• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬卡賓模板導(dǎo)向的多咪唑鎓鹽大環(huán)合成

    2024-01-20 03:56:00王以壽王堯宇韓英鋒
    無機化學(xué)學(xué)報 2024年1期
    關(guān)鍵詞:金湖縣寶應(yīng)縣商洛

    王以壽 白 莎 王堯宇 韓英鋒

    (1西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,西安 710127)

    (2商洛學(xué)院化學(xué)工程與現(xiàn)代材料學(xué)院,商洛 726000)

    0 Introduction

    Metal-directed self-assembly stands as a pivotal synthetic strategy in the construction of supramolecular structures, consistently yielding valuable metallosupramolecular entities of diverse shapes and sizes[1-5].Traditionally,structures of this kind have been predominantly fashioned from Werner - type complexes, wherein polydentate ligands featuring N or O donor atoms are coordinated to metal centers[6-11].Moreover, the integration of extended organometallic fragments such as M—CNHC(NHC=N-heterocyclic carbene) building blocks has facilitated the development of innovative assemblies[12-15].Capitalizing on the exceptional stability intrinsic to selected M—CNHCbonds, a spectrum of organometallic molecular assemblies has been meticulously designed and explored, employing a variety of polydentate NHC ligands[16-21].Owing to their captivating structures and remarkable properties in the realms of sensing, catalysis, and optics, these assemblies find widespread applications in host - guest chemistry,template-controlled photoreactions, and selective catalytic transformations[22-30].

    Macrocycles, especially those incorporating extensive heterocyclic structures with diverse ring sizes and functionalities, have discovered intriguing applications in materials, pharmaceuticals, and supramolecular science[31-35].Their synthesis has frequently been approached through ring - closing metathesis (RCM)reactions, standing as a pivotal step in the synthetic process.In historical context, the narrative of nonstereoselective macrocyclic RCM reactions commenced in 1980[36-37].In the late 1990s,the RCM-based syntheses of epothilone and the 18-memberedα,βunsaturated macrolide aspicilin were deemed as pioneering total syntheses of natural macrocyclic compounds utilizing the RCM strategy[38-40].Subsequent to these milestones, the development of efficient catalysts, exemplified by ruthenium-based Grubbs′ complexes and molybdenum Schrock′s catalysts, has firmly established RCM as one of the most extensively employed methodologies in the design and synthesis of macrocycles[41-43].

    Despite notable achievements in the field, there exists substantial potential for the expansion of the functional macrocycle class.Macrocyclization reactions often contend with undesired intermolecular reactions[44-45].Conventional synthetic methodologies for macrocycles prove impractical and inefficient, frequently resulting in diminished yields and the occurrence of unwanted side reactions.This study introduces the construction of ordered structures derived from poly-NHC precursors via template-directed RCM.Our approach capitalizes on metal-directed self-assembly in conjunction with a suitable template to facilitate the RCM of linear dienes.This strategic amalgamation enables the promotion of the desired dinuclear silver (Ⅰ)tetracarbene complex, ultimately leading to the formation of the corresponding covalent organic macrocycle upon removing silver ions.

    1 Experimental

    1.1 Materials and physical measurements

    1H and13C{1H} spectra were acquired on a Bruker AVANCE Ⅲ400 spectrometer.Chemical shifts (δ) are reported in parts per million relative to tetramethylsilane, with the residual protonated solvent serving as an internal standard.Mass spectra were generated using a Bruker microTOF-Q Ⅱ mass spectrometer (Bruker Daltonics Corp., USA) employing the electrospray ionization (ESI) mode.Unless explicitly mentioned, all reagents were commercially sourced and employed without additional purification.

    1.2 Synthesis of the ligands and macrocycles

    1.2.1 Synthesis of H2-A1(BF4)2

    A Schlenk flask was charged with 4-(imidazole-1-yl)phenol(0.705 g,4.4 mmol)and 1,4-bis(bromomethyl)benzene (0.528 g, 2.0 mmol).To this mixture, DMF was added (2 mL), and the reaction mixture was heated to 110 ℃for 12 h.After cooling the reaction mixture to ambient temperature, 30 mL ethyl acetate was added,and a white compound precipitated.The solid was isolated by filtration, washed with ethyl acetate, and driedinvacuoto give a white solid.Yield: 1.138 g (1.95 mmol, 97%).The obtained solid (0.292 g, 0.5 mmol)was transferred to a bottle containing 5-bromo-1-pentene (0.6 mL, 5 mmol), NaOH (0.060 g, 1.5 mmol) and 40 mL ethanol.The mixture was stirred for 48 h under reflux.Then, remove the solvent and the solid was washed with water.The solid was isolated by filtration and transferred to a bottle containing 10 mL methanol;a solution of NH4BF4(0.210 g, 2.0 mmol) in methanol(20 mL) was added.The resulting mixture was stirred at ambient temperature for 6 h.Then, the solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 0.312 g (0.43 mmol, 85%, two steps).1H NMR (400 MHz, DMSO-d6):δ=9.96 (s, 2H,H1),8.25(s,2H,imidazolium-H),8.01(s,2H,imidazolium-H),7.70(d,J=8.8 Hz,4H,Ar-H),7.61(s,4H,Ar-H), 7.18 (d,J=8.8 Hz, 4H, Ar-H), 5.92-5.82 (m, 2H,H14),5.52(s,4H,H4),5.08-4.98(m,4H,H15),4.06(t,J=6.4 Hz,4H,H11),2.20(q,J=6.8 Hz,4H,H13),1.83(p,J=6.6 Hz, 4H, H12).13C{1H} NMR (100 MHz,DMSO-d6):δ=159.4,137.8,135.3,135.1,129.1,127.7,123.5, 123.0, 121.9, 115.6, 115.3, 67.4, 51.8, 29.5,27.7.ESI-MS (positive ions):m/z=280.157 0 (Calcd.for[H2-A1]2+280.141 3).

