand becomesψ(t)=exp(-i[-c′2tJ2+φsJz])ψ(0), whereφs=γb0tis the accumulated dynamical phase from the signal fieldb0.One can determineb0by measuring a dependent observable, for instance,〈Jy〉, which gives〈Jy〉(t)=Jsin(φs).According to parameter estimation theory,the value ofb0can be estimated from the measured〈Jy〉(t)through the relation

    The sensitivity for such a magnetometer is defined as

    an optimal sensitivity that scales as 1/J,which is beyond SQL and approaches to the Heisenberg limit(HL).The scaling with respect toJmanifests the quantum enhancement to measurement precision by using SSS.

    Appendix B:Free evolution in dephasing noises

    To facilitate analytical derivation, we consider the dephasing model in which the stray field distributes uniformly within[-bc,bc]only alongz-direction.The system Hamiltonian becomesH=-c′2J2+γbzJz+γb0Jz, wherebzdenotes thez-component of the stray magnetic field.

    It is easy to calculate straightforwardly the evolution of〈Jy〉 for an initial CSS with spin initially polarized alongxdirection,which follows

    Acknowledgements

    Project supported by the NSAF (Grant No.U1930201),the National Natural Science Foundation of China (Grant Nos.12274331, 91836101, and 91836302), the National Key R&D Program of China (Grant No.2018YFA0306504), and Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).The numerical calculations in this paper have been partially done on the supercomputing system in the Supercomputing Center of Wuhan University.

    猜你喜歡
    徐鵬張軍文獻
    篆刻:張軍
    萬松浦(2023年6期)2023-04-08 11:57:16
    Hostile takeovers in China and Japan
    速讀·下旬(2021年11期)2021-10-12 01:10:43
    徐鵬飛漫畫
    Cultural and Religious Context of the Two Ancient Egyptian Stelae An Opening Paragraph
    大東方(2019年12期)2019-10-20 13:12:49
    聽說第七街有人等你
    伴侶(2018年11期)2018-11-22 03:18:50
    The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming*
    The Application of the Situational Teaching Method in English Classroom Teaching at Vocational Colleges
    The Role and Significant of Professional Ethics in Accounting and Auditing
    商情(2017年1期)2017-03-22 16:56:36
    Analysis Of Legal Question About The “purchase a house by undisclosed principal”
    科學與財富(2017年6期)2017-03-19 08:36:37
