• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    類鈣鈦礦甲酸鹽的線性和非線性光學(xué)響應(yīng)

    2024-01-20 03:56:04冉叢嬌黃智鵬
    關(guān)鍵詞:同濟(jì)大學(xué)鈣鈦礦工程學(xué)院

    齊 魯 冉叢嬌 吳 超 黃智鵬 張 弛

    (同濟(jì)大學(xué)化學(xué)科學(xué)與工程學(xué)院中澳功能分子材料聯(lián)合研究中心,上海 200092)

    Organic-inorganic hybrid materials are highly attractive in solar cells, photo-detectors, ferroelectrics,optical information processing, and laser frequency conversion due to their excellent performance and versatility[1-5].Nonlinear optical (NLO) crystals can generate coherent laser light, which is widely used in photolithography and semiconductor manufacturing,and plays an important role in solid-state lasers[6-10].Recently, a series of excellent organic-inorganic hybrid NLO crystals, such as (o-C5H4NHOH)2[I7O18(OH)] ?3H2O[11], (C(NH2)3)6(PO4)2·3H2O[12], Cs3Cl(HC3N3S3)[13],and (2cepyH)SbBr4[14], have been developed.It is of great importance and interest to search for new functional building blocks as well as the as-constructed new organic-inorganic hybrid NLO crystals.Organic molecules play an important role in modulating the optical properties when designing organic-inorganic hybrid NLO crystals.π-Conjugated organic cations exemplified by (C(NH2)3)+cation[15-16], melamine[17], and 4-hydroxypyridine[18], have been discovered and proved to be efficient NLO-active groups owing to their strong hyperpolarizability and polarizability anisotropy.Recently, Lin et al.adopted melamine and synthesized a potential ultraviolet NLO material (C3H7N6)2Cl2·H2O exhibiting a strong second harmonic generation (SHG)response and large birefringence[17].(C(NH2)2NHNO2)+is an excellent cationic NLO-active group, and the resultant material showed excellent NLO properties[19].Inorganic anions are an important component of NLO materials.Significant efforts have been focused on these inorganic salts containingπ-conjugated planar groups (e.g.BO33-, CO32-, NO3-), such as KBe2BO3F2[20],LiB3O5[21],β-Ba2B2O4[22], ABCO3F (A=K, Rb, B=Mg, Ca,Sr)[23], LiZn(OH)CO3[24], Bi3TeO6OH(NO3)2[25], RE(OH)2NO3(RE=La, Y, and Gd)[26].However, owing to the intricate multiple inter-anion interactions,the combination of two types ofπ-conjugated groups into one structure to create new NLO materials is thus far underexploited[27].

    The organic-inorganic hybrid perovskites with general formula ABXn(n=3,4)have attracted extraordinary attention in physics, chemistry, and materials science[28-30].The unique structural feature offers tremendous possibilities for optical property tuning owing to the flexible and replaceable A, B, and X sites[31].We report herein the construction of the NLO-active formate salts (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) containing theπ-conjugated formamidine cation and formate anion.Both two materials are isostructural with perovskite-like structures.The synthesis, UV-Vis-NIR spectroscopy, SHG response, and birefringence are demonstrated.Density functional theory (DFT) calculation was performed to reveal relationships between linear and nonlinear optical properties and electronic states.

    1 Experimental

    1.1 Reagents

    Yttrium nitrate (Y(NO3)3·6H2O, 99.99%, Xiya Reagent),erbium nitrate(Er(NO3)3·5H2O,99%,Adamas Reagent), formamide (CH3NO, 99%, Adamas Reagent)were commercially available and used as received without further purification.

    1.2 Synthesis of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4]

    A mixture of Y(NO3)3·6H2O (0.192 g, 0.50 mmol)and CH3NO (5 mL) was tightly sealed in a 23 mL autoclave equipped with a Teflon liner.The autoclave was heated at 110 ℃for 72 h and then cooled slowly to room temperature at a rate of 3 ℃·h-1.The product was collected by vacuum filtration, washed with ethanol,and dried in the air.Colorless block crystals of(CH(NH2)2)[Y(HCOO)4] were isolated in a yield of 70%(based on Y) using a microscope.The same process was operated to synthesize compound (CH(NH2)2)[Er(HCOO)4] using Er(NO3)3·5H2O (0.222 g, 0.50 mmol), and CH3NO (5 mL).Pink block crystals were picked out in a yield of 75%(based on Er).

    1.3 Single crystal and powder X-ray diffraction

    Single-crystal X-ray diffraction data collection of(CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) was carried out on a Bruker D8 VENTURE CMOS X-ray diffractometer using graphite-monochromated MoKαradiation (λ=0.071 073 nm) at room temperature.APEX Ⅱsoftware was applied to collect and reduce data.For (CH(NH2)2)[Y(HCOO)4], in a range of 3.25°<θ<27.12°, a total of 10 270 reflections were collected and 1 150 were independent withRint=0.049 1,of which 1 089 were observed withI>2σ(I).For (CH(NH2)2)[Er(HCOO)4], in a range of 3.255°<θ<27.14°, a total of 9 394 reflections were collected and 1 152 were independent withRint=0.034 3,of which 1 129 were observed withI>2σ(I).Semiempirical absorption corrections based on equivalent reflections were applied for both data sets using the APEX Ⅱprogram.The two structures of (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) were solved by direct methods and refined onF2by full-matrix least-squares methods using Olex2 software package[32-33].All hydrogen atoms were placed in calculated positions and refined with a riding model.The detailed crystallographic data and structural refinement parameters of the two compounds are summarized in Table S1 (Supporting information).Selected bond distances (nm) and angles(°)are given in Table S2 and S3,while hydrogenbonding interactions are provided in S4 and S5.Powder X-ray diffraction (PXRD) was used to confirm the phase purity of (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er).The PXRD analysis of each sample was carried out on a Bruker D8 X-ray diffractometer equipped with CuKαradiation (λ=0.154 18 nm)in a 2θrange of 5°-80°with a step size of 0.02° at room temperature, and the working voltage and current were 40 kV and 40 mA,respectively.

    CCDC:2312145,(CH(NH2)2)[Y(HCOO)4];2312159,(CH(NH2)2)[Er(HCOO)4].

    1.4 Energy-dispersive X-ray spectroscopy

    Elemental analyses were performed using energydispersive X - ray spectroscopy (EDS) with a field -emission scanning electron microscope(FESEM,Hitachi S-4800, Japan).The EDS analyses on (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] confirm the presence of C,H,O,N,and Y/Er,which are evenly dispersed in both samples(Fig.S1).

    1.5 Infrared and UV-Vis-NIR diffuse reflectance spectra

    The infrared (IR) spectra were recorded on a Nicolet iS10 Fourier transform IR spectrometer (resolution 4 cm-1,spectral range 400-4 000 cm-1).Optical diffuse-reflectance spectra were collected on a Cary 5000 UV-Vis-NIR spectrophotometer over the spectral range 200-800 nm at room temperature and a BaSO4plate was used as a 100% reflectance standard.Reflectance spectra were converted into absorbance spectra using the Kubelka-Munk functionα/S=(1-R)2/(2R), whereαis the absorption coefficient,Sis the scattering coefficient that is practically wavelength-independent when the particle size is larger than 5 μm, andRis the reflectance[34].

    1.6 Thermal analysis

    A Netzsch STA 409PC thermal analyzer was used to analyze the thermal stabilities of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4].The samples were heated from 30 to 800 ℃with a heating rate of 15 ℃·min-1under a nitrogen atmosphere.

    1.7 Powder SHG measurements

    The SHG intensities of (CH(NH2)2) [Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] were measured employing the powder measurement method proposed by Kurtz and Perry[35].A Q-switched Nd∶YAG laser with 1 064 nm radiation was employed for the visible SHG study.Because the SHG efficiency is related to the particle size,the polycrystalline samples of (CH(NH2)2)[Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] were ground and sieved into several particle size ranges (0-26, 26-50, 50-74,74-105,105-150,150-200,and 200-280μm).Crystalline KDP with the same particle size ranges was used as references.

    1.8 Birefringence measurements

    The birefringences of (CH(NH2)2)[Y(HCOO)4] and(CH(NH2)2)[Er(HCOO)4] were assessed with a polarizing microscope (ZEISS Axio Scope.A1) equipped with a Berek compensator.The wavelength of the light source was 546 nm.The positive and negative rotation of compensation affords the relative retardation.

    1.9 Theoretical calculations

    First-principles calculations on (CH(NH2)2)[Er(HCOO)4] were performed using the CASTEP package[36], a total energy package based on pseudopotential DFT[37].The correlation-exchange terms in the Hamiltonian were described by the functional developed by Perdew, Burke, and Ernzerhof in the generalized gradient approximation form[38-39].Optimized norm-conserving pseudopotentials[40]in the Kleinman-Bylander form were adopted to model the effective interaction between the valence electrons and atom cores, which allows the choice of a relatively small plane-wave basis set without compromising the computational accuracy.A kinetic energy cutoff of 850 eV and dense Monkhorst-Pack[41]k-point meshes spanning less than 1.5×10-5nm3in the Brillouin zone were chosen.

    2 Results and discussion

    2.1 Synthesis, phase purity, IR, and thermal stability

    The mixed organic cationic hybrid formates(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]was obtained through a mild solvothermal method.Both two crystals were synthesized directly by employing in situ reactions[42].The phase purity of crystalline(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]were confirmed by PXRD (Fig.S2).The IR spectra of(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]were similar owing to their isostructural feature.The IR absorption bands and their assignments are shown in Fig.S3, and they are characteristic of N—H vibrations in the formamidine (CH(NH2)2)+cation and formate HCOO-anion.(CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] also exhibited similar thermal behavior(Fig.S4), and taking (CH(NH2)2)[Y(HCOO)4] as representative.The thermal analysis curve of (CH(NH2)2)[Y(HCOO)4] (Fig.S4a) exhibited three weight - loss steps: in the first stage (220-300 ℃), the weight loss of 28.85% was close to the calculated value of 28.57% by loss of 2CO and 2NH3.The second weight loss of 27.62% was close to the calculated value of 28.25% by loss of 1.5H2,1.5CO,and CO2in a range of 310-410 ℃.The minor weight loss of 6.38% that occurred in a range of 410-800 ℃is due to the loss of CO2(Calcd.6.98%).The residue of (CH(NH2)2) [Y(HCOO)4] and(CH(NH2)2)[Er(HCOO)4] after 800 ℃was confirmed as Y2O3/Er2O3by PXRD(Fig.S5).

    2.2 UV-Vis-NIR diffuse reflectance spectra

    The study of optical diffuse reflectance spectra showcases that two crystalline materials could be classified among wide optical bandgap semiconductors possessing bandgaps of 5.59 and 5.61 eV for (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4], respectively.(Fig.1) The bandgaps increased slightly with the increase of atomic number for the lanthanide ions.The UV absorption edge of (CH(NH2)2)[Y(HCOO)4] was 222 nm, and there was no absorption peak ranging from 222 to 800 nm.(CH(NH2)2) [Er(HCOO)4] exhibited sharp absorption bands at 257, 380, 525, and 654 nm.Thef-ford-ftypical transitions of the respective lanthanide(Ⅲ)ions lead to these absorption peaks[43].

    Fig.1 UV-Vis-NIR diffuse reflectance spectra and the corresponding crystal morphologies (Inset)for(CH(NH2)2)[Y(HCOO)4](a)and(CH(NH2)2)[Er(HCOO)4](c);Bandgaps for(CH(NH2)2)[Y(HCOO)4](b)and(CH(NH2)2)[Er(HCOO)4](d)

    2.3 Powder SHG response

    Based on the chiral structure with a space group ofC2221, the powder SHG response was measured by the Kurtz-Perry method.The SHG intensities increased with the increasing of particle size in a range of 26-280μm (Fig.2a), indicating both (CH(NH2)2)[Y(HCOO)4]and (CH(NH2)2)[Er(HCOO)4] are phase-matchable crystals at the 1 064 nm laser.As shown in Fig.2b,compounds (CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] showed the SHG intensity of about 0.32 and 0.37 times that of KDP in a particle size range of 105-150 μm.Because (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) crystallizes in theC2221space group, both crystals have one non-zero independent SHG coefficient(d14) under the restriction of Kleinman symmetry.The corresponding calculated SHG values of (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] were 0.71 and 0.29 pm·V-1, respectively.To quantify the specific SHG contributions from all units, a real-space atomcutting method was employed.As shown in Table S6,the (CH(NH2)2)+units made the dominant contributions to the SHG coefficientd14(58.9% and 48.7%) with the HCOO-anions accounting for 25.0% and 28.2% for(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4],respectively.We conclude that (CH(NH2)2)+and HCOO-groups play a decisive role in the SHG response,and the contributions of Y3+and Er3+to the SHG response should not be ignored.

    Fig.2 (a)Phase-matching curves of(CH(NH2)2)[Y(HCOO)4],(CH(NH2)2)[Er(HCOO)4],and KDP with 1 064 nm laser radiation;(b)Oscilloscope traces of the SHG signals for polycrystalline(CH(NH2)2)[Y(HCOO)4],(CH(NH2)2)[Er(HCOO)4],and KDP in a particle size range of 105-150μm at λ=1 064 nm

    2.4 Birefringence

    The birefringence of (CH(NH2)2)[RE(HCOO)4](RE=Y,Er)single crystal was measured on a polarizing microscope (ZEISS Axio A1), which can achieve complete extinction (Fig.3).The optical path difference of(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4]with thicknesses of 158.1 and 167.3 μm were measured to be 2.055 and 2.510μm,respectively.Birefringence occurs and causes the polarized light to decompose into two kinds of polarized light, which are fast polarized light and slow polarized light when polarized light enters an anisotropic single crystal.The generation of optical path difference between the fast polarized light and the slow polarized light is inevitable in this process.The optical path difference ΔRcan be obtained by the Eq.: ΔR=|Ne-No|δ=δΔn, where ΔRdenotes the optical path difference, Δnrepresents the birefringence, andδis the thickness of the crystal.The derived birefringences were 0.013 and 0.015 for(CH(NH2)2) [Y(HCOO)4] and (CH(NH2)2) [Er(HCOO)4],respectively,at the wavelength of 546 nm.

    Fig.3 Original crystals(a,d),crystal diagrams to achieve complete extinction(b,e),and thickness diagrams(c,f)of compounds(CH(NH2)2)[Y(HCOO)4](a-c)and(CH(NH2)2)[Er(HCOO)4](d-f)

    2.5 Crystal structures and their relationships with optical properties

    Both (CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4] are isostructural, and we take (CH(NH2)2)[Y(HCOO)4]asrepresentative.In(CH(NH2)2)[Y(HCOO)4],one Y3+cation, two HCOO-groups, and one formamidinium cation form the asymmetric units.All of the Y atoms in the unit cell are equivalent and located at the origin.The central Y3+is coordinated with the surrounding eight oxygen atoms to compose a YO813-polyhedron with four different Y—O bond lengths.As shown in Fig.4a, the lengths of the Y—O bond are 0.228 6, 0.233 8, 0.239 9, and 0.241 0 nm, respectively.The 1Dchainstructure is composedof YO813-octahedra andπ-conjugated HCOO-planar groups(Fig.4b).The orientation of the C—H bonds in formic acid ligands is diverse, but the alignment in the same direction is consistent when forming 2D and 3D frames.This arrangement can be conducive to the NLO properties of the crystal.Each Y3+ion links to eight neighboring Y3+ions via formate bridges, to form the rhombohedral units′ network, and the unit has the two neighboring grids diagonally crossed by one anti-anti HCOO-.The 2D [Y(HCOO)n]∞layers contain 12-membered rings (MRs) and 16-MRs viewed along the crystallographicc-axis (Fig.4c).The 3D (CH(NH2)2)[Y(HCOO)4]framework possesses perovskite-like structure.The center of the polyhedron is occupied by the Y atom, and (CH(NH2)2+cationsinsituproduced from formamide lie in a cage surrounded by a YO813-polyhedron.(Fig.4d) The (CH(NH2)2)+cations connect the adjacent [Y(HCOO)n]∞layers through N—H…O hydrogen bonds, and the adjacent (CH(NH2)2)+cations are arranged in opposite directions.It is beneficial to break the symmetry of the structure.However, the parallel and consistent orientation of(CH(NH2)2)+in the diagonal rhombohedral cell cavity promotes its SHG response,and the strong covalent bonds of theπ-conjugated cation (CH(NH2)2)+can facilitate a relatively wide UV transparency.The combination ofπ-conjugated formate and formamidine groups can not only enhance the nonlinear optical properties of the compounds but also expand the bandgap.In light of anionic group theory,π-conjugated (CH(NH2)2)+and HCOO-groups are suggested as possibilities to generate the SHG responses while also retaining the short UV absorption edge.

    Fig.4 (a)Coordination environment of Y3+in(CH(NH2)2)[Y(HCOO)4],HCOO-ligand group and(CH(NH2)2)+group;(b)1D chain of[Y(HCOO)n]∞;(c)2D[Y(HCOO)n]∞layers containing 12-MRs and 16-MRs viewed from the c-axis direction;(d)3D structure of the cavity-template units in a(CH(NH2)2)[Y(HCOO)4]crystal

    2.6 Theoretical calculations

    Linear and nonlinear optical properties are closely related to the characteristics of band structure,including bandgap and density of state (DOS).To further comprehend the relationships between electronic structure and optical properties, theoretical calculations using pseudopotential DFT methods were carried out to calculate the bandgap and DOS of (CH(NH2)2)[Er(HCOO)4].As shown in Fig.5a, the calculated band structure of (CH(NH2)2)[Er(HCOO)4] indicates that it possesses a direct bandgap of 4.52 eV with both the conduction band minimum (CBM) and the valence band maximum (VBM) located at the G point.These calculated values were smaller than the experimental value due to the underestimation of the bandgap with the DFT method.Fig.5b shows the total and partial densities of states (TDOS and PDOS) of (CH(NH2)2)[Er(HCOO)4].The VBs are mainly occupied by N2p,C2p, O2pand Er4fstates.The CBs are primarily assigned to C2pand O2pstates, with slight contributions from the Er4dorbital, which indicates that the electron transition is mainly contributed by inside excitation of(CH(NH2)2)+and HCOO-groups, and slight contributions from ErO813-polyhedra.These results indicate that optical performance (bandgap, SHG response, and birefringence) of (CH(NH2)2) [Er(HCOO)4] determined by electronic transitions are mostly governed by the interaction of(CH(NH2)2)+and HCOO-groups.

