• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Properties of focused Laguerre–Gaussian beam propagating in anisotropic ocean turbulence

    2024-02-29 09:17:20XinguangWang王新光YangbinMa馬洋斌QiujieYuan袁邱杰WeiChen陳偉LeWang王樂andShengmeiZhao趙生妹
    Chinese Physics B 2024年2期
    關(guān)鍵詞:新光陳偉

    Xinguang Wang(王新光), Yangbin Ma(馬洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陳偉),Le Wang(王樂), and Shengmei Zhao(趙生妹),3,4

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3Key Lab of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education),Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    4National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: vortex beam,orbital angular momentum,focusing mirror,anisotropic turbulence

    1.Introduction

    Owing to the orthogonality and completeness of orbital angular momentum (OAM),[1–3]which could theoretically form an infinite-dimensional Hilbert space, there are an infinite number of quantum bit bases that can be loaded with information.The carrier wave carrying OAM is often referred to as vortex beams that have a wide range of applications in optical tweezers, particle manipulation, and quantum entanglement.[4–7]In particular, the efficiency and performance of vortex beam-based communication systems can be greatly improved in that the number of signal bits each photon carries is log2N,[8]whereNis the number of OAM modes that can be available for information mulplexing,which is one of the research hotspots in the field of free-space optical communication.[9–11]

    It is worth noting that there appears to be distortion of the signal OAM mode and crosstalk between different energy states of adjacent OAM modes during the transmission of the vortex beam in turbulent medium, reducing the channel capacity of the OAM information transmission system severely, where the effect of refractive index fluctuation of turbulent medium is crucial.[12–14]Then, it is essential to take the influence of turbulent medium into account in designs and applications of free-space optical communication links, and the mitigation of the turbulence effect has aroused considerable interests.Adaptive optics (AO)[15–17]is one of the effective methods to alleviating turbulence and the distorted beam profile is measured to derive a sequential error correction pattern, which is then sent through a feedback loop to the beam correction module to compensate for the beam distortion in a typical AO system.In addition, special beams with approximately non-diffracting properties,such as Bessel–Gaussian beams,[18]Hankel–Bessel beams (HB),[19]Airy vortex beams,[20]and Lommel–Gaussian beams,[21]are highly tolerant of turbulence and have been found to offer advantages over diffractive beams.

    Recently, the application of the focused mirror method for alleviating turbulence effects has attracted much attention of researchers.Zhouet al.numerically simulated the propagation characteristics of Gaussian vortex beams with mirror and without the mirror in atmospheric turbulence and found that the former could outperform significantly the latter under the same turbulent environment.[22]Yanet al.investigated the crosstalk properties of focused vortex beams in atmospheric turbulence combining theoretical derivation and phase screens and found that focused LG beam is more resistant to turbulent interference than the unfocused one.[23]Wanget al.explored the focused mirror method and circular aperture method to reduce OAM crosstalk of LG beams in plasma turbulence and demonstrated that the focused mirror method can be used to mitigate the effects of OAM crosstalk from turbulence better than the circular aperture one.[24]Moreover,there are focused annular vortex beams,[25]focused Bessel beams,[26]and other focused vortex beams that have high tolerance to turbulent interference and potentially other properties.[27]

    Compared to transport media such as atmospheric turbulence, oceanic turbulence is more complex and has a greater impact on the vortex beams passing through it.We anticipate that the performance of an LG beam with focusing mirror resisting for turbulence will have great potential applications in underwater wireless optical communication.In this paper,we study the properties of a focusing LG beam propagating in anisotropic ocean turbulence,and analyze the effect of the focusing mirror on reducing the interference of turbulent ocean through analytical derivation and numerical simulation, so as to provide useful theoretical support and reference for applications and development of underwater wireless optical communication.

    In this article,the mathematical model of channel capacity based on a focused LG beam in anisotropic ocean turbulence is established.Then, the properties of the focused LG beam are studied numerically, including the influence of different light source parameters and oceanic turbulence parameters on the beam channel capacity.In addition,a comparative analysis is conducted on the system performance of underwater communication links with focused LG beams, unfocused LG beams,and HB beams,respectively.