    1.2.2 Synthesis of H2-B1(BF4)2

    1.2.3 Synthesis of[Ag2(A1)2](BF4)2

    A sample of H2-A1(BF4)2(73 mg, 0.1 mmol) was dissolved in 25 mL of CH3CN, and to this solution Ag2O (46 mg, 0.2 mmol) was added.The resulting suspension was heated to 70 ℃for 24 h without light.After cooling to ambient temperature, the obtained suspension was filtered through a pad of Celite to give a clear solution.The filtrate was concentrated to 3 mL,and diethyl ether (30 mL) was added, leading to the precipitation of [Ag2(A1)2](BF4)2as a yellow solid.The solid was filtrated,washed with diethyl ether,and driedinvacuo.Yield: 62 mg (0.041 mmol, 82%).1H NMR(400 MHz, DMSO-d6):δ=7.81 (s, 4H, Ar-H), 7.73 (s,4H, Ar-H), 7.48 (d,J=8.4 Hz, 8H, Ar-H), 7.13 (s, 8H,Ar-H), 6.92 (d,J=8.4 Hz, 8H, Ar-H), 5.97-5.74 (m,4H, H14), 5.29 (s, 8H, H4), 5.14-4.88 (m, 8H, H15),3.99 (s, 8H, H11), 2.19 (s, 8H, H13), 1.83 (s, 8H,H12).13C{1H} NMR (100 MHz, DMSO-d6):δ=158.5,138.8,136.7,132.6,127.7,125.1,123.1,122.9,115.2,115,67.2,53.9,29.5,27.7.ESI-MS(positive ions):m/z=666.196 6(Calcd.for[Ag2(A1)2]2+666.204 3).

    1.2.4 Synthesis of[Ag2(B1)2](BF4)2

    A sample of H2-B1(BF4)2(0.810 g, 1.0 mmol) was dissolved in 40 mL of CH3CN, and to this solution Ag2O(0.695 g,3.0 mmol)was added.The resulting suspension was heated to 70 ℃for 24 h without light.After cooling to ambient temperature, the obtained suspension was filtered through a pad of Celite to give a clear solution.The filtrate was concentrated to 3 mL,and diethyl ether (30 mL) was added, leading to the precipitation of [Ag2(B1)2](BF4)2as a yellow solid.The solid was filtrated,washed with diethyl ether,and driedinvacuo.Yield: 0.819 g (0.49 mmol, 98%).1H NMR(400 MHz, DMSO-d6):δ=7.83 (s, 4H, H2), 7.80 (s, 4H,H3), 7.55 (d,J=8.6 Hz, 8H, H10), 7.35 (d,J=7.4 Hz,8H, H7), 7.18 (d,J=7.4 Hz, 8H, H6), 6.95 (d,J=8.6 Hz, 8H, H11), 6.01-5.71 (m, 4H, H16), 5.45 (s, 8H,H4), 5.15-4.90 (m, 8H, H17), 4.01 (t,J=6.1 Hz, 8H,H13), 2.22 (q,J=6.5 Hz, 8H, H15), 1.85 (p,J=6.2 Hz,8H, H14).13C{1H} NMR (100 MHz, DMSO-d6):δ=178.1 (C1),158.5 (C12),138.8 (C8),137.8 (C16),136.2(C5), 132.5 (C9), 127.7 (C6), 126.8 (C7), 125.1 (C10),123.2 (C2), 123.2 (C3), 115.3 (C17), 115.1 (C11), 67.2(C13),54.1(C4),29.6(C15),27.8(C14).ESI-MS(positive ions):m/z=1 571.445 1 (Calcd.for [Ag2(B1)2(BF4)]+1 571.476 1),m/z=742.255 2 (Calcd.for [Ag2(B1)2]2+742.235 8).

    1.2.5 Synthesis of[Ag2(A2)](BF4)2

    A sample of [Ag2(A1)2](BF4)2(151 mg, 0.1 mmol)and Grubbs′2nd catalyst (42 mg,0.05 mmol)were dissolved in dry CH2Cl2(80 mL) under a nitrogen atmosphere.The reaction mixture was stirred at 40 ℃for 12 h.After the reaction was cooled to room temperature,10 mL acetonitrile was added to the mixture, and the obtained mixture was filtered to give a clear solution.The filtrate was concentrated to 3 mL, and ethyl acetate (30 mL) was added, leading to the precipitation of[Ag2(A2)](BF4)2as a gray solid.The solid was collected by filtration, washed with ethyl acetate, and driedin vacuo.Yield: 0.119 g (0.085 mmol, 85%).[Ag2(A2)](BF4)2was used for subsequent reactions without further purification.

