• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    S型異質(zhì)結(jié)光催化劑ZnFe2O4/WO3的構(gòu)筑及光催化還原CO2性能

    2024-01-20 03:55:54朱成才李艷陽(yáng)要紅昌
    關(guān)鍵詞:綠色

    劉 平 朱成才 李艷陽(yáng) 要紅昌

    (鄭州大學(xué)化學(xué)學(xué)院,綠色催化中心,鄭州 450001)

    0 Introduction

    The increase in carbon dioxide (CO2) concentration in the Earth′s atmosphere has significantly impacted global temperature, exacerbating the greenhouse effect.Therefore, slowing down the rise of carbon dioxide in the atmosphere and striving for carbon neutrality are two important global priorities in the forthcoming decades[1].Among diverse strategies to mitigate CO2concentration,solar-driven photocatalytic conversion of CO2to value-added chemical products/fuels is regarded as an auspicious method that can provide effective remedial measures for energy crisis and environmental predicaments[2-3].To this end, the development of efficient photocatalysts is a necessary prerequisite for achieving this goal.Over the past decades, various semiconducting photocatalysts, such as CdS[4], ZnO[5],BiOX[6], NiCo2O4[7], and g-C3N4[8-9], have been exploited for CO2reduction since the pioneering work of Inoue et al[10].However, the efficiency of CO2conversion for existing photocatalysts is still far from meeting the requirements for industrial applications so far.Hence,designing and synthesizing novel photocatalysts has been a focus of research in the field of CO2reduction.

    As one of the most important spinel-type complex oxides, zinc ferrite (ZnFe2O4) has been widely used for photocatalytic degradation of pollutants, lithium-ion batteries, heterogeneous catalysis, photocatalysis, and biomedical applications owing to its unique physical,chemical, optical and electronic properties[7,11-13].In terms of photocatalytic applications, ZnFe2O4has been studied in the fields of photocatalytic hydrogen production, water splitting, and CO2conversion due to its narrow bandgap ofca.1.9 eV, chemical stability, and unique electronic structure[14-16].For instance,Li et al.[17]demonstrated that ultrafine ZnFe2O4nanoparticles can convert CO2into ethanol and acetaldehyde under visible light illumination.To prevent ZnFe2O4from agglomerating,Yan et al.[18]insitugrew ZnFe2O4nanoparticles on iron porphyrin covalent triazine-based frameworks via an ion-thermal method.With the assistance of Ru(bpy)3, the as-prepared material exhibited higher photocatalytic CO2reduction activity under visible light compared to pure ZnFe2O4.However, the efficiency of photocatalytic CO2reduction of ZnFe2O4is still far below the real demand due to the issues that arise from light harvesting, intensive recombination of electron-hole pairs,and insufficient conduction band potential[19].

    Construction of heterojunction structures, especially S -scheme (or Z -scheme) photocatalytic systems[20-21], can effectively overcome above mentioned problems by enhancing the separation of photoinduced charges, broadening the light absorption range, and widening the redox potentials[22-23].Recently, different ZnFe2O4-based heterojunction photocatalysts with an S-/Z-scheme charge transfer model have been synthesized and exhibit impressive CO2photoreduction activity[14,24-25].WO3, another photo-electronically active semiconductor,is a popular material in the field of photo(electro)catalysis due to its unique features,including narrow bandgap, non-toxicity, and chemical stability[26].In particular, WO3exhibits high oxidizing ability on account of its sufficient positive valence band (VB)maximum[27].However, to the best of our knowledge,there are currently no reports on the construction of ZnFe2O4/WO3heterojunctions for photocatalytic CO2reduction[28].

    In the present study, we synthesized a series of heterojunction ZnFe2O4/WO3nanocomposites by loading different amounts of ZnFe2O4nanoparticles on the surface of WO3nanoplates.The band structure of the typical ZnFe2O4/WO3composite was characterized and determined by UV-Vis diffuse reflection spectroscopy(UV-Vis DRS), Mott-Schottky plots, and X-ray photoelectron spectroscopy valence band (XPS-VB) spectrum.The photoreduction CO2performance of the as-prepared samples was measured in the presence of water vapor under the irradiation of sunlight simulated by xenon light.The results show that the optimized ZnFe2O4/WO3sample exhibits better photocatalytic CO2conversion activity than pure ZnFe2O4and bare WO3.The enhanced photocatalytic activity is ascribed to the effective separation of photoinduced charges and the widening of the redox potentials.An S-scheme charge transfer mode between ZnFe2O4and WO3heterojunctions is further proposed.