    2.Theoretical derivation

    The complex amplitude of the focused LG beam at the initial plane can be expressed as[23,24]

    Then,according to the Huygens–Fresnel integral expression,we can obtain the complex amplitude of the focused LG beam at distancezin free space as

    There appears to be the beam phase distortion during the beam transmission in the seawater medium due to the disturbance of oceanic turbulence,which results in the dispersion of the signal OAM mode and crosstalk between adjacent OAM modes.The complex amplitude of the focused LG beam in oceanic turbulence can be expressed as

    whereψ1(r,?,z)represents the random complex phase disturbance caused by oceanic turbulence.From the superposition theory of spiral harmonics,the complex amplitude of the beam at the receiving plane can be expressed as a superposition of beams with different OAM modes:

    whereRis the aperture size of the receiver.The above equation represents the signal OAM mode detection probability if the received OAM modemis equal to the transmitted signal modem0,otherwise it represents the crosstalk probability whenm ?=m0.

    Given the smooth discrete memoryless system proposed by Shannon’s information theory, according to Eq.(18), the channel capacity of the focused LG beam in oceanic turbulence can be expressed as[31–33]

    wherem0is the topological charge of the signal OAM mode varying from 0 tolm,N=lm+1 denotes the number of transmission channels in the oceanic communication system.P(m0) denotes the probability of sending a topological chargem0, andP(m|m0) denotes the conditional probability of receiving topological charge ofm(m ?=m0).Combining Eq.(18) with Eq.(20) and utilizing the Arimoto–Blahut algorithm,[34,35]we can calculate the channel capacity of the system based on the focused LG beam in oceanic turbulence.

    3.Results and discussion

    In this section, the channel capacity of the focused LG beam in oceanic turbulence is analyzed by numerical simulations using the analytical formulae derived in Section 2.Unless stated otherwise,the parameters selected in this paper areλ=532 nm,ω0=2×10-2m,p=0,ε=10-5m2·s-3,χT=10-8K2/s,l0=0.001 m,L0=10 m,PrT=0.41,PrS=700,?=-4,ξ=2,N=11,R=3×10-2m,f=200 m, andz=200 m.

    Figure 1 shows the intensity distribution, phase distribution and the focusing behavior of beams propagating in free space withm0=1.When the value of the geometric focal lengthfis set to+∞,we can obtain numerical simulation results for the unfocused LG beam.Figures 1(a)and 1(b)show the 3D intensity distribution and its cross lines (y= 0), together with the phase distribution of the focused LG beam(the top line) and the unfocused LG beam (the bottom line)transmitted at 20 m.As can be seen, comparing Figs.1(a3)and 1(b3), the focusing mirror causes the beam to produce a phase burst of sizeπat the focal point.This phenomenon is a property of geometrical optics whose physical mechanism originates from transverse spatial confinement, which introduces a spread in the transverse momenta through the uncertainty principle, and hence a shift in the expectation value of the axial propagation constant.[36,37]Furthermore,a comparison of the intensity distributions of two beams,as shown in the left two columns of Figs.1(a) and 1(b), indicates that during transmission with a focusing mirror, its spatial confinement effect on the beam will concentrate the size distributions in a smaller region and significantly increase the beam intensity.On the other hand, we calculate in Fig.1(c) the focusing behavior of the focus LG beam near the geometric focus underf=200 m in thex–zplane.Herefandf0represent the geometric focal length and the actual focal length that correspond to the geometric focus and actual focus in free space,respectively.It is found that the intensity distribution of the focused LG beam shows a clear evolutionary process of focusing first and then diverging in the vicinity of focus.Meanwhile, the position of the maximum intensity along the propagation direction locates before the geometric focus,i.e.,f0

    To learn about the influence of the focusing property on the channel capacity near the focus point in oceanic turbulence,we display in Fig.2 the channel capacity versuszunder differentλfor the unfocused LG beam,as well as the focused LG beam with the given value off.From Figs.2(a)and 2(b)we can see that the channel capacity of both systems based on these two beams initially decreases with a growingzbecause the impact of turbulence on the beams becomes more significant with the increment ofz.Aszfurther increases,this evolutionary trend will continue to apply to the unfocused LG beam,but not to the focused LG beam with a focusing mirror.For the focused LG beam,it is clear from Figs.2(a)and 2(b)that the capacity of the system begins to increase to the maximum and then decrease aszincreases near the focus point.Notably,the value point ofzcorresponding to the maximum channel capacity is not exactly equal to the geometric focal length,but rather precedes it, which appears much more evident for a largerfwithλfixed in comparison between Figs.2(b)and 2(a).Also,the difference mentioned above is more apparent with a largerλin Fig.2(b).Besides the influence arising from the oceanic turbulence, the physical mechanism of this result is mainly derived from the focal shift phenomenon of the focused LG beams as shown in Fig.1(c).Nevertheless, the channel capacity of the system can still achieve high optimization at the geometric focal plane,as illustrated in Figs.2(a)and 2(b),despite the effect of focal shift on the position of the maximum channel capacity in the vicinity of the focus, andz=fis set mainly for the simulation and analysis in this paper.

