• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬卡賓模板導(dǎo)向的多咪唑鎓鹽大環(huán)合成

    2024-01-20 03:56:00王以壽王堯宇韓英鋒
    無機化學(xué)學(xué)報 2024年1期
    關(guān)鍵詞:金湖縣寶應(yīng)縣商洛

    王以壽 白 莎 王堯宇 韓英鋒

    (1西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,西安 710127)

    (2商洛學(xué)院化學(xué)工程與現(xiàn)代材料學(xué)院,商洛 726000)

    0 Introduction

    Metal-directed self-assembly stands as a pivotal synthetic strategy in the construction of supramolecular structures, consistently yielding valuable metallosupramolecular entities of diverse shapes and sizes[1-5].Traditionally,structures of this kind have been predominantly fashioned from Werner - type complexes, wherein polydentate ligands featuring N or O donor atoms are coordinated to metal centers[6-11].Moreover, the integration of extended organometallic fragments such as M—CNHC(NHC=N-heterocyclic carbene) building blocks has facilitated the development of innovative assemblies[12-15].Capitalizing on the exceptional stability intrinsic to selected M—CNHCbonds, a spectrum of organometallic molecular assemblies has been meticulously designed and explored, employing a variety of polydentate NHC ligands[16-21].Owing to their captivating structures and remarkable properties in the realms of sensing, catalysis, and optics, these assemblies find widespread applications in host - guest chemistry,template-controlled photoreactions, and selective catalytic transformations[22-30].

    Macrocycles, especially those incorporating extensive heterocyclic structures with diverse ring sizes and functionalities, have discovered intriguing applications in materials, pharmaceuticals, and supramolecular science[31-35].Their synthesis has frequently been approached through ring - closing metathesis (RCM)reactions, standing as a pivotal step in the synthetic process.In historical context, the narrative of nonstereoselective macrocyclic RCM reactions commenced in 1980[36-37].In the late 1990s,the RCM-based syntheses of epothilone and the 18-memberedα,βunsaturated macrolide aspicilin were deemed as pioneering total syntheses of natural macrocyclic compounds utilizing the RCM strategy[38-40].Subsequent to these milestones, the development of efficient catalysts, exemplified by ruthenium-based Grubbs′ complexes and molybdenum Schrock′s catalysts, has firmly established RCM as one of the most extensively employed methodologies in the design and synthesis of macrocycles[41-43].

    Despite notable achievements in the field, there exists substantial potential for the expansion of the functional macrocycle class.Macrocyclization reactions often contend with undesired intermolecular reactions[44-45].Conventional synthetic methodologies for macrocycles prove impractical and inefficient, frequently resulting in diminished yields and the occurrence of unwanted side reactions.This study introduces the construction of ordered structures derived from poly-NHC precursors via template-directed RCM.Our approach capitalizes on metal-directed self-assembly in conjunction with a suitable template to facilitate the RCM of linear dienes.This strategic amalgamation enables the promotion of the desired dinuclear silver (Ⅰ)tetracarbene complex, ultimately leading to the formation of the corresponding covalent organic macrocycle upon removing silver ions.

    1 Experimental

    1.1 Materials and physical measurements

    1H and13C{1H} spectra were acquired on a Bruker AVANCE Ⅲ400 spectrometer.Chemical shifts (δ) are reported in parts per million relative to tetramethylsilane, with the residual protonated solvent serving as an internal standard.Mass spectra were generated using a Bruker microTOF-Q Ⅱ mass spectrometer (Bruker Daltonics Corp., USA) employing the electrospray ionization (ESI) mode.Unless explicitly mentioned, all reagents were commercially sourced and employed without additional purification.

    1.2 Synthesis of the ligands and macrocycles

    1.2.1 Synthesis of H2-A1(BF4)2

    A Schlenk flask was charged with 4-(imidazole-1-yl)phenol(0.705 g,4.4 mmol)and 1,4-bis(bromomethyl)benzene (0.528 g, 2.0 mmol).To this mixture, DMF was added (2 mL), and the reaction mixture was heated to 110 ℃for 12 h.After cooling the reaction mixture to ambient temperature, 30 mL ethyl acetate was added,and a white compound precipitated.The solid was isolated by filtration, washed with ethyl acetate, and driedinvacuoto give a white solid.Yield: 1.138 g (1.95 mmol, 97%).The obtained solid (0.292 g, 0.5 mmol)was transferred to a bottle containing 5-bromo-1-pentene (0.6 mL, 5 mmol), NaOH (0.060 g, 1.5 mmol) and 40 mL ethanol.The mixture was stirred for 48 h under reflux.Then, remove the solvent and the solid was washed with water.The solid was isolated by filtration and transferred to a bottle containing 10 mL methanol;a solution of NH4BF4(0.210 g, 2.0 mmol) in methanol(20 mL) was added.The resulting mixture was stirred at ambient temperature for 6 h.Then, the solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 0.312 g (0.43 mmol, 85%, two steps).1H NMR (400 MHz, DMSO-d6):δ=9.96 (s, 2H,H1),8.25(s,2H,imidazolium-H),8.01(s,2H,imidazolium-H),7.70(d,J=8.8 Hz,4H,Ar-H),7.61(s,4H,Ar-H), 7.18 (d,J=8.8 Hz, 4H, Ar-H), 5.92-5.82 (m, 2H,H14),5.52(s,4H,H4),5.08-4.98(m,4H,H15),4.06(t,J=6.4 Hz,4H,H11),2.20(q,J=6.8 Hz,4H,H13),1.83(p,J=6.6 Hz, 4H, H12).13C{1H} NMR (100 MHz,DMSO-d6):δ=159.4,137.8,135.3,135.1,129.1,127.7,123.5, 123.0, 121.9, 115.6, 115.3, 67.4, 51.8, 29.5,27.7.ESI-MS (positive ions):m/z=280.157 0 (Calcd.for[H2-A1]2+280.141 3).