    貪小便宜毀人生
    少妇熟女aⅴ在线视频| 欧美日韩乱码在线| 18禁黄网站禁片午夜丰满| 人妻久久中文字幕网| 国产精品电影一区二区三区| 一边摸一边做爽爽视频免费| 亚洲激情在线av| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 女人爽到高潮嗷嗷叫在线视频| 一进一出抽搐gif免费好疼| 少妇被粗大的猛进出69影院| a级毛片在线看网站| 老司机午夜福利在线观看视频| 久久久久久久久中文| 亚洲一区二区三区色噜噜| 久久婷婷人人爽人人干人人爱| 制服丝袜大香蕉在线| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人| 全区人妻精品视频| 国产精品久久久久久精品电影| 最近最新中文字幕大全免费视频| 亚洲国产中文字幕在线视频| 777久久人妻少妇嫩草av网站| 亚洲真实伦在线观看| 久久香蕉国产精品| 午夜激情福利司机影院| 91在线观看av| 99久久久亚洲精品蜜臀av| 国产主播在线观看一区二区| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 国内毛片毛片毛片毛片毛片| 给我免费播放毛片高清在线观看| 高潮久久久久久久久久久不卡| 精品少妇一区二区三区视频日本电影| 国产精品,欧美在线| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 全区人妻精品视频| 麻豆国产97在线/欧美 | 麻豆成人av在线观看| av欧美777| 色播亚洲综合网| 91麻豆av在线| 欧美精品啪啪一区二区三区| 一区福利在线观看| 亚洲一码二码三码区别大吗| 久久伊人香网站| 国产伦一二天堂av在线观看| 女人高潮潮喷娇喘18禁视频| 听说在线观看完整版免费高清| bbb黄色大片| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 亚洲av美国av| 好男人在线观看高清免费视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线美女| 国产三级黄色录像| 国产97色在线日韩免费| 超碰成人久久| 国产又色又爽无遮挡免费看| 一个人观看的视频www高清免费观看 | 男女视频在线观看网站免费 | 99在线人妻在线中文字幕| 两性夫妻黄色片| 国产人伦9x9x在线观看| 亚洲一区二区三区色噜噜| www.999成人在线观看| 午夜精品在线福利| 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看 | av中文乱码字幕在线| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 搡老妇女老女人老熟妇| 变态另类丝袜制服| 亚洲精品久久国产高清桃花| 国产av又大| 色精品久久人妻99蜜桃| 亚洲无线在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久久久人妻精品电影| 亚洲黑人精品在线| 免费在线观看黄色视频的| svipshipincom国产片| 日韩欧美在线乱码| 午夜激情av网站| ponron亚洲| 99久久精品热视频| 久久久久久国产a免费观看| 两个人视频免费观看高清| 亚洲五月婷婷丁香| 亚洲一区高清亚洲精品| 午夜成年电影在线免费观看| 一级毛片精品| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 午夜福利在线在线| 国产不卡一卡二| 19禁男女啪啪无遮挡网站| 午夜亚洲福利在线播放| 成年人黄色毛片网站| 成人国语在线视频| 久久午夜综合久久蜜桃| 99国产精品99久久久久| av福利片在线观看| 嫩草影视91久久| 久久精品国产亚洲av香蕉五月| 亚洲精品色激情综合| 天天添夜夜摸| 中亚洲国语对白在线视频| 欧美日韩福利视频一区二区| 国产97色在线日韩免费| 夜夜躁狠狠躁天天躁| 亚洲专区字幕在线| 悠悠久久av| 在线视频色国产色| 亚洲国产精品999在线| 国产精品一区二区三区四区久久| 嫩草影院精品99| 一级片免费观看大全| 日韩大码丰满熟妇| 热99re8久久精品国产| 法律面前人人平等表现在哪些方面| 男女那种视频在线观看| 亚洲一区二区三区不卡视频| 亚洲中文日韩欧美视频| 天堂av国产一区二区熟女人妻 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久这里只有精品中国| 叶爱在线成人免费视频播放| a级毛片在线看网站| 好男人在线观看高清免费视频| 国产成人欧美在线观看| 精品久久久久久久久久久久久| 淫妇啪啪啪对白视频| 丁香六月欧美| 麻豆成人av在线观看| 日本五十路高清| 国产私拍福利视频在线观看| 久久久久久大精品| 中国美女看黄片| 久久久久性生活片| 男女那种视频在线观看| 无限看片的www在线观看| 一区二区三区激情视频| 999久久久国产精品视频| 亚洲欧美日韩无卡精品| 国产精品,欧美在线| 午夜亚洲福利在线播放| 午夜免费激情av| 成年女人毛片免费观看观看9| 50天的宝宝边吃奶边哭怎么回事| 国产午夜精品论理片| 欧美三级亚洲精品| 亚洲自拍偷在线| 中文字幕人成人乱码亚洲影| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| bbb黄色大片| 中文字幕最新亚洲高清| 欧美乱色亚洲激情| 少妇粗大呻吟视频| 国产成人系列免费观看| 国产精品日韩av在线免费观看| 最近最新中文字幕大全免费视频| x7x7x7水蜜桃| 中文在线观看免费www的网站 | 人人妻人人澡欧美一区二区| www.