    One can also find from Fig.2 that the longer theλ, the larger the system capacity because the beam with a longerλhas lower scintillation, thus bringing about a greater system channel capacity.It is worth noting that whenftakes different values,the modulation effect of differentλon channel capacity varies at the geometric focus, which is much more evident in Fig.2(b)than in Fig.2(a).In Fig.2(a), for the focused LG beams transmitting in the near field with shortz,even though the scintillation of beams with differentλvaries,their Rayleigh distance is much larger thanfthus the beams all have better focusing effect,[26,39]then the interference of scintillation on beam transmission can be neglected compared to the focusing effect, so the capacity of beams with differentλtends to be the consistent.However, the focusing effect of beam gradually weakens with the increment off, and the influence of the light intensity flicker effect on the system gradually surpasses that of the focusing effect.Therefore, as the transmission distance further increases in the far field with largez, the longer theλ, the greater the capacity of the system at the geometric focus as shown in Figs.2(b) and 2(c).In addition,obviously,the numerical results indicate superior performance utilizing the focused LG beam compared to the unfocused one on enhancing the channel capacity under the same transmission conditions atz=f,due to the smaller beam size as shown in Fig.1 and less exposure to the turbulence thus resulting in lower negative interference for using focused LG beams.

    Fig.2.The channel capacity of the unfocused LG beam,as well as the focused LG beam with(a) f =200 m,(b) f =600 m,(c) f =z in oceanic turbulence versus transmission distance z under different wavelength λ.

    Figure 3 displays the channel capacity of the focused LG beam with different waist radiusω0in oceanic turbulence underf=200 m versusz, as well as number of transmission channelsNatz=200 m.As is shown in Fig.3(a),the channel capacity of the system under differentω0decreases with increasingzfirst,and then increases aszfurther increases,and finally reaches the maximum beforezlocates at the geometric focus.Meanwhile, in the vicinity of focus, the larger theω0of the focused LG beam, the greater the system channel capacity, and the closer the maximum value position to the geometric focus.This is due to the fact that the Rayleigh distance increases with the increase ofω0, bringing about better focusing effect hence higher channel capacity of the communication link.At the same time,the larger theω0,the smaller the focal shift of the beam is, so the consistency between the position of the maximum channel capacity and the geometric focus is higher.On the other hand,Fig.3(b)indicates that for givenω0,with the increase ofN,the more channels the system has to transmit information,the larger the channel capacity is.

    Fig.3.The channel capacity of the focused LG beam with different waist radius ω0 in oceanic turbulence under f =200 m versus(a)transmission distance z,as well as(b)number of transmission channels N at z=200 m.

    Fig.4.The channel capacity of the focused LG beam for different dissipation rate of mean-squared temperature χT and dissipation rate ε of kinetic energy per unit mass of fluid.

    Figure 4 shows the effect of the dissipation rate of the mean-squared temperatureχTand the dissipation rate of the kinetic energy per unit mass of fluidεon the channel capacity of the beam.AsχTandεmount,the channel capacity diminishes and increases respectively in that the turbulent intensity of seawater ascends asχTincreases andεdecreases, magnifying the distortion of the OAM mode wavefront caused by oceanic turbulence,which reduces the channel capacity.

    Figure 5 illustrates the effect of the inner scale factorl0and the outer scale factorL0on the beam channel capacity.The increase ofl0and the decrease ofL0augment the channel capacity.Based on oceanic turbulence theory, the turbulence with largerl0induces less significant beam scattering effect.A smallerL0of the turbulence micrifies the random deflection of the beam propagation path and consequently the beam drift,resulting in less wavefront propagation distortion and greater channel capacity,but the effect of the outer scale is not so notable.

    Fig.5.The channel capacity of the focused LG beam for different inner scale factor l0 and outer scale factor L0.