    1.2.2 Synthesis of H2-B1(BF4)2

    1.2.3 Synthesis of[Ag2(A1)2](BF4)2

    A sample of H2-A1(BF4)2(73 mg, 0.1 mmol) was dissolved in 25 mL of CH3CN, and to this solution Ag2O (46 mg, 0.2 mmol) was added.The resulting suspension was heated to 70 ℃for 24 h without light.After cooling to ambient temperature, the obtained suspension was filtered through a pad of Celite to give a clear solution.The filtrate was concentrated to 3 mL,and diethyl ether (30 mL) was added, leading to the precipitation of [Ag2(A1)2](BF4)2as a yellow solid.The solid was filtrated,washed with diethyl ether,and driedinvacuo.Yield: 62 mg (0.041 mmol, 82%).1H NMR(400 MHz, DMSO-d6):δ=7.81 (s, 4H, Ar-H), 7.73 (s,4H, Ar-H), 7.48 (d,J=8.4 Hz, 8H, Ar-H), 7.13 (s, 8H,Ar-H), 6.92 (d,J=8.4 Hz, 8H, Ar-H), 5.97-5.74 (m,4H, H14), 5.29 (s, 8H, H4), 5.14-4.88 (m, 8H, H15),3.99 (s, 8H, H11), 2.19 (s, 8H, H13), 1.83 (s, 8H,H12).13C{1H} NMR (100 MHz, DMSO-d6):δ=158.5,138.8,136.7,132.6,127.7,125.1,123.1,122.9,115.2,115,67.2,53.9,29.5,27.7.ESI-MS(positive ions):m/z=666.196 6(Calcd.for[Ag2(A1)2]2+666.204 3).

    1.2.4 Synthesis of[Ag2(B1)2](BF4)2

    A sample of H2-B1(BF4)2(0.810 g, 1.0 mmol) was dissolved in 40 mL of CH3CN, and to this solution Ag2O(0.695 g,3.0 mmol)was added.The resulting suspension was heated to 70 ℃for 24 h without light.After cooling to ambient temperature, the obtained suspension was filtered through a pad of Celite to give a clear solution.The filtrate was concentrated to 3 mL,and diethyl ether (30 mL) was added, leading to the precipitation of [Ag2(B1)2](BF4)2as a yellow solid.The solid was filtrated,washed with diethyl ether,and driedinvacuo.Yield: 0.819 g (0.49 mmol, 98%).1H NMR(400 MHz, DMSO-d6):δ=7.83 (s, 4H, H2), 7.80 (s, 4H,H3), 7.55 (d,J=8.6 Hz, 8H, H10), 7.35 (d,J=7.4 Hz,8H, H7), 7.18 (d,J=7.4 Hz, 8H, H6), 6.95 (d,J=8.6 Hz, 8H, H11), 6.01-5.71 (m, 4H, H16), 5.45 (s, 8H,H4), 5.15-4.90 (m, 8H, H17), 4.01 (t,J=6.1 Hz, 8H,H13), 2.22 (q,J=6.5 Hz, 8H, H15), 1.85 (p,J=6.2 Hz,8H, H14).13C{1H} NMR (100 MHz, DMSO-d6):δ=178.1 (C1),158.5 (C12),138.8 (C8),137.8 (C16),136.2(C5), 132.5 (C9), 127.7 (C6), 126.8 (C7), 125.1 (C10),123.2 (C2), 123.2 (C3), 115.3 (C17), 115.1 (C11), 67.2(C13),54.1(C4),29.6(C15),27.8(C14).ESI-MS(positive ions):m/z=1 571.445 1 (Calcd.for [Ag2(B1)2(BF4)]+1 571.476 1),m/z=742.255 2 (Calcd.for [Ag2(B1)2]2+742.235 8).

    1.2.5 Synthesis of[Ag2(A2)](BF4)2

    A sample of [Ag2(A1)2](BF4)2(151 mg, 0.1 mmol)and Grubbs′2nd catalyst (42 mg,0.05 mmol)were dissolved in dry CH2Cl2(80 mL) under a nitrogen atmosphere.The reaction mixture was stirred at 40 ℃for 12 h.After the reaction was cooled to room temperature,10 mL acetonitrile was added to the mixture, and the obtained mixture was filtered to give a clear solution.The filtrate was concentrated to 3 mL, and ethyl acetate (30 mL) was added, leading to the precipitation of[Ag2(A2)](BF4)2as a gray solid.The solid was collected by filtration, washed with ethyl acetate, and driedin vacuo.Yield: 0.119 g (0.085 mmol, 85%).[Ag2(A2)](BF4)2was used for subsequent reactions without further purification.

