• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Properties of focused Laguerre–Gaussian beam propagating in anisotropic ocean turbulence

    2024-02-29 09:17:20XinguangWang王新光YangbinMa馬洋斌QiujieYuan袁邱杰WeiChen陳偉LeWang王樂andShengmeiZhao趙生妹
    Chinese Physics B 2024年2期
    關(guān)鍵詞:新光陳偉

    Xinguang Wang(王新光), Yangbin Ma(馬洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陳偉),Le Wang(王樂), and Shengmei Zhao(趙生妹),3,4

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2Institute of Signal Processing and Transmission,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3Key Lab of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education),Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    4National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: vortex beam,orbital angular momentum,focusing mirror,anisotropic turbulence

    1.Introduction

    Owing to the orthogonality and completeness of orbital angular momentum (OAM),[1–3]which could theoretically form an infinite-dimensional Hilbert space, there are an infinite number of quantum bit bases that can be loaded with information.The carrier wave carrying OAM is often referred to as vortex beams that have a wide range of applications in optical tweezers, particle manipulation, and quantum entanglement.[4–7]In particular, the efficiency and performance of vortex beam-based communication systems can be greatly improved in that the number of signal bits each photon carries is log2N,[8]whereNis the number of OAM modes that can be available for information mulplexing,which is one of the research hotspots in the field of free-space optical communication.[9–11]

    It is worth noting that there appears to be distortion of the signal OAM mode and crosstalk between different energy states of adjacent OAM modes during the transmission of the vortex beam in turbulent medium, reducing the channel capacity of the OAM information transmission system severely, where the effect of refractive index fluctuation of turbulent medium is crucial.[12–14]Then, it is essential to take the influence of turbulent medium into account in designs and applications of free-space optical communication links, and the mitigation of the turbulence effect has aroused considerable interests.Adaptive optics (AO)[15–17]is one of the effective methods to alleviating turbulence and the distorted beam profile is measured to derive a sequential error correction pattern, which is then sent through a feedback loop to the beam correction module to compensate for the beam distortion in a typical AO system.In addition, special beams with approximately non-diffracting properties,such as Bessel–Gaussian beams,[18]Hankel–Bessel beams (HB),[19]Airy vortex beams,[20]and Lommel–Gaussian beams,[21]are highly tolerant of turbulence and have been found to offer advantages over diffractive beams.

    Recently, the application of the focused mirror method for alleviating turbulence effects has attracted much attention of researchers.Zhouet al.numerically simulated the propagation characteristics of Gaussian vortex beams with mirror and without the mirror in atmospheric turbulence and found that the former could outperform significantly the latter under the same turbulent environment.[22]Yanet al.investigated the crosstalk properties of focused vortex beams in atmospheric turbulence combining theoretical derivation and phase screens and found that focused LG beam is more resistant to turbulent interference than the unfocused one.[23]Wanget al.explored the focused mirror method and circular aperture method to reduce OAM crosstalk of LG beams in plasma turbulence and demonstrated that the focused mirror method can be used to mitigate the effects of OAM crosstalk from turbulence better than the circular aperture one.[24]Moreover,there are focused annular vortex beams,[25]focused Bessel beams,[26]and other focused vortex beams that have high tolerance to turbulent interference and potentially other properties.[27]

    Compared to transport media such as atmospheric turbulence, oceanic turbulence is more complex and has a greater impact on the vortex beams passing through it.We anticipate that the performance of an LG beam with focusing mirror resisting for turbulence will have great potential applications in underwater wireless optical communication.In this paper,we study the properties of a focusing LG beam propagating in anisotropic ocean turbulence,and analyze the effect of the focusing mirror on reducing the interference of turbulent ocean through analytical derivation and numerical simulation, so as to provide useful theoretical support and reference for applications and development of underwater wireless optical communication.

    In this article,the mathematical model of channel capacity based on a focused LG beam in anisotropic ocean turbulence is established.Then, the properties of the focused LG beam are studied numerically, including the influence of different light source parameters and oceanic turbulence parameters on the beam channel capacity.In addition,a comparative analysis is conducted on the system performance of underwater communication links with focused LG beams, unfocused LG beams,and HB beams,respectively.