    1 Experimental

    All chemicals were used as received without any further purification.

    1.1 Synthesis of WO3 nanosheets

    The WO3nanosheets were synthesized by a hydrothermal method[29].1.979 g Na2WO4·2H2O was dissolved in 90 mL of distilled water, and 90 mL of concentrated hydrochloric acid (36% - 38%) was added dropwise with constant stirring.After continuing to stir for 1 h, the mixture was transferred to a hydrothermal reactor,and heated at 180 ℃for 12 h.After centrifugation, the obtained products were washed three times with distilled water and dried at 100 ℃for 12 h.

    1.2 Construction of ZnFe2O4/WO3 heterostructure

    Before synthesizing ZnFe2O4/WO3nanocomposites, ZnFe2O4was first synthesized via a facile solventthermal route[30].1 mmol of ZnCl2and 2 mmol of FeCl3were dissolved in 80 mL of ethylene glycol while stirring.Subsequently, 8 mmol of NaOH was added to the solution at room temperature.The resulting mixture was then transferred to a Teflon-lined stainless autoclave and heated to 180 ℃for a duration of 12 h.Afterward, the obtained precipitate was subjected to centrifugation,washing,and drying.

    To construct ZnFe2O4/WO3heterostructure, 0.232 g of the synthesized WO3powder was first dispersed in 30 mL deionized water, and then 0.5 g of maleic acid and different amounts of ZnFe2O4were added to the suspension[31].It is worth noting that the introduction of maleic acid is to make the connection between ZnFe2O4and WO3closer in subsequent treatment[32].After the mixture was stirred for 12 h at 60 ℃,the obtained products were collected, washed, and dried.Subsequently,the dried products were calcined at 300 ℃for 3 h.The preparation process of ZnFe2O4/WO3composites is illustrated in Fig.1.

    Fig.1 Schematic diagram of the preparation process of ZFO/WO composites

    The added amounts of ZnFe2O4relative to 1 mmol of WO3powder were set as 0.05, 0.1, 0.15, 0.2, 0.25,0.3, 0.5, 0.7, 1, and 2 mmol, respectively.For clarity,the correspondingly calcined products were labeled asxZFO/WO, wherex=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5,0.7,1,and 2,respectively.

    1.3 Characterization

    Powder X-ray diffraction (PXRD) measurements were performed with a PANalytical X′pert PRO diffractometer using CuKα1radiation (λ=0.154 06 nm) at 40 kV and 15 mA in a 2θrange of 10°-80° at a scanning rate of 5 (°)·min-1.Microscopic morphology was examined via transmission electron microscopy (TEM, FEI Tecnai G2F20) at 200 kV and spot size 2.The light absorption properties of the catalysts were determined by a UV-Vis spectrophotometer (Agilent Cary 5000).The electrochemical workstation (Chen Hua CHI 660E) was used to perform the photoelectrochemical tests.Specific tests included transient photocurrent test(initial voltageE=1.0 V, total test timet=130 s, with or without light interval 10 s); impedance size test (initial voltageE=1.0 V, frequency 105 Hz); Mott-Schottky curve test (initial voltageE=-1 V, final voltageE=1.2 V,selected frequency of 1 000 Hz).

    1.4 Photocatalytic activity testing

    The photocatalytic CO2reduction activity of the catalysts was evaluated under full spectrum illumination, employing a 300 W Xenon lamp as the light source.Each time an experiment was performed,20 mg of the catalyst was uniformly distributed onto a circular glass substrate, which was subsequently placed within a stainless-steel photocatalytic reactor.Prior to commencing the photocatalytic CO2reduction performance assessment, the reactor was evacuated using a vacuum pump, and a mixture of CO2and water vapor was introduced into the photocatalytic reactor.This purging process was iterated five times to remove air.After illumination for 5 h, gas chromatography (Agilent 7820A)equipped with a methanator, a flame ionization detector, and a thermal conductivity detector was utilized to quantify the yields of photocatalytic products.