    1.2.6 Synthesis of[Ag2(B2)](BF4)2

    A sample of [Ag2(B1)2](BF4)2(100 mg, 0.06 mmol)and Grubbs′2nd catalyst (10 mg,0.01 mmol)were dissolved in dry CH2Cl2(80 mL) under a nitrogen atmosphere.The reaction mixture was stirred at 40 ℃for 12 h.After the reaction was cooled to room temperature,10 mL acetonitrile was added to the mixture, and the obtained mixture was filtered to give a clear solution.The filtrate was concentrated to 3 mL, and diethyl ether(30 mL)was added,leading to the precipitation of[Ag2(B2)](BF4)2as a gray solid.The solid was filtrated,washed with diethyl ether, and driedinvacuo.Yield:79 mg(0.049 mmol,82%).1H NMR(400 MHz,DMSOd6):δ=7.83 (s, 4H, H3), 7.77 (s, 4H, H2), 7.57 (d,J=8.8 Hz,8H,H10),7.27(d,J=8.0 Hz,8H,H7),7.10(d,J=8.0 Hz, 8H, H6), 6.92 (d,J=8.8 Hz, 8H, H11), 5.62-5.35 (m, 8H, H16, H4), 4.06-3.90 (m, 8H, H13), 2.27-2.13 (m, 8H, H15), 1.96-1.70 (m, 8H, H14).13C{1H}NMR(100 MHz,DMSO-d6):δ=176.9(C1),158.6(C12),138.6 (C8), 136.0 (C5), 132.5 (C9), 130.2 (C16), 127.3(C6), 126.6 (C7), 125.0 (C10), 123.3 (C2, C3), 115.1(C11), 67.0 (C13), 54.1 (C4), 28.5 (C15), 27.6 (C14).ESI-MS (positive ions):m/z=1 515.391 9 (Calcd.for[Ag2(B2)(BF4)]+1 515.413 4),m/z=714.205 6 (Calcd.for[Ag2(B2)]2+714.204 5).

    高郵湖地處蘇皖交界,北與洪澤湖水系相連接,南與長江水系相連通,東臨江蘇高郵,西接安徽天長,跨安徽省天長市和江蘇省高郵市、寶應(yīng)縣、金湖縣。高郵湖湖區(qū)主屬江蘇省,是江蘇省第三大湖,水域總面積為760.67 km2,在高郵市境內(nèi)水域面積392.82 km2,占高郵湖總水域面積的55.32%。高郵湖屬淺水型湖泊,由古瀉湖經(jīng)長期淤積和人類活動影響而成。

    1.2.7 Synthesis of H4-A2(BF4)4

    [Ag2(A2)] (BF4)2(0.060 g, 0.041 mmol)was dissolved in CH3CN (5 mL).To this was added NH4Cl(0.007 g, 0.124 mmol) in methanol (5 mL).White solid AgCl precipitated immediately.The resulting suspension was filtered through Celite to obtain a clear solution.The solvent was removed to give a gray solid.The solid was washed with water and then suspended in CH3CN (2 mL), and a solution of NH4BF4(0.013 g,0.124 mmol) in methanol (2 mL) was added.The mixture was stirred at ambient temperature for 12 h.The solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 44 mg (0.031 mmol,76%).1H NMR (400 MHz, DMSO-d6):δ=9.81 (s, 4H,H1),8.21(s,4H,imidazolium-H),8.00(s,4H,imidazolium-H), 7.70-7.61 (m, 8H, Ar-H), 7.57 (s, 8H, Ar-H),7.22-7.13 (m,8H,Ar-H),5.48 (s,12H,H4,H14),4.03(s, 8H, H11), 2.14 (s, 8H, 13), 1.78 (s, 8H, H12).13C{1H} NMR (100 MHz, DMSO -d6):δ=159.4, 135.2,129.8, 129.1, 127.6, 123.5, 123.0, 121.9, 115.6, 67.4,51.9,28.2,23.0.ESI-MS(positive ions):m/z=266.147 8(Calcd.for[H4-A2]4+266.141 4).

    1.2.8 Synthesis of H4-B2(BF4)4

    A sample of[Ag2(B2)](BF4)2(0.069 g,0.043 mmol)was dissolved in CH3CN (10 mL).To this was added NH4Cl (0.007 g, 0.13 mmol) in methanol (5 mL).A white solid (AgCl) precipitated immediately.The reaction mixture was stirred for 6 h.The resulting suspension was filtered through a pad of Celite to obtain a clear solution.The solvent was removed to give a gray solid.The gray solid was dissolved in methanol (10 mL), and a solution of NH4BF4(0.014 g, 0.13 mmol) in methanol (10 mL) was added.The mixture was stirred at ambient temperature for 12 h.The solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 0.052 g (0.033 mmol, 77%).1H NMR (400 MHz, DMSO-d6):δ=9.86 (s, 4H, H1), 8.23(s, 4H, H2), 8.03 (s, 4H, H3), 7.84-7.71 (m, 8H, H7),7.71-7.64 (m, 8H, H10), 7.64-7.55 (m, 8H, H6), 7.25-7.11(m,8H,H11),5.64-5.43(m,12H,H16,H4),4.20-3.78 (m, 8H, H13), 2.27-2.08 (m, 8H, H15), 1.88-1.66(m, 8H, H14).13C{1H} NMR (100 MHz, DMSO-d6):δ=159.4 (C12), 139.8 (C8), 135.2 (C1), 134.0 (C5), 129.8(C16), 129.2 (C6), 127.7 (C9), 127.3 (C7), 123.6 (C10),123.1 (C3), 121.9 (C2), 115.6 (C11), 67.3 (C13), 52.0(C4), 28.3 (C15), 26.6 (C14).ESI-MS (positive ions):m/z=1 477.616 5(calcd.for[H4-B2(BF4)3]+1 477.641 7),695.317 2 (Calcd.for [H4- B2(BF4)2]2+695.318 6),434.548 7 (Calcd.for [H4- B2(BF4)]3+434.544 3),304.161 1(Calcd.for[H4-B2]4+304.157 0).