    2.Theoretical derivation

    The complex amplitude of the focused LG beam at the initial plane can be expressed as[23,24]

    Then,according to the Huygens–Fresnel integral expression,we can obtain the complex amplitude of the focused LG beam at distancezin free space as

    There appears to be the beam phase distortion during the beam transmission in the seawater medium due to the disturbance of oceanic turbulence,which results in the dispersion of the signal OAM mode and crosstalk between adjacent OAM modes.The complex amplitude of the focused LG beam in oceanic turbulence can be expressed as

    whereψ1(r,?,z)represents the random complex phase disturbance caused by oceanic turbulence.From the superposition theory of spiral harmonics,the complex amplitude of the beam at the receiving plane can be expressed as a superposition of beams with different OAM modes:

    whereRis the aperture size of the receiver.The above equation represents the signal OAM mode detection probability if the received OAM modemis equal to the transmitted signal modem0,otherwise it represents the crosstalk probability whenm ?=m0.

    Given the smooth discrete memoryless system proposed by Shannon’s information theory, according to Eq.(18), the channel capacity of the focused LG beam in oceanic turbulence can be expressed as[31–33]

    wherem0is the topological charge of the signal OAM mode varying from 0 tolm,N=lm+1 denotes the number of transmission channels in the oceanic communication system.P(m0) denotes the probability of sending a topological chargem0, andP(m|m0) denotes the conditional probability of receiving topological charge ofm(m ?=m0).Combining Eq.(18) with Eq.(20) and utilizing the Arimoto–Blahut algorithm,[34,35]we can calculate the channel capacity of the system based on the focused LG beam in oceanic turbulence.

    3.Results and discussion

    In this section, the channel capacity of the focused LG beam in oceanic turbulence is analyzed by numerical simulations using the analytical formulae derived in Section 2.Unless stated otherwise,the parameters selected in this paper areλ=532 nm,ω0=2×10-2m,p=0,ε=10-5m2·s-3,χT=10-8K2/s,l0=0.001 m,L0=10 m,PrT=0.41,PrS=700,?=-4,ξ=2,N=11,R=3×10-2m,f=200 m, andz=200 m.

    Figure 1 shows the intensity distribution, phase distribution and the focusing behavior of beams propagating in free space withm0=1.When the value of the geometric focal lengthfis set to+∞,we can obtain numerical simulation results for the unfocused LG beam.Figures 1(a)and 1(b)show the 3D intensity distribution and its cross lines (y= 0), together with the phase distribution of the focused LG beam(the top line) and the unfocused LG beam (the bottom line)transmitted at 20 m.As can be seen, comparing Figs.1(a3)and 1(b3), the focusing mirror causes the beam to produce a phase burst of sizeπat the focal point.This phenomenon is a property of geometrical optics whose physical mechanism originates from transverse spatial confinement, which introduces a spread in the transverse momenta through the uncertainty principle, and hence a shift in the expectation value of the axial propagation constant.[36,37]Furthermore,a comparison of the intensity distributions of two beams,as shown in the left two columns of Figs.1(a) and 1(b), indicates that during transmission with a focusing mirror, its spatial confinement effect on the beam will concentrate the size distributions in a smaller region and significantly increase the beam intensity.On the other hand, we calculate in Fig.1(c) the focusing behavior of the focus LG beam near the geometric focus underf=200 m in thex–zplane.Herefandf0represent the geometric focal length and the actual focal length that correspond to the geometric focus and actual focus in free space,respectively.It is found that the intensity distribution of the focused LG beam shows a clear evolutionary process of focusing first and then diverging in the vicinity of focus.Meanwhile, the position of the maximum intensity along the propagation direction locates before the geometric focus,i.e.,f0