    1.2.6 Synthesis of[Ag2(B2)](BF4)2

    A sample of [Ag2(B1)2](BF4)2(100 mg, 0.06 mmol)and Grubbs′2nd catalyst (10 mg,0.01 mmol)were dissolved in dry CH2Cl2(80 mL) under a nitrogen atmosphere.The reaction mixture was stirred at 40 ℃for 12 h.After the reaction was cooled to room temperature,10 mL acetonitrile was added to the mixture, and the obtained mixture was filtered to give a clear solution.The filtrate was concentrated to 3 mL, and diethyl ether(30 mL)was added,leading to the precipitation of[Ag2(B2)](BF4)2as a gray solid.The solid was filtrated,washed with diethyl ether, and driedinvacuo.Yield:79 mg(0.049 mmol,82%).1H NMR(400 MHz,DMSOd6):δ=7.83 (s, 4H, H3), 7.77 (s, 4H, H2), 7.57 (d,J=8.8 Hz,8H,H10),7.27(d,J=8.0 Hz,8H,H7),7.10(d,J=8.0 Hz, 8H, H6), 6.92 (d,J=8.8 Hz, 8H, H11), 5.62-5.35 (m, 8H, H16, H4), 4.06-3.90 (m, 8H, H13), 2.27-2.13 (m, 8H, H15), 1.96-1.70 (m, 8H, H14).13C{1H}NMR(100 MHz,DMSO-d6):δ=176.9(C1),158.6(C12),138.6 (C8), 136.0 (C5), 132.5 (C9), 130.2 (C16), 127.3(C6), 126.6 (C7), 125.0 (C10), 123.3 (C2, C3), 115.1(C11), 67.0 (C13), 54.1 (C4), 28.5 (C15), 27.6 (C14).ESI-MS (positive ions):m/z=1 515.391 9 (Calcd.for[Ag2(B2)(BF4)]+1 515.413 4),m/z=714.205 6 (Calcd.for[Ag2(B2)]2+714.204 5).

    高郵湖地處蘇皖交界,北與洪澤湖水系相連接,南與長江水系相連通,東臨江蘇高郵,西接安徽天長,跨安徽省天長市和江蘇省高郵市、寶應(yīng)縣、金湖縣。高郵湖湖區(qū)主屬江蘇省,是江蘇省第三大湖,水域總面積為760.67 km2,在高郵市境內(nèi)水域面積392.82 km2,占高郵湖總水域面積的55.32%。高郵湖屬淺水型湖泊,由古瀉湖經(jīng)長期淤積和人類活動影響而成。

    1.2.7 Synthesis of H4-A2(BF4)4

    [Ag2(A2)] (BF4)2(0.060 g, 0.041 mmol)was dissolved in CH3CN (5 mL).To this was added NH4Cl(0.007 g, 0.124 mmol) in methanol (5 mL).White solid AgCl precipitated immediately.The resulting suspension was filtered through Celite to obtain a clear solution.The solvent was removed to give a gray solid.The solid was washed with water and then suspended in CH3CN (2 mL), and a solution of NH4BF4(0.013 g,0.124 mmol) in methanol (2 mL) was added.The mixture was stirred at ambient temperature for 12 h.The solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 44 mg (0.031 mmol,76%).1H NMR (400 MHz, DMSO-d6):δ=9.81 (s, 4H,H1),8.21(s,4H,imidazolium-H),8.00(s,4H,imidazolium-H), 7.70-7.61 (m, 8H, Ar-H), 7.57 (s, 8H, Ar-H),7.22-7.13 (m,8H,Ar-H),5.48 (s,12H,H4,H14),4.03(s, 8H, H11), 2.14 (s, 8H, 13), 1.78 (s, 8H, H12).13C{1H} NMR (100 MHz, DMSO -d6):δ=159.4, 135.2,129.8, 129.1, 127.6, 123.5, 123.0, 121.9, 115.6, 67.4,51.9,28.2,23.0.ESI-MS(positive ions):m/z=266.147 8(Calcd.for[H4-A2]4+266.141 4).

    1.2.8 Synthesis of H4-B2(BF4)4

    A sample of[Ag2(B2)](BF4)2(0.069 g,0.043 mmol)was dissolved in CH3CN (10 mL).To this was added NH4Cl (0.007 g, 0.13 mmol) in methanol (5 mL).A white solid (AgCl) precipitated immediately.The reaction mixture was stirred for 6 h.The resulting suspension was filtered through a pad of Celite to obtain a clear solution.The solvent was removed to give a gray solid.The gray solid was dissolved in methanol (10 mL), and a solution of NH4BF4(0.014 g, 0.13 mmol) in methanol (10 mL) was added.The mixture was stirred at ambient temperature for 12 h.The solvent was removed, and the solid was washed with water and driedinvacuo.Yield: 0.052 g (0.033 mmol, 77%).1H NMR (400 MHz, DMSO-d6):δ=9.86 (s, 4H, H1), 8.23(s, 4H, H2), 8.03 (s, 4H, H3), 7.84-7.71 (m, 8H, H7),7.71-7.64 (m, 8H, H10), 7.64-7.55 (m, 8H, H6), 7.25-7.11(m,8H,H11),5.64-5.43(m,12H,H16,H4),4.20-3.78 (m, 8H, H13), 2.27-2.08 (m, 8H, H15), 1.88-1.66(m, 8H, H14).13C{1H} NMR (100 MHz, DMSO-d6):δ=159.4 (C12), 139.8 (C8), 135.2 (C1), 134.0 (C5), 129.8(C16), 129.2 (C6), 127.7 (C9), 127.3 (C7), 123.6 (C10),123.1 (C3), 121.9 (C2), 115.6 (C11), 67.3 (C13), 52.0(C4), 28.3 (C15), 26.6 (C14).ESI-MS (positive ions):m/z=1 477.616 5(calcd.for[H4-B2(BF4)3]+1 477.641 7),695.317 2 (Calcd.for [H4- B2(BF4)2]2+695.318 6),434.548 7 (Calcd.for [H4- B2(BF4)]3+434.544 3),304.161 1(Calcd.for[H4-B2]4+304.157 0).