    2 Results and discussion

    In contrast to the numerous molecular macrocycles constructed through metal coordination and hydrogen bonding,the synthesis of covalent organic macrocycles poses greater challenges due to their heightened thermal and chemical stability[46-47].Consequently, template-directed synthesis has been acknowledged as a rational strategy for the intricate construction of such macrocycles.Here, we introduce a rectangular metallacycle assembled by two bidentate ligands and two metal (Ⅰ)ions.Two terminal olefins were incorporated into the ligands,positioning them in proximity.With an appropriate linker, these positions were designed for cross - linking neighboring ligands through olefin metathesis reactions.Given its high thermal stability and resistance to Grubbs′ 2nd catalyst, we selected an Ag(Ⅰ)metallacycle.Our approach showcases the highly efficient synthesis of a covalent organic macrocycle,commencing with H2-L1(BF4)2,through a four-step process (Scheme 1): (1) the design and preparation of the ligand; (2) NHC-directed self-assembly; (3) ring-closing metathesis (RCM) reaction between the adjacent olefins on the Ag(I) metallacycle; (4) removal of the Ag(Ⅰ)ions.

    Scheme 1 Synthesis of the designed covalent organic macrocycles through metal-carbene-templated ring-closing metathesis approach

    To facilitate this, we designed bidentate ligands H2-L1(BF4)2(L1=A1, B1), where two terminal olefins are connected to benzene rings via alkoxy linkers.For instance,H2-B1(BF4)2was synthesized using 4-(imidazol-1-yl)phenol, 4,4′-bis(bromomethyl)biphenyl, and 5-bromo-1-pentene,followed by exchanging the counteranion from bromide to tetrafluoroborate with NH4BF4.This anion exchange significantly improved the solubility of the ligand precursor in acetonitrile.The1H NMR spectrum of H2-B1(BF4)2in DMSO-d6(Fig.S1) reveals the characteristic resonance of the imidazolium NCHN proton atδ=10.01, consistent with previously reported examples[16-21].

    The reaction of H2-L1(BF4)2(L1=A1, B1) with Ag2O yielded complexes [Ag2(L1)2](BF4)2(L1=A1, B1)in satisfactory yields.A thorough characterization was carried out utilizing various techniques, including NMR spectroscopy (1H,13C, H-H COSY, HSQC, and HMBC) and mass spectrometry (Fig.S4-S9).In the1H NMR spectra of [Ag2(B1)2](BF4)2, the expected resonance for the carbene ligand was observed, accompanied by the disappearance of the original imidazolium NCHN proton signal.Notably, characteristic doublet resonances for protons Hband Hcwere observed atδ=6.01-5.71 and 5.15-4.90, respectively (Fig.1a and 1b).In the13C and HMBC spectra, resonances corresponding to the CNHCatom and C=C carbon nuclei (Cb, Cc)were observed atδ=178.1, 137.8, and 115.3 (Fig.S5),respectively.Further validation through ESI-MS revealed two intense peaks consistent with the Ag(I)metallacycle, withm/zvalues of 1 571.445 1 and 742.255 2, corresponding to the [Ag2(B1)2(BF4)]+(Calcd.m/z=1 571.476 1) and [Ag2(B1)2]2+ions (Calcd.m/z=742.235 8),respectively(Fig.S9).

    The pivotal step in our procedure was the templatedirected RCM, which proved highly suitable for creating the required rectangular structure.This reaction was conducted at a relatively low concentration of 0.6 mmol·L-1to prevent undesired side-oligomerization reactions.The metallacycle [Ag2(B1)2](BF4)2in anhydrous CH2Cl2was stirred at room temperature.Subsequently, a solution of Grubbs′ 2nd catalyst in dry CH2Cl2was slowly added into the solution.The resulting mixture was stirred at 40 ℃overnight, exclusively leading to the formation of the dinuclear cyclized product [Ag2(B2)](BF4)2.Evidence confirming the successful formation of the cyclized structure was provided by1H,13C,2D NMR spectroscopy,and HR-ESI spectrometry (Fig.S10-S15).Upon the RCM reaction, signals at 5.62-5.35 and 130.2,corresponding to the newly generated doublet resonances for He(Fig.1c)and Ce,respectively,were observed in1H,13C NMR spectroscopy(Fig.S10, S11).The ESI-MS spectrum of the final solution revealed signals originating from the most intense peaks atm/z=1 515.391 9 and 714.205 6, consistent with a silver (Ⅰ)metallacycle of the formula [Ag2(B2)](BF4)2.It suggested the presence of a cyclized intramolecular species and confirmed that the isotopic distribution of the dinuclear cyclized metallacycle closely matched the theoretical spectra(Fig.S15).

    The two silver ions can be successfully removed from the complex [Ag2(B2)](BF4)2through the addition of NH4Cl.Subsequent anion exchange reactions with NH4BF4yielded the desired tetraimidazolium macrocycle in approximately 80% yield.Compound H4-B2(BF4)4was comprehensively characterized using NMR spectroscopy, and all protons and carbons were fully assigned through 2D NMR measurements(1H-1H COSY,HSQC, and HMBC, Fig.S16-S21).ESI-MS spectrometry (Fig.1e) confirmed the presence of peaks consistent with the target covalent organic macrocycle at 695.317 2(Calcd.for [H4- B2(BF4)2]2+695.318 6), 434.548 7(Calcd.for [H4- B2(BF4)]3+434.544 3), 304.161 1(Calcd.for[H4-B2]4+304.157 0).