    2 Results and discussion

    2.1 Morphology and structure

    Fig.2 shows the PXRD patterns for the representative sample 0.15ZFO/WO along with pure ZnFe2O4and WO3for comparison.The specific diffraction peaks observed at 29.97°, 35.31°, 42.89°, 53.18°, 56.69°,and 62.25° can be attributed to the cubic ZnFe2O4phase[33](PDF No.01-089-4926), whereas the diffraction patterns of WO3closely match the characteristic peaks of the standard monoclinic phase WO3[34](PDF No.01-072-1465).For 0.15ZFO/WO, all the XRD patterns can be well indexed to the cubic ZnFe2O4phase and monoclinic phase of WO3with no appearance of other impurities.

    Fig.2 PXRD patterns of WO3,ZnFe2O4,and 0.15ZFO/WO

    The morphology and microstructure of the representative sample 0.15ZFO/WO were measured using TEM and HRTEM, and the images are displayed in Fig.3.As discerned in Fig.3a, WO3exhibited a welldefined nanoplate structure,with dimensions of approximately 200 nm in both length and width, presenting a notably smooth surface.In Fig.3b, the fine ZnFe2O4nanoparticles were conspicuously adhered to the surface and periphery of the nanoplates, with the interface delineated clearly in the high-resolution TEM(HRTEM)images(Fig.3c and 3d).

    Fig.3 TEM(a,b)and HRTEM(c,d)images of 0.15ZFO/WO

    The lattice fringes of ZnFe2O4nanosheets and WO3nanoparticles were observed through HRTEM(Fig.3c and 3d), in which the interplanar spacings of 0.342 and 0.370 nm can be indexed to the (012) and(020) planes of WO3[35], and the interplanar space of 0.254 nm can be indexed to the (311) plane of Zn-Fe2O4[36].On the other hand, the formation of heterojunctions could be observed at the interface between ZnFe2O4and WO3, as marked by the yellow frames in Fig.3b and 3d.

    2.2 UV-Vis DRS spectra

    The light absorption characteristics of WO3,ZnFe2O4, andxZFO/WO (x=0.05, 0.1, 0.15, 0.2, 0.25)samples were examined in a range of 200-800 nm via UV-Vis DRS, and the results are presented in Fig.4.The absorption onset for pure WO3and ZnFe2O4was observed at approximately 470 and 670 nm,respectively, in agreement with those reported[37-38].For thexZFO/WO samples,the absorption capacity increased proportionally with the increment in ZnFe2O4loading content.Notably, both WO3and ZnFe2O4exhibit characteristics of direct bandgap semiconductors[39-40].The direct bandgap of the samples was estimated from the Kubelka-Munk function[41].The function equation is (αhν)2=A(hν-Eg), whereα,hν,Eg, andArepresent absorption coefficient, photon energy, band gap (eV), and constant, respectively.By extrapolating this figure to(αhν)2=0,it was estimated that the bandgap of WO3and ZnFe2O4wasca.2.60 andca.1.83 eV, respectively(Fig.4b).The results are consistent with those reported previously[39,42].

    Fig.4 (a)UV-Vis DRS spectra of WO3,ZnFe2O4,and xZFO/WO;(b)Tauc plots of WO3 and ZnFe2O4

    2.3 Photocatalytic CO2 reduction performance

    To promote the formation of heterojunctions between ZnFe2O4and WO3,different amounts of maleic acid to central ions were introduced as a capping agent in the preparation process, followed by calcination treatment.The effects of adding a capping agent and heat treatment on the photocatalytic CO2reduction activity were evaluated.Fig.5a shows the effects of adding different amounts of maleic acid as well as not adding maleic acid on the photocatalytic CO2reduction activities after illumination for 5 h.Considering that in CO2reduction products, producing 1 mol of methane requires 8 mol of electrons, while producing 1 mol of CO and H2requires only 2 mol of electrons, we used Eq.1 to quantify the total number of electrons (N,μmol·g-1) involved in the entire reaction to further compare photocatalytic activity.Fig.5a shows the yields of CH4, CO, and H2produced by 0.15ZFO/WO with different maleic acid loadings, 0.15ZFO/WO without maleic acid loading, and the physical mixture of ZnFe2O4and WO3, as well as the total number of electrons required.