    2 Results and discussion

    In contrast to the numerous molecular macrocycles constructed through metal coordination and hydrogen bonding,the synthesis of covalent organic macrocycles poses greater challenges due to their heightened thermal and chemical stability[46-47].Consequently, template-directed synthesis has been acknowledged as a rational strategy for the intricate construction of such macrocycles.Here, we introduce a rectangular metallacycle assembled by two bidentate ligands and two metal (Ⅰ)ions.Two terminal olefins were incorporated into the ligands,positioning them in proximity.With an appropriate linker, these positions were designed for cross - linking neighboring ligands through olefin metathesis reactions.Given its high thermal stability and resistance to Grubbs′ 2nd catalyst, we selected an Ag(Ⅰ)metallacycle.Our approach showcases the highly efficient synthesis of a covalent organic macrocycle,commencing with H2-L1(BF4)2,through a four-step process (Scheme 1): (1) the design and preparation of the ligand; (2) NHC-directed self-assembly; (3) ring-closing metathesis (RCM) reaction between the adjacent olefins on the Ag(I) metallacycle; (4) removal of the Ag(Ⅰ)ions.

    Scheme 1 Synthesis of the designed covalent organic macrocycles through metal-carbene-templated ring-closing metathesis approach

    To facilitate this, we designed bidentate ligands H2-L1(BF4)2(L1=A1, B1), where two terminal olefins are connected to benzene rings via alkoxy linkers.For instance,H2-B1(BF4)2was synthesized using 4-(imidazol-1-yl)phenol, 4,4′-bis(bromomethyl)biphenyl, and 5-bromo-1-pentene,followed by exchanging the counteranion from bromide to tetrafluoroborate with NH4BF4.This anion exchange significantly improved the solubility of the ligand precursor in acetonitrile.The1H NMR spectrum of H2-B1(BF4)2in DMSO-d6(Fig.S1) reveals the characteristic resonance of the imidazolium NCHN proton atδ=10.01, consistent with previously reported examples[16-21].

    The reaction of H2-L1(BF4)2(L1=A1, B1) with Ag2O yielded complexes [Ag2(L1)2](BF4)2(L1=A1, B1)in satisfactory yields.A thorough characterization was carried out utilizing various techniques, including NMR spectroscopy (1H,13C, H-H COSY, HSQC, and HMBC) and mass spectrometry (Fig.S4-S9).In the1H NMR spectra of [Ag2(B1)2](BF4)2, the expected resonance for the carbene ligand was observed, accompanied by the disappearance of the original imidazolium NCHN proton signal.Notably, characteristic doublet resonances for protons Hband Hcwere observed atδ=6.01-5.71 and 5.15-4.90, respectively (Fig.1a and 1b).In the13C and HMBC spectra, resonances corresponding to the CNHCatom and C=C carbon nuclei (Cb, Cc)were observed atδ=178.1, 137.8, and 115.3 (Fig.S5),respectively.Further validation through ESI-MS revealed two intense peaks consistent with the Ag(I)metallacycle, withm/zvalues of 1 571.445 1 and 742.255 2, corresponding to the [Ag2(B1)2(BF4)]+(Calcd.m/z=1 571.476 1) and [Ag2(B1)2]2+ions (Calcd.m/z=742.235 8),respectively(Fig.S9).

    The pivotal step in our procedure was the templatedirected RCM, which proved highly suitable for creating the required rectangular structure.This reaction was conducted at a relatively low concentration of 0.6 mmol·L-1to prevent undesired side-oligomerization reactions.The metallacycle [Ag2(B1)2](BF4)2in anhydrous CH2Cl2was stirred at room temperature.Subsequently, a solution of Grubbs′ 2nd catalyst in dry CH2Cl2was slowly added into the solution.The resulting mixture was stirred at 40 ℃overnight, exclusively leading to the formation of the dinuclear cyclized product [Ag2(B2)](BF4)2.Evidence confirming the successful formation of the cyclized structure was provided by1H,13C,2D NMR spectroscopy,and HR-ESI spectrometry (Fig.S10-S15).Upon the RCM reaction, signals at 5.62-5.35 and 130.2,corresponding to the newly generated doublet resonances for He(Fig.1c)and Ce,respectively,were observed in1H,13C NMR spectroscopy(Fig.S10, S11).The ESI-MS spectrum of the final solution revealed signals originating from the most intense peaks atm/z=1 515.391 9 and 714.205 6, consistent with a silver (Ⅰ)metallacycle of the formula [Ag2(B2)](BF4)2.It suggested the presence of a cyclized intramolecular species and confirmed that the isotopic distribution of the dinuclear cyclized metallacycle closely matched the theoretical spectra(Fig.S15).

    The two silver ions can be successfully removed from the complex [Ag2(B2)](BF4)2through the addition of NH4Cl.Subsequent anion exchange reactions with NH4BF4yielded the desired tetraimidazolium macrocycle in approximately 80% yield.Compound H4-B2(BF4)4was comprehensively characterized using NMR spectroscopy, and all protons and carbons were fully assigned through 2D NMR measurements(1H-1H COSY,HSQC, and HMBC, Fig.S16-S21).ESI-MS spectrometry (Fig.1e) confirmed the presence of peaks consistent with the target covalent organic macrocycle at 695.317 2(Calcd.for [H4- B2(BF4)2]2+695.318 6), 434.548 7(Calcd.for [H4- B2(BF4)]3+434.544 3), 304.161 1(Calcd.for[H4-B2]4+304.157 0).