    To explore the ion detection capability of H4-B2(BF4)4,halide ions (F-,Cl-,Br-,and I-)were introduced(using their sodium salts) for ultraviolet, fluorescence,and1H NMR titrations (Fig.2).As illustrated in Fig.2b,the addition of 10.0 equivalents of F-, Cl-and Br-to the solutions of H4- B2(BF4)4, respectively, did not induce significant changes in the ultraviolet spectra.However, adding an equivalent amount of I-resulted in a blue shift from the original Soret band (258 nm) to a new band with maximum absorption at 241 nm.The absorption intensity increased significantly with increasing I-concentration (Fig.2c).Additionally, fluorescence titration experiments were conducted.No noticeable changes in the fluorescence spectra were observed upon adding 10.0 equivalents of F-, Cl-and Br-to the H4-B2(BF4)4solutions.However, upon the addition of I-,the fluorescence intensity of H4-B2(BF4)4at approximately 413 nm noticeably decreased (Fig.2d).As confirmed by1H NMR titration, the continuous addition of I-to the solution of H4-B2(BF4)4caused a downfield shift in the signal corresponding to the imidazolium Haproton (Fig.2e).No such significant changes were observed for the other protons, indicating that iodides bind to the cavity of the polyimidazolium macrocycle through hydrogen bonding involving C—H…I interactions(Fig.2a).

    Fig.11H NMR spectra(400 MHz,DMSO-d6)of(a)H2-B1(BF4)2,(b)[Ag2(B1)2](BF4)2,(c)[Ag2(B2)](BF4)2,and(d)H4-B2(BF4)4,(e)HR-ESI mass spectra(positive ions)of H4-B2(BF4)4

    Fig.2 (a)Observed binding interactions between host H4-B2(BF4)4 and iodides,(b)Ultraviolet spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1)and adding 10.0 equivalent of different ions(F-,Cl-,Br-and I-)in acetonitrile,(c)Ultraviolet titration spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1)with I-in acetonitrile,(d)Fluorescent spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1,λ=275 nm)and adding 100.0 equivalent of different ions(F-,Cl-,Br-and I-)in acetonitrile,(e)Partial 1HNMR spectra obtained upon continuous addition of NaI to a CD3CN solution containing H4-B2(BF4)4

    3 Conclusions

    In summary, we have demonstrated an efficient macrocyclization strategy for synthesizing covalent organic macrocycles through ring-closing metathesis employing a metal-carbene template.Our approach offers an alternative method for generating a silver biscarbene compound through the self-assembly of Ag(I)ions and dicationic bis-carbene precursors.This method effectively creates the required macrocyclic structure and facilitates the development of functionalized metallacycles.Utilizing the excellent properties ofNheterocyclic carbenes, the product can be easily isolated following the RCM reaction and Ag(I) removal,achieved through anion exchange reactions.Furthermore, this approach holds promise for preparing a wide range of functional organic macrocycles and threedimensional cages.Future endeavors will explore more intricate structures and properties in this context.

    Conflicts of interest:All authors claimed no competing interest.