自偷自拍.com| avwww免费| 18禁美女被吸乳视频| 欧美日韩福利视频一区二区| 亚洲欧洲精品一区二区精品久久久| 级片在线观看| 麻豆成人午夜福利视频| 欧美中文日本在线观看视频| 91大片在线观看| 无限看片的www在线观看| www.自偷自拍.com| 久久久久久久久久黄片| 亚洲精品中文字幕一二三四区| 18美女黄网站色大片免费观看| 国产精品亚洲av一区麻豆| 啦啦啦观看免费观看视频高清| 变态另类成人亚洲欧美熟女| 午夜福利18| 亚洲激情在线av| a级毛片在线看网站| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| videosex国产| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 中文字幕av在线有码专区| 妹子高潮喷水视频| 国产免费av片在线观看野外av| 中文字幕熟女人妻在线| 1024手机看黄色片| 国产精品一区二区免费欧美| 婷婷精品国产亚洲av| 国产精品久久久av美女十八| 久久久精品欧美日韩精品| 久久这里只有精品19| 一级毛片女人18水好多| 一级黄色大片毛片| 久久这里只有精品中国| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 日日爽夜夜爽网站| 成人精品一区二区免费| 亚洲av成人精品一区久久| 精品久久久久久久久久久久久| 国产精品久久电影中文字幕| 欧美极品一区二区三区四区| 老司机午夜福利在线观看视频| 九色国产91popny在线| 国产亚洲精品综合一区在线观看 | 亚洲美女视频黄频| 我的老师免费观看完整版| 国产男靠女视频免费网站| 亚洲一区二区三区色噜噜| 国产免费av片在线观看野外av| 在线观看美女被高潮喷水网站 | 后天国语完整版免费观看| 男女那种视频在线观看| 777久久人妻少妇嫩草av网站| 丰满的人妻完整版| 麻豆av在线久日| 精品久久久久久久久久免费视频| 国产激情欧美一区二区| 村上凉子中文字幕在线| 床上黄色一级片| 一本一本综合久久| 亚洲国产欧美网| ponron亚洲| 久久久久久久久久黄片| 午夜免费激情av| 黄色a级毛片大全视频| 在线观看www视频免费| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 日本在线视频免费播放| 99国产精品一区二区三区| 日韩成人在线观看一区二区三区| 大型av网站在线播放| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| or卡值多少钱| 国产成人一区二区三区免费视频网站| 亚洲国产欧美网| 美女大奶头视频| 嫩草影院精品99| 成人手机av| 麻豆一二三区av精品| 国产成人系列免费观看| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 此物有八面人人有两片| 国产99白浆流出| 99在线人妻在线中文字幕| 女警被强在线播放| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 成人av在线播放网站| 欧美高清成人免费视频www| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 久久久精品大字幕| 在线观看www视频免费| 亚洲人成77777在线视频| 国产成人精品无人区| 制服人妻中文乱码| 久热爱精品视频在线9| 国产黄a三级三级三级人| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美网| 亚洲真实伦在线观看| 男女视频在线观看网站免费 | 国产三级在线视频| 一个人观看的视频www高清免费观看 | 在线永久观看黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 精华霜和精华液先用哪个| 免费在线观看完整版高清| 久久精品成人免费网站| 蜜桃久久精品国产亚洲av| 制服人妻中文乱码| 婷婷精品国产亚洲av| 国产黄a三级三级三级人| 久久草成人影院| av福利片在线观看| 国产精品一及| 久久这里只有精品19| 欧美精品亚洲一区二区| 男女床上黄色一级片免费看| 两人在一起打扑克的视频| 少妇熟女aⅴ在线视频| 男女床上黄色一级片免费看| 欧美3d第一页| 久久国产精品影院| 欧美一区二区国产精品久久精品 | 一级黄色大片毛片| 欧美日韩中文字幕国产精品一区二区三区| x7x7x7水蜜桃| 