    To explore the ion detection capability of H4-B2(BF4)4,halide ions (F-,Cl-,Br-,and I-)were introduced(using their sodium salts) for ultraviolet, fluorescence,and1H NMR titrations (Fig.2).As illustrated in Fig.2b,the addition of 10.0 equivalents of F-, Cl-and Br-to the solutions of H4- B2(BF4)4, respectively, did not induce significant changes in the ultraviolet spectra.However, adding an equivalent amount of I-resulted in a blue shift from the original Soret band (258 nm) to a new band with maximum absorption at 241 nm.The absorption intensity increased significantly with increasing I-concentration (Fig.2c).Additionally, fluorescence titration experiments were conducted.No noticeable changes in the fluorescence spectra were observed upon adding 10.0 equivalents of F-, Cl-and Br-to the H4-B2(BF4)4solutions.However, upon the addition of I-,the fluorescence intensity of H4-B2(BF4)4at approximately 413 nm noticeably decreased (Fig.2d).As confirmed by1H NMR titration, the continuous addition of I-to the solution of H4-B2(BF4)4caused a downfield shift in the signal corresponding to the imidazolium Haproton (Fig.2e).No such significant changes were observed for the other protons, indicating that iodides bind to the cavity of the polyimidazolium macrocycle through hydrogen bonding involving C—H…I interactions(Fig.2a).

    Fig.11H NMR spectra(400 MHz,DMSO-d6)of(a)H2-B1(BF4)2,(b)[Ag2(B1)2](BF4)2,(c)[Ag2(B2)](BF4)2,and(d)H4-B2(BF4)4,(e)HR-ESI mass spectra(positive ions)of H4-B2(BF4)4

    Fig.2 (a)Observed binding interactions between host H4-B2(BF4)4 and iodides,(b)Ultraviolet spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1)and adding 10.0 equivalent of different ions(F-,Cl-,Br-and I-)in acetonitrile,(c)Ultraviolet titration spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1)with I-in acetonitrile,(d)Fluorescent spectra of H4-B2(BF4)4(c=4×10-6 mol·L-1,λ=275 nm)and adding 100.0 equivalent of different ions(F-,Cl-,Br-and I-)in acetonitrile,(e)Partial 1HNMR spectra obtained upon continuous addition of NaI to a CD3CN solution containing H4-B2(BF4)4

    3 Conclusions

    In summary, we have demonstrated an efficient macrocyclization strategy for synthesizing covalent organic macrocycles through ring-closing metathesis employing a metal-carbene template.Our approach offers an alternative method for generating a silver biscarbene compound through the self-assembly of Ag(I)ions and dicationic bis-carbene precursors.This method effectively creates the required macrocyclic structure and facilitates the development of functionalized metallacycles.Utilizing the excellent properties ofNheterocyclic carbenes, the product can be easily isolated following the RCM reaction and Ag(I) removal,achieved through anion exchange reactions.Furthermore, this approach holds promise for preparing a wide range of functional organic macrocycles and threedimensional cages.Future endeavors will explore more intricate structures and properties in this context.

    Conflicts of interest:All authors claimed no competing interest.