    Acknowledgments:The current work was financially supported by the National Natural Science Fund of China(Grants No.22025107,22301240), Shaanxi Fundamental Science Research Project for Chemistry&Biology(Grants No.22JHZ003,22JHQ008), the Natural Science Basic Research Plan in Shaanxi Province (Grants No.S2023-JC-QN-1639,2022JQ-093),the National Youth Top-notch Talent Support Program of China,Xi′an Key Laboratory of Functional Supramolecular Structure and Materials,and the FM&EM International Joint Laboratory of Northwest University.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    金湖縣寶應(yīng)縣商洛
    寶應(yīng)縣推行“加減乘除”工作法
    金湖縣以“四度”推動陽光護(hù)企走深走實
    金湖縣以黨建引領(lǐng)安全生產(chǎn)執(zhí)法檢查
    寶應(yīng)縣涇河鎮(zhèn)創(chuàng)成市級“僑之家”
    華人時刊(2022年3期)2022-04-28 08:21:42
    金湖縣為僑服務(wù)“小切口”打開“大格局”
    華人時刊(2022年3期)2022-04-26 14:29:22
    寶應(yīng)縣 嚴(yán)查隱患 嚴(yán)格整治 筑牢防線
    陜西商洛:創(chuàng)出菌蔬輪種發(fā)展新模式
    金湖縣擴大宣傳 防控風(fēng)險
    江蘇寶應(yīng)縣2019年新建改造農(nóng)村公路110km
    石油瀝青(2019年6期)2019-02-13 04:24:34
    商洛水源地生態(tài)經(jīng)濟(jì)區(qū)劃分析
    日本vs欧美在线观看视频| 丰满的人妻完整版| 国产精品久久久久久精品古装| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久午夜乱码| 久久国产精品人妻蜜桃| 法律面前人人平等表现在哪些方面| 在线av久久热| 久久久精品国产亚洲av高清涩受| 久久精品亚洲av国产电影网| 一级,二级,三级黄色视频| 亚洲五月天丁香| a在线观看视频网站| 99国产综合亚洲精品| 深夜精品福利| 村上凉子中文字幕在线| 一进一出抽搐gif免费好疼 | 成人影院久久| 久久久久久久久免费视频了| 中文字幕高清在线视频| 激情在线观看视频在线高清 | 日韩视频一区二区在线观看| a级片在线免费高清观看视频| 日韩成人在线观看一区二区三区| 精品亚洲成国产av| 日韩成人在线观看一区二区三区| 美女午夜性视频免费| 色在线成人网| 99久久人妻综合| 成年动漫av网址| 巨乳人妻的诱惑在线观看| 老熟女久久久| 村上凉子中文字幕在线| av天堂在线播放| 亚洲专区中文字幕在线| 久久精品国产a三级三级三级| 欧美日韩瑟瑟在线播放| 亚洲精品av麻豆狂野| 夜夜夜夜夜久久久久| 亚洲免费av在线视频| 成人黄色视频免费在线看| 1024视频免费在线观看| 老鸭窝网址在线观看| 18在线观看网站| 在线观看午夜福利视频| 最新的欧美精品一区二区| 一区二区三区精品91| 午夜老司机福利片| 后天国语完整版免费观看| 欧美黑人欧美精品刺激| 99re在线观看精品视频| 两个人免费观看高清视频| 日韩 欧美 亚洲 中文字幕| 亚洲久久久国产精品| 国产精品九九99| 国产精品久久久久久人妻精品电影| 老鸭窝网址在线观看| 一边摸一边抽搐一进一小说 | 美国免费a级毛片| 欧美乱色亚洲激情| 黄色怎么调成土黄色| 黄色毛片三级朝国网站| 免费看a级黄色片| 黑丝袜美女国产一区| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| tube8黄色片| 久久人妻熟女aⅴ| 人妻久久中文字幕网| www日本在线高清视频| 亚洲欧美色中文字幕在线| а√天堂www在线а√下载 | 成年人免费黄色播放视频| 欧美日韩成人在线一区二区| 99久久国产精品久久久| 亚洲人成伊人成综合网2020| 久久精品亚洲av国产电影网| 国产成人精品无人区| 中文字幕人妻丝袜制服| 久久精品91无色码中文字幕| 最新的欧美精品一区二区| 美女 人体艺术 gogo| 国产高清国产精品国产三级| 在线国产一区二区在线| 丰满饥渴人妻一区二区三| 国产成人免费无遮挡视频| √禁漫天堂资源中文www| 性少妇av在线| 久久精品亚洲av国产电影网| 欧美成狂野欧美在线观看| 成人手机av| 中亚洲国语对白在线视频| 交换朋友夫妻互换小说| 免费观看人在逋| 99国产综合亚洲精品| 黑丝袜美女国产一区| 视频区欧美日本亚洲| 欧美日本中文国产一区发布| 国产免费av片在线观看野外av| 精品人妻1区二区| 纯流量卡能插随身wifi吗| 亚洲国产欧美日韩在线播放| 亚洲精品在线美女| 国产99白浆流出| 动漫黄色视频在线观看| 精品一区二区三区视频在线观看免费 | 18禁观看日本| 国产深夜福利视频在线观看| 91字幕亚洲| 精品电影一区二区在线| 国产一区二区三区视频了| 精品国产亚洲在线| 婷婷成人精品国产| 免费在线观看影片大全网站| 亚洲精品国产区一区二| 久久婷婷成人综合色麻豆| 成人特级黄色片久久久久久久| 热re99久久精品国产66热6| 不卡一级毛片| 欧美 日韩 精品 国产| 日韩制服丝袜自拍偷拍| 精品亚洲成a人片在线观看| 亚洲成人免费av在线播放| 在线观看一区二区三区激情| 午夜福利欧美成人| 久久精品国产亚洲av香蕉五月 | 久久久久久亚洲精品国产蜜桃av| 国产97色在线日韩免费| 精品欧美一区二区三区在线| 日韩欧美在线二视频 | 一级a爱片免费观看的视频| 日本欧美视频一区| 另类亚洲欧美激情| 亚洲成av片中文字幕在线观看| 女人久久www免费人成看片| 久久中文字幕一级| а√天堂www在线а√下载 | 下体分泌物呈黄色| 亚洲精品成人av观看孕妇| 亚洲精品在线美女| 大型黄色视频在线免费观看| 不卡一级毛片| 久久人人97超碰香蕉20202| 精品电影一区二区在线| 99国产极品粉嫩在线观看| 91字幕亚洲| 老熟女久久久| 丁香欧美五月| 亚洲片人在线观看| 99re6热这里在线精品视频| 日韩三级视频一区二区三区| 成人免费观看视频高清| 欧美激情高清一区二区三区| 啪啪无遮挡十八禁网站| 一级片免费观看大全| 国产黄色免费在线视频| 91国产中文字幕| 久久久国产成人免费| 美女 人体艺术 gogo| 欧美黄色淫秽网站| 色综合欧美亚洲国产小说| 亚洲avbb在线观看| av天堂久久9| 两个人看的免费小视频| 脱女人内裤的视频| 色综合婷婷激情| 亚洲专区字幕在线| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩另类电影网站| 亚洲精品中文字幕在线视频| 久久精品国产a三级三级三级| av欧美777| 美女高潮喷水抽搐中文字幕| 大香蕉久久网| x7x7x7水蜜桃| 欧美丝袜亚洲另类 | 国产一区有黄有色的免费视频| 精品一品国产午夜福利视频| 黄片小视频在线播放| 久久久久久久午夜电影 | 欧美日韩乱码在线| 在线看a的网站| 黄片大片在线免费观看| 成年人黄色毛片网站| 精品无人区乱码1区二区| 免费久久久久久久精品成人欧美视频| xxx96com| 热re99久久国产66热| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 亚洲全国av大片| 巨乳人妻的诱惑在线观看| 18禁国产床啪视频网站| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频 | 天天影视国产精品| 亚洲,欧美精品.| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | 亚洲国产毛片av蜜桃av| 国产男女超爽视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜综合久久蜜桃| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 亚洲国产精品一区二区三区在线| 日韩大码丰满熟妇| 日韩一卡2卡3卡4卡2021年| 久久ye,这里只有精品| 亚洲av片天天在线观看| 亚洲国产欧美日韩在线播放| av欧美777| 欧美激情 高清一区二区三区| 天堂√8在线中文| 午夜亚洲福利在线播放| 大香蕉久久成人网| 国产区一区二久久| 国产日韩一区二区三区精品不卡| 99久久99久久久精品蜜桃| 亚洲三区欧美一区| 久久久国产欧美日韩av| 免费黄频网站在线观看国产| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久av网站| а√天堂www在线а√下载 | 国产亚洲精品久久久久久毛片 | 国产av又大| 久久久久久亚洲精品国产蜜桃av| 黄色丝袜av网址大全| 亚洲成人手机| 欧美日韩精品网址| 久久人人97超碰香蕉20202| 一区二区日韩欧美中文字幕| 视频区欧美日本亚洲| 精品免费久久久久久久清纯 | 777久久人妻少妇嫩草av网站| 亚洲精品中文字幕在线视频| 精品一区二区三卡| videosex国产| 99riav亚洲国产免费| 性少妇av在线| 人人妻人人添人人爽欧美一区卜| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产精品久久久不卡| 亚洲五月天丁香| 国产亚洲欧美98| 久久国产精品人妻蜜桃| av不卡在线播放| 久久久久久久国产电影| 国产精品国产av在线观看| 香蕉丝袜av| 青草久久国产| 校园春色视频在线观看| 男男h啪啪无遮挡| a级毛片黄视频| 一进一出抽搐gif免费好疼 | 精品一品国产午夜福利视频| 亚洲av电影在线进入| 久久性视频一级片| 视频区图区小说| 50天的宝宝边吃奶边哭怎么回事| 岛国在线观看网站| 国产精品影院久久| 国产精品二区激情视频| 国产成人精品无人区| aaaaa片日本免费| 精品久久久久久久久久免费视频 | av网站在线播放免费| 丁香六月欧美| 在线观看www视频免费| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 制服人妻中文乱码| 999精品在线视频| 视频区欧美日本亚洲| 两人在一起打扑克的视频| 又黄又粗又硬又大视频| 国产不卡一卡二| 久久精品成人免费网站| 国产高清videossex| 超碰成人久久| 99国产极品粉嫩在线观看| 亚洲av成人av| 国产成人影院久久av| 久久久久精品国产欧美久久久| 国产精品99久久99久久久不卡| 少妇粗大呻吟视频| 成年动漫av网址| 满18在线观看网站| 夜夜夜夜夜久久久久| 热re99久久国产66热| 免费在线观看影片大全网站| 一进一出好大好爽视频| 69av精品久久久久久| 国产成人欧美在线观看 | 宅男免费午夜| 欧美在线一区亚洲| 成年女人毛片免费观看观看9 | av线在线观看网站| 日韩三级视频一区二区三区| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| 欧美精品亚洲一区二区| 美女午夜性视频免费| 欧美日韩乱码在线| 少妇的丰满在线观看| 午夜日韩欧美国产| 国产高清视频在线播放一区| 在线免费观看的www视频| av超薄肉色丝袜交足视频| 精品欧美一区二区三区在线| 国产成人免费无遮挡视频| 成人av一区二区三区在线看| 国产精品二区激情视频| 老鸭窝网址在线观看| 亚洲精品乱久久久久久| 好看av亚洲va欧美ⅴa在| 日韩制服丝袜自拍偷拍| 国产精品九九99| 成年人黄色毛片网站| av天堂久久9| 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 国产亚洲精品久久久久5区| 国产成人av教育| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 桃红色精品国产亚洲av| 亚洲精品国产一区二区精华液| 国产精品亚洲一级av第二区| av欧美777| 久久99一区二区三区| 久久精品国产99精品国产亚洲性色 | 精品久久久久久久久久免费视频 | www.熟女人妻精品国产| 国产精品免费视频内射| 80岁老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看 | 一二三四社区在线视频社区8| 国产精品成人在线| 淫妇啪啪啪对白视频| 国产亚洲一区二区精品| 久久中文看片网| 视频在线观看一区二区三区| 亚洲综合色网址| av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 王馨瑶露胸无遮挡在线观看| av线在线观看网站| 亚洲av电影在线进入| 中文字幕色久视频| 变态另类成人亚洲欧美熟女 | 国产成+人综合+亚洲专区| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院 | 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 亚洲av欧美aⅴ国产| 脱女人内裤的视频| videos熟女内射| 久久久久久久精品吃奶| xxxhd国产人妻xxx| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 久久午夜综合久久蜜桃| 久久人人97超碰香蕉20202| 男人的好看免费观看在线视频 | 女人被狂操c到高潮| 又紧又爽又黄一区二区| 老司机影院毛片| 国产片内射在线| 99国产极品粉嫩在线观看| 国产精品成人在线| av不卡在线播放| 亚洲男人天堂网一区| 国产成人欧美在线观看 | 精品熟女少妇八av免费久了| 在线十欧美十亚洲十日本专区| 欧美日本中文国产一区发布| 国产精品永久免费网站| 精品人妻1区二区| 桃红色精品国产亚洲av| 欧美性长视频在线观看| 久久香蕉国产精品| 