    To learn about the influence of the focusing property on the channel capacity near the focus point in oceanic turbulence,we display in Fig.2 the channel capacity versuszunder differentλfor the unfocused LG beam,as well as the focused LG beam with the given value off.From Figs.2(a)and 2(b)we can see that the channel capacity of both systems based on these two beams initially decreases with a growingzbecause the impact of turbulence on the beams becomes more significant with the increment ofz.Aszfurther increases,this evolutionary trend will continue to apply to the unfocused LG beam,but not to the focused LG beam with a focusing mirror.For the focused LG beam,it is clear from Figs.2(a)and 2(b)that the capacity of the system begins to increase to the maximum and then decrease aszincreases near the focus point.Notably,the value point ofzcorresponding to the maximum channel capacity is not exactly equal to the geometric focal length,but rather precedes it, which appears much more evident for a largerfwithλfixed in comparison between Figs.2(b)and 2(a).Also,the difference mentioned above is more apparent with a largerλin Fig.2(b).Besides the influence arising from the oceanic turbulence, the physical mechanism of this result is mainly derived from the focal shift phenomenon of the focused LG beams as shown in Fig.1(c).Nevertheless, the channel capacity of the system can still achieve high optimization at the geometric focal plane,as illustrated in Figs.2(a)and 2(b),despite the effect of focal shift on the position of the maximum channel capacity in the vicinity of the focus, andz=fis set mainly for the simulation and analysis in this paper.

    One can also find from Fig.2 that the longer theλ, the larger the system capacity because the beam with a longerλhas lower scintillation, thus bringing about a greater system channel capacity.It is worth noting that whenftakes different values,the modulation effect of differentλon channel capacity varies at the geometric focus, which is much more evident in Fig.2(b)than in Fig.2(a).In Fig.2(a), for the focused LG beams transmitting in the near field with shortz,even though the scintillation of beams with differentλvaries,their Rayleigh distance is much larger thanfthus the beams all have better focusing effect,[26,39]then the interference of scintillation on beam transmission can be neglected compared to the focusing effect, so the capacity of beams with differentλtends to be the consistent.However, the focusing effect of beam gradually weakens with the increment off, and the influence of the light intensity flicker effect on the system gradually surpasses that of the focusing effect.Therefore, as the transmission distance further increases in the far field with largez, the longer theλ, the greater the capacity of the system at the geometric focus as shown in Figs.2(b) and 2(c).In addition,obviously,the numerical results indicate superior performance utilizing the focused LG beam compared to the unfocused one on enhancing the channel capacity under the same transmission conditions atz=f,due to the smaller beam size as shown in Fig.1 and less exposure to the turbulence thus resulting in lower negative interference for using focused LG beams.

    Fig.2.The channel capacity of the unfocused LG beam,as well as the focused LG beam with(a) f =200 m,(b) f =600 m,(c) f =z in oceanic turbulence versus transmission distance z under different wavelength λ.

    Figure 3 displays the channel capacity of the focused LG beam with different waist radiusω0in oceanic turbulence underf=200 m versusz, as well as number of transmission channelsNatz=200 m.As is shown in Fig.3(a),the channel capacity of the system under differentω0decreases with increasingzfirst,and then increases aszfurther increases,and finally reaches the maximum beforezlocates at the geometric focus.Meanwhile, in the vicinity of focus, the larger theω0of the focused LG beam, the greater the system channel capacity, and the closer the maximum value position to the geometric focus.This is due to the fact that the Rayleigh distance increases with the increase ofω0, bringing about better focusing effect hence higher channel capacity of the communication link.At the same time,the larger theω0,the smaller the focal shift of the beam is, so the consistency between the position of the maximum channel capacity and the geometric focus is higher.On the other hand,Fig.3(b)indicates that for givenω0,with the increase ofN,the more channels the system has to transmit information,the larger the channel capacity is.

    Fig.3.The channel capacity of the focused LG beam with different waist radius ω0 in oceanic turbulence under f =200 m versus(a)transmission distance z,as well as(b)number of transmission channels N at z=200 m.

    Fig.4.The channel capacity of the focused LG beam for different dissipation rate of mean-squared temperature χT and dissipation rate ε of kinetic energy per unit mass of fluid.

    Figure 4 shows the effect of the dissipation rate of the mean-squared temperatureχTand the dissipation rate of the kinetic energy per unit mass of fluidεon the channel capacity of the beam.AsχTandεmount,the channel capacity diminishes and increases respectively in that the turbulent intensity of seawater ascends asχTincreases andεdecreases, magnifying the distortion of the OAM mode wavefront caused by oceanic turbulence,which reduces the channel capacity.

    Figure 5 illustrates the effect of the inner scale factorl0and the outer scale factorL0on the beam channel capacity.The increase ofl0and the decrease ofL0augment the channel capacity.Based on oceanic turbulence theory, the turbulence with largerl0induces less significant beam scattering effect.A smallerL0of the turbulence micrifies the random deflection of the beam propagation path and consequently the beam drift,resulting in less wavefront propagation distortion and greater channel capacity,but the effect of the outer scale is not so notable.