    Fig.6.The channel capacity of the focused LG beam for different anisotropy factor ξ and temperature-salinity contribution ratio ?.

    Figure 6 demonstrates the impact of anisotropy factorξand temperature-salinity contribution ratio?on the channel capacity of the focused LG beam.The channel capacity wanes with a larger?because the salinity fluctuations of seawater have a greater perturbation effect on the capacity than temperature fluctuations.On the other hand,the anisotropic unstable stratified oceanic turbulence power spectrum degenerates to isotropic whenξis equal to 1.Forξ,the larger its value,the stronger the anisotropy and the greater the channel capacity of the beam mainly because higher anisotropy of the turbulent flow minimizes the refractive fluctuations of the beam and amplifies the transmission effect, leading to less interference in the oceanic channel and a larger system capacity.

    Fig.7.Channel capacity as a function of z with the focused LG beams and the HB beams.

    The comparison of the system channel capacity based on the focused LG beam,the HB beam with diffraction-free characteristics and the ideal condition is depicted in Fig.7.We can see that when the transmission distance is given,the channel capacity of the system based on the focused LG beam and the HB beam is smaller than that of the system under ideal condition due to the interference of turbulence effect.On the other hand,under the same transmission conditions,the channel capacity of the HB beam-based system decreases more sharply with increasing transmission distance than that of the focused LG beam, indicating that the focusing mirror can effectively mitigate the effect of oceanic turbulence and augment the channel capacity of OAM-based underwater optical communication systems.

    4.Conclusion

    In summary, we have numerically analyzed propagation and properties of a focused LG beam in anisotropic turbulent ocean.The impacts of turbulent ocean parameters and beam source parameters on the channel capacity of the underwater communication link are discussed in detail.The results indicate that the LG beam with mirror has a smaller beam size and higher intensity density during transmission, resulting in strong anti-turbulence and anti-attenuation performance owing to modulation of the focusing mirror.Meanwhile,for the focused LG beam, the location of the maximum channel capacity in the propagation direction is not consistent with the location of the geometric focal plane where the system can still achieve a high degree of optimization for the channel capacity.In addition, it is found that the greater the wavelength or the beam waist radius, and the larger the number of transmission channels applicable to improve the channel capacity for long distance transmission.Further, the capacity of the system increases with the mount of the kinetic energy dissipation rate per unit mass of fluid, the inner scale of seawater turbulence and the anisotropy factor, and decreases with the increase of the mean-squared temperature dissipation rate of oceanic turbulence, temperature-salinity contribution ratio and turbulent outer scale factor.In comparison of the non-diffraction HB beam and the unfocused LG beam,the focused LG beam has larger capacity due to its less beam spreading in the underwater channel.This provides a reference for designs of more robust OAM-based underwater optical communication links.

    Acknowledgements

    This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080),the National Natural Science Foundation of China (Grant Nos.61871234 and 62001249), the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY222133), and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No.M36055).