    Fig.5 Effects of dosage of maleic acid(a)and calcination conditions(b)on the photocatalytic activity of the as-prepared samples

    Without the addition of maleic acid, the CO and CH4yields of the obtained samples were 2.3 and 0.6 μmol·g-1, respectively.By contrast, the CO and CH4yields of the samples added with maleic acid increased significantly.For instance, the yields of CO and CH4of 0.5ZFO/WO reached 7.87 and 4.88 μmol·g-1, respectively.The increase in the yields may be attributed to the addition of maleic acid promoting the interphase interaction between ZnFe2O4and WO3[32].It is worth noting that adding more than 0.5 g of maleic acid will not further improve the photocatalytic CO2conversion efficiency, implying that under the conditions of this experiment, 0.5 g of maleic acid is sufficient to facilitate the grafting of ZnFe2O4onto the surface of WO3.However, the effect of maleic acid can only be manifested after calcination, as shown in Fig.5b.Compared with the calcined sample,the CO and CH4yields of the uncalcined specimen and the physical mixed sample were significantly reduced, as shown in Fig.5b.The consequences obtained from the total number of electrons are consistent with above results.

    The effects of loading amount of ZnFe2O4on photocatalytic CO2activity were further studied (Fig.6).For pure WO3, almost no CO and CH4products were detected.Upon successful loading of ZnFe2O4nanoparticles onto the surface of WO3nanosheets, the CO and CH4yields for all the samples increased.When the molar ratio of ZnFe2O4to WO3was 0.15, the yields of CO and CH4reached their maximum values, attaining 7.87 and 4.88 μmol·g-1, respectively.Further increasing the loading of ZnFe2O4, the yields of CO and CH4decreased instead.It is worthy of special attention that when the load amount of ZnFe2O4exceeded 0.7, H2began to appear in the CO2reduction product.The reason may be the presence of single-phase ZnFe2O4.Accordingly, compared to the H2O reduction reaction,the formation ofxZFO/WO heterojunctions is beneficial for the CO2reduction reaction.From another perspective, the types and yields of CO2reduction products can be regulated by adjusting the composition of the materials,as shown in Fig.6a and Fig.6b.

    Fig.6 After illumination for 5 h,the yields of CH4,CO,and H2 as well as the total number of electrons for WO3(a),ZnFe2O4(b),and xZFO/WO:(a)x=0.05,0.1,0.15,0.2,0.25,0.3;(b)x=0.5,0.7,1,2

    To further evaluate photocatalytic activity, we also quantified the total number of electrons for ZnFe2O4andxZFO/WO using Eq.1.For all the composites,0.15ZFO/WO achieved the highest electrons (54.8μmol·g-1), which was approximately 1.5 times that of pure ZnFe2O4(36.2 μmol·g-1).The enhancement of electron transfer number counts may be attributed to the formation of heterojunctions between the grain boundary of ZnFe2O4and WO3,which promotes the separation efficiency of photogenerated electrons and holes as shown below.

    To assess the stability, the 0.15ZFO/WO sample was selected, and conducted five consecutive photocatalytic cycles with each cycle lasting 5 h.Fig.7a shows the cyclic test results for 0.15ZFO/WO.The yields of CO and CH4after three cycles remained at 7.23 and 3.17 μmol·g-1, respectively, almost equivalent to the initial values.However, the CO and CH4yields after five cycles were 3.74 and 3.15 μmol·g-1, indicating partial deactivation of the catalyst.Fig.7b compares the XRD patterns of the 0.15ZFO/WO sample before and after five cycles of illumination.No obvious changes were found.Further in-depth research is needed on the underlying reasons for the partial deactivation of catalysts.

    Fig.7 (a)Photocatalytic cyclic activity of 0.15ZFO/WO;(b)PXRD patterns of 0.15ZFO/WO before and after five cycles of illumination

    Blank and control tests were carried out to elucidate the source of C in CO and CH4, and the test results of the 0.15ZFO/WO sample are shown in Fig.8.When CO2in the reaction system was replaced by N2,only H2was detected in the products,but no other products such as CO and CH4were detectable within the detection limit of our instrument.The results indicate that the products CO and CH4are produced from CO2.In addition, under the conditions of no catalysts or in the dark, CO and CH4yields were extremely low, suggesting that photocatalysts and light are essential conditions for photocatalytic CO2reduction.