    Fig.5.The channel capacity of the focused LG beam for different inner scale factor l0 and outer scale factor L0.

    Fig.6.The channel capacity of the focused LG beam for different anisotropy factor ξ and temperature-salinity contribution ratio ?.

    Figure 6 demonstrates the impact of anisotropy factorξand temperature-salinity contribution ratio?on the channel capacity of the focused LG beam.The channel capacity wanes with a larger?because the salinity fluctuations of seawater have a greater perturbation effect on the capacity than temperature fluctuations.On the other hand,the anisotropic unstable stratified oceanic turbulence power spectrum degenerates to isotropic whenξis equal to 1.Forξ,the larger its value,the stronger the anisotropy and the greater the channel capacity of the beam mainly because higher anisotropy of the turbulent flow minimizes the refractive fluctuations of the beam and amplifies the transmission effect, leading to less interference in the oceanic channel and a larger system capacity.

    Fig.7.Channel capacity as a function of z with the focused LG beams and the HB beams.

    The comparison of the system channel capacity based on the focused LG beam,the HB beam with diffraction-free characteristics and the ideal condition is depicted in Fig.7.We can see that when the transmission distance is given,the channel capacity of the system based on the focused LG beam and the HB beam is smaller than that of the system under ideal condition due to the interference of turbulence effect.On the other hand,under the same transmission conditions,the channel capacity of the HB beam-based system decreases more sharply with increasing transmission distance than that of the focused LG beam, indicating that the focusing mirror can effectively mitigate the effect of oceanic turbulence and augment the channel capacity of OAM-based underwater optical communication systems.

    4.Conclusion

    In summary, we have numerically analyzed propagation and properties of a focused LG beam in anisotropic turbulent ocean.The impacts of turbulent ocean parameters and beam source parameters on the channel capacity of the underwater communication link are discussed in detail.The results indicate that the LG beam with mirror has a smaller beam size and higher intensity density during transmission, resulting in strong anti-turbulence and anti-attenuation performance owing to modulation of the focusing mirror.Meanwhile,for the focused LG beam, the location of the maximum channel capacity in the propagation direction is not consistent with the location of the geometric focal plane where the system can still achieve a high degree of optimization for the channel capacity.In addition, it is found that the greater the wavelength or the beam waist radius, and the larger the number of transmission channels applicable to improve the channel capacity for long distance transmission.Further, the capacity of the system increases with the mount of the kinetic energy dissipation rate per unit mass of fluid, the inner scale of seawater turbulence and the anisotropy factor, and decreases with the increase of the mean-squared temperature dissipation rate of oceanic turbulence, temperature-salinity contribution ratio and turbulent outer scale factor.In comparison of the non-diffraction HB beam and the unfocused LG beam,the focused LG beam has larger capacity due to its less beam spreading in the underwater channel.This provides a reference for designs of more robust OAM-based underwater optical communication links.

    Acknowledgements

    This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080),the National Natural Science Foundation of China (Grant Nos.61871234 and 62001249), the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY222133), and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No.M36055).