    猜你喜歡
    新光陳偉
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    市政工程施工現(xiàn)場管理存在的問題與對策
    科學家(2022年5期)2022-05-13 21:42:18
    Repulsive bubble–bubble interaction in ultrasonic field?
    一場鬧劇
    陳偉教授簡介
    ST新光股價因何一路重挫 重倉機構(gòu)浮虧已超11億
    投資者報(2018年48期)2018-12-11 02:30:14
    17歲擺地攤33歲選擇創(chuàng)業(yè) 債務“堆出來”的浙江首富周曉光
    投資者報(2018年40期)2018-10-16 07:21:04
    陳偉博士簡介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    一次難忘的班級辯論
    91成人精品电影| 亚洲成国产人片在线观看| 日日啪夜夜爽| 青春草国产在线视频| 91精品伊人久久大香线蕉| 欧美人与性动交α欧美软件| 少妇猛男粗大的猛烈进出视频| 国产精品一区二区精品视频观看| 欧美成人午夜精品| 最近的中文字幕免费完整| 日韩中文字幕欧美一区二区 | 日韩大码丰满熟妇| 国产精品成人在线| 欧美日韩成人在线一区二区| 亚洲精品aⅴ在线观看| 交换朋友夫妻互换小说| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| www.精华液| 亚洲国产最新在线播放| 精品第一国产精品| 99九九在线精品视频| 久久精品亚洲av国产电影网| 老汉色av国产亚洲站长工具| 久久鲁丝午夜福利片| 国产又色又爽无遮挡免| 精品人妻熟女毛片av久久网站| 90打野战视频偷拍视频| 看十八女毛片水多多多| 男女边摸边吃奶| 日本猛色少妇xxxxx猛交久久| 老司机影院成人| 极品少妇高潮喷水抽搐| 欧美激情高清一区二区三区 | 中文乱码字字幕精品一区二区三区| 在线观看人妻少妇| 美女脱内裤让男人舔精品视频| 在线观看免费午夜福利视频| 一级毛片电影观看| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 色网站视频免费| 一区二区av电影网| 亚洲精品国产av成人精品| 18禁动态无遮挡网站| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 一级毛片电影观看| 丝袜在线中文字幕| 国产精品久久久av美女十八| videos熟女内射| 黄色视频在线播放观看不卡| 一二三四中文在线观看免费高清| 成人漫画全彩无遮挡| 久久综合国产亚洲精品| 成人影院久久| 制服人妻中文乱码| 免费观看性生交大片5| 国产男女内射视频| 69精品国产乱码久久久| 亚洲免费av在线视频| 中文精品一卡2卡3卡4更新| 操美女的视频在线观看| 精品一区二区免费观看| 国产成人欧美在线观看 | 精品一区二区免费观看| 欧美黑人精品巨大| 亚洲视频免费观看视频| 精品酒店卫生间| 免费高清在线观看日韩| 日韩av不卡免费在线播放| svipshipincom国产片| 日韩 亚洲 欧美在线| 日韩欧美一区视频在线观看| 国产精品一国产av| 丰满乱子伦码专区| 国产片内射在线| 99国产综合亚洲精品| 丝袜喷水一区| av在线老鸭窝| 国产成人午夜福利电影在线观看| 另类亚洲欧美激情| 美女午夜性视频免费| 欧美人与善性xxx| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美一区二区综合| 观看av在线不卡| 国产伦人伦偷精品视频| 国产视频首页在线观看| 成人国语在线视频| 少妇人妻 视频| 视频区图区小说| 国产熟女午夜一区二区三区| 久久久精品国产亚洲av高清涩受| 狠狠婷婷综合久久久久久88av| 亚洲成av片中文字幕在线观看| 青春草视频在线免费观看| 蜜桃在线观看..| 狠狠精品人妻久久久久久综合| 国产亚洲av高清不卡| 丝袜在线中文字幕| 亚洲欧美色中文字幕在线| a级片在线免费高清观看视频| 色网站视频免费| 日本色播在线视频| 午夜91福利影院| 新久久久久国产一级毛片| 色94色欧美一区二区| 亚洲av成人精品一二三区| 精品卡一卡二卡四卡免费| 国产亚洲精品第一综合不卡| 视频在线观看一区二区三区| 啦啦啦在线免费观看视频4| av线在线观看网站| av网站免费在线观看视频| 久久久精品94久久精品| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 日韩成人av中文字幕在线观看| 久久久久久人妻| 国产有黄有色有爽视频| 欧美精品av麻豆av| 乱人伦中国视频| 欧美xxⅹ黑人| 久久久国产一区二区| av电影中文网址| 啦啦啦在线免费观看视频4| 亚洲成人手机| 亚洲欧美一区二区三区国产| 国产精品久久久久久久久免| 999久久久国产精品视频| 人妻 亚洲 视频| 