    Fig.8 Yields of CO,CH4 and H2 under different test conditions

    2.4 Photocatalytic mechanism

    The band edge potentials of the composites are of critical importance because they have a direct impact on the redox reactions occurring at the catalyst surface[43].Firstly, the flat band potentials of WO3and ZnFe2O4were determined using the Mott-Schottky analysis method.The obtained flat band potentials for WO3and ZnFe2O4were 0.02 and -0.55 V (vs Ag/AgCl),respectively (Fig.9a and 9c).It is known that the flat band potential of n-type semiconductors corresponds to the Fermi level (Ef).Considering the 0.197 V difference between the standard hydrogen electrode (NHE)and the Ag/AgCl electrode[44], theEffor WO3and ZnFe2O4was calculated to be 0.22 and -0.35 V (vs NHE)[38].Secondly, the XPS-VB spectra of WO3and ZnFe2O4were measured, and the results are displayed in Fig.9b and 9d.According to the linear intersection method[45], the differences between theEVBandEffor WO3and ZnFe2O4were 2.53 and 1.60 eV, respectively.Consequently, the calculated VB potentials for WO3and ZnFe2O4were determined to be 2.75 and 1.25 V(vs NHE).According to the equation:ECB=EVB-Eg[46],the CB potentials for WO3and ZnFe2O4can thus be calculated to be 0.15 and 0.58 V(vs NHE),respectively.Accordingly, the band energy of WO3and ZnFe2O4before contact can be schemed(Fig.10a).

    Fig.9 Mott-Schottky plots(a,c)and XPS-VB spectra(b,d)of ZnFe2O4 and WO3

    Fig.10 Schematic diagram of band structure of WO3 and ZnFe2O4 before(a)and after(b)contact

    The change in elemental binding energies reflects the alteration in electron density and thus can be used to examine the direction of carrier transfer in heterojunction photocatalysts[47].The results of XPS analysis of 0.15ZFO/WO showed that the binding energies of W4f7/2(35.6 eV) and W4f5/2(37.8 eV) shifted to lower binding energies compared to the pure WO3(Fig.11)[28].This implies that the electrons in ZnFe2O4flow to WO3,and the built-in electric field is generated[48].

    Fig.11 XPS spectra of W4f of WO3 and 0.15ZFO/WO

    When ZnFe2O4is in contact with WO3, the electrons in ZnFe2O4flow towards WO3until the Fermi level flattens out due to the difference between Fermi levels[49].As a result, the electron band of ZnFe2O4bends upward while that of WO3bends downward.Under light irradiation, the VB electrons of WO3and ZnFe2O4are excited up and the separation process of the photoexcited charges can be drawn diagrammatically as Fig.10b.Under the action of the internal electric field, the holes in the VB of ZnFe2O4recombine with the electrons in the conduction band of WO3.The electrons in the conduction band of ZnFe2O4participate in the reduction reaction to reduce CO2to CO and CH4,whereas the holes in the VB of WO3participate in the oxidation reaction to oxidize H2O.Thus, an S-scheme charge transfer mode is formed between the heterojunctions of ZnFe2O4and WO3.The formation of S-scheme heterojunctions is not only beneficial for the spatial separation of photogenerated carriers but also promotes photocatalytic CO2reduction[34,50].To verify the S -scheme mode,the tests of Pt photo-deposition were performed on ZFO/WO.TEM and HRTEM images are shown in Fig.12.The Pt nanoparticles with lattice stripes of 0.226 nm, corresponding to the (111) crystallographic spacing of Pt, were present only on ZnFe2O4.It is reported that Pt nanoparticles are selectively deposited on the material zone with high electron density[51].The results show that the photogenerated electrons in the ZnFe2O4/WO3heterojunction are concentrated on ZnFe2O4, thus confirming the S-scheme charge transfer mode.