国产精品98久久久久久宅男小说| 国产黄a三级三级三级人| 一级作爱视频免费观看| 色尼玛亚洲综合影院| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 午夜精品一区二区三区免费看| 成人国产一区最新在线观看| 69av精品久久久久久| 国产人伦9x9x在线观看| 国产爱豆传媒在线观看 | 熟妇人妻久久中文字幕3abv| 他把我摸到了高潮在线观看| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区免费观看 | 精品乱码久久久久久99久播| 亚洲七黄色美女视频| 丰满人妻熟妇乱又伦精品不卡| 女同久久另类99精品国产91| 亚洲熟妇熟女久久| 日韩欧美在线二视频| 我的老师免费观看完整版| 我要搜黄色片| 国产人伦9x9x在线观看| 最好的美女福利视频网| 午夜免费激情av| 9191精品国产免费久久| 一a级毛片在线观看| 亚洲黑人精品在线| 亚洲在线自拍视频| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久黄片| 国产欧美日韩一区二区精品| 日韩欧美在线乱码| 嫩草影视91久久| 大型av网站在线播放| 99热这里只有是精品50| 人人妻人人澡欧美一区二区| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频| 午夜福利高清视频| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 男人舔女人的私密视频| 国产精品av久久久久免费| 性欧美人与动物交配| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 国产一区二区三区在线臀色熟女| 亚洲一区高清亚洲精品| 亚洲精品在线美女| 国产伦人伦偷精品视频| 午夜久久久久精精品| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 久久久久精品国产欧美久久久| 欧美3d第一页| 婷婷亚洲欧美| 免费高清视频大片| 91麻豆av在线| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 久久精品国产综合久久久| 日韩欧美三级三区| av片东京热男人的天堂| 婷婷精品国产亚洲av| 九色成人免费人妻av| 美女 人体艺术 gogo| 一级黄色大片毛片| 亚洲中文av在线| 成人三级做爰电影| 三级国产精品欧美在线观看 | 亚洲精品中文字幕一二三四区| 精品一区二区三区av网在线观看| 久久人人精品亚洲av| 免费看十八禁软件| 韩国av一区二区三区四区| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址| 五月伊人婷婷丁香| 成人手机av| 在线十欧美十亚洲十日本专区| 琪琪午夜伦伦电影理论片6080| 日本在线视频免费播放| 亚洲美女黄片视频| 后天国语完整版免费观看| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| xxxwww97欧美| 老司机靠b影院| 中国美女看黄片| 免费在线观看视频国产中文字幕亚洲| 欧美日本亚洲视频在线播放| 1024手机看黄色片| 成人高潮视频无遮挡免费网站| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 中文资源天堂在线| 十八禁网站免费在线| 国产精品久久电影中文字幕| 日本五十路高清| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦一二天堂av在线观看| 十八禁网站免费在线| 制服人妻中文乱码| 一区福利在线观看| 首页视频小说图片口味搜索| 三级国产精品欧美在线观看 | 俺也久久电影网| 啦啦啦韩国在线观看视频| 免费电影在线观看免费观看| 成年免费大片在线观看| 国产爱豆传媒在线观看 | 久久久久久久午夜电影| 熟妇人妻久久中文字幕3abv| 露出奶头的视频| 亚洲人成网站高清观看| 美女大奶头视频| 99热6这里只有精品| 亚洲成人久久性| 日韩大码丰满熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩av在线大香蕉| 久久精品亚洲精品国产色婷小说| 女生性感内裤真人,穿戴方法视频| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| 一进一出抽搐动态| 在线a可以看的网站| 听说在线观看完整版免费高清| 亚洲精品av麻豆狂野| 美女黄网站色视频| 国产久久久一区二区三区| 日韩欧美精品v在线| 精品熟女少妇八av免费久了| 亚洲专区国产一区二区| 两个人视频免费观看高清| 亚洲国产日韩欧美精品在线观看 | www日本在线高清视频| av在线天堂中文字幕| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 两个人看的免费小视频| 在线永久观看黄色视频| 