在线天堂最新版资源| 日本午夜av视频| 成人18禁高潮啪啪吃奶动态图| 青春草亚洲视频在线观看| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| av一本久久久久| 人妻人人澡人人爽人人| 熟妇人妻不卡中文字幕| 亚洲国产看品久久| 久久天堂一区二区三区四区| 久热爱精品视频在线9| 亚洲美女视频黄频| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 18禁裸乳无遮挡动漫免费视频| 国产成人欧美在线观看 | 国产av国产精品国产| 午夜老司机福利片| 日韩熟女老妇一区二区性免费视频| 高清黄色对白视频在线免费看| 天天操日日干夜夜撸| 久久天躁狠狠躁夜夜2o2o | 中文字幕人妻丝袜制服| 亚洲人成网站在线观看播放| 久久久国产精品麻豆| 亚洲一码二码三码区别大吗| 亚洲美女视频黄频| 国产亚洲午夜精品一区二区久久| 高清不卡的av网站| 亚洲欧美激情在线| 在线观看一区二区三区激情| 国产男女超爽视频在线观看| 观看av在线不卡| 无限看片的www在线观看| 久久精品aⅴ一区二区三区四区| 国产精品偷伦视频观看了| 热re99久久国产66热| 久久狼人影院| 亚洲美女视频黄频| 只有这里有精品99| 观看美女的网站| 嫩草影视91久久| 亚洲精品aⅴ在线观看| 国产精品欧美亚洲77777| 欧美 亚洲 国产 日韩一| 亚洲av综合色区一区| 久久久国产欧美日韩av| 亚洲四区av| 嫩草影院入口| 亚洲国产欧美网| 9热在线视频观看99| 丝袜在线中文字幕| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 熟女少妇亚洲综合色aaa.| 国产极品粉嫩免费观看在线| 色吧在线观看| 亚洲国产精品一区三区| 日韩av免费高清视频| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区久久| 午夜精品国产一区二区电影| 伦理电影大哥的女人| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 国产精品国产三级国产专区5o| 国产免费又黄又爽又色| 在线观看一区二区三区激情| 日本av手机在线免费观看| 国产精品 欧美亚洲| 精品卡一卡二卡四卡免费| 天天躁日日躁夜夜躁夜夜| 亚洲国产成人一精品久久久| 91成人精品电影| 九草在线视频观看| 别揉我奶头~嗯~啊~动态视频 | av在线老鸭窝| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美精品济南到| 综合色丁香网| 女的被弄到高潮叫床怎么办| 成人午夜精彩视频在线观看| 男女之事视频高清在线观看 | 五月开心婷婷网| 中文字幕人妻丝袜制服| 国产有黄有色有爽视频| bbb黄色大片| 毛片一级片免费看久久久久| 老熟女久久久| 免费观看人在逋| 在线观看三级黄色| 国产精品久久久久久精品电影小说| 国产成人午夜福利电影在线观看| 可以免费在线观看a视频的电影网站 | 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 亚洲精品第二区| av网站免费在线观看视频| 大香蕉久久成人网| 国产成人免费观看mmmm| 最近手机中文字幕大全| 99久久人妻综合| 丝袜美腿诱惑在线| 一本色道久久久久久精品综合| 在线 av 中文字幕| 一区二区日韩欧美中文字幕| 深夜精品福利| 一区福利在线观看| 大话2 男鬼变身卡| 精品国产一区二区三区久久久樱花| 肉色欧美久久久久久久蜜桃| 亚洲精品视频女| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 女人被躁到高潮嗷嗷叫费观| 中文字幕人妻丝袜一区二区 | 久久精品亚洲熟妇少妇任你| 亚洲成人国产一区在线观看 | 精品午夜福利在线看| xxxhd国产人妻xxx| 啦啦啦在线免费观看视频4| 看免费av毛片| 国产人伦9x9x在线观看| 成年女人毛片免费观看观看9 | 国产精品 欧美亚洲| 亚洲中文av在线| 少妇精品久久久久久久| 国产一级毛片在线| 老司机影院成人| 黄片播放在线免费| 在线观看三级黄色| 亚洲国产欧美在线一区| 国产精品人妻久久久影院| 美女主播在线视频| 超色免费av| 国产黄频视频在线观看| 男女边吃奶边做爰视频| 下体分泌物呈黄色| 亚洲精华国产精华液的使用体验| 一区在线观看完整版| 亚洲成人手机| 一本一本久久a久久精品综合妖精| 这个男人来自地球电影免费观看 | 久久女婷五月综合色啪小说| 色综合欧美亚洲国产小说| 99久国产av精品国产电影| 日韩制服骚丝袜av| 一级毛片 在线播放| 日本爱情动作片www.在线观看| 欧美乱码精品一区二区三区| 国产日韩欧美亚洲二区| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 黄色视频在线播放观看不卡| 亚洲男人天堂网一区| 亚洲美女视频黄频| 999精品在线视频| 国产成人精品久久二区二区91 | 女人高潮潮喷娇喘18禁视频| 日本av免费视频播放| 一本久久精品| 一区二区日韩欧美中文字幕| 夫妻性生交免费视频一级片| 大香蕉久久成人网| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 亚洲成色77777| 色吧在线观看| 97人妻天天添夜夜摸| 人妻一区二区av| 精品一区二区三区四区五区乱码 | 在现免费观看毛片| 国产伦人伦偷精品视频| 无限看片的www在线观看| 久久久久久久久久久免费av| 高清不卡的av网站| 欧美激情极品国产一区二区三区| 看免费av毛片| 尾随美女入室| 久久久久久久久免费视频了| 国产精品久久久人人做人人爽| 大码成人一级视频| 国产xxxxx性猛交| 色吧在线观看| av线在线观看网站| 国产精品秋霞免费鲁丝片| 热re99久久精品国产66热6| 电影成人av| www日本在线高清视频| 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 五月开心婷婷网| 天美传媒精品一区二区| 欧美人与善性xxx| 中文字幕最新亚洲高清| 久久毛片免费看一区二区三区| 在线观看三级黄色| 美女中出高潮动态图| 欧美日韩福利视频一区二区| 日本av手机在线免费观看| 一级片'在线观看视频| 丁香六月欧美| 999久久久国产精品视频| 国产色婷婷99| 香蕉丝袜av| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 国产精品麻豆人妻色哟哟久久| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 国产精品女同一区二区软件| 日韩制服丝袜自拍偷拍| 另类亚洲欧美激情| 久久久久久久久久久久大奶| 一级毛片电影观看| 韩国高清视频一区二区三区| 美女中出高潮动态图| 亚洲天堂av无毛| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕| 国产一区二区在线观看av| 久久久久国产精品人妻一区二区| 午夜福利影视在线免费观看| 久久久久国产精品人妻一区二区| 三上悠亚av全集在线观看| 亚洲在久久综合| 免费在线观看黄色视频的| 免费在线观看视频国产中文字幕亚洲 | 看免费成人av毛片| 午夜激情久久久久久久| 免费看av在线观看网站| 在线天堂最新版资源| 欧美中文综合在线视频| 欧美日韩精品网址| 日本av手机在线免费观看| 熟妇人妻不卡中文字幕| 国产福利在线免费观看视频| 精品少妇久久久久久888优播| 伊人久久国产一区二区| 亚洲人成电影观看| 日韩免费高清中文字幕av| 亚洲精品美女久久久久99蜜臀 | 中国三级夫妇交换| videos熟女内射| 国产97色在线日韩免费| 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| av福利片在线| 亚洲av成人不卡在线观看播放网 | 国产精品国产三级专区第一集| 韩国av在线不卡| 亚洲精品日韩在线中文字幕| 久久久精品区二区三区| 国产精品成人在线| 久久人人爽人人片av| 国产精品国产三级专区第一集| 一级黄片播放器| 只有这里有精品99| 女的被弄到高潮叫床怎么办| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 国产精品免费大片| 午夜免费男女啪啪视频观看| 国产精品欧美亚洲77777| 久久久久国产精品人妻一区二区| 亚洲精品国产色婷婷电影| 一级黄片播放器| 波野结衣二区三区在线| 国产精品免费大片| 伊人久久国产一区二区| 超色免费av| 看免费av毛片| 免费黄频网站在线观看国产| 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 国产av一区二区精品久久| 成人国产av品久久久| 免费看不卡的av| 久久久久精品久久久久真实原创| 久久久久久久久免费视频了| 亚洲成人一二三区av| 亚洲欧美成人精品一区二区| 波野结衣二区三区在线| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 久久久欧美国产精品| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 亚洲视频免费观看视频| 男人操女人黄网站| 精品少妇内射三级| 欧美av亚洲av综合av国产av | 丰满迷人的少妇在线观看| 日本欧美视频一区| 日韩制服骚丝袜av| 老司机靠b影院| 最近最新中文字幕大全免费视频 | 建设人人有责人人尽责人人享有的| 香蕉国产在线看| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 亚洲精品久久成人aⅴ小说| 男女高潮啪啪啪动态图| 捣出白浆h1v1| 中文字幕高清在线视频| 满18在线观看网站| 韩国高清视频一区二区三区| 亚洲美女视频黄频| 日韩视频在线欧美| 9色porny在线观看| 亚洲人成77777在线视频| 亚洲四区av| 