    Fig.12 TEM(a)and HRTEM(b)images of Pt/ZFO/WO

    To assess the efficiency of photogenerated electronhole separation and migration, transient photocurrent,and electrochemical impedance tests were conducted[52].Fig.13a presents the transient photocurrent response of the samples.Compared to single-phase WO3,xZFO/WO exhibited higher photocurrent intensities with the order: 0.15ZFO/WO > 0.2ZFO/WO > 0.25ZFO/WO >0.1ZFO/WO > 0.05ZFO/WO > WO3.The result suggests that the formation of a heterojunction is good for the separation of photogenerated carriers, especially when the ratio of two components is appropriate.The result is consistent with that reported previously[28].

    Fig.13 Transient i-t curves(a)and electrochemical impedance spectra(b)of WO3 and xZFO/WO(x=0.05,0.1,0.15,0.2,0.25)

    Similarly, the results of the measured electrochemical impedance spectra for the composites also indicate the efficient separation of photogenerated electron-hole pairs[53], as shown in Fig.13b.The improvement in the efficiency of photogenerated charge separation ultimately leads to an increase in the CO2reduction activity of the materials.

    3 Conclusions

    In summary, a series of ZnFe2O4/WO3heterojunctions were successfully constructed.Under irradiation,the optimal 0.15ZFO/WO sample exhibited the highest CO2reduction activity with the CO and CH4yields of 7.87 and 4.88 μmol·g-1, respectively.The enhanced activity can be attributed to the formation of heterojunction with an S - scheme charge transfer mode.This charge transfer mode facilitates the efficient separation of photogenerated carriers while preserving the hole oxidation capability of WO3.The results obtained herein offer a new avenue to synthesize S-scheme heterojunction ZnFe2O4-based materials for photocatalytic CO2reduction.

    Acknowledgments:We would like to thank the financial support of the Natural Science Foundation of Henan Province,China(Grant No.222300420526).