亚洲欧洲精品一区二区精品久久久| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 男女高潮啪啪啪动态图| 亚洲三区欧美一区| 黄色视频,在线免费观看| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区 | 热re99久久精品国产66热6| 精品福利永久在线观看| 男男h啪啪无遮挡| 久久中文看片网| 成熟少妇高潮喷水视频| av线在线观看网站| 亚洲国产欧美一区二区综合| 免费一级毛片在线播放高清视频 | 欧美日韩国产mv在线观看视频| 男女床上黄色一级片免费看| 少妇的丰满在线观看| 老熟妇仑乱视频hdxx| 亚洲aⅴ乱码一区二区在线播放 | 视频区图区小说| 久久久久国产精品人妻aⅴ院 | 欧美最黄视频在线播放免费 | 亚洲国产精品合色在线| 男女床上黄色一级片免费看| 18禁裸乳无遮挡动漫免费视频| 日本黄色视频三级网站网址 | 久久 成人 亚洲| 一区福利在线观看| 国产精华一区二区三区| 精品卡一卡二卡四卡免费| 国产主播在线观看一区二区| av片东京热男人的天堂| 久久婷婷成人综合色麻豆| 视频在线观看一区二区三区| 超碰成人久久| 91成年电影在线观看| 最近最新中文字幕大全电影3 | av中文乱码字幕在线| 一边摸一边抽搐一进一小说 | 成人免费观看视频高清| 精品午夜福利视频在线观看一区| 999久久久精品免费观看国产| 成人亚洲精品一区在线观看| 成人影院久久| 搡老岳熟女国产| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 新久久久久国产一级毛片| 又大又爽又粗| 久久精品亚洲精品国产色婷小说| 啦啦啦 在线观看视频| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 国产精品一区二区在线观看99| 久久人人爽av亚洲精品天堂| 丁香欧美五月| 女警被强在线播放| 亚洲专区国产一区二区| 国产成人精品在线电影| 精品第一国产精品| 免费黄频网站在线观看国产| av线在线观看网站| 90打野战视频偷拍视频| 正在播放国产对白刺激| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品第一综合不卡| 欧美日韩视频精品一区| 国产精品1区2区在线观看. | 亚洲精品乱久久久久久| 午夜视频精品福利| 久久久精品国产亚洲av高清涩受| 国产又色又爽无遮挡免费看| 欧美久久黑人一区二区| 亚洲av电影在线进入| 一边摸一边抽搐一进一出视频| 亚洲精华国产精华精| 黄色 视频免费看| 日本vs欧美在线观看视频| 欧美在线黄色| 丰满人妻熟妇乱又伦精品不卡| 深夜精品福利| 亚洲一区二区三区不卡视频| 色精品久久人妻99蜜桃| 天天躁夜夜躁狠狠躁躁| 亚洲一区高清亚洲精品| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 18禁美女被吸乳视频| 亚洲中文字幕日韩| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 欧美精品av麻豆av| 国产欧美亚洲国产| 99国产精品一区二区三区| 一边摸一边抽搐一进一小说 | 可以免费在线观看a视频的电影网站| 人妻 亚洲 视频| 亚洲精品av麻豆狂野| 欧美日韩乱码在线| 国产亚洲一区二区精品| 精品无人区乱码1区二区| 亚洲片人在线观看| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| 精品无人区乱码1区二区| 欧美成人午夜精品| 天天操日日干夜夜撸| av不卡在线播放| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人 | 波多野结衣一区麻豆| 国产亚洲av高清不卡| 亚洲一区二区三区欧美精品| 久久精品亚洲熟妇少妇任你| 免费女性裸体啪啪无遮挡网站| 黑人操中国人逼视频| 久久中文字幕一级| 一本综合久久免费| 一夜夜www| 久久久久国产精品人妻aⅴ院 | 国产精品乱码一区二三区的特点 | 下体分泌物呈黄色| 大型av网站在线播放| 在线观看舔阴道视频| 午夜福利免费观看在线| 亚洲色图综合在线观看| 免费在线观看完整版高清| 久久久久视频综合| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 国产精品免费视频内射| 男女下面插进去视频免费观看| 99久久99久久久精品蜜桃| 久久香蕉国产精品| 99精品在免费线老司机午夜| 深夜精品福利| 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| 91麻豆av在线| 在线观看一区二区三区激情| 国产成人av激情在线播放| a级片在线免费高清观看视频| 91老司机精品| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩综合在线一区二区| 午夜福利乱码中文字幕| 免费一级毛片在线播放高清视频 | 国产三级黄色录像| 岛国在线观看网站| 欧美人与性动交α欧美精品济南到| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看| 久久精品国产亚洲av高清一级| 国产亚洲一区二区精品| 中出人妻视频一区二区| 深夜精品福利| 久久青草综合色| 亚洲精品美女久久av网站| 精品国产乱子伦一区二区三区| 亚洲片人在线观看| 大码成人一级视频| 99re在线观看精品视频| aaaaa片日本免费| videos熟女内射| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 亚洲成国产人片在线观看| 国产一区有黄有色的免费视频| 国产单亲对白刺激| 免费少妇av软件| 美女扒开内裤让男人捅视频| 另类亚洲欧美激情| 搡老乐熟女国产| 亚洲成av片中文字幕在线观看| av国产精品久久久久影院| 老司机影院毛片| 中文字幕精品免费在线观看视频| 国产成人精品无人区| 老熟妇乱子伦视频在线观看| 人成视频在线观看免费观看| 老司机在亚洲福利影院| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 十八禁人妻一区二区| 成人特级黄色片久久久久久久| 久久午夜亚洲精品久久| 少妇 在线观看| av网站免费在线观看视频| 亚洲色图av天堂| 日韩人妻精品一区2区三区| 午夜激情av网站| 十八禁人妻一区二区| 不卡一级毛片| 国产极品粉嫩免费观看在线| 免费黄频网站在线观看国产| 大码成人一级视频| 精品一品国产午夜福利视频| 久久久久精品国产欧美久久久| 天堂动漫精品| 看黄色毛片网站| 国产亚洲精品久久久久5区| 在线观看66精品国产| tocl精华| 久久精品国产a三级三级三级| 国产亚洲欧美精品永久| 亚洲成人国产一区在线观看| 国产1区2区3区精品| 少妇裸体淫交视频免费看高清 | 欧美国产精品一级二级三级| 一个人免费在线观看的高清视频| 久久香蕉精品热| 亚洲成a人片在线一区二区| 国产真人三级小视频在线观看| 国产aⅴ精品一区二区三区波| 欧美黄色片欧美黄色片| 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕 |