• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    摻雜對(duì)鉺、釹蒽基配合物的光二聚反應(yīng)及光磁性能調(diào)控的影響

    2024-01-20 03:56:06麻秀芳秘鵬飛鮑松松鄭麗敏
    關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

    麻秀芳 秘鵬飛 鮑松松 鄭麗敏

    (南京大學(xué)化學(xué)化工學(xué)院,配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210023)

    0 Introduction

    Light-responsive single molecule magnets (SMMs)have been a major research hotspot in the field of molecular magnets in the past few decades, which have broad research and application prospects[1-6].Lanthanide-based SMMs are appealing candidates for highperformance SMMs owing to their significant single-ion magnetic anisotropy arising from strong spin-orbit coupling and crystal-field effects[7-9].However, due to the difference in the number of 4fnelectrons and thus the magnetic anisotropies, different lanthanide complexes exhibit distinct SMM behaviours in the same ligand field[10-12].Not only that, the characteristic luminescence of lanthanide complexes is also highly dependent on specific lanthanide ions[13-14].Generally, direct excitation of LnⅢions is not efficient as a result of the parity-forbiddenf-ftransitions and low molar absorptivity.Therefore, it is necessary to sensitize the lanthanide ions through the antenna ligands, and the sensitization efficiency is very much related to the energy gap between the ligand3Tstate and the emissive excited state of LnⅢ[15].

    We have been interested in dysprosium-anthracene complexes showing light-responsive magnetic and luminescent properties due to the photocycloaddition reaction of the face-to-faceπ-πinteracted anthracene pairs[16-17].A typical example is [DyⅢ(SCN)2(NO3)(depma)2(4-hpy)2] (1Dy)[18], where depma stands for 9-diethylphosphono methylanthracene and 4-hpy is 4 - hydroxypyridine, which has the highest effective energy barrier (Ueff=277 K) among the known photoresponsive Ln-SMMs.1Dy shows a rapid photo-induced structural transformation to form compound [DyⅢ(SCN)2(NO3)(depma2)(4-hpy)2]n(2Dy) with chain structure,accompanied by changes in SMM and luminescent properties.Since the photocycloaddition of anthracene involves the formation of an excimer in which one anthracene in the excited singlet state isπ-πinteracted with another in the ground state, we envision that when energy transfer between the excimer and the lanthanide ion is effective, the process is interfered with by ions of different lanthanide elements.Another question then arises:is it possible to modulate with light the SMM and luminescent properties of lanthanideanthracene complexes that are unable to undergo a photocycloaddition reaction?

    In this paper, we report three new complexes,[LnⅢ(SCN)2(NO3)(depma)2(4-hpy)2] [Ln=Er (1Er), Nd(2Nd), Y (3Y)] that are isomorphic to 1Dy.NdⅢor ErⅢions were chosen because their complexes may exhibit interesting SMM behaviour depending on the specific coordination environment[19-22].Meanwhile, it has been found that energy transfer between anthracene and NdⅢor ErⅢions is efficient, resulting in the near-infrared(NIR) emission from metal ions[23-24].Indeed, 1Er and 2Nd exhibit field-induced SMM behavior and NIR luminescence but fail to undergo photocycloaddition reaction under 395 nm UV light irradiation.In contrast, the diamagnetic complex 3Y can undergo photocycloaddition (Scheme 1).Interestingly, by doping ErⅢor NdⅢions in the 3Y lattice, we obtained diluted samples Ln0.1Y0.9(SCN)2(NO3)(depma)2(4-hpy)2(Ln=Er(1Er@Y), Nd (2Nd@Y)), which not only can undergo photocycloaddition but also are accompanied by changes in magnetic and optical properties.

    Scheme 1 Photocycloaddition of anthracene groups occurs in 3Y,1Er@Y and 2Nd@Y,but not in pure 1Er and 2Nd

    1 Experimental

    1.1 Materials and methods

    The 9-diethyl-phosphonomethylanthracene (depma) was synthesized according to the literature[25].All other starting materials were obtained from commercial sources without any purification.PE 240C analyzer was used to do the elemental analyses for C, H and N.The metal content in the doped samples was determined by inductively coupled plasma atomic emission spectrometer (ICP-AES,Avio500).The infrared spectra were collected on a Bruker Tensor 27 spectrometer in 4 000-400 cm-1region in pressed KBr pellets.Thermogravimetric analysis was recorded on a Mettler-Toledo TGA STARe thermal analyzer in the range of 30 -600 ℃under a nitrogen flow at a heating rate of 5 ℃·min-1.The instrument to collect powder X-ray diffraction (PXRD) data was Bruker D8 advance diffractometer with CuKαradiation(λ=0.154 06 nm,U=40 mV,I=40 mA) in a range of 5°-50° at room temperature.The1H NMR spectra were recorded on a BRUKER AVANCEⅢ400 MHz spectrometer with samples dissolved in DMSO-d6.The steady fluorescence spectra were attained at Bruker Spectrofluorimeter LS55.Timeresolved fluorescent decays were carried out on a Fluorolog TCSPC spectrofluorometer (Horiba Scientific)equipped with laser exciting at 365 nm.The dc (direct current) and ac (alternating current) magnetic susceptibility data were obtained using polycrystalline samples by a Quantum Design MPMS SQUID VSM magnetometer.

    1.2 Synthesis of Er(SCN)2(NO3)(depma)2(4-hpy)2(1Er)

    46.1 mg (0.1 mmol) Er(NO3)3·6H2O and 19.4 mg(0.2 mmol) KSCN were added to 2 mL CH3CN solution and stirred for 30 min at room temperature.The white precipitate was removed by filtration.Then 19.0 mg(0.2 mmol)4-hpy and 3 mL CH3CN solution of 65.6 mg(0.2 mmol) depma were added and stirred for about 15 min, and the yellow precipitate was filtered.The clear yellow filtrate was left to evaporate slowly, and block yellow crystals were precipitated after 2 d.Yield: 44.4%.Elemental Anal.Calcd.for C50H52ErN5O11P2S2(% ): C,50.37; H, 4.40; N, 5.87.Found (%): C, 50.54; H, 4.58;N,5.79.

    1.3 Synthesis of Nd(SCN)2(NO3)(depma)2(4-hpy)2(2Nd)

    Compound 2Nd was prepared by adopting an analogous method to 1Er except for the replacement of Er(NO3)3·6H2O with Nd(NO3)3·6H2O (34.8 mg, 0.1 mmol).Yield: 42.5%.Elemental Anal.Calcd.for C50H52NdN5O11P2S2(%): C, 51.36; H, 4.48; N, 5.99.Found(%):C,51.69;H,4.37;N,6.07.

    1.4 Synthesis of Y(SCN)2(NO3)(depma)2(4-hpy)2(3Y)

    Compound 3Y was prepared by adopting an analogous method to 1Er except for the replacement of Nd(NO3)3·6H2O with Y(NO3)3·6H2O (38.3 mg, 0.1 mmol).Yield: 51.4%.Elemental Anal.Calcd.for C50H52YN5O11P2S2(%): C, 53.91; H, 4.71; N, 6.29.Found(%):C,53.43;H,4.54;N,6.40.

    1.5 Synthesis of Er0.1Y0.9(SCN)2(NO3)(depma)2(4-hpy)2(1Er@Y)

    The synthesis of the doped 1Er@Y complex was performed following a similar procedure to 1Er except that a mixture of Er(NO3)3·6H2O (0.01 mmol) and Y(NO3)3·6H2O (0.09 mmol) took the place of pure Er(NO3)3·6H2O.The erbium content in the final crystalline product was 8.55% determined by ICP-AES.Elemental Anal.Calcd.for C50H52Er0.1Y0.9N5O11P2S2(%):C, 53.54; H, 4.67; N, 6.24.Found(%): C, 53.18; H,4.84;N,6.39.

    1.6 Synthesis of Nd0.1Y0.9 (SCN)2(NO3)(depma)2(4-hpy)2(2Nd@Y)

    The synthetic procedure of 1Nd@Y was similar to 1Er@Y except that Er(NO3)3·6H2O was replaced by Nd(NO3)3·6H2O.The neodymium content in the final crystalline product was 8.47% determined by ICP -AES.Elemental Anal.Calcd.for C50H52Nd0.1Y0.9N5O11P2S2(%): C, 53.65; H, 4.68; N, 6.26.Found(%): C,53.37;H,4.34;N,6.44.

    1.7 Crystallographicdatacollectionand refinement

    Suitable single crystals were selected and mounted on a glass rod for X -ray measurements.Single crystals were used for data collections on a Bruker D8 Venture diffractometer using graphite-monochromated MoKαradiation(λ=0.071 073 nm).The data were integrated using the Siemens SAINT program[26], with the intensities corrected for Lorentz factor, polarization, air absorption, and absorption due to variation in the path length through the detector faceplate.Empirical absorption corrections were applied using the SADABS program[27].The structures were solved by direct method and refined onF2by full-matrix least squares using Olex2[28].All the non - hydrogen atoms were refined anisotropically.All hydrogen atoms were either put in calculated positions or found from the difference Fourier maps and refined isotropically.Details of the crystal data and refinements are summarized in Table S1(Supporting information).Selected bond lengths and angles are given in Table S2.

    CCDC: 2303850, 1Er; 2303856, 2Nd; 2303854,3Y.

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analyses revealed that 1Er-3Y are isomorphic (Table S1).The purity of these phases was confirmed by PXRD and IR measurements (Fig.S1 and S2).So, 1Er is selected as a representative for a detailed structure description.Compound 1Er crystallizes in the monoclinic system with theP21/mspace group.As shown in Fig.1, the asymmetric unit contains one ErⅢion, two SCN-ion, one NO3-ion, two depma ligands and two 4-hpy molecules.Each ErⅢis eight-coordinated by two oxygen atoms(O1, O4) from two depma ligands, two oxygen atoms(O9 and O10) from NO3-, two axial oxygen atoms (O7 and O8) from another two 4-hpy ligands and two nitrogen atoms (N1 and N2) from two SCN-ions.The 4-hpy is a neutral zwitterionic ligand with a protonated pyridine N atom and a formally negative O atom.Two 4-hpy ligands occupy the axial positions providing the axial Er—O bond lengths of 0.221 4(3) and 0.223 2(3)nm which are shorter than the other Er—O(N) bonds(0.228 7(3)-0.256 6(3)nm).The axial O—Er—O angle is 163.54(13)° (Table S2).According to the continuous shape analysis[29], the [ErO6N2] polyhedron is mostly close to a geometry of snub diphenoid J84 inD2dsymmetry(CShM=1.807,Table S3).

    Fig.1 (a-c)Molecule structures of compounds 1Er(a),2Nd(b)and 3Y(c);(d-f)2D supramolecular framework layer viewed along the a-axis for 1Er(d),2Nd(e),and 3Y(f)

    As shown in Fig.1d, the adjacent monomers are connected along theb-axis with hydrogen bond interactions between the coordinated NO3-or SCN-anions and the 4-hpy through N4—H4…S1,N3—H3…O11,N4—H4…O11 and C42—H42…O10 contacts (Table S4),forming a one-dimensional (1D) supramolecular chain.The chains are stacked and further stabilized by faceto-faceπ-πinteraction between anthracene moieties in 1Er (center-to-center(dcc): 0.378 0 nm and nearest C2—C9′ (dC—C) distances: 0.379 0 nm).The dcc is much smaller than the limiting distance of Schmidt′s rule (0.42 nm) for solid-phase photodimerization to occur, so it is possible that anthracene-based photodimerization may occur in 1Er.

    Compounds 2Nd and 3Y are isostructural to 1Er except for the slight difference in their unit cell volumes.The cell volume of 2Nd (2.556 7 nm3) is much larger than that of 1Er (2.508 5 nm3) and 3Y (2.520 5 nm3),attributed to the increased ionic radii of NdⅢcompared to ErⅢand YⅢ.As a result, the axial Nd—O(0.231 6(6), 0.233 7(6) nm) and equatorial Nd—O(N)(0.240 7(6)-0.263 6(6) nm) bond lengths are slightly longer than the corresponding Er—O(N) and Y—O(N)distances (Y—Oaxial: 0.221 1(7), 0.223 1(8) nm; Y—O(N)equatorial: 0.230 2(9)-0.255 7(8) nm) (Table S2).It is worth mentioning that theR1andwR2values are much higher for 3Y due to the poor single-crystal quality.We have tried several times to select new crystals for structural analysis and the result was not improved.

    2.2 Optical properties

    The UV-Vis absorption spectra, translated from the diffuse reflectance spectra using the Kubelka -Munk equationF(R)=(1-R)2/(2R), were recorded in the range of 200-800 nm in the solid state at room temperature (Fig.S4).All showed strong and broad absorption bands between 200-450 nm, corresponding to theπ→π* transition of the anthracene ligand.Thef-ftransitions of LnⅢwere also observed for 1Er, 2Nd and their diluted samples.For 1Er, the peaks at 487, 520, 544 and 651 nm are assigned to thef-ftransitions of ErⅢfrom4I15/2to4F7/2,2H11/2(2G11/2),4S3/2and4F9/2.For 2Nd,the peaks at 511, 525, 582 and 736 nm are ascribed to thef-ftransitions of NdⅢfrom4I9/2to4G9/2,4G7/2,2G7/2(2G5/2) and4F7/2[30].The diluted samples 1Er@Y and 2Nd@Y displayed similar spectra to 1Er and 2Nd,respectively, except that the peak intensities of thef-ftransitions were much weaker.

    The photoluminescence (PL) properties of these compounds were further investigated in the solid state at room temperature.As shown in Fig.2a, the PL spectrum of depma exhibited a broad band peaking at 500 nm, attributed to the excimer formation[31].The broad band was also observed in 3Y but the peak was redshifted to 548 nm with a lifetime of 57.8 ns, attributed to the excimer formation of face-to-faceπ-πstacking of the anthracene groups.The quantum yield was 7.48%.Interestingly, the luminescence of 1Er and 2Nd was extremely weak in the range of 400-700 nm and was invisible to the naked eye,unlike their Dy and Y analogues.This is also supported by the undetectable emission life-time and low quantum yields in the visible region(0.43% for 1Er and 0.76% for 2Nd).The result indicates that an efficient energy transfer from the ligand to the lanthanide ion may occur in the cases of 1Er and 2Nd.

    Fig.2 (a)Emission spectra for compounds depma,1Er,2Nd and 3Y excited at 365 nm;(b)NIR emission spectra for 1Er,2Nd,1Er@Y and 2Nd@Y excited at 365 nm

    Noting that the maximum emission peak of the excimer in 3Y was 548 nm (18 248 cm-1), which was close to the excited states of NdⅢions (2H11/2and4F9/2)and ErⅢions(4F9/2)[15],we expected a favorable intramolecular energy transfer from the excimer of anthracene pairs to ErⅢor NdⅢ, thus sensitizing the luminescence of the lanthanide ions in 1Er and 2Nd.Indeed, upon excitation at 365 nm, 1Er emitted NIR emission at 1 530 nm, assigned to the4I13/2→4I15/2transition of ErⅢ,while 2Nd emitted NIR luminescence at 860 and 1 054 nm, assigned to the4F3/2→4I9/2and4F3/2→4I11/2transitions of NdⅢ,respectively[32-35](Fig.2b).