    Acknowledgments:The current work was financially supported by the National Natural Science Fund of China(Grants No.22025107,22301240), Shaanxi Fundamental Science Research Project for Chemistry&Biology(Grants No.22JHZ003,22JHQ008), the Natural Science Basic Research Plan in Shaanxi Province (Grants No.S2023-JC-QN-1639,2022JQ-093),the National Youth Top-notch Talent Support Program of China,Xi′an Key Laboratory of Functional Supramolecular Structure and Materials,and the FM&EM International Joint Laboratory of Northwest University.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    金湖縣寶應(yīng)縣商洛
    寶應(yīng)縣推行“加減乘除”工作法
    金湖縣以“四度”推動陽光護(hù)企走深走實
    金湖縣以黨建引領(lǐng)安全生產(chǎn)執(zhí)法檢查
    寶應(yīng)縣涇河鎮(zhèn)創(chuàng)成市級“僑之家”
    華人時刊(2022年3期)2022-04-28 08:21:42
    金湖縣為僑服務(wù)“小切口”打開“大格局”
    華人時刊(2022年3期)2022-04-26 14:29:22
    寶應(yīng)縣 嚴(yán)查隱患 嚴(yán)格整治 筑牢防線
    陜西商洛:創(chuàng)出菌蔬輪種發(fā)展新模式
    金湖縣擴大宣傳 防控風(fēng)險
    江蘇寶應(yīng)縣2019年新建改造農(nóng)村公路110km
    石油瀝青(2019年6期)2019-02-13 04:24:34
    商洛水源地生態(tài)經(jīng)濟(jì)區(qū)劃分析
    欧美亚洲 丝袜 人妻 在线| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 国产精品 欧美亚洲| 亚洲国产av影院在线观看| 午夜福利乱码中文字幕| 在线 av 中文字幕| 午夜久久久在线观看| 亚洲精品美女久久av网站| 精品一区二区三卡| 午夜激情av网站| 国产精品 欧美亚洲| 搡老乐熟女国产| 精品第一国产精品| 老司机午夜十八禁免费视频| 别揉我奶头~嗯~啊~动态视频 | 欧美 亚洲 国产 日韩一| 老司机在亚洲福利影院| 精品免费久久久久久久清纯 | 夜夜夜夜夜久久久久| 深夜精品福利| 国产成人精品久久二区二区91| 免费观看a级毛片全部| 一级片免费观看大全| av福利片在线| 性少妇av在线| 国产精品秋霞免费鲁丝片| 成年人黄色毛片网站| 超色免费av| 成人手机av| 一进一出抽搐动态| 久久久国产一区二区| 欧美人与性动交α欧美软件| 精品视频人人做人人爽| 免费观看av网站的网址| 久久久国产一区二区| 女性被躁到高潮视频| 天天影视国产精品| av超薄肉色丝袜交足视频| 熟女少妇亚洲综合色aaa.| 亚洲自偷自拍图片 自拍| 精品亚洲成a人片在线观看| 免费高清在线观看日韩| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 亚洲欧洲日产国产| 在线观看www视频免费| 1024香蕉在线观看| 午夜精品久久久久久毛片777| 91老司机精品| 国产深夜福利视频在线观看| 亚洲性夜色夜夜综合| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影 | 十八禁人妻一区二区| 高清在线国产一区| 新久久久久国产一级毛片| 亚洲,欧美精品.| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 国产一级毛片在线| 国产成人精品在线电影| 各种免费的搞黄视频| 亚洲精品国产av成人精品| 精品亚洲成国产av| 男女免费视频国产| 国产片内射在线| 久热爱精品视频在线9| 两个人免费观看高清视频| 美女大奶头黄色视频| 亚洲欧洲日产国产| 动漫黄色视频在线观看| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 天天躁日日躁夜夜躁夜夜| 精品亚洲乱码少妇综合久久| 男女免费视频国产| 国产片内射在线| 建设人人有责人人尽责人人享有的| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 看免费av毛片| 亚洲伊人色综图| 国产av精品麻豆| 欧美黄色淫秽网站| 下体分泌物呈黄色| 十八禁网站免费在线| 欧美成狂野欧美在线观看| 在线观看免费午夜福利视频| 亚洲成国产人片在线观看| 一本大道久久a久久精品| 在线观看一区二区三区激情| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 日韩三级视频一区二区三区| 久久久久视频综合| 侵犯人妻中文字幕一二三四区| 亚洲人成电影观看| 日日夜夜操网爽| 久久精品国产a三级三级三级| 国产av精品麻豆| 亚洲第一欧美日韩一区二区三区 | 亚洲中文字幕日韩| 91成年电影在线观看| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 久久女婷五月综合色啪小说| 久久久久国产一级毛片高清牌| 手机成人av网站| 考比视频在线观看| 一进一出抽搐动态| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三区在线| 国产福利在线免费观看视频| 淫妇啪啪啪对白视频 | 国产黄频视频在线观看| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 黑丝袜美女国产一区| 视频区图区小说| 大型av网站在线播放| av天堂在线播放| 欧美成人午夜精品| 韩国高清视频一区二区三区| 亚洲av成人不卡在线观看播放网 | 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产国语对白av| 另类精品久久| 精品视频人人做人人爽| 亚洲七黄色美女视频| 99香蕉大伊视频| 午夜免费鲁丝| www日本在线高清视频| 国产深夜福利视频在线观看| 国产成人精品久久二区二区91| 伦理电影免费视频| 涩涩av久久男人的天堂| 桃红色精品国产亚洲av| 一本久久精品| 国产又色又爽无遮挡免| 久久这里只有精品19| 老司机影院成人| a级片在线免费高清观看视频| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 日韩视频在线欧美| 欧美日韩福利视频一区二区| 国产老妇伦熟女老妇高清| 1024香蕉在线观看| 成人国语在线视频| 婷婷色av中文字幕| 欧美在线一区亚洲| 