    Fig.5 (a)Energy band structures,(b)TDOS and PDOS of compound(CH(NH2)2)[Er(HCOO)4]

    3 Conclusions

    In summary, two isomeric rare-earth formate nonlinear optical materials (CH(NH2)2)[RE(HCOO)4] (RE=Y, Er) were successfully synthesized through an in situ solvothermal method and comprehensively determined by various types of spectroscopic techniques.They exhibit perovskite-like structures where the negatively charged cavity of the [RE(HCOO)4]-anionic framework is occupied by the(CH(NH2)2)+cations.The powder SHG measurements indicated that (CH(NH2)2)[RE(HCOO)4](RE=Y, Er) possess phase-matchable SHG responses in the visible regions.Linear optical studies show that(CH(NH2)2)[Y(HCOO)4] and (CH(NH2)2)[Er(HCOO)4]exhibited optical bandgaps of 5.59 and 5.61 eV, and birefringences of 0.013 and 0.015, respectively.DFT calculations show that the optical characteristics are mainly attributed to the synergistic effects of twoπconjugated (CH(NH2)2)+and HCOO-groups.This work highlights that the introduction ofπ-conjugated formamidine cations into formate systems may be an effective approach for the development of excellent NLO materials.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    同濟(jì)大學(xué)鈣鈦礦工程學(xué)院
    福建工程學(xué)院
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    福建工程學(xué)院
    《同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)》介紹
    《同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿啟事
    福建工程學(xué)院
    同濟(jì)大學(xué)醫(yī)學(xué)院介紹
    福建工程學(xué)院
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    伦精品一区二区三区| 又爽又黄a免费视频| 美女cb高潮喷水在线观看| 黄片wwwwww| a级毛片a级免费在线| 老司机福利观看| 精品久久久久久久久亚洲 | 国产真实伦视频高清在线观看 | 国产 一区精品| 淫妇啪啪啪对白视频| 亚洲国产色片| 国产精品久久久久久av不卡| 深夜精品福利| 欧美一区二区精品小视频在线| 亚洲无线观看免费| 成熟少妇高潮喷水视频| 午夜精品久久久久久毛片777| 丝袜美腿在线中文| 国产精品精品国产色婷婷| 亚洲精品色激情综合| 亚洲一级一片aⅴ在线观看| 亚洲精品亚洲一区二区| 变态另类成人亚洲欧美熟女| 亚洲性久久影院| 亚洲av不卡在线观看| 亚洲欧美清纯卡通| 舔av片在线| 日本精品一区二区三区蜜桃| 久久久久久久久大av| 亚洲精品日韩av片在线观看| 婷婷精品国产亚洲av在线| 精品久久久久久久久久久久久| 欧美zozozo另类| 亚洲av免费在线观看| 日韩一本色道免费dvd| 中文资源天堂在线| 欧美高清性xxxxhd video| 午夜激情欧美在线| 日本免费a在线| 97超视频在线观看视频| 亚洲精品成人久久久久久| 1000部很黄的大片| 欧美激情国产日韩精品一区| 在线播放无遮挡| 淫妇啪啪啪对白视频| 久久草成人影院| 国产美女午夜福利| av视频在线观看入口| 极品教师在线免费播放| 亚洲内射少妇av| 黄色女人牲交| 人人妻,人人澡人人爽秒播| 小说图片视频综合网站| 人人妻人人看人人澡| 亚洲第一电影网av| 久久精品国产亚洲网站| 久久久久九九精品影院| 欧美日韩乱码在线| 深夜精品福利| 国内揄拍国产精品人妻在线| 村上凉子中文字幕在线| 麻豆久久精品国产亚洲av| 悠悠久久av| 成人国产一区最新在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品亚洲一级av第二区| 亚洲欧美日韩东京热| 国产成人一区二区在线| 久久久久久久久久成人| 日日夜夜操网爽| 老师上课跳d突然被开到最大视频| 亚洲av电影不卡..在线观看| 精品日产1卡2卡| 成人亚洲精品av一区二区| x7x7x7水蜜桃| 乱系列少妇在线播放| 久久久久九九精品影院| 国产精华一区二区三区| 性插视频无遮挡在线免费观看| 色综合站精品国产| 精品午夜福利在线看| 深夜精品福利| 日日撸夜夜添| 午夜a级毛片| 国产av在哪里看| 午夜福利高清视频| 精品一区二区三区人妻视频| 欧美日韩综合久久久久久 | 日韩欧美在线乱码| 精品久久久久久久久久免费视频| 亚洲精品乱码久久久v下载方式| 欧洲精品卡2卡3卡4卡5卡区| 美女高潮的动态| 亚洲av免费高清在线观看| 亚洲四区av| 亚洲精品粉嫩美女一区| 久久久久久伊人网av| 日韩强制内射视频| 精品久久久久久久末码| 搡老妇女老女人老熟妇| 欧美黑人欧美精品刺激| 在线a可以看的网站| 18+在线观看网站| 九九爱精品视频在线观看| 又爽又黄无遮挡网站| 在线免费十八禁| 日韩高清综合在线| 91久久精品国产一区二区成人| 久久久久久久午夜电影| 一进一出好大好爽视频| 日本五十路高清| 99久久久亚洲精品蜜臀av| 一进一出抽搐gif免费好疼| 国内少妇人妻偷人精品xxx网站| 日本-黄色视频高清免费观看| 变态另类成人亚洲欧美熟女| 九九在线视频观看精品| 熟女电影av网| 波野结衣二区三区在线| 亚洲性久久影院| 亚洲国产日韩欧美精品在线观看| 最近最新中文字幕大全电影3| 麻豆成人午夜福利视频| 毛片一级片免费看久久久久 | 夜夜爽天天搞| 久久久久久久精品吃奶| 女人十人毛片免费观看3o分钟| 免费观看人在逋| 最近中文字幕高清免费大全6 | 国产人妻一区二区三区在| 免费观看的影片在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲五月天丁香| 欧美zozozo另类| 日本一二三区视频观看| 日本欧美国产在线视频| a在线观看视频网站| 男女视频在线观看网站免费| 日韩欧美精品免费久久| 国产高清有码在线观看视频| 美女xxoo啪啪120秒动态图| 日韩av在线大香蕉| 嫩草影院精品99| 极品教师在线免费播放| 一个人免费在线观看电影| 我要搜黄色片| 午夜爱爱视频在线播放| av女优亚洲男人天堂| 亚洲av一区综合| 狂野欧美激情性xxxx在线观看| 国产真实伦视频高清在线观看 | 免费搜索国产男女视频| 精品免费久久久久久久清纯| 狠狠狠狠99中文字幕| 日日干狠狠操夜夜爽| 天天躁日日操中文字幕| 欧美性感艳星| 久久久久久大精品| 亚洲性夜色夜夜综合| 一级毛片久久久久久久久女| 国产精品自产拍在线观看55亚洲| a级毛片a级免费在线| 嫩草影院新地址| www.www免费av| 99在线视频只有这里精品首页| 给我免费播放毛片高清在线观看| 久久午夜亚洲精品久久| 久久午夜福利片| 亚洲自偷自拍三级| 热99在线观看视频| 亚洲av中文av极速乱 | 嫩草影院新地址| 一夜夜www| 18禁在线播放成人免费| 九色成人免费人妻av| 国产91精品成人一区二区三区| 黄片wwwwww| 国产主播在线观看一区二区| 最新中文字幕久久久久| 国产高清激情床上av| 精品乱码久久久久久99久播| 色哟哟·www| 男女边吃奶边做爰视频| a级毛片免费高清观看在线播放| 日本精品一区二区三区蜜桃| 国产黄a三级三级三级人| 十八禁网站免费在线| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 少妇丰满av| 草草在线视频免费看| 亚洲自偷自拍三级| 国产91精品成人一区二区三区| 亚洲av美国av| 久久精品影院6| av在线天堂中文字幕| 国产精品女同一区二区软件 | 久久99热6这里只有精品| 91精品国产九色| 亚洲欧美精品综合久久99| 亚洲图色成人| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 亚洲中文日韩欧美视频| netflix在线观看网站| 伦精品一区二区三区| 免费无遮挡裸体视频| 欧美最新免费一区二区三区| 国产极品精品免费视频能看的| av天堂在线播放| 免费不卡的大黄色大毛片视频在线观看 | av中文乱码字幕在线| 日本免费一区二区三区高清不卡| 欧美又色又爽又黄视频| 亚洲国产高清在线一区二区三| 国产精品国产高清国产av| 欧美不卡视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 日日啪夜夜撸| www.色视频.com| 久久久精品欧美日韩精品| 偷拍熟女少妇极品色| videossex国产| 能在线免费观看的黄片| 亚洲图色成人| 亚洲精华国产精华液的使用体验 | 亚洲av一区综合| 国产成人影院久久av| 国产亚洲欧美98| 成熟少妇高潮喷水视频| 日韩一区二区视频免费看| 成年版毛片免费区| 国产精品久久久久久久电影| 亚洲精品在线观看二区| 无遮挡黄片免费观看| 97超视频在线观看视频| 国产精品自产拍在线观看55亚洲| 一个人观看的视频www高清免费观看| 久久精品国产99精品国产亚洲性色| 中国美白少妇内射xxxbb| 国产毛片a区久久久久| 亚洲国产高清在线一区二区三| 搡老岳熟女国产| 色哟哟·www| 午夜老司机福利剧场| 欧美日韩精品成人综合77777| 日韩欧美一区二区三区在线观看| 色哟哟·www| 久久国内精品自在自线图片| 亚洲成a人片在线一区二区| 午夜视频国产福利| 欧美激情久久久久久爽电影| .国产精品久久| 午夜影院日韩av| 欧美一区二区精品小视频在线| 午夜福利18| 国产精品三级大全| 可以在线观看的亚洲视频| 久久久国产成人精品二区| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 国产三级中文精品| 国国产精品蜜臀av免费| 久久久色成人| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看 | 亚洲av不卡在线观看| a级一级毛片免费在线观看| 中文亚洲av片在线观看爽| 亚洲精品成人久久久久久| 美女xxoo啪啪120秒动态图| 久久午夜福利片| bbb黄色大片| 成人亚洲精品av一区二区| 91狼人影院| 麻豆久久精品国产亚洲av| 村上凉子中文字幕在线| 国产私拍福利视频在线观看| 91在线精品国自产拍蜜月| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验 | 亚洲欧美清纯卡通| 午夜精品一区二区三区免费看| 久久欧美精品欧美久久欧美| 床上黄色一级片| 久久99热6这里只有精品| 天堂av国产一区二区熟女人妻| 伦理电影大哥的女人| 久久久成人免费电影| 嫩草影院精品99| 99精品久久久久人妻精品| 日韩欧美在线乱码| 一个人看的www免费观看视频| 亚洲一级一片aⅴ在线观看| 在线看三级毛片| h日本视频在线播放| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 久久精品国产亚洲av天美| 国产精品国产高清国产av| 国产主播在线观看一区二区| 国产成人影院久久av| 欧美一级a爱片免费观看看| 国产爱豆传媒在线观看| a级毛片免费高清观看在线播放| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 久久久久久伊人网av| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 国产在线精品亚洲第一网站| 人妻夜夜爽99麻豆av| 黄色视频,在线免费观看| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 中文字幕熟女人妻在线| 精品日产1卡2卡| 国产亚洲精品久久久久久毛片| 亚洲18禁久久av| 亚洲人成伊人成综合网2020| 国产黄片美女视频| 天堂动漫精品| 蜜桃亚洲精品一区二区三区| 麻豆成人av在线观看| 在线观看美女被高潮喷水网站| 婷婷精品国产亚洲av| 亚洲熟妇熟女久久| 九色国产91popny在线| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 色综合亚洲欧美另类图片| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 麻豆av噜噜一区二区三区| 国产三级中文精品| 99热这里只有是精品在线观看| 日韩人妻高清精品专区| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 国产精品一区二区性色av| 午夜免费激情av| 久久香蕉精品热| 成人无遮挡网站| 黄色日韩在线| 97热精品久久久久久| 国语自产精品视频在线第100页| 欧美zozozo另类| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 伦理电影大哥的女人| 欧美在线一区亚洲| 欧美+日韩+精品| 久久久精品欧美日韩精品| 午夜视频国产福利| 欧美性猛交╳xxx乱大交人| 亚洲成av人片在线播放无| 嫩草影院精品99| 91在线观看av| 亚洲av一区综合| 搞女人的毛片| 亚洲黑人精品在线| 国产视频一区二区在线看| 中国美女看黄片| 又紧又爽又黄一区二区| 给我免费播放毛片高清在线观看| 亚洲成人久久性| 久久久国产成人免费| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 悠悠久久av| 国产精品一区www在线观看 | 国产亚洲精品久久久com| av.在线天堂| www.www免费av| 中文亚洲av片在线观看爽| 一本久久中文字幕| 99久久久亚洲精品蜜臀av| 久99久视频精品免费| 精品一区二区三区人妻视频| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看 | 全区人妻精品视频| 乱人视频在线观看| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 亚洲国产欧洲综合997久久,| 亚洲欧美激情综合另类| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 色噜噜av男人的天堂激情| 亚洲18禁久久av| 啪啪无遮挡十八禁网站| 久久99热6这里只有精品| av在线亚洲专区| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 国产探花在线观看一区二区| av在线蜜桃| 变态另类丝袜制服| 午夜激情欧美在线| 欧美激情国产日韩精品一区| 欧美bdsm另类| 最近在线观看免费完整版| 18+在线观看网站| 精品一区二区三区人妻视频| 国产精品自产拍在线观看55亚洲| 亚洲不卡免费看| 永久网站在线| 我要看日韩黄色一级片| 在线免费十八禁| 搞女人的毛片| 97超视频在线观看视频| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 久久精品影院6| 欧美中文日本在线观看视频| 99视频精品全部免费 在线| 波多野结衣高清作品| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 国产精品国产三级国产av玫瑰| 亚洲精华国产精华精| 啦啦啦观看免费观看视频高清| 久久久午夜欧美精品| 欧美在线一区亚洲| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 99热这里只有是精品50| 久久久午夜欧美精品| 日韩强制内射视频| 