亚洲av中文av极速乱| 久久久久久人妻| 午夜老司机福利片| 国产一区有黄有色的免费视频| 日本猛色少妇xxxxx猛交久久| 熟女av电影| 美女扒开内裤让男人捅视频| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 亚洲成av片中文字幕在线观看| 亚洲成人手机| 国产精品久久久久久人妻精品电影 | 飞空精品影院首页| 日韩大码丰满熟妇| 黑人巨大精品欧美一区二区蜜桃| 日韩精品有码人妻一区| 波多野结衣av一区二区av| 美女扒开内裤让男人捅视频| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 午夜日本视频在线| 中文字幕亚洲精品专区| 少妇的丰满在线观看| 欧美变态另类bdsm刘玥| 久久97久久精品| 欧美激情高清一区二区三区 | 又大又黄又爽视频免费| 久久国产精品男人的天堂亚洲| 丰满乱子伦码专区| 欧美激情极品国产一区二区三区| av不卡在线播放| 日韩大码丰满熟妇| 乱人伦中国视频| 亚洲精品国产一区二区精华液| 亚洲精品一二三| 91老司机精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品第二区| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| 欧美人与善性xxx| 成人漫画全彩无遮挡| 午夜免费男女啪啪视频观看| av又黄又爽大尺度在线免费看| av在线app专区| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 婷婷成人精品国产| 母亲3免费完整高清在线观看| 日韩欧美精品免费久久| 老司机影院毛片| 卡戴珊不雅视频在线播放| 久热这里只有精品99| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 久久久久精品性色| 久久免费观看电影| 国产日韩欧美视频二区| 只有这里有精品99| 啦啦啦啦在线视频资源| 街头女战士在线观看网站| av网站在线播放免费| 18禁动态无遮挡网站| 免费人妻精品一区二区三区视频| 最近手机中文字幕大全| 天天添夜夜摸| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| av一本久久久久| 考比视频在线观看| 成年女人毛片免费观看观看9 | 亚洲欧美清纯卡通| 黄片小视频在线播放| 两性夫妻黄色片| 色播在线永久视频| 成人免费观看视频高清| 免费观看性生交大片5| 久热这里只有精品99| 成人国语在线视频| 18禁动态无遮挡网站| 一区二区三区精品91| 在线观看免费高清a一片| 亚洲一区中文字幕在线| 成年美女黄网站色视频大全免费| 一级毛片我不卡| 成年人免费黄色播放视频| 日日摸夜夜添夜夜爱| 日日啪夜夜爽| 一区二区av电影网| 人人妻,人人澡人人爽秒播 | 黄网站色视频无遮挡免费观看| 在线精品无人区一区二区三| 中国三级夫妇交换| a 毛片基地| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 久久性视频一级片| 亚洲国产精品成人久久小说| 成年美女黄网站色视频大全免费| 啦啦啦中文免费视频观看日本| 日韩电影二区| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 性少妇av在线| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| av线在线观看网站| 午夜激情av网站| 亚洲精品视频女| 婷婷成人精品国产| 中文字幕人妻熟女乱码| av线在线观看网站| 日韩中文字幕视频在线看片| 精品亚洲成国产av| av网站在线播放免费| 亚洲精品美女久久av网站| 9热在线视频观看99| 久久久精品国产亚洲av高清涩受| 国产不卡av网站在线观看| 精品久久久精品久久久| 制服诱惑二区| 国产精品香港三级国产av潘金莲 | 黄网站色视频无遮挡免费观看| 99香蕉大伊视频| 亚洲成人免费av在线播放| 大码成人一级视频| 99久久人妻综合| 国产在线视频一区二区| 青青草视频在线视频观看| 熟女av电影| 丁香六月欧美| 黄色一级大片看看| 丰满少妇做爰视频| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 少妇人妻久久综合中文| av在线app专区| 大码成人一级视频| 宅男免费午夜| xxxhd国产人妻xxx| 欧美最新免费一区二区三区| 国产片特级美女逼逼视频| 欧美亚洲 丝袜 人妻 在线| 晚上一个人看的免费电影| 少妇人妻久久综合中文| 久久狼人影院| 国产亚洲最大av| 不卡视频在线观看欧美| 欧美日韩国产mv在线观看视频| 国产福利在线免费观看视频| 亚洲熟女毛片儿| 99热国产这里只有精品6| 日韩 欧美 亚洲 中文字幕| 丰满迷人的少妇在线观看| 人人妻人人澡人人爽人人夜夜| 2021少妇久久久久久久久久久| 这个男人来自地球电影免费观看 |