    猜你喜歡
    新光陳偉
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    市政工程施工現(xiàn)場管理存在的問題與對策
    科學家(2022年5期)2022-05-13 21:42:18
    Repulsive bubble–bubble interaction in ultrasonic field?
    一場鬧劇
    陳偉教授簡介
    ST新光股價因何一路重挫 重倉機構(gòu)浮虧已超11億
    投資者報(2018年48期)2018-12-11 02:30:14
    17歲擺地攤33歲選擇創(chuàng)業(yè) 債務“堆出來”的浙江首富周曉光
    投資者報(2018年40期)2018-10-16 07:21:04
    陳偉博士簡介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    一次難忘的班級辯論
    99久久精品一区二区三区| 久久久久久久久久黄片| 舔av片在线| 男插女下体视频免费在线播放| 欧美黄色淫秽网站| a级一级毛片免费在线观看| 激情在线观看视频在线高清| 国产一区二区三区视频了| 悠悠久久av| 欧美在线黄色| 久久精品影院6| 黄色视频,在线免费观看| 桃红色精品国产亚洲av| 日本三级黄在线观看| 蜜桃久久精品国产亚洲av| 欧美丝袜亚洲另类 | 韩国av一区二区三区四区| 精品熟女少妇八av免费久了| 九九热线精品视视频播放| 亚洲人成网站高清观看| 日本撒尿小便嘘嘘汇集6| 狂野欧美白嫩少妇大欣赏| 男人的好看免费观看在线视频| 午夜老司机福利剧场| 成人午夜高清在线视频| а√天堂www在线а√下载| 欧美在线一区亚洲| 最近视频中文字幕2019在线8| 一个人免费在线观看的高清视频| 亚洲国产色片| 国产成人啪精品午夜网站| 18+在线观看网站| 波野结衣二区三区在线 | 日韩欧美精品免费久久 | 午夜免费男女啪啪视频观看 | 桃色一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 黄色成人免费大全| 欧美av亚洲av综合av国产av| 有码 亚洲区| 午夜福利在线观看吧| 很黄的视频免费| 真实男女啪啪啪动态图| 国产视频一区二区在线看| av国产免费在线观看| 亚洲国产欧美人成| 青草久久国产| 久久精品国产99精品国产亚洲性色| 日日夜夜操网爽| 亚洲人成网站在线播放欧美日韩| 啦啦啦免费观看视频1| 长腿黑丝高跟| 国产精品久久视频播放| 久久伊人香网站| 18+在线观看网站| 我的老师免费观看完整版| 国产精品av视频在线免费观看| 一个人免费在线观看的高清视频| 午夜激情欧美在线| 亚洲午夜理论影院| 亚洲自拍偷在线| 国产成人福利小说| 真人一进一出gif抽搐免费| 亚洲avbb在线观看| 激情在线观看视频在线高清| 国产三级在线视频| 听说在线观看完整版免费高清| 一级作爱视频免费观看| 亚洲人成网站高清观看| 欧美日韩精品网址| 18美女黄网站色大片免费观看| 在线观看免费午夜福利视频| 国产激情欧美一区二区| 全区人妻精品视频| 搡女人真爽免费视频火全软件 | 看片在线看免费视频| 久久国产精品影院| 亚洲片人在线观看| 精品久久久久久久末码| 法律面前人人平等表现在哪些方面| 国产激情偷乱视频一区二区| 久久久久久人人人人人| 亚洲,欧美精品.| 日本 欧美在线| 日本黄色片子视频| 久久久久久久久中文| 少妇高潮的动态图| 在线观看一区二区三区| 欧美激情在线99| 国产单亲对白刺激| 一个人看的www免费观看视频| 人人妻,人人澡人人爽秒播| 国产高清视频在线观看网站| 色播亚洲综合网| 青草久久国产| 国产成人欧美在线观看| 午夜激情福利司机影院| 校园春色视频在线观看| 免费人成在线观看视频色| 国产成+人综合+亚洲专区| 日本成人三级电影网站| 婷婷精品国产亚洲av在线| 99热只有精品国产| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 白带黄色成豆腐渣| 97超视频在线观看视频| 真人一进一出gif抽搐免费| 国产 一区 欧美 日韩| 黄色成人免费大全| 欧美午夜高清在线| 国产精品久久久久久人妻精品电影| 国产精品久久久久久久久免 | 亚洲va日本ⅴa欧美va伊人久久| 又紧又爽又黄一区二区| 欧美在线黄色| 丰满人妻一区二区三区视频av | 精品久久久久久久久久免费视频| 久久久久国产精品人妻aⅴ院| 免费看a级黄色片| 久久久精品欧美日韩精品| 中文字幕精品亚洲无线码一区| 级片在线观看| 悠悠久久av| АⅤ资源中文在线天堂| 欧美成人一区二区免费高清观看| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩国产亚洲二区| 97碰自拍视频| 九九热线精品视视频播放| 欧美日韩福利视频一区二区| 日日摸夜夜添夜夜添小说| 免费av不卡在线播放| 成人三级黄色视频| 99在线人妻在线中文字幕| 男女之事视频高清在线观看| 十八禁人妻一区二区| 久久人妻av系列| 真实男女啪啪啪动态图| 手机成人av网站| 久久人人精品亚洲av| 嫩草影院精品99| 