亚洲男人的天堂狠狠| 日本-黄色视频高清免费观看| 欧美性感艳星| 又爽又黄a免费视频| 人人妻人人澡欧美一区二区| 男女视频在线观看网站免费| 大又大粗又爽又黄少妇毛片口| 国产三级在线视频| 日本 欧美在线| 亚洲午夜理论影院| 国产高清激情床上av| 国产淫片久久久久久久久| 亚洲国产日韩欧美精品在线观看| 久久精品国产自在天天线| 久久久色成人| 中国美白少妇内射xxxbb| 少妇被粗大猛烈的视频| 一本一本综合久久| 中国美白少妇内射xxxbb| 久久婷婷人人爽人人干人人爱| 精品一区二区三区视频在线| 国产成人一区二区在线| 国产精品国产三级国产av玫瑰| xxxwww97欧美| 熟女电影av网| а√天堂www在线а√下载| 亚洲在线自拍视频| 精品久久久久久,| 国内精品宾馆在线| 内射极品少妇av片p| 国产成年人精品一区二区| 免费看日本二区| 免费在线观看影片大全网站| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 伦精品一区二区三区| 婷婷六月久久综合丁香| 国产精品一区二区三区四区久久| 啦啦啦啦在线视频资源| 动漫黄色视频在线观看| 一级毛片久久久久久久久女| 国产精品野战在线观看| 免费av毛片视频| 欧美丝袜亚洲另类 | 亚洲自偷自拍三级| 色视频www国产| 国产免费一级a男人的天堂| 久久久久久久精品吃奶| 日韩欧美在线乱码| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美在线二视频| 国产乱人视频| 久久久久国内视频| 亚洲性久久影院| 亚洲精品色激情综合| 九九爱精品视频在线观看| 久久久午夜欧美精品| 国产精华一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 99久久中文字幕三级久久日本| 如何舔出高潮| 999久久久精品免费观看国产| 久久6这里有精品| 成人精品一区二区免费| 高清日韩中文字幕在线| 蜜桃亚洲精品一区二区三区| 日本与韩国留学比较| 好男人在线观看高清免费视频| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产亚洲av天美| 亚洲精品在线观看二区| 日本一二三区视频观看| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 日本在线视频免费播放| 国产精品无大码| 在线免费观看不下载黄p国产 | 亚洲av熟女| 在线播放无遮挡| 九色成人免费人妻av| 中文字幕人妻熟人妻熟丝袜美| 精品乱码久久久久久99久播| av在线老鸭窝| 国产精品av视频在线免费观看| 在线看三级毛片| 国产精品综合久久久久久久免费| 一区二区三区免费毛片| 日本熟妇午夜| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 久久久成人免费电影| 精品午夜福利视频在线观看一区| 在线观看av片永久免费下载| 日本一二三区视频观看| 国产高清不卡午夜福利| 欧美在线一区亚洲| 免费看光身美女| 国产伦人伦偷精品视频| 国产精品亚洲美女久久久| 一夜夜www| 欧美绝顶高潮抽搐喷水| 我要搜黄色片| 日韩欧美在线乱码| 亚洲国产欧美人成| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 亚洲国产精品久久男人天堂| 黄片wwwwww| 91精品国产九色| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区 | 99久久中文字幕三级久久日本| 精品久久久久久成人av| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 国产三级在线视频| 精品无人区乱码1区二区| 成人毛片a级毛片在线播放| 禁无遮挡网站| 国产老妇女一区| 亚洲五月天丁香| 看十八女毛片水多多多| 搡老妇女老女人老熟妇| 18+在线观看网站| 色哟哟·www| 可以在线观看毛片的网站| 国产av不卡久久| 午夜视频国产福利| 欧美日韩乱码在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩乱码在线| 伦理电影大哥的女人| 97热精品久久久久久| 身体一侧抽搐| 一级黄片播放器| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 亚洲综合色惰| 亚洲在线观看片| 久久精品综合一区二区三区| 国产探花在线观看一区二区| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| av视频在线观看入口| 精品福利观看| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 可以在线观看的亚洲视频| av中文乱码字幕在线| 中文字幕免费在线视频6| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 深夜精品福利| 少妇的逼水好多| 18禁在线播放成人免费| 一个人看的www免费观看视频| 国产成人影院久久av| 身体一侧抽搐| 51国产日韩欧美| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 久久久久久久久大av| 欧美潮喷喷水| 深爱激情五月婷婷| 欧美+日韩+精品| 两个人视频免费观看高清| 国产精品98久久久久久宅男小说| 97热精品久久久久久| 日本黄大片高清| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区|