真人做人爱边吃奶动态| 80岁老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码| 国产视频一区二区在线看| 欧美激情极品国产一区二区三区| 午夜成年电影在线免费观看| 乱人伦中国视频| 亚洲黑人精品在线| 我的亚洲天堂| 青春草视频在线免费观看| 大香蕉久久成人网| 国产精品熟女久久久久浪| 久久中文看片网| 久久这里只有精品19| 丝袜脚勾引网站| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 99国产综合亚洲精品| 欧美国产精品一级二级三级| av天堂在线播放| 电影成人av| 精品少妇久久久久久888优播| 日韩欧美国产一区二区入口| 欧美日韩成人在线一区二区| 国产精品熟女久久久久浪| 久久av网站| 99久久精品国产亚洲精品| 九色亚洲精品在线播放| 亚洲九九香蕉| 青青草视频在线视频观看| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区av在线| 99久久综合免费| 久久亚洲精品不卡| 操美女的视频在线观看| 不卡一级毛片| 狠狠狠狠99中文字幕| 丰满迷人的少妇在线观看| 99国产极品粉嫩在线观看| 老鸭窝网址在线观看| svipshipincom国产片| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| 男人添女人高潮全过程视频| 91麻豆精品激情在线观看国产 | 99国产精品一区二区蜜桃av | 俄罗斯特黄特色一大片| 极品人妻少妇av视频| 一本久久精品| 国产野战对白在线观看| 在线看a的网站| 久久青草综合色| 欧美精品高潮呻吟av久久| 国产精品成人在线| 欧美激情久久久久久爽电影 | 日本一区二区免费在线视频| 一区二区三区激情视频| 99国产精品一区二区蜜桃av | 青春草亚洲视频在线观看| 韩国精品一区二区三区| 国产成人影院久久av| 久久精品国产综合久久久| 国产av一区二区精品久久| 午夜老司机福利片| 动漫黄色视频在线观看| 亚洲激情五月婷婷啪啪| 精品久久久精品久久久| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 一区二区av电影网| 黑丝袜美女国产一区| 高清在线国产一区| 丝瓜视频免费看黄片| 久久人妻福利社区极品人妻图片| 嫁个100分男人电影在线观看| 国产av一区二区精品久久| 大型av网站在线播放| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 久久人人97超碰香蕉20202| av有码第一页| 一本色道久久久久久精品综合| 在线 av 中文字幕| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 欧美变态另类bdsm刘玥| 亚洲第一欧美日韩一区二区三区 | 亚洲成人免费电影在线观看| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免| 法律面前人人平等表现在哪些方面 | 亚洲av欧美aⅴ国产| 亚洲成人手机| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 精品久久蜜臀av无| 国产野战对白在线观看| 亚洲国产av影院在线观看| 在线观看www视频免费| 大型av网站在线播放| 亚洲av成人一区二区三| 国产三级黄色录像| 脱女人内裤的视频| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕色久视频| 乱人伦中国视频| 如日韩欧美国产精品一区二区三区| www日本在线高清视频| 国产免费现黄频在线看| 国精品久久久久久国模美| 国产又色又爽无遮挡免| svipshipincom国产片| 一个人免费看片子| 亚洲免费av在线视频| 午夜视频精品福利| 成年人黄色毛片网站| 777久久人妻少妇嫩草av网站| 叶爱在线成人免费视频播放| 99九九在线精品视频| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 亚洲精品久久成人aⅴ小说| 精品一品国产午夜福利视频| 啪啪无遮挡十八禁网站| 91老司机精品| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 91精品国产国语对白视频| 国产成人系列免费观看| 亚洲欧美精品自产自拍| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 搡老熟女国产l中国老女人| 国产xxxxx性猛交| 日本wwww免费看| 啦啦啦啦在线视频资源| 免费人妻精品一区二区三区视频| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 国产精品1区2区在线观看. | 亚洲精品一区蜜桃| 精品久久久久久电影网| 99久久人妻综合| 久久久国产成人免费| 少妇 在线观看| 高清黄色对白视频在线免费看| 欧美乱码精品一区二区三区| 国产精品av久久久久免费| 真人做人爱边吃奶动态| 精品人妻熟女毛片av久久网站| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 国产精品欧美亚洲77777| 久久国产精品男人的天堂亚洲| 国产一区二区在线观看av| 国产成人欧美| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 18禁黄网站禁片午夜丰满| 999精品在线视频| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 亚洲av国产av综合av卡| 亚洲精品成人av观看孕妇| 欧美精品人与动牲交sv欧美| 国产精品一区二区精品视频观看| 交换朋友夫妻互换小说| 丝袜脚勾引网站| 国产福利在线免费观看视频| a 毛片基地| 人成视频在线观看免费观看| 老司机影院成人| 欧美xxⅹ黑人| 老熟妇乱子伦视频在线观看 | 在线观看舔阴道视频| 免费在线观看完整版高清| 亚洲五月婷婷丁香| 国内毛片毛片毛片毛片毛片| 精品福利永久在线观看| 国产一区二区 视频在线| 欧美日韩亚洲高清精品| 久久人妻福利社区极品人妻图片| 精品少妇久久久久久888优播| 天天影视国产精品| 99国产综合亚洲精品| 国产av一区二区精品久久| 免费人妻精品一区二区三区视频| 精品第一国产精品| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影 | 久久人妻福利社区极品人妻图片| av天堂久久9| 日本五十路高清| 免费看十八禁软件| 咕卡用的链子| 久久亚洲国产成人精品v| 可以免费在线观看a视频的电影网站| 国产一级毛片在线| 美女大奶头黄色视频| 国产成人a∨麻豆精品| 考比视频在线观看| 亚洲av男天堂| 悠悠久久av| 最近最新中文字幕大全免费视频| 我要看黄色一级片免费的| 丝袜美腿诱惑在线| 免费在线观看视频国产中文字幕亚洲 | 色视频在线一区二区三区| 亚洲,欧美精品.