• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一種具有二次諧波發(fā)生和適中雙折射的紫外透過稀土金屬甲酸鹽

    2024-01-20 03:56:08劉文博姜春波黃智鵬
    無機化學學報 2024年1期
    關鍵詞:雙折射稀土金屬同濟大學

    劉文博 姜春波 吳 超 黃智鵬 張 弛

    (同濟大學化學科學與工程學院中澳功能分子材料聯(lián)合研究中心,上海 200092)

    0 Introduction

    Nonlinear optical (NLO) crystals that can produce coherent light play an important role in modern optics,such as laser printing, lithography, laser guidance, and medical diagnosis[1].In the design of second-order NLO crystals, large second harmonic generation (SHG)response, stability in extreme environments, large bandgap, and high laser damage threshold (LDT) are important requirements that need to be considered in practical applications[2-3].So far, a number of commercialized materials have been developed in the field of second-order NLO optics,such asβ-BaB2O4(β-BBO)[4],LiB3O5(LBO)[5], CsLiB6O10(CLBO)[6], KH2PO4(KDP)[7],AgGaS2(AGS)[8],AgGaSe2(AGSe),and ZnGeP2(ZGP)[9].However, they still have several inherent drawbacks.Exploring and developing new NLO crystals to eliminate these performance defects is still a challenging research direction.

    Traditional pure organic oxygen-containing salts have high SHG efficiency, but they are limited in practical applications due to their poor thermal stability.The introduction of inorganic hybrid components into the organic molecular structure is a feasible method that has been proven by recent studies[10-12].According to Chen′s anion group theory[13], anion groups within compounds make a greater contribution to the SHG response.The overall second harmonic coefficient of the material can be calculated by summing the secondorder polarizabilities of the micro components, particularly the anion groups.This provides us with a direction to seek highly efficient second-order NLO materials in terms of structural and group combinations.In addition to the well-known anion group theory in the field of nonlinear optics, considering the coplanar and aligned arrangement of densely packed anionic groups can generate a larger SHG response and sufficient birefringence.Additionally,charge-balanced cations play a role in guiding the formation of configurations when combined with anionic groups.While exploring anionic groups with high first-order hyperpolarizability,we also pay attention to functional cations and their anchoring role in crystal lattice formation[14-16].

    Organic - inorganic hybrid perovskites with the general formula ABX4(A=amino, dimethylamine, nitrogen heterocycle, formamid; B=trivalent rare earth cations; X=formate), have received widespread attention in the fields of electric,magnetic,and photonics[17].The anionic structures of these compounds are formed by connecting the rare earth metal ions with the formate ligand to form extended frameworks, where the A site cations are located in the cubic-like cavity of the frameworks.The fully coordinated formate anionic group eliminates terminal oxygen atoms, benefiting to blueshift of the absorption edges[18].The organic cations of A sites interacts with the frameworks through hydrogen bonds and Coulomb forces.These compounds can take advantage of the combination of the organic oxygencontaining formate group with rare earth cations which usually perform variable and asymmetric coordination geometries to form asymmetric coordination[19-22], which are in line with the direction of exploring the synthesis of new noncentrosymmetric (NCS) compounds.Anionic groups withπ-conjugated structures have been extensively developed in the field of NLO optics.Becauseπconjugated cations have similar structural geometry toπ-conjugated anionic groups,π-conjugated cations have received attention in recent study.Theπ-conjugated guanidinium cation (C(NH2)3)+performs a planar structure which is similar to the BO33-, CO32-, and NO3-units[23-27].This structure exhibits a highly anisotropic electron distribution and strong covalent bonding of C—N bonds.It can be forecasted that guanidinecontained NLO crystals may display a large optical anisotropic polarizability and bandgap.Moreover, the H atom of the amino group is not only easy to form hydrogen bonds,promoting crystal growth,but also easily replaced by other planar groups to extend theπconjugated system[26].From the structural perspective,its suitability for use in the second-order NLO optical field can be found.Some studies have shown that introducing the planarπ-conjugated (C(NH2)3)+cation to NLO materials can greatly enhance their SHG efficiencies and birefringences, such as C(NH2)3SO3F (6.2 eV,5.0×KDP, 0.133@1 064 nm)[28].Our group developed aπ-conjugated-cation-based UV NLO phosphate,(C(NH2)3)6(PO4)2·3H2O[29].Unlike existing phosphate systems, (C(NH2)3)6(PO4)2·3H2O has a short UV cutoff edge of 205 nm, an SHG efficiency of approximately 3.8×KDP, and a moderate birefringence (0.078@546 nm).Theoretical calculations show that its optical properties are mainly originated from the synergy effect of theπ-conjugated (C(NH2)3)+cation and the PO43-tetrahedron.The introduction ofπ-conjugated cations such as (C(NH2)3)+provides a paradigm for optimizing the SHG responses and birefringences of NLO materials.