    2.3 Photocycloaddition reaction

    To investigate whether the photocycloaddition reaction occurs in complexes 1Er, 2Nd, and 3Y, we irradiated the samples under 395 nm UV light for 30 min.For 1Er and 2Nd, their PL and IR spectra and PXRD patterns showed no significant difference before and after light irradiation (Fig.S6-S8), indicating that the photochemical reaction did not occur.This is in accordance with the fact that an efficient energy transfer from the anthracene ligand to ErⅢor NdⅢion is present in these complexes,leading to the quenching of the cycloaddition reaction.By contrast, 3Y showed a continuous decline of the PL peak intensity at 547 nm upon 365 nm light irradiation, concomitant with the emergence and increase of new peaks at 422, 445 and 485 nm (Fig.S7).These new peaks are assigned to theπ*→πtransitions of the di-anthracene units.After 30 min of irradiation,the PL profile of 3Y did not change.Obviously, the face-to-faceπ-πstacked anthracene groups in 3Y underwent photocycloaddition to form a new phase [Y(SCN)2(NO3)(depma2)(4-hpy)2]n(3Y-UV),like the Dy analogue[18].The formation of dianthracene in 3Y-UV was supported by IR spectra, which showed a new peak at 687 cm-1characteristic of C—H vibration of dianthracene.Meanwhile the peak at 1 240 cm-1characteristic of C—H bending vibration of anthracene was almost disappeared (Fig.S8).The PXRD measurements suggest that 3Y-UV is isostructural to 2Dy but the structural transformation is incomplete(Fig.S9).

    To examine the completeness of the photocycloaddition reaction, we measured the1H NMR spectra of 3Y and 3Y-UV in DMSO-d6solution.Compared with 3Y, compound 3Y-UV showed three additional signals with lower chemical shifts at 6.7-7.3 in addition to the four signals at 7.5-8.6(Fig.S10).The latter are assigned to the hydrogen atoms of the anthracene unit, while the former belong to the hydrogen atoms of the dianthracene unit.The photochemical reaction yield can be calculated according to the integral areas of the two sets of signals.For 3Y-UV, the photocycloaddition reaction has a yield of 86.1%.

    Interestingly, the diluted samples 1Er@Y and 2Nd@Y can also undergo photocycloaddition reaction under UV light irradiation.Fig.3 shows the PL spectra of 1Er@Y and 2Nd@Y upon 395 nm light irradiation as a function of time.In both cases, the peak intensity at 547 nm decreased with increasing irradiation time and new peaks corresponding to dianthracene emerged at 422, 445 and 485 nm.The IR spectra showed a monotonous decreasing of the peak intensity at 1 240 cm-1and an increase of the peak intensity at 687 cm-1(Fig.S11), confirming the formation of photodimerized products.Samples obtained after 395 nm UV light irradiation of 1Er@Y and 2Nd@Y (20 mg) for 24 h were used for further measurements, named as 1Er@Y-UV and 2Nd@Y-UV.By comparing their PXRD patterns with that of 2Dy, it is clear that 1Er@Y-UV and 2Nd@Y-UV contain unreacted 1Er@Y and 2Nd@Y,respectively(Fig.S12),implying that the photodimerization reaction of the diluted samples was incomplete.The yields were 62.4% for 1Er@Y and 64.0% for 2Nd@Y based on the measurements of1H NMR spectra(Fig.S10).

    Fig.3 Time-dependent photoluminescence spectra upon 395 nm UV-light irradiation of 1Er@Y(top)and 2Nd@Y(bottom)

    2.4 Magnetic properties

    The temperature dependence of magnetic susceptibility was carried out under 1 000 Oe dc field in the temperature range of 2-300 K.TheχMTvalue at 300 K for 1Er and 2Nd were 11.43, 1.47 cm3·K·mol-1,respectively, consistent with the theoretical values of 11.48 cm3·K·mol-1for ErⅢ(3H4,S=1,L=5,g=4/5), and 1.64 cm3·K·mol-1for NdⅢ(4I9/2,S=3/2,L=6,g=8/11).On cooling, theχMTvalue for 1Er decreased gradually in the range of 300-100 K, and then rapidly reached the minimum value of 5.01 cm3·K·mol-1at 2 K (Fig.4).This tendency can be attributed the progressive depopulation of theMJlevels of ErⅢand/or low-lying excited states.For 2Nd, theχMTvalue upon cooling remained almost constant down to 1.8 K.The field dependence of magnetization at 2 K reveals that the magnetizations at 70 kOe were 5.27Nβfor 1Er, which were obviously lower than the theoretical saturation values of 9Nβ(Fig.S13a), suggesting the presence of magnetic anisotropy.For 2Nd,isothermal magnetization curves at 2 K exhibited values of 1.23Nβat 70 kOe,which was close to the expected value of 1.27Nβfor one NdⅢion(Fig.S13b).

    Fig.4 (a)Temperature dependence of χMT on cooling in a dc field of 1 kOe for 1Er and 2Nd;(b,c)Frequency dependence of the out-of-phase(χ″)signals for compounds 1Er(b)and 2Nd(c)at the depicted temperatures under a 500 Oe(for 1Er)or 1 kOe(for 2Nd)dc field;(d)Plot of τ vs T on the log-log scale for 2Nd

    To probe the slow magnetization relaxation dynamics, ac magnetic susceptibilities were measured for 1Er and 2Nd.There were no out-of-phase (χ″) signals at 2 K for both compounds under zero dc field (Fig.S14), which can be attributed to the fast zero-field quantum tunneling of magnetization (QTM)[36-38].Since the QTM effect can be suppressed by applying an external dc field, ac magnetic data for both compounds were performed under an optimum dc field.For 1Er, theχ″ac susceptibility data exhibited the frequency dependence below 3.2 K under an optimum field of 500 Oe,but no maximum appeared even the frequency reached 1 000 Hz, implying a faster relaxation process in 1Er(Fig.4b and S15).