国产精品美女特级片免费视频播放器| 欧美日本视频| 亚洲美女黄片视频| 日韩欧美免费精品| 老司机福利观看| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 啪啪无遮挡十八禁网站| 亚洲在线自拍视频| 国产亚洲精品久久久久久毛片| 色吧在线观看| 毛片女人毛片| 少妇的逼水好多| 在线观看av片永久免费下载| 国内毛片毛片毛片毛片毛片| 性欧美人与动物交配| 一个人看视频在线观看www免费 | 国产色爽女视频免费观看| 国产视频一区二区在线看| 国产精品免费一区二区三区在线| 亚洲精品久久国产高清桃花| 亚洲国产欧美网| 久久久久亚洲av毛片大全| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 深夜精品福利| 免费在线观看亚洲国产| 天天一区二区日本电影三级| 欧美午夜高清在线| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 久久久久久久久大av| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 在线观看av片永久免费下载| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 男女午夜视频在线观看| 免费看十八禁软件| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| 亚洲黑人精品在线| 免费在线观看日本一区| 国产野战对白在线观看| 日韩欧美精品免费久久 | 又粗又爽又猛毛片免费看| 综合色av麻豆| 国产精品久久久久久久久免 | 精品一区二区三区人妻视频| 午夜亚洲福利在线播放| 亚洲av不卡在线观看| 亚洲av五月六月丁香网| 国产国拍精品亚洲av在线观看 | 亚洲电影在线观看av| 国产高清视频在线观看网站| 99久国产av精品| 欧美最新免费一区二区三区 | 露出奶头的视频| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 天堂√8在线中文| 麻豆成人午夜福利视频| 熟妇人妻久久中文字幕3abv| 宅男免费午夜| 中文字幕熟女人妻在线| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区 | 少妇裸体淫交视频免费看高清| 桃色一区二区三区在线观看| 欧美日韩综合久久久久久 | 国产一区二区三区视频了| 宅男免费午夜| 免费看日本二区| 久久国产精品影院| 日韩欧美免费精品| 精品久久久久久久久久免费视频| 日韩欧美精品v在线| 午夜亚洲福利在线播放| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 久久人人精品亚洲av| 久久久久久久精品吃奶| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 精品国内亚洲2022精品成人| eeuss影院久久| 午夜精品在线福利| 欧美+日韩+精品| 午夜a级毛片| 欧美色视频一区免费| 国产伦精品一区二区三区四那| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 日本在线视频免费播放| 一本综合久久免费| АⅤ资源中文在线天堂| 内地一区二区视频在线| 日韩免费av在线播放| 性色av乱码一区二区三区2| 亚洲av电影不卡..在线观看| 亚洲精品一卡2卡三卡4卡5卡| 宅男免费午夜| 两人在一起打扑克的视频| 伊人久久精品亚洲午夜| 一二三四社区在线视频社区8| 在线免费观看不下载黄p国产 | 丁香六月欧美| 婷婷六月久久综合丁香| 女人被狂操c到高潮| 亚洲中文字幕日韩| 久久香蕉国产精品| 欧美中文综合在线视频| 嫩草影视91久久| 俄罗斯特黄特色一大片| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 欧美午夜高清在线| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 午夜福利免费观看在线| 亚洲欧美日韩高清在线视频| 欧美bdsm另类| 熟女人妻精品中文字幕| 国产精品1区2区在线观看.| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 成年女人毛片免费观看观看9| 免费无遮挡裸体视频| www.999成人在线观看| 国产日本99.免费观看| 久久香蕉精品热| 国产精品,欧美在线| 首页视频小说图片口味搜索| 精品福利观看| 国产一区二区三区在线臀色熟女| 久久人妻av系列| 欧美av亚洲av综合av国产av| 亚洲最大成人手机在线| 欧美乱色亚洲激情| 琪琪午夜伦伦电影理论片6080| 国产精品久久电影中文字幕| 日本免费一区二区三区高清不卡| 国产伦人伦偷精品视频| 淫妇啪啪啪对白视频| 国产三级在线视频| 国产精华一区二区三区| 激情在线观看视频在线高清| 在线观看美女被高潮喷水网站 | 免费观看精品视频网站| www.