    猜你喜歡
    綠色
    節(jié)儉綠色
    品牌研究(2022年29期)2022-10-15 08:01:00
    綠色低碳
    品牌研究(2022年26期)2022-09-19 05:54:46
    綠色環(huán)保
    品牌研究(2021年31期)2022-01-25 06:41:46
    綠色環(huán)保
    品牌研究(2021年36期)2022-01-21 09:29:28
    綠色環(huán)保
    品牌研究(2021年34期)2022-01-18 10:54:04
    綠色環(huán)保
    品牌研究(2021年35期)2022-01-18 08:45:18
    綠色環(huán)保
    品牌研究(2021年20期)2022-01-11 04:07:56
    綠色環(huán)保
    品牌研究(2021年27期)2022-01-04 06:41:14
    綠色環(huán)保
    品牌研究(2021年17期)2021-12-09 05:06:54
    綠色大地上的巾幗紅
    海峽姐妹(2019年3期)2019-06-18 10:37:10
    麻豆乱淫一区二区| 简卡轻食公司| 赤兔流量卡办理| 寂寞人妻少妇视频99o| 久久久久久久久大av| 国产免费视频播放在线视频| 特大巨黑吊av在线直播| 麻豆成人av视频| 亚洲av国产av综合av卡| 久久综合国产亚洲精品| 如何舔出高潮| 少妇高潮的动态图| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 老师上课跳d突然被开到最大视频| 亚洲成色77777| 看非洲黑人一级黄片| 天美传媒精品一区二区| 久久久久久久大尺度免费视频| 91狼人影院| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 亚洲欧美日韩另类电影网站 | 亚洲av不卡在线观看| 97超碰精品成人国产| 午夜福利高清视频| 精品久久国产蜜桃| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 免费看a级黄色片| 久久久精品94久久精品| 秋霞在线观看毛片| 久久久久久久久久成人| 只有这里有精品99| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 久久精品熟女亚洲av麻豆精品| 免费观看在线日韩| 一级片'在线观看视频| 美女cb高潮喷水在线观看| 久久精品国产鲁丝片午夜精品| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 久久97久久精品| 天堂俺去俺来也www色官网| 人妻 亚洲 视频| 日韩欧美 国产精品| 一本色道久久久久久精品综合| 欧美日韩国产mv在线观看视频 | 国产欧美亚洲国产| 日韩制服骚丝袜av| 免费观看的影片在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲成色77777| 国产伦精品一区二区三区视频9| 国产精品久久久久久av不卡| 国产成人精品一,二区| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文资源天堂在线| 又大又黄又爽视频免费| 大香蕉97超碰在线| 亚洲精华国产精华液的使用体验| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 日韩一区二区三区影片| 色5月婷婷丁香| 亚洲欧美清纯卡通| 直男gayav资源| 一个人看的www免费观看视频| 国产伦精品一区二区三区视频9| videossex国产| 乱码一卡2卡4卡精品| 欧美日韩综合久久久久久| 亚洲综合色惰| 丝袜脚勾引网站| 可以在线观看毛片的网站| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 晚上一个人看的免费电影| 国产成人精品福利久久| 久久99热这里只有精品18| 能在线免费看毛片的网站| 免费黄频网站在线观看国产| 亚洲精品aⅴ在线观看| 一级片'在线观看视频| 亚洲成人久久爱视频| 亚洲精品一二三| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 美女视频免费永久观看网站| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 熟女人妻精品中文字幕| a级一级毛片免费在线观看| 婷婷色麻豆天堂久久| 六月丁香七月| 欧美一级a爱片免费观看看| 亚洲精品aⅴ在线观看| 久久久久久久午夜电影| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 老司机影院成人| 成人一区二区视频在线观看| 中文欧美无线码| 嫩草影院新地址| 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 国产精品人妻久久久影院| av女优亚洲男人天堂| 国产又色又爽无遮挡免| av国产免费在线观看| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 国产高潮美女av| 噜噜噜噜噜久久久久久91| 成人二区视频| 精品国产露脸久久av麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久九九精品影院| 欧美一级a爱片免费观看看| 在线观看av片永久免费下载| 国产成人免费无遮挡视频| 国产大屁股一区二区在线视频| 成人毛片60女人毛片免费| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 丝袜脚勾引网站| 91狼人影院| 成人国产麻豆网| 亚洲欧美清纯卡通| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 熟女av电影| 最新中文字幕久久久久| 国产黄色视频一区二区在线观看| 不卡视频在线观看欧美| 日日撸夜夜添| 国产69精品久久久久777片| 久久久久久久久久久免费av| 一级毛片电影观看| 免费黄网站久久成人精品| 免费观看在线日韩| 黄色怎么调成土黄色| 久久久久久久久久久丰满| 国内精品美女久久久久久| av一本久久久久| 免费看日本二区| 99精国产麻豆久久婷婷| 美女xxoo啪啪120秒动态图| 精品99又大又爽又粗少妇毛片| 人体艺术视频欧美日本| 久久久精品94久久精品| 97在线人人人人妻| av播播在线观看一区| 大片免费播放器 马上看| 亚洲人成网站高清观看| 免费观看a级毛片全部| 一本久久精品| 色5月婷婷丁香| 久久99热这里只有精品18| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 爱豆传媒免费全集在线观看| 日韩一区二区三区影片| 制服丝袜香蕉在线| 国产成人免费无遮挡视频| 国产成人a区在线观看| 亚洲精品视频女| 国精品久久久久久国模美| 成人美女网站在线观看视频| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 又爽又黄a免费视频| 日韩av不卡免费在线播放| 欧美zozozo另类| 99热这里只有是精品50| 少妇丰满av| 麻豆成人午夜福利视频| 岛国毛片在线播放| 搡老乐熟女国产| 九九爱精品视频在线观看| 永久免费av网站大全| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 日韩av不卡免费在线播放| 亚洲国产精品成人综合色| 青春草视频在线免费观看| 少妇人妻一区二区三区视频| 亚洲成人久久爱视频| 国产精品.