    Based on the above research, considering the diversity of metal ions and organic ligands coordination combinations in the ABX4family, when screening for potential candidates from the ICSD database, an NCS material (C(NH2)3) [Er(HCOO)4] captured our attention[30].So far, there are no NLO optical properties reported for it.We found that (C(NH2)3)[Er(HCOO)4]exhibited a large optical bandgap of 4.76 eV, a sufficient birefringence (0.066@546 nm) and a phase-matching SHG response of 0.20×KDP.Furthermore, theoretical calculations were performed to unveil the relationship between the NCS structure and optical properties.

    1 Experimental

    1.1 Reagents

    Guanidine carbonate ((C(NH2)3)2CO3, 99.00%,Xiya Reagent), formic acid (HCOOH 98.00%, Sinopharm Chemical Reagent), erbium nitrate pentahydrate(Er(NO3)3·5H2O, 99.00%, Xiya Reagent), methanol(CH3OH, Analytical grade, Tansole Chemical Reagent)andN,N-dimethylformamide (DMF, Analytical grade,Xiya Reagent) were commercially available and used as received without further purification.

    1.2 Synthesis of(C(NH2)3)[Er(HCOO)4]

    Er(NO3)3·5H2O (0.50 mmol), HCOOH (10 mmol),and (C(NH2)3)2CO3(1.0 mmol) were dissolved in mixed solvents of methanol and DMF (2∶1,V/V, 30 mL).The solution was sealed and left undisturbed.Block pink crystals were obtained overnight.The crystals were harvested, washed with methanol, and air-dried.The yield was approximately 60%(based on Er).

    1.3 Single crystal X-ray diffraction

    Single-crystal X-ray diffraction data collection of(C(NH2)3)[Er(HCOO)4] was carried out on a Bruker D8 VENTURE CMOS X-ray diffractometer using graphitemonochromatic MoKαradiation (λ=0.710 73 nm) at room temperature.APEX Ⅱsoftware was applied to collect and reduce data.Semi-empirical absorption corrections based on equivalent reflections were applied for both data sets using the APEX Ⅱprogram.The structure was solved by direct methods and refined onF2by full-matrix least-squares methods using the SHELXTL-97 software package.All hydrogen atoms were placed in calculated positions and refined with a riding model.All non-hydrogen atoms were refined anisotropically.Both structural data sets were also checked for possible missing symmetry using the program PLATON, and none were found.For (C(NH2)3)[Er(HCOO)4], in a range of 2.71°<θ<27.09°, a total of 6 535 reflections were collected and 2 357 were independent withRint=0.018 9,R1=0.012 9, andwR2=0.031 7.The detailed crystallographic data and structural refinement parameters of the compound are summarized in Table S1 (Supporting information).Selected bond distances (nm) and angles (°) are given in Table S2, while atomic coordinates and equivalent isotropic displacement parameters are given in Table S3.

    1.4 Powder X-ray diffraction

    Powder X-ray diffraction (PXRD) was used to confirm the phase purity of (C(NH2)3)[Er(HCOO)4].The PXRD data of each sample were carried out on a Bruker D8 X-ray diffractometer equipped with CuKαradiation(λ=0.154 18 nm)in a 2θ range of 5°-70°with a step size of 0.02°.The operating current was 40 kV and the operating voltage was 40 mA.

    1.5 UV-Vis diffuse reflectance spectrum

    Optical diffuse-reflectance spectrum was collected on a Cary 5000 over a spectral range of 200-800 nm at room temperature and a BaSO4plate was used as a 100% reflectance standard.The diffuse reflectance spectral data were converted to the function of reflectance using the Kubelka-Munk function[31].

    1.6 Second-order NLO measurements

    The SHG intensities of(C(NH2)3)[Er(HCOO)4]were measured according to the modified method of Kurtz and Perry[32].A Q-switched Nd:YAG laser with 1064 nm radiation was employed for the visible SHG study.Because the SHG efficiency is related to the particle size, the polycrystalline samples of (C(NH2)3)[Er(HCOO)4] were ground and sieved into several particle size ranges (0-26, 26-50, 50-74, 74-105, 105-150,150-200, and 200-280 μm).Crystalline KDP with the same particle size ranges was used as references.

    1.7 Birefringence measurements

    The birefringence of crystalline (C(NH2)3)[Er(HCOO)4] was assessed with a polarizing microscope (ZEISS Axio Scope.A1) equipped with a Berek compensator.The wavelength of the light source was 546 nm.The birefringence was calculated according to Eq.1:

    where ΔRdenotes the optical path difference,Nerepresents the maximum value of the refractive index,Norepresents the minimum value of the refractive index,Δnrepresents the birefringence, andδis the thickness of the crystal.The positive and negative rotation of compensation affords the relative retardation.

    1.8 Theoretical calculations

    First-principlescalculationson(C(NH2)3)[Er(HCOO)4] were performed using the CASTEP package, a total energy package based on pseudopotential density functional theory (DFT).The correlationexchange terms in the Hamiltonian were described by the functional developed by Perdew, Burke, and Ernzerhof in the generalized gradient approximation form.Optimized norm-conserving pseudopotentials in the Kleinman-Bylander form were adopted to model the effective interaction between the valence electrons and atom cores, which allows the choice of a relatively small plane-wave basis set without compromising the computational accuracy.A kinetic energy cutoff of 850 eV and dense Monkhorst-Packk-point meshes spanning less than 1.5×10-5nm3in the Brillouin zone was chosen.

    2 Results and discussion

    2.1 Powder SHG response

    (C(NH2)3)[Er(HCOO)4] crystallizes in NCS chiral space groupP212121, and therefore, the powder SHG property was measured using the Kurtz-Perry method under a 1 064 nm laser source.As shown in Fig.1, the NLO measurement results indicated that the SHG intensity of (C(NH2)3)[Er(HCOO)4] in the sizes of 105-150μm was approximately 0.20 times that of KDP (Fig.1a).The SHG intensity signal gradually increased and finally tended to be constant with the increase of particle size,which indicates that (C(NH2)3)[Er(HCOO)4] is phasematchable at 1 064 nm(Fig.1b).

    Fig.1 (a)Oscilloscope traces of the SHG signals(105-150μm)for(C(NH2)3)[Er(HCOO)4]with KDP sample as a reference;(b)Plots of measured SHG intensity versus particle sizes of(C(NH2)3)[Er(HCOO)4]under 1 064 nm laser radiation with KDP sample as a reference

    2.2 UV-Vis diffuse reflectance spectrum

    The test result of the UV-Vis diffuse reflectance of the powder samples in a range of 200-800 nm is shown in Fig.2.The absorption (K/S) data were calculated by the Kubelka-Munk functionF(R)=(1-R)2/(2R)=K/S, withR,K, andSrepresenting the reflectance,absorption, and scattering, respectively.The absorption spectrum showed that the compound (C(NH2)3)[Er(HCOO)4] had an optical bandgap of 4.76 eV (Fig.2,Inset), corresponding to the UV cutoff edge of 260 nm.The result indicates that (C(NH2)3)[Er(HCOO)4] is a potential UV NLO crystal.The peaks within the range of 400-800 nm are consistent with the pink nature of the title compound.

    Fig.2 Optical properties of(C(NH2)3)[Er(HCOO)4]

    2.3 Birefringence measurement

    The birefringence of (C(NH2)3)[Er(HCOO)4] was measured by a Zeiss Axio A1 polarizing microscope,and the test result shows that the compound achieved complete extinction.The optical path difference of(C(NH2)3)[Er(HCOO)4] with a thickness of 70.447 μm was measured to be 4.65 μm (Fig.3), corresponding to a measured birefringence of 0.066@546 nm.The birefringence was comparable to other guanidinium-based NLO materials,such as[C(NH2)2NHNO2](C(NH2)3)(NO3)2(0.071@550 nm),(C(NH2)3)3PO4·2H2O(0.055@546 nm).

    Fig.3 (a)Positive and(b)negative rotations of(C(NH2)3)[Er(HCOO)4]under the compensator;(c)Thickness of(C(NH2)3)[Er(HCOO)4]

    2.4 Relationship between crystal structure and optical properties

    Because the crystal structure was already well described by Liu et al.[30], the key structural features are briefly reviewed in this section.Each Er3+ion is coordinated by eight oxygen atoms from six formate groups, forming a [ErO8] polyhedron with Er—O bond lengths ranging from 0.226 2(2) to 0.241 4(3) nm(Fig.4a).Each [ErO8] building block is corner-shared six [ErO8] units by sixμ2-HCOO-groups to form a perovskite-like [Er(HCOO)4] framework[31].In the rhombohedral framework cavity, the (C(NH2)3)+cations act as charge balance cations located in the cavity of the[Er(HCOO)4]framework(Fig.4b and 4c).

    Fig.4 (a)(C(NH2]3)+group and[ErO8]polyhedron in(C(NH2)3)[Er(HCOO)4];(b)Structure of(C(NH2)3)[Er(HCOO)4]viewed along the a-axis;(c)Monolayer of(C(NH2)3)[Er(HCOO)4]

    The strength of the SHG effect serves as a crucial criterion for evaluating NLO materials.When analyzing the SHG effect of (C(NH2)3)[Er(HCOO)4], we can examine the arrangements of its structural units.According to Chen′s anion group theory, the SHG effect of(C(NH2)3) [Er(HCOO)4] is largely determined by the anions.As for [ErO8] units, they appear in parallel states but with different directions, resulting in a cancellation of polar orientations (Fig.5a).When examining the arrangement of the (C(NH2)3)+groups within the crystal structure, their polar orientations cancel each other out (Fig.5b).The Er3+ions exhibit absorption in the visible region.These factors are not beneficial to generate a strong SHG effect.

    Fig.5 (a)Arrangement of[ErO8]polyhedra(purple polyhedra)in(C(NH2)3)[Er(HCOO)4];(b)Arrangement of guanidinium groups(purple triangles)in(C(NH2)3)[Er(HCOO)4],with the Er—O bonds connections depicted using wireframes

    The birefringence is another important characteristic of NLO optical material,and(C(NH2)3)[Er(HCOO)4]exhibited a moderate birefringence of 0.066.This birefringence can also be explained through an analysis of the crystal structure arrangement.Regarding its arrangement of [ErO8] units or the orientation of guanidinium within the framework, it is evident that they are highly parallel and orderly (Fig.5a).The [ErO8] octahedra, with their terminal oxygen atoms provided by formate, are controlled by the formate, which influences the distortion direction of the polyhedra.The distortion directions of the polyhedral throughout the crystal structure are parallel and exhibit cumulative strength.This can account for the substantial birefringence of 0.066 observed in(C(NH2)3)[Er(HCOO)4].

    2.5 Theoretical calculations

    To further understand the structure-function relationship of (C(NH2)3)[Er(HCOO)4], theoretical calculations using the CASTEP program based on DFT were performed.The band structure diagram in Fig.6a shows that (C(NH2)3) [Er(HCOO)4] had a direct bandgap of 4.84 eV, which was slightly larger than the experimental value of 4.76 eV.The discrepancy can be attributed to the omission of excitonic effects in the calculation.The density of states (DOS) of the title compound is depicted in Fig.6b.The electronic transitions among the states near the Fermi level play a dominant role in the optical properties.The CBs (conduction bands)located between -10 and 0 eV are mainly occupied by Er4f, N2p, C2p, O2p, and H1sorbitals, with a smaller contribution from O2sorbital.The VBs (valance bands)between 0 and 10 eV are mainly composed of N2p,C2p, O2p, and H1sorbitals, as well as a little of Er4dorbital.Overall, this demonstrates that the bandgap and optical properties of (C(NH2)3) [Er(HCOO)4] are dominated byπ-conjugated (C(NH2)3)+cations, the[ErO8]polyhedron,and HCOO-groups.

    Fig.6 (a)Band structure of(C(NH2)3)[Er(HCOO)4];(b)Total DOS and partial DOS diagrams of(C(NH2)3)[Er(HCOO)4]

    3 Conclusions

    In summary, we successfully synthesized an NLO active rare earth metal formate, (C(NH2)3)[Er(HCOO)4].The optical study indicates that (C(NH2)3)[Er(HCOO)4]possessed a large optical bandgap of 4.76 eV.NLO measurements show that (C(NH2)3)[Er(HCOO)4] exhibited moderate and phase-matchable SHG intensity of 0.20 times that of KDP.In addition to its wide bandgap and SHG response, (C(NH2)3) [Er(HCOO)4] exhibited sufficient birefringence (0.066@546 nm).Theoretical calculation results reveal that the SHG response and birefringence of (C(NH2)3)[Er(HCOO)4] mainly originate from the cooperation ofπ-conjugated (C(NH2)3)+cations, the [ErO8] polyhedra, and HCOO-groups.These properties make (C(NH2)3)[Er(HCOO)4] a potential UV NLO material.

    Declaration of competing interest:The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    雙折射稀土金屬同濟大學
    《同濟大學學報(醫(yī)學版)》介紹
    稀土金屬及合金12kA電解槽優(yōu)化設計仿真研究
    《同濟大學學報(醫(yī)學版)》介紹
    《同濟大學學報(自然科學版)》征稿啟事
    同濟大學醫(yī)學院介紹
    線雙折射磁光光纖光柵中光偏振態(tài)演化
    線雙折射磁光光纖光柵中光偏振態(tài)演化
    拉曼效應對低雙折射光纖偏振態(tài)的影響
    我國超高純稀土金屬及合金節(jié)能環(huán)保制備技術研究取得重大進展
    2-羥基-1-萘醛縮乙二胺Schiff堿及其稀土金屬配合物的合成和表征
    應用化工(2014年1期)2014-08-16 13:34:08
    婷婷精品国产亚洲av在线 | 亚洲精品在线观看二区| 大香蕉久久网| 操出白浆在线播放| 国产精品欧美亚洲77777| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 女性生殖器流出的白浆| 两性夫妻黄色片| 日韩欧美在线二视频 | 99riav亚洲国产免费| 国产男女内射视频| 欧美国产精品va在线观看不卡| 亚洲av成人不卡在线观看播放网| 亚洲人成77777在线视频| 99香蕉大伊视频| 9色porny在线观看| 免费在线观看影片大全网站| 99热只有精品国产| 欧美人与性动交α欧美精品济南到| 久久ye,这里只有精品| 欧美日韩精品网址| 久久精品国产清高在天天线| 久久精品亚洲av国产电影网| 我的亚洲天堂| 中文字幕制服av| 热99久久久久精品小说推荐| a级毛片在线看网站| av网站在线播放免费| 热99国产精品久久久久久7| 亚洲精品在线观看二区| 满18在线观看网站| 狂野欧美激情性xxxx| 欧美乱码精品一区二区三区| 精品人妻1区二区| 国产精品九九99| 男人操女人黄网站| 国产成人免费无遮挡视频| 悠悠久久av| www.999成人在线观看| 嫁个100分男人电影在线观看| 免费av中文字幕在线| 午夜激情av网站| 午夜福利欧美成人| 国产黄色免费在线视频| 黄色怎么调成土黄色| 亚洲中文字幕日韩| 黄色视频不卡| 最新在线观看一区二区三区| 精品卡一卡二卡四卡免费| 国产欧美日韩一区二区三区在线| 亚洲第一青青草原| 亚洲欧美激情在线| 欧美日韩一级在线毛片| 女警被强在线播放| 亚洲国产中文字幕在线视频| 高清av免费在线| 亚洲国产中文字幕在线视频| 9色porny在线观看| 国产成人免费无遮挡视频| 欧美 亚洲 国产 日韩一| 国产精品免费视频内射| 亚洲欧美激情在线| 久久人人97超碰香蕉20202| 老熟女久久久| 亚洲国产精品sss在线观看 | 老司机亚洲免费影院| 黄色 视频免费看| 亚洲熟妇中文字幕五十中出 | 一级毛片女人18水好多| 老汉色∧v一级毛片| 亚洲成av片中文字幕在线观看| 一区二区三区精品91| 久久国产精品人妻蜜桃| 亚洲专区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 久久久久久亚洲精品国产蜜桃av| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 麻豆av在线久日| 国内久久婷婷六月综合欲色啪| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 精品久久久久久久久久免费视频 | 免费看a级黄色片| 黑丝袜美女国产一区| 性少妇av在线| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 99香蕉大伊视频| 美女福利国产在线| 99国产极品粉嫩在线观看| 国产av精品麻豆| 操美女的视频在线观看| 欧美精品亚洲一区二区| 免费在线观看完整版高清| 后天国语完整版免费观看| 精品国内亚洲2022精品成人 | 欧美精品一区二区免费开放| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 国产精品av久久久久免费| 中文字幕色久视频| 国产视频一区二区在线看| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 欧美激情久久久久久爽电影 | 亚洲精品国产一区二区精华液| x7x7x7水蜜桃| 高清欧美精品videossex| 国产又爽黄色视频| 中国美女看黄片| 黑人欧美特级aaaaaa片| 午夜影院日韩av| 男女免费视频国产| 免费av中文字幕在线| 国产亚洲一区二区精品| 免费高清在线观看日韩| 国产精品久久电影中文字幕 | 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 999精品在线视频| 国产成人精品在线电影| 美女扒开内裤让男人捅视频| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久男人| 成人三级做爰电影| 国产精品久久久久久精品古装| 欧美日本中文国产一区发布| 两人在一起打扑克的视频| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕| 99国产精品99久久久久| 两个人免费观看高清视频| 十八禁人妻一区二区| 免费在线观看日本一区| 天天影视国产精品| 欧美亚洲 丝袜 人妻 在线| xxxhd国产人妻xxx| videos熟女内射| 在线看a的网站| av一本久久久久| 久久婷婷成人综合色麻豆| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美激情在线| 国产精品av久久久久免费| 午夜久久久在线观看| 国产一区二区三区视频了| 午夜福利在线免费观看网站| www.熟女人妻精品国产| 老熟女久久久| 超色免费av| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 午夜福利在线观看吧| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 波多野结衣一区麻豆| 好看av亚洲va欧美ⅴa在| 精品人妻在线不人妻| 久久香蕉激情| 九色亚洲精品在线播放| 91成年电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女毛片儿| 久久久国产精品麻豆| 亚洲精品国产一区二区精华液| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看| 国产极品粉嫩免费观看在线| 欧美丝袜亚洲另类 | 十八禁高潮呻吟视频| 搡老岳熟女国产| 精品久久久久久久毛片微露脸| 一区二区三区精品91| 国产精品亚洲av一区麻豆| 精品国产国语对白av| 大型黄色视频在线免费观看| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 最新在线观看一区二区三区| 亚洲av成人一区二区三| 12—13女人毛片做爰片一| 人人妻人人爽人人添夜夜欢视频| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| 午夜影院日韩av| 国产黄色免费在线视频| 亚洲专区字幕在线| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 日韩欧美国产一区二区入口| 国产成人影院久久av| 色综合婷婷激情| 两个人免费观看高清视频| 日本一区二区免费在线视频| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 丰满饥渴人妻一区二区三| 天天添夜夜摸| 精品久久久久久久久久免费视频 | 久久精品国产亚洲av香蕉五月 | 国产真人三级小视频在线观看| 成年人黄色毛片网站| 女人爽到高潮嗷嗷叫在线视频| 他把我摸到了高潮在线观看| 欧美一级毛片孕妇| 久久人人97超碰香蕉20202| 国产精品 国内视频| 国产成人免费无遮挡视频| 一区福利在线观看| 三级毛片av免费| 国产精品免费视频内射| 亚洲精品中文字幕一二三四区| 精品一区二区三区av网在线观看| 精品一区二区三卡| 极品人妻少妇av视频| 国产视频一区二区在线看| 久久中文字幕人妻熟女| 亚洲 欧美一区二区三区| avwww免费| 操出白浆在线播放| 国产99白浆流出| 午夜亚洲福利在线播放| 黑人欧美特级aaaaaa片| 少妇被粗大的猛进出69影院| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 夜夜爽天天搞| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| av一本久久久久| 亚洲美女黄片视频| 亚洲人成电影免费在线| 妹子高潮喷水视频| 午夜福利在线观看吧| 天天躁日日躁夜夜躁夜夜| 人妻一区二区av| 91麻豆av在线| 久久久国产欧美日韩av| 国产麻豆69| 成人特级黄色片久久久久久久| а√天堂www在线а√下载 | 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 人人妻人人爽人人添夜夜欢视频| 久久久久精品国产欧美久久久| 精品人妻1区二区| 久久九九热精品免费| 久久精品亚洲熟妇少妇任你| 精品久久久久久久毛片微露脸| 黄片播放在线免费| 国产精品国产av在线观看| 两人在一起打扑克的视频| 不卡一级毛片| 大香蕉久久成人网| 国产精品免费视频内射| 亚洲黑人精品在线| av不卡在线播放| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产男靠女视频免费网站| 欧美乱妇无乱码| 美女国产高潮福利片在线看| 叶爱在线成人免费视频播放| 一区二区三区国产精品乱码| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 国产真人三级小视频在线观看| 日本wwww免费看| 国产一区二区三区视频了| 国产精品 国内视频| 欧美人与性动交α欧美软件| 亚洲人成77777在线视频| 50天的宝宝边吃奶边哭怎么回事| 精品乱码久久久久久99久播| 成人影院久久| 久热这里只有精品99| 亚洲成国产人片在线观看| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 曰老女人黄片| а√天堂www在线а√下载 | 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 久热这里只有精品99| 成年女人毛片免费观看观看9 | 青草久久国产| 在线观看免费视频日本深夜| a级毛片在线看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久香蕉国产精品| 久久午夜综合久久蜜桃| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 在线永久观看黄色视频| 黄色丝袜av网址大全| 精品久久久久久,| 日本一区二区免费在线视频| 男人舔女人的私密视频| av福利片在线| 久久久久久免费高清国产稀缺| 夜夜爽天天搞| 色老头精品视频在线观看| 香蕉丝袜av| 看黄色毛片网站| 日韩三级视频一区二区三区| 国产精品电影一区二区三区 | netflix在线观看网站| 精品人妻熟女毛片av久久网站| 午夜久久久在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 午夜精品国产一区二区电影| 久久精品人人爽人人爽视色| 女人被狂操c到高潮| 天天操日日干夜夜撸| 三级毛片av免费| 曰老女人黄片| 日本精品一区二区三区蜜桃| 免费观看a级毛片全部| 看黄色毛片网站| 亚洲国产看品久久| 亚洲五月婷婷丁香| 久久国产亚洲av麻豆专区| 在线视频色国产色| 精品免费久久久久久久清纯 | 丝袜在线中文字幕| 免费高清在线观看日韩| √禁漫天堂资源中文www| 久久国产精品影院| 天天添夜夜摸| 国产人伦9x9x在线观看| 精品人妻1区二区| 免费观看a级毛片全部| 热re99久久精品国产66热6| 最近最新免费中文字幕在线| 侵犯人妻中文字幕一二三四区| 交换朋友夫妻互换小说| 亚洲专区国产一区二区| 1024视频免费在线观看| 建设人人有责人人尽责人人享有的| a级毛片在线看网站| 97人妻天天添夜夜摸| 精品福利永久在线观看| 一级黄色大片毛片| 青草久久国产| 国产精品综合久久久久久久免费 | 日韩三级视频一区二区三区| 人妻丰满熟妇av一区二区三区 | 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 女人被狂操c到高潮| 亚洲美女黄片视频| 成人三级做爰电影| 久久狼人影院| 正在播放国产对白刺激| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 久久中文字幕一级| 老司机亚洲免费影院| 久久99一区二区三区| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 久久久久国产精品人妻aⅴ院 | 老汉色∧v一级毛片| 免费观看a级毛片全部| 成人av一区二区三区在线看| 免费在线观看黄色视频的| 三上悠亚av全集在线观看| 99热国产这里只有精品6| 久久久久久人人人人人| 99久久精品国产亚洲精品| 国产亚洲精品第一综合不卡| 成熟少妇高潮喷水视频| 久久久精品免费免费高清| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品.久久久| 精品高清国产在线一区| 中文字幕人妻丝袜制服| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一小说 | 精品无人区乱码1区二区| 嫩草影视91久久| 99热网站在线观看| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 人妻 亚洲 视频| 欧美国产精品一级二级三级| 一本一本久久a久久精品综合妖精| 我的亚洲天堂| 91成年电影在线观看| 天天躁日日躁夜夜躁夜夜| 日韩欧美免费精品| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 久久久国产成人免费| 国产高清视频在线播放一区| av片东京热男人的天堂| 亚洲国产看品久久| 最新美女视频免费是黄的| 十八禁网站免费在线| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 精品高清国产在线一区| 亚洲精品中文字幕一二三四区| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 亚洲精品国产区一区二| 久久这里只有精品19| 午夜免费成人在线视频| 777米奇影视久久| 日韩精品免费视频一区二区三区| 久久人妻av系列| 亚洲av成人av| 在线国产一区二区在线| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| av线在线观看网站| 久久久久国产一级毛片高清牌| 欧美黑人精品巨大| xxxhd国产人妻xxx| 丝袜美腿诱惑在线| 9热在线视频观看99| 桃红色精品国产亚洲av| 18禁观看日本| 亚洲第一欧美日韩一区二区三区| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| 国产不卡av网站在线观看| 免费在线观看日本一区| 欧美激情高清一区二区三区| 国产精品1区2区在线观看. | 欧美+亚洲+日韩+国产| 久99久视频精品免费| 涩涩av久久男人的天堂| 国产男女内射视频| www.999成人在线观看| 看黄色毛片网站| 亚洲欧美一区二区三区黑人| 亚洲熟女毛片儿| 日本一区二区免费在线视频| 亚洲第一av免费看| 两个人看的免费小视频| 午夜福利免费观看在线| 无限看片的www在线观看| 欧美在线一区亚洲| 热re99久久精品国产66热6| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区高清亚洲精品| 午夜免费观看网址| 精品国内亚洲2022精品成人 | 午夜免费鲁丝| 香蕉丝袜av| 超碰成人久久| 国产亚洲精品久久久久5区| 变态另类成人亚洲欧美熟女 | 亚洲精品自拍成人| 女人被躁到高潮嗷嗷叫费观| 久久久国产成人精品二区 | 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线观看免费 | 亚洲久久久国产精品| 亚洲中文日韩欧美视频| 欧美精品人与动牲交sv欧美| 少妇粗大呻吟视频| 99久久综合精品五月天人人| 宅男免费午夜| 久久 成人 亚洲| 免费女性裸体啪啪无遮挡网站| 激情在线观看视频在线高清 | 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 天天躁日日躁夜夜躁夜夜| 夜夜爽天天搞| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 中文字幕色久视频| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| www.自偷自拍.com| 国产精品美女特级片免费视频播放器 | videos熟女内射| 无人区码免费观看不卡| 纯流量卡能插随身wifi吗| 久久性视频一级片| 久久香蕉精品热| 男人的好看免费观看在线视频 | 9191精品国产免费久久| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| videosex国产| 一级毛片高清免费大全| 岛国毛片在线播放| 好看av亚洲va欧美ⅴa在| 1024视频免费在线观看| 老熟女久久久| 国产高清videossex| 岛国毛片在线播放| 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 精品国产一区二区三区四区第35| 人人澡人人妻人| 日韩欧美免费精品| 亚洲精品在线美女| 成年女人毛片免费观看观看9 | 国产精品 欧美亚洲| 精品人妻熟女毛片av久久网站| 国产精品久久久久成人av| 久久性视频一级片| 亚洲欧美色中文字幕在线| 两个人看的免费小视频| 欧美日韩乱码在线| 国产亚洲一区二区精品| 国产成人欧美在线观看 | 美国免费a级毛片| 午夜福利在线观看吧| 亚洲av成人不卡在线观看播放网| 黄色丝袜av网址大全| 亚洲av电影在线进入| 少妇 在线观看| 精品久久久久久电影网| 国产蜜桃级精品一区二区三区 | av网站免费在线观看视频| 久久久久久久国产电影| 免费av中文字幕在线| 90打野战视频偷拍视频| 亚洲精品成人av观看孕妇| 色婷婷av一区二区三区视频| 日韩欧美三级三区| 不卡av一区二区三区| 久9热在线精品视频| 一a级毛片在线观看| 黄色毛片三级朝国网站| 亚洲av欧美aⅴ国产| 伊人久久大香线蕉亚洲五| 色尼玛亚洲综合影院| 亚洲av电影在线进入| 国产亚洲av高清不卡| x7x7x7水蜜桃| 欧美激情 高清一区二区三区| 亚洲一区二区三区不卡视频| 国产精华一区二区三区| 国产又爽黄色视频| 国产1区2区3区精品| 亚洲精品自拍成人| 精品亚洲成国产av| 精品国产乱子伦一区二区三区| 久久99一区二区三区| 18禁观看日本| 欧美精品av麻豆av| 精品国产一区二区三区久久久樱花| 久久香蕉精品热| 久久精品国产99精品国产亚洲性色 | 久久国产亚洲av麻豆专区| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 最近最新中文字幕大全电影3 | 日日摸夜夜添夜夜添小说| 亚洲精华国产精华精| 国产男靠女视频免费网站| 91老司机精品| 国产成人精品久久二区二区91| 天天躁夜夜躁狠狠躁躁| 久久ye,这里只有精品| 午夜亚洲福利在线播放| 国产精品综合久久久久久久免费 | 久久精品91无色码中文字幕| 亚洲精品在线观看二区| 黄片播放在线免费| 天天操日日干夜夜撸| 人人妻,人人澡人人爽秒播| 久久人人爽av亚洲精品天堂| 在线看a的网站| 欧美+亚洲+日韩+国产| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区黑人| 亚洲全国av大片| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 中文字幕制服av| 搡老乐熟女国产| 狠狠婷婷综合久久久久久88av| 老熟妇仑乱视频hdxx| 国产高清videossex| 精品免费久久久久久久清纯 | 国产激情久久老熟女| 大陆偷拍与自拍| 悠悠久久av| 国产高清videossex| 51午夜福利影视在线观看| 亚洲 国产 在线| 国产日韩一区二区三区精品不卡| 满18在线观看网站| 国产在线一区二区三区精| 午夜免费鲁丝| 午夜福利在线观看吧| 亚洲国产精品sss在线观看 | 精品福利观看|