| 黑人欧美特级aaaaaa片| 日韩三级视频一区二区三区| 大片免费播放器 马上看| 99精品欧美一区二区三区四区| 免费不卡黄色视频| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 亚洲专区国产一区二区| 久久九九热精品免费| 国产精品一二三区在线看| 色视频在线一区二区三区| 日韩精品免费视频一区二区三区| 一个人免费看片子| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| 国产亚洲av片在线观看秒播厂| 欧美日韩成人在线一区二区| 国产精品久久久久成人av| www.999成人在线观看| 亚洲精品国产一区二区精华液| 日韩欧美国产一区二区入口| 国产色视频综合| 岛国在线观看网站| 久久女婷五月综合色啪小说| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 国产老妇伦熟女老妇高清| 母亲3免费完整高清在线观看| 国产精品久久久久久精品电影小说| 男女之事视频高清在线观看| 水蜜桃什么品种好| 两性夫妻黄色片| 午夜视频精品福利| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 免费av中文字幕在线| 国产一卡二卡三卡精品| 国产av国产精品国产| 久久精品人人爽人人爽视色| 超碰成人久久| 美女大奶头黄色视频| 欧美成人午夜精品| 久久香蕉激情| 精品亚洲成国产av| 熟女少妇亚洲综合色aaa.| 另类亚洲欧美激情| 黄色怎么调成土黄色| 国产精品.久久久| 搡老熟女国产l中国老女人| 国产亚洲精品久久久久5区| 老司机影院成人| 午夜福利在线观看吧| 韩国高清视频一区二区三区| 国产成人av教育| 天天躁狠狠躁夜夜躁狠狠躁| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 一本久久精品| 男女边摸边吃奶| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频 | 看免费av毛片| 成人国产av品久久久| 国产成人a∨麻豆精品| 1024香蕉在线观看| 男女高潮啪啪啪动态图| 亚洲国产日韩一区二区| 99九九在线精品视频| 久久精品国产亚洲av高清一级| 国产精品1区2区在线观看. | 欧美日本中文国产一区发布| av电影中文网址| 母亲3免费完整高清在线观看| 黄网站色视频无遮挡免费观看| 中文字幕人妻熟女乱码| 国产成人系列免费观看| 国产精品一区二区在线不卡| 久久久国产精品麻豆| 99国产精品一区二区三区| 中国美女看黄片| 悠悠久久av| 免费不卡黄色视频| av视频免费观看在线观看| 精品少妇久久久久久888优播| 国产成人精品在线电影| a 毛片基地| 国产av又大| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 久久久久精品人妻al黑| 国产在视频线精品| 亚洲精华国产精华精| 黄色 视频免费看| 女人精品久久久久毛片| 久久天堂一区二区三区四区| 久久国产亚洲av麻豆专区| 性色av乱码一区二区三区2| av免费在线观看网站| 亚洲天堂av无毛| 亚洲伊人色综图| 国产精品免费大片| 国产欧美亚洲国产| 免费日韩欧美在线观看| 两性夫妻黄色片| 精品人妻一区二区三区麻豆| 男女高潮啪啪啪动态图| videosex国产| a级毛片黄视频| 日本av免费视频播放| 新久久久久国产一级毛片| 免费av中文字幕在线| 在线天堂中文资源库| 欧美人与性动交α欧美软件| 大香蕉久久成人网| 极品少妇高潮喷水抽搐| 国产高清videossex| 性高湖久久久久久久久免费观看| 亚洲午夜精品一区,二区,三区| 在线观看免费日韩欧美大片| 精品亚洲成a人片在线观看| 丰满人妻熟妇乱又伦精品不卡| 岛国毛片在线播放| 色老头精品视频在线观看| 亚洲色图 男人天堂 中文字幕| 97在线人人人人妻| 国产高清国产精品国产三级| 免费高清在线观看日韩| 亚洲精品第二区| 精品国产一区二区久久| 久热这里只有精品99| 丁香六月欧美| 伊人亚洲综合成人网| 久久久久久人人人人人| 91麻豆av在线| 亚洲精品美女久久久久99蜜臀| 在线观看舔阴道视频| 国产黄色免费在线视频| av线在线观看网站| 欧美精品av麻豆av| 最近中文字幕2019免费版| 国产在视频线精品| 欧美xxⅹ黑人| 国产一区二区 视频在线| 亚洲专区国产一区二区| 亚洲av日韩在线播放| 啦啦啦视频在线资源免费观看| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 亚洲国产成人一精品久久久| 电影成人av| 丰满少妇做爰视频| 黄频高清免费视频| 欧美人与性动交α欧美软件| 成年美女黄网站色视频大全免费| 热99国产精品久久久久久7| 欧美在线一区亚洲| 九色亚洲精品在线播放| 亚洲精品久久久久久婷婷小说| 激情视频va一区二区三区| 一区在线观看完整版| 自线自在国产av| 久久久久久亚洲精品国产蜜桃av| 国产xxxxx性猛交| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 午夜免费鲁丝| 女性生殖器流出的白浆| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频| 大片电影免费在线观看免费| 亚洲中文av在线| 精品福利观看| 老司机午夜十八禁免费视频| 亚洲视频免费观看视频| 日韩免费高清中文字幕av| 国产一区二区三区av在线| 精品国产一区二区三区四区第35| 真人做人爱边吃奶动态| 又大又爽又粗| 亚洲国产毛片av蜜桃av| 窝窝影院91人妻| 母亲3免费完整高清在线观看| 韩国精品一区二区三区| 中国国产av一级| 久久人妻熟女aⅴ| 12—13女人毛片做爰片一| 免费久久久久久久精品成人欧美视频| 90打野战视频偷拍视频| 韩国高清视频一区二区三区| 操出白浆在线播放| 老熟女久久久| 老司机午夜福利在线观看视频 | 黄色毛片三级朝国网站| 国产成人精品在线电影| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕一二三四区 | 亚洲成人免费电影在线观看| a在线观看视频网站| 久久久久久久国产电影| 十分钟在线观看高清视频www| 在线观看免费视频网站a站| 亚洲国产精品一区三区| www.av在线官网国产| 国产亚洲精品一区二区www | 国产精品麻豆人妻色哟哟久久| 大片电影免费在线观看免费| 亚洲第一青青草原| 国产成人免费无遮挡视频| 精品免费久久久久久久清纯 | 国产男女内射视频| 亚洲第一青青草原| xxxhd国产人妻xxx| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕一二三四区 | 亚洲专区中文字幕在线| 亚洲精品乱久久久久久| 另类亚洲欧美激情| 丁香六月欧美| 亚洲精品中文字幕一二三四区 | 在线亚洲精品国产二区图片欧美| 日本vs欧美在线观看视频| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 亚洲av电影在线进入| 久久久久网色| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 亚洲国产中文字幕在线视频| 亚洲久久久国产精品| netflix在线观看网站| 久久久久久久久久久久大奶| 啦啦啦啦在线视频资源| 亚洲av男天堂| 在线永久观看黄色视频| 真人做人爱边吃奶动态|