色视频.com| 美女高潮的动态| 99视频精品全部免费 在线| 亚洲国产欧美人成| 尤物成人国产欧美一区二区三区| 国产不卡一卡二| 久久性视频一级片| 老司机在亚洲福利影院| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 美女黄网站色视频| 高清在线国产一区| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 在线十欧美十亚洲十日本专区| 亚洲国产欧美人成| 久久伊人香网站| 色在线成人网| 午夜激情福利司机影院| 久久国产精品影院| 18禁美女被吸乳视频| 国产v大片淫在线免费观看| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 丰满乱子伦码专区| 窝窝影院91人妻| 亚洲激情在线av| 欧美黄色淫秽网站| 日本黄大片高清| 91久久精品国产一区二区成人 | 男女床上黄色一级片免费看| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 日韩有码中文字幕| 国产一区二区三区视频了| 午夜福利在线观看吧| 中文在线观看免费www的网站| 午夜两性在线视频| 一级毛片女人18水好多| 老熟妇乱子伦视频在线观看| 毛片女人毛片| 午夜福利在线观看吧| 桃色一区二区三区在线观看| 精品久久久久久久毛片微露脸| 床上黄色一级片| 69人妻影院| 好男人在线观看高清免费视频| 欧美日韩亚洲国产一区二区在线观看| 欧美激情久久久久久爽电影| 亚洲片人在线观看| 桃红色精品国产亚洲av| 脱女人内裤的视频| 精品人妻1区二区| 听说在线观看完整版免费高清| 国产v大片淫在线免费观看| 国语自产精品视频在线第100页| 丰满的人妻完整版| 一区二区三区免费毛片| 国产高清三级在线| 亚洲成人久久性| 免费观看人在逋| 中文字幕人妻熟人妻熟丝袜美 | 亚洲内射少妇av| 午夜精品久久久久久毛片777| a级一级毛片免费在线观看| 国产免费av片在线观看野外av| 国产中年淑女户外野战色| 在线观看免费视频日本深夜| 夜夜爽天天搞| 无限看片的www在线观看| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| 国产中年淑女户外野战色| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 99久国产av精品| 国产熟女xx| 中文字幕av成人在线电影| 日韩人妻高清精品专区| 性色avwww在线观看| 亚洲最大成人中文| 国产男靠女视频免费网站| 精品久久久久久久末码| 中文字幕久久专区| 日韩欧美精品v在线| 精品一区二区三区视频在线 | 美女高潮喷水抽搐中文字幕| 在线免费观看不下载黄p国产 | 99久久综合精品五月天人人| 999久久久精品免费观看国产| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区| 1000部很黄的大片| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| 丁香欧美五月| 国产淫片久久久久久久久 | 国产欧美日韩精品一区二区| 最好的美女福利视频网| 91久久精品国产一区二区成人 | 国产成人系列免费观看| 日韩高清综合在线| 欧美日韩国产亚洲二区| 他把我摸到了高潮在线观看| 别揉我奶头~嗯~啊~动态视频| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 人妻夜夜爽99麻豆av| av视频在线观看入口| 国产精品永久免费网站| 九九在线视频观看精品| 国产高清视频在线观看网站| 一本一本综合久久| 国产精品亚洲美女久久久| 丰满的人妻完整版| aaaaa片日本免费| 国产老妇女一区| 嫩草影院精品99| 两个人看的免费小视频| 国产男靠女视频免费网站| 俺也久久电影网| 日韩国内少妇激情av| 国产黄a三级三级三级人| 性欧美人与动物交配| 国产高潮美女av| 男女视频在线观看网站免费| 日日夜夜操网爽| 久久婷婷人人爽人人干人人爱| 熟女人妻精品中文字幕| 国产精品99久久99久久久不卡| 噜噜噜噜噜久久久久久91| 国产高清三级在线| av国产免费在线观看| 好男人在线观看高清免费视频| av天堂中文字幕网| а√天堂www在线а√下载| 99久久精品一区二区三区| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 啦啦啦免费观看视频1| 99久久综合精品五月天人人| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲国产一区二区在线观看| 亚洲不卡免费看| 此物有八面人人有两片| 桃红色精品国产亚洲av| 国产精品98久久久久久宅男小说| 免费看美女性在线毛片视频| netflix在线观看网站| 国产精品自产拍在线观看55亚洲| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 欧美日韩国产亚洲二区| 91在线精品国自产拍蜜月 | 露出奶头的视频| 成人一区二区视频在线观看| 国产精品影院久久| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 国产野战对白在线观看| 成人av在线播放网站| tocl精华| 欧美日韩瑟瑟在线播放| 亚洲无线在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线播放一区| 俄罗斯特黄特色一大片| 搡女人真爽免费视频火全软件 | 免费看十八禁软件| 久久久久免费精品人妻一区二区| 男女下面进入的视频免费午夜| 久99久视频精品免费| 国产精品1区2区在线观看.