    For 2Nd, both theχ′ andχ″ signals showed obvious frequency and temperature dependence under an optimal 1 kOe dc field (Fig.4c and S15), suggesting a field-induced slow relaxation of magnetization.The Cole-Cole plots can be fitted by the generalized Debye model[39]to extract the relaxation time (τ) (Fig.S16a).The distribution coefficient (α) values fall in the range of 0.23~0.30 (Table S5).We first attempted to fit the relaxation times by Direct and Orbach processes using Eq.(1), obtaining the parametersUeff=18.6(6) K,τ0=2.3(4)×10-6s,A=142(6) K-1·s-1for 2Nd (Fig.S16b).However, the smallUeffand largeτ0values suggest that other relaxation pathways were dominant.

    An almost linear dependency was observed when theτvsTwas plotted in a log-log scale (Fig.4d), indicating that dominant relaxation mechanism may be a direct or Raman process.The fitting was fairly well by using the combination of Raman and direct process using Eq.2, giving parameters ofC=4.5(11) K-4.9·s-1,n=4.9(2).

    To study the photo-controllable magnetic behaviour, the powdered samples 1Er@Y and 2Nd@Y and corresponding photoreaction products 1Er@Y - UV and 2Nd@Y-UV were used to measure the dc and ac susceptibilities in detail.The dc magnetic behaviours of 1Er@Y and 1Er@Y-UV were similar to those for 1Er (Fig.S17 and S18).Slow magnetization relaxation was also found for 1Er@Y and 1Er@Y-UV under 500 Oe dc field and had a slight difference between them (Fig.5 and S19).In addition, 2Nd@Y and 2Nd@Y-UV also showed similar behaviour to 2Nd(Figs.5 and S20,Tables S6 and S7).The ac data can also be fitted by Eq.2, giving the parametersn=3.8(9), andC=10(2)K-3.8·s-1for 2Nd@Y andn=5.2(8),andC=27(6)K-5.15·s-1for 2Nd@Y-UV.Compared to 2Nd@Y, thenvalue of the Raman process for 2Nd@Y-UV is increased, attributed to the significant change in the photon structure[40], which is reasonable owing to the formation of partial coordination polymer in 2Nd@YUV after photocycloaddition[41-42].

    Table 1 The magnetic parameters for 1Er,1Er@Y,1Er@Y-UV,2Nd,2Nd@Y and 2Nd@Y-UV

    Fig.5 Frequency dependence of the out-of-phase(χ″)signals at the depicted temperatures under a 500 Oe dc field for 1Er@Y(a),1Er@Y-UV(b)and 1 kOe dc field for 2Nd@Y(c)and 2Nd@Y-UV(d),respectively;Plots of τ vs T for 2Nd@Y(e)and 2Nd@Y-UV(f)