精品日产1卡2卡| 国产精品久久久av美女十八| xxxwww97欧美| 亚洲 国产 在线| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 久久人妻福利社区极品人妻图片| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 免费看日本二区| 亚洲成人中文字幕在线播放| 国产亚洲欧美98| 一区二区三区高清视频在线| 久9热在线精品视频| 欧美日韩黄片免| 久久久久九九精品影院| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 白带黄色成豆腐渣| 亚洲av熟女| 欧美激情久久久久久爽电影| 亚洲精品国产精品久久久不卡| 天堂av国产一区二区熟女人妻 | 国产麻豆成人av免费视频| 在线观看免费视频日本深夜| 精品久久久久久久末码| 亚洲色图av天堂| 久久人妻福利社区极品人妻图片| 欧美日本视频| 国产精品精品国产色婷婷| 亚洲av成人一区二区三| 亚洲无线在线观看| 久久精品国产综合久久久| or卡值多少钱| 亚洲av成人一区二区三| 色综合站精品国产| 国产激情欧美一区二区| 亚洲熟妇熟女久久| 国产激情欧美一区二区| 19禁男女啪啪无遮挡网站| 国产探花在线观看一区二区| 亚洲国产欧洲综合997久久,| 美女 人体艺术 gogo| 好男人电影高清在线观看| 国产麻豆成人av免费视频| 久久久久久人人人人人| 99在线视频只有这里精品首页| 亚洲精品在线美女| 成年人黄色毛片网站| 亚洲 欧美 日韩 在线 免费| 香蕉国产在线看| 国产高清视频在线播放一区| 国产成人aa在线观看| 欧美成人午夜精品| 男人的好看免费观看在线视频 | 日韩高清综合在线| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片免费观看| 在线观看www视频免费| 99在线视频只有这里精品首页| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看 | 欧美久久黑人一区二区| 国产精品一区二区三区四区久久| 色尼玛亚洲综合影院| 免费av毛片视频| 精品久久久久久久久久久久久| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 国产一区在线观看成人免费| 精品日产1卡2卡| 丰满的人妻完整版| 精品久久久久久久久久免费视频| 国产精品九九99| 欧美日本视频| 在线观看美女被高潮喷水网站 | 亚洲最大成人中文| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99精品久久久久人妻精品| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 国产三级在线视频| 国产单亲对白刺激| 国产精品香港三级国产av潘金莲| 热99re8久久精品国产| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| 一a级毛片在线观看| 黄色丝袜av网址大全| 久久精品aⅴ一区二区三区四区| 一本精品99久久精品77| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 岛国在线观看网站| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 在线观看日韩欧美| 精品人妻1区二区| 欧美另类亚洲清纯唯美| 国产精品免费一区二区三区在线| 免费在线观看日本一区| 精品久久久久久久毛片微露脸| 国产免费男女视频| 国产成人精品久久二区二区91| 国产精品免费视频内射| 国产精华一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 一级片免费观看大全| 欧美三级亚洲精品| 99久久国产精品久久久| 欧美av亚洲av综合av国产av| 欧洲精品卡2卡3卡4卡5卡区| 88av欧美| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 日韩大码丰满熟妇| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 一进一出好大好爽视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲av美国av| 黄色毛片三级朝国网站| 久久中文字幕一级| 国产黄片美女视频| 久久精品成人免费网站| 99久久久亚洲精品蜜臀av| e午夜精品久久久久久久| 国产高清激情床上av| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 欧美绝顶高潮抽搐喷水| 日韩大码丰满熟妇| ponron亚洲| 免费看日本二区| 免费电影在线观看免费观看| 真人做人爱边吃奶动态| 国产黄色小视频在线观看| 变态另类成人亚洲欧美熟女| 两性夫妻黄色片| 国产爱豆传媒在线观看 | 欧美又色又爽又黄视频| 最新在线观看一区二区三区| 久久天堂一区二区三区四区|