| 国产精品女同一区二区软件 | 欧美黑人巨大hd| 国产伦一二天堂av在线观看| 亚洲av免费在线观看| 日本黄色片子视频| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器| 免费看a级黄色片| 老司机福利观看| 欧美午夜高清在线| 黄色丝袜av网址大全| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 国产主播在线观看一区二区| 男女那种视频在线观看| 国产亚洲欧美在线一区二区| av专区在线播放| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 久久久久久大精品| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久末码| 三级国产精品欧美在线观看| 国产真实乱freesex| 男女午夜视频在线观看| 亚洲男人的天堂狠狠| www.色视频.com| 一级毛片女人18水好多| 久久人人精品亚洲av| 日韩欧美在线二视频| 国产精品,欧美在线| 国产在线精品亚洲第一网站| 丰满乱子伦码专区| 亚洲最大成人中文| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 午夜激情欧美在线| 中文字幕人成人乱码亚洲影| 国产av一区在线观看免费| 亚洲av美国av| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 婷婷精品国产亚洲av| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| 国产一区二区在线观看日韩 | 日本 av在线| 国产aⅴ精品一区二区三区波| 国产精品日韩av在线免费观看| 久久精品国产亚洲av涩爱 | 真实男女啪啪啪动态图| 亚洲av日韩精品久久久久久密| 亚洲最大成人中文| 免费观看的影片在线观看| 老汉色∧v一级毛片| 精品无人区乱码1区二区| 国产精品香港三级国产av潘金莲| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 国产成人a区在线观看| 欧美黑人欧美精品刺激| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 久久草成人影院| 亚洲成人久久性| 性色avwww在线观看| 小说图片视频综合网站| 国产精品久久久久久人妻精品电影| 又黄又粗又硬又大视频| 综合色av麻豆| 99精品在免费线老司机午夜| 18禁国产床啪视频网站| 欧洲精品卡2卡3卡4卡5卡区| 少妇丰满av| 国产成人啪精品午夜网站| 村上凉子中文字幕在线| xxxwww97欧美| 精品久久久久久,| 国产精品亚洲av一区麻豆| av中文乱码字幕在线| 首页视频小说图片口味搜索| 精品人妻1区二区| 99热6这里只有精品| 此物有八面人人有两片| e午夜精品久久久久久久| av中文乱码字幕在线| 色视频www国产| 大型黄色视频在线免费观看| 国产亚洲精品久久久com| av福利片在线观看| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 日韩高清综合在线| 国产一区二区三区视频了| 国产精品嫩草影院av在线观看 | 男女视频在线观看网站免费| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 精品国产超薄肉色丝袜足j| 一个人免费在线观看电影| 狂野欧美白嫩少妇大欣赏| 久久精品亚洲精品国产色婷小说| 午夜福利免费观看在线| 欧美日韩国产亚洲二区| 69人妻影院| 国产精品98久久久久久宅男小说| 性色avwww在线观看| 午夜福利在线观看免费完整高清在 | 岛国在线观看网站| 叶爱在线成人免费视频播放| 中文资源天堂在线| 亚洲av第一区精品v没综合| 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| 色哟哟哟哟哟哟| 国产精华一区二区三区| 欧美日韩黄片免| 午夜激情欧美在线| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 久久人人精品亚洲av| 特大巨黑吊av在线直播| 五月伊人婷婷丁香| 老司机福利观看| 久久亚洲精品不卡| 校园春色视频在线观看| 久久国产乱子伦精品免费另类| 一级黄片播放器| 97碰自拍视频| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 一本一本综合久久| 在线观看av片永久免费下载| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一|