    3 Conclusions

    In summary, we have synthesized three isostructural lanthanide complexes with formulae Ln(SCN)2(NO3)(depma)2(4-hpy)2(Ln=Er(1Er),Nd(2Nd),Y(3Y)).1Er and 2Nd show a field-induced slow relaxation of the magnetization and near-infrared (NIR) luminescence but fail to undergo photocycloaddition reaction under 395 nm UV light irradiation.In contrast, the diamagnetic complex 3Y shows excimer emission and can undergo photocycloaddition.By doping ErⅢor NdⅢinto the 3Y lattice, we obtained Ln0.1Y0.9(SCN)2(NO3)(depma)2(4-hpy)2(Ln=Er (1Er@Y), Nd (2Nd@Y)),which not only can undergo partial photocycloaddition but also are accompanied by changes in magnetic and optical properties.Further work is in progress to explore new lanthanide systems with tunable magnetooptical properties.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    實(shí)驗(yàn)室化學(xué)
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    午夜免费激情av| 99riav亚洲国产免费| 欧美成人a在线观看| 午夜亚洲福利在线播放| 久久久久久伊人网av| 国产一区二区在线观看日韩| 国产精品福利在线免费观看| 国产av在哪里看| 亚洲欧美精品自产自拍| 精品熟女少妇av免费看| 亚洲人成网站在线播放欧美日韩| 色综合色国产| 亚洲性久久影院| 97超碰精品成人国产| 看片在线看免费视频| 国产在视频线在精品| 国产精品永久免费网站| 99久久成人亚洲精品观看| 亚洲国产精品久久男人天堂| 久久精品国产99精品国产亚洲性色| 美女 人体艺术 gogo| 久久精品国产亚洲网站| 国产黄色视频一区二区在线观看 | 久久久欧美国产精品| 99精品在免费线老司机午夜| 大又大粗又爽又黄少妇毛片口| 精品久久久噜噜| 免费观看精品视频网站| 中文字幕久久专区| 成人欧美大片| 亚洲,欧美,日韩| 午夜免费男女啪啪视频观看 | 久久中文看片网| 久久中文看片网| 天堂动漫精品| 精品午夜福利在线看| 男女做爰动态图高潮gif福利片| 18禁黄网站禁片免费观看直播| 两个人的视频大全免费| 夜夜看夜夜爽夜夜摸| 精品不卡国产一区二区三区| 日韩,欧美,国产一区二区三区 | 五月玫瑰六月丁香| 国产精品av视频在线免费观看| 最好的美女福利视频网| 村上凉子中文字幕在线| 免费看a级黄色片| 久久精品人妻少妇| 日韩欧美 国产精品| 欧美日韩一区二区视频在线观看视频在线 | 在线观看美女被高潮喷水网站| 天堂√8在线中文| 99热只有精品国产| 五月玫瑰六月丁香| 日本精品一区二区三区蜜桃| 久久久成人免费电影| av免费在线看不卡| 亚洲综合色惰| 久久久成人免费电影| 亚洲综合色惰| 色哟哟·www| 亚洲无线在线观看| 大型黄色视频在线免费观看| 国内揄拍国产精品人妻在线| 黄色配什么色好看| 九九爱精品视频在线观看| 国产av不卡久久| 久久中文看片网| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 夜夜爽天天搞| 最近手机中文字幕大全| 少妇人妻精品综合一区二区 | 亚洲欧美日韩卡通动漫| 亚洲婷婷狠狠爱综合网| 久久午夜亚洲精品久久| 中文字幕精品亚洲无线码一区| 亚洲精品456在线播放app| 亚洲国产精品久久男人天堂| 久久久精品大字幕| 午夜免费男女啪啪视频观看 | 一级毛片久久久久久久久女| 一区二区三区四区激情视频 | 欧美成人一区二区免费高清观看| 国产亚洲av嫩草精品影院| 能在线免费观看的黄片| 国产麻豆成人av免费视频| 日本黄色片子视频| 午夜精品国产一区二区电影 | 成人毛片a级毛片在线播放| 两个人的视频大全免费| 国产三级在线视频| 看非洲黑人一级黄片| 99热只有精品国产| 国产精品爽爽va在线观看网站| 欧美激情在线99| 毛片女人毛片| 亚洲人与动物交配视频| 国产单亲对白刺激| 中文字幕人妻熟人妻熟丝袜美| 成人欧美大片| 欧美日本视频| 人人妻人人看人人澡| 婷婷亚洲欧美| 全区人妻精品视频| 男女啪啪激烈高潮av片| 精品人妻视频免费看| 91av网一区二区| av免费在线看不卡| 女生性感内裤真人,穿戴方法视频| av在线天堂中文字幕| 搡老妇女老女人老熟妇| 久久久久九九精品影院| 麻豆精品久久久久久蜜桃| 女的被弄到高潮叫床怎么办| 老女人水多毛片| 成人美女网站在线观看视频| 日韩在线高清观看一区二区三区| 伦精品一区二区三区| 亚洲专区国产一区二区| 国产高潮美女av| 婷婷精品国产亚洲av在线| 国产精品av视频在线免费观看| АⅤ资源中文在线天堂| 激情 狠狠 欧美| av卡一久久| 国产淫片久久久久久久久| a级毛色黄片| 又爽又黄无遮挡网站| 亚洲国产精品国产精品| 天堂网av新在线| 午夜日韩欧美国产| 黄色日韩在线| 在线观看av片永久免费下载| 波多野结衣高清无吗| 少妇丰满av| 国产成年人精品一区二区| 久久综合国产亚洲精品| 男插女下体视频免费在线播放| 最后的刺客免费高清国语| 在线免费十八禁| 人妻久久中文字幕网| 别揉我奶头 嗯啊视频| 国产成人a区在线观看| 尾随美女入室| 亚洲欧美精品自产自拍| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 亚洲av成人av| 最近视频中文字幕2019在线8| 亚洲婷婷狠狠爱综合网| 中文字幕精品亚洲无线码一区| 国产精品永久免费网站| 97超碰精品成人国产| 亚洲色图av天堂| 12—13女人毛片做爰片一| 欧美日韩精品成人综合77777| 十八禁网站免费在线| 精品免费久久久久久久清纯| av卡一久久| 欧美xxxx性猛交bbbb| 极品教师在线视频| 真实男女啪啪啪动态图| 搡老熟女国产l中国老女人| 欧美最新免费一区二区三区| 又粗又爽又猛毛片免费看| 国产真实伦视频高清在线观看| 亚洲av免费在线观看| 免费看美女性在线毛片视频| 一本久久中文字幕| 日本撒尿小便嘘嘘汇集6| 日本在线视频免费播放| 小蜜桃在线观看免费完整版高清| 三级男女做爰猛烈吃奶摸视频| 亚洲精品在线观看二区| 有码 亚洲区| 日韩高清综合在线| 极品教师在线视频| 在线播放无遮挡| 亚洲中文字幕日韩| 色噜噜av男人的天堂激情| 狂野欧美激情性xxxx在线观看| 男女视频在线观看网站免费| 亚洲成a人片在线一区二区| 欧美潮喷喷水| 91在线观看av| 网址你懂的国产日韩在线| 欧美日本亚洲视频在线播放| 国产精品一及| 男女之事视频高清在线观看| 国产片特级美女逼逼视频| 国产日本99.免费观看| 天天躁日日操中文字幕| 久久精品夜色国产| 成人美女网站在线观看视频| 黄色日韩在线| 18禁黄网站禁片免费观看直播| 综合色av麻豆| 亚洲最大成人手机在线| 亚洲av电影不卡..在线观看| 91狼人影院| 97碰自拍视频| 国产一区亚洲一区在线观看| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 国内久久婷婷六月综合欲色啪| 日韩欧美在线乱码| av在线蜜桃| 精品乱码久久久久久99久播| 欧美激情在线99| 亚洲精品456在线播放app| 久久久欧美国产精品| 成人毛片a级毛片在线播放| 久久久久久久久久黄片| 免费人成视频x8x8入口观看| aaaaa片日本免费| 亚洲av成人精品一区久久| 一级黄色大片毛片| 国产不卡一卡二| 少妇裸体淫交视频免费看高清| 国产美女午夜福利| 国产探花在线观看一区二区| 免费av不卡在线播放| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 国产淫片久久久久久久久| 直男gayav资源| 国产探花极品一区二区| 精品熟女少妇av免费看| 99久久精品热视频| 免费观看人在逋| 国产中年淑女户外野战色| 欧美潮喷喷水| 人妻夜夜爽99麻豆av| 日日撸夜夜添| 成人午夜高清在线视频| 色av中文字幕| 国产午夜精品论理片| 美女大奶头视频| 两个人视频免费观看高清| 成人av在线播放网站| 十八禁国产超污无遮挡网站| 日韩精品中文字幕看吧| 午夜福利18| 我要看日韩黄色一级片| 热99re8久久精品国产| 人妻丰满熟妇av一区二区三区| 变态另类成人亚洲欧美熟女| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器| 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女| 搡女人真爽免费视频火全软件 | 少妇熟女欧美另类| 国产色爽女视频免费观看| 人人妻人人澡人人爽人人夜夜 | 午夜福利在线在线| 亚洲熟妇中文字幕五十中出| 最后的刺客免费高清国语| 在线播放国产精品三级| 看十八女毛片水多多多| 亚洲精品日韩av片在线观看| 久久久久久国产a免费观看| 欧美色视频一区免费| 天堂网av新在线| 亚洲欧美精品自产自拍| 十八禁网站免费在线| 亚洲av免费高清在线观看| 十八禁国产超污无遮挡网站| 国产精品1区2区在线观看.| 一进一出好大好爽视频| 欧美成人一区二区免费高清观看| 久久久久精品国产欧美久久久| 日韩国内少妇激情av| av国产免费在线观看| 免费观看人在逋| 亚洲精品456在线播放app| 亚洲无线观看免费| 亚洲成人精品中文字幕电影| or卡值多少钱| aaaaa片日本免费| 欧美高清成人免费视频www| 国产高清视频在线播放一区| 哪里可以看免费的av片| 国产欧美日韩一区二区精品| 亚洲丝袜综合中文字幕| 日本五十路高清| 我要搜黄色片| 欧美高清性xxxxhd video| .国产精品久久| 我的女老师完整版在线观看| 插阴视频在线观看视频| 日韩欧美国产在线观看| 你懂的网址亚洲精品在线观看 | 国产伦精品一区二区三区四那| 久久久午夜欧美精品| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 99热只有精品国产| 51国产日韩欧美| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 老师上课跳d突然被开到最大视频| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 日韩强制内射视频| 国产v大片淫在线免费观看| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 亚洲欧美清纯卡通| 精品久久久噜噜| 国产一级毛片七仙女欲春2| 少妇的逼好多水| 狂野欧美白嫩少妇大欣赏| av在线亚洲专区| 2021天堂中文幕一二区在线观| 天美传媒精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美不卡视频在线免费观看| 男女做爰动态图高潮gif福利片| 高清毛片免费观看视频网站| 一级毛片aaaaaa免费看小| 神马国产精品三级电影在线观看| 欧美性感艳星| 午夜福利成人在线免费观看| 国产亚洲精品久久久久久毛片| 变态另类丝袜制服| 亚洲成a人片在线一区二区| 99久久九九国产精品国产免费| 亚洲av免费在线观看| 三级毛片av免费| 亚洲欧美日韩东京热| 久久精品国产清高在天天线| 久久久国产成人免费| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 中文字幕av成人在线电影| 日韩欧美精品v在线| 91久久精品电影网| 中文字幕熟女人妻在线| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 欧美成人精品欧美一级黄| 在线a可以看的网站| 国产精品三级大全| 最新在线观看一区二区三区| 国产精品国产高清国产av| 国产一区亚洲一区在线观看| 久久精品夜色国产| 看免费成人av毛片| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| h日本视频在线播放| 亚洲精品粉嫩美女一区| 干丝袜人妻中文字幕| 又黄又爽又免费观看的视频| 色吧在线观看| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 久久久成人免费电影| 亚洲国产精品成人久久小说 | 国产精品1区2区在线观看.| 天堂动漫精品| 欧美丝袜亚洲另类| 久久久久国产精品人妻aⅴ院| 亚洲av免费在线观看| 97超级碰碰碰精品色视频在线观看| 国产黄片美女视频| 亚洲18禁久久av| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 国产精品乱码一区二三区的特点| 免费不卡的大黄色大毛片视频在线观看 | 99在线人妻在线中文字幕| 国产成人aa在线观看| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| 特级一级黄色大片| 久久精品影院6| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 直男gayav资源| 亚洲av中文av极速乱| videossex国产| 97超碰精品成人国产| 精品乱码久久久久久99久播| 啦啦啦啦在线视频资源| 少妇高潮的动态图| 亚洲一级一片aⅴ在线观看| a级毛色黄片| 欧美日韩综合久久久久久| av在线天堂中文字幕| 国产综合懂色| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 国产精品人妻久久久久久| 99久久中文字幕三级久久日本| 国产麻豆成人av免费视频| 一个人看的www免费观看视频| 日韩强制内射视频| 中文在线观看免费www的网站| 亚洲自拍偷在线| 乱系列少妇在线播放| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 乱码一卡2卡4卡精品| www日本黄色视频网| 久99久视频精品免费| av福利片在线观看| 舔av片在线| 国产高清三级在线| 91av网一区二区| 国产黄色视频一区二区在线观看 | 久久久国产成人免费| 黄色配什么色好看| 变态另类丝袜制服| 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 精品久久久久久久末码| 亚洲性久久影院| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 精品熟女少妇av免费看| 亚洲七黄色美女视频| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 一级av片app| 91久久精品电影网| 最后的刺客免费高清国语| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 欧美高清性xxxxhd video| 日本与韩国留学比较| 亚洲欧美中文字幕日韩二区| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 最近最新中文字幕大全电影3| 18禁黄网站禁片免费观看直播| 久久精品夜色国产| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 日韩一区二区视频免费看| 在线免费观看的www视频| 亚洲精品456在线播放app| 国产高清三级在线| 中文资源天堂在线| 亚洲av美国av| 男人狂女人下面高潮的视频| 两个人的视频大全免费| 一级毛片我不卡| 少妇高潮的动态图| 狂野欧美激情性xxxx在线观看| 国产精品一区二区免费欧美| 欧美日韩精品成人综合77777| a级毛色黄片| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 欧美一区二区国产精品久久精品| 九九爱精品视频在线观看| 波多野结衣高清无吗| 亚洲四区av| 成年版毛片免费区| 听说在线观看完整版免费高清| 淫妇啪啪啪对白视频| 久久国产乱子免费精品| 99在线视频只有这里精品首页| 一级黄色大片毛片| 丝袜美腿在线中文| 国产精品99久久久久久久久| 天堂√8在线中文| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 欧美色欧美亚洲另类二区| 日韩欧美 国产精品| 最近手机中文字幕大全| 免费av不卡在线播放| 欧美在线一区亚洲| 欧美激情国产日韩精品一区| АⅤ资源中文在线天堂| 精品久久久久久久久久久久久| 婷婷色综合大香蕉| 免费看av在线观看网站| 久久久午夜欧美精品| 99在线视频只有这里精品首页| 欧美日韩一区二区视频在线观看视频在线 | 久久人人爽人人片av| 日韩欧美 国产精品| 18禁裸乳无遮挡免费网站照片| 在线a可以看的网站| 亚洲av第一区精品v没综合| 国产伦一二天堂av在线观看| 我要看日韩黄色一级片| 午夜视频国产福利| 国产成年人精品一区二区| 国产精品永久免费网站| 日韩精品有码人妻一区| 国产v大片淫在线免费观看| 色在线成人网| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 亚洲性久久影院| 丰满乱子伦码专区| 亚洲在线观看片| www.色视频.com| 一卡2卡三卡四卡精品乱码亚洲| 97碰自拍视频| 国产美女午夜福利| 精品一区二区三区视频在线观看免费| 美女内射精品一级片tv| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 国产精品人妻久久久久久| 国产成人福利小说| 久久久精品大字幕| 99久久中文字幕三级久久日本| 亚洲图色成人| 97人妻精品一区二区三区麻豆| 亚洲一区高清亚洲精品| 日本免费一区二区三区高清不卡| 亚洲精品国产av成人精品 | 日韩中字成人| 男人的好看免费观看在线视频| 成人综合一区亚洲| 在线观看av片永久免费下载| 十八禁网站免费在线| 日韩高清综合在线| 美女高潮的动态| 国产午夜精品论理片| 无遮挡黄片免费观看| 少妇人妻精品综合一区二区 | 观看免费一级毛片| 久久精品国产清高在天天线| 亚洲精品乱码久久久v下载方式| 看非洲黑人一级黄片| 亚洲欧美精品综合久久99| 免费看a级黄色片| aaaaa片日本免费| 波多野结衣高清无吗| 韩国av在线不卡| 亚洲av中文av极速乱| 99热6这里只有精品| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 身体一侧抽搐| 国产淫片久久久久久久久| 日本免费一区二区三区高清不卡| 亚洲国产色片| 三级国产精品欧美在线观看| 国产亚洲av嫩草精品影院| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡免费网站照片| av.在线天堂| 麻豆成人午夜福利视频| 男女啪啪激烈高潮av片| 久久久色成人| 久久热精品热| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 乱码一卡2卡4卡精品| 在线免费观看的www视频| 久久久精品大字幕| 亚洲18禁久久av| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人av| 中文资源天堂在线| av视频在线观看入口| av天堂中文字幕网| 男人和女人高潮做爰伦理| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 国产女主播在线喷水免费视频网站 | 久久久精品94久久精品| 91狼人影院| 一区二区三区四区激情视频 | 中文亚洲av片在线观看爽| 最近手机中文字幕大全| 免费在线观看影片大全网站| 熟女人妻精品中文字幕| 日日啪夜夜撸| 老司机福利观看| 久久久久久久久大av| 国内精品久久久久精免费| 久久久精品94久久精品| 欧美+日韩+精品| 亚洲五月天丁香| 寂寞人妻少妇视频99o| 一级黄片播放器| 波多野结衣高清无吗| 99久国产av精品| 日日撸夜夜添| 美女被艹到高潮喷水动态| 听说在线观看完整版免费高清| 久久久久国产精品人妻aⅴ院| 一区二区三区免费毛片| 精品一区二区三区人妻视频| 久99久视频精品免费| 少妇人妻一区二区三区视频| 亚洲国产精品国产精品| 少妇的逼好多水| 国产精品99久久久久久久久|