久久久| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 久久热精品热| 美女cb高潮喷水在线观看| 亚洲国产精品999| 日日撸夜夜添| 国产欧美日韩一区二区三区在线 | 国产亚洲一区二区精品| 我的老师免费观看完整版| 免费观看性生交大片5| 中文字幕久久专区| 日韩中字成人| 少妇 在线观看| 国产白丝娇喘喷水9色精品| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 嫩草影院入口| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 色视频www国产| 99精国产麻豆久久婷婷| 舔av片在线| tube8黄色片| 久久国产乱子免费精品| 国内精品宾馆在线| 看免费成人av毛片| 搡老乐熟女国产| 国产综合懂色| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 在线a可以看的网站| 听说在线观看完整版免费高清| 国产综合懂色| 国产精品av视频在线免费观看| 亚洲精品成人av观看孕妇| 熟女电影av网| 亚洲精品影视一区二区三区av| 国产午夜精品一二区理论片| 亚洲av福利一区| 在线亚洲精品国产二区图片欧美 | 成人亚洲精品av一区二区| 午夜福利网站1000一区二区三区| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| xxx大片免费视频| 亚洲人成网站在线播| 男人舔奶头视频| 在线a可以看的网站| 国产一区二区亚洲精品在线观看| 成人美女网站在线观看视频| 国内揄拍国产精品人妻在线| 国产乱来视频区| 亚洲欧美一区二区三区黑人 | 国产精品女同一区二区软件| 中文字幕久久专区| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 日韩欧美 国产精品| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 日韩强制内射视频| 久久久精品免费免费高清| 七月丁香在线播放| 久久精品国产a三级三级三级| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 91精品伊人久久大香线蕉| 亚洲无线观看免费| 激情 狠狠 欧美| 久久久久久久亚洲中文字幕| www.色视频.com| 免费看日本二区| 日韩av不卡免费在线播放| 国产免费一区二区三区四区乱码| 国产成人freesex在线| 成人特级av手机在线观看| 涩涩av久久男人的天堂| www.色视频.com| 91精品国产九色| 亚洲av国产av综合av卡| 亚洲精品日本国产第一区| 白带黄色成豆腐渣| 欧美激情在线99| 日韩成人伦理影院| 一级毛片电影观看| 免费少妇av软件| 99久久精品热视频| 日本三级黄在线观看| 欧美日韩视频精品一区| 啦啦啦啦在线视频资源| 国产黄频视频在线观看| 99热6这里只有精品| 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看| 伦理电影大哥的女人| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 亚洲综合色惰| 国产日韩欧美亚洲二区| 99久久精品热视频| 亚洲精品一区蜜桃| 精品一区二区免费观看| 直男gayav资源| eeuss影院久久| 美女高潮的动态| 国产黄色免费在线视频| 国产美女午夜福利| 久久精品人妻少妇| 日韩 亚洲 欧美在线| 永久网站在线| 禁无遮挡网站| 亚洲国产高清在线一区二区三| 六月丁香七月| av福利片在线观看| 欧美日韩国产mv在线观看视频 | 一区二区av电影网| 丝瓜视频免费看黄片| 成人黄色视频免费在线看| 久久久久性生活片| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 欧美精品一区二区大全| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃 | 天天躁夜夜躁狠狠久久av| 老司机影院成人| 亚洲第一区二区三区不卡| 久久午夜福利片| 亚洲色图av天堂| 亚洲,一卡二卡三卡| 日日摸夜夜添夜夜添av毛片| 我要看日韩黄色一级片| 亚洲国产精品999| 搡老乐熟女国产| 赤兔流量卡办理| 色哟哟·www| 免费人成在线观看视频色| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 亚洲av.av天堂| 又爽又黄a免费视频| 99久久精品热视频| 国产亚洲av片在线观看秒播厂| 精品久久久久久电影网| 欧美极品一区二区三区四区| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 欧美日韩视频精品一区| 中文字幕制服av| 欧美日韩视频精品一区| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 成人国产av品久久久| 久久久久精品久久久久真实原创| 亚洲不卡免费看| 搡女人真爽免费视频火全软件| 国产精品蜜桃在线观看| 97人妻精品一区二区三区麻豆| 一级av片app| 中文欧美无线码| 热re99久久精品国产66热6| 久久99蜜桃精品久久| 成年免费大片在线观看| 国产 一区精品| 成人二区视频| 又大又黄又爽视频免费| av在线app专区| 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 色吧在线观看| 一级爰片在线观看| 国产一区二区亚洲精品在线观看| 国产精品不卡视频一区二区| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | 久热久热在线精品观看| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 国产欧美另类精品又又久久亚洲欧美| 欧美潮喷喷水| 欧美性猛交╳xxx乱大交人| 亚洲国产精品999| 视频中文字幕在线观看| 白带黄色成豆腐渣| 亚洲综合精品二区| 午夜福利网站1000一区二区三区| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 99热全是精品| av国产免费在线观看| 国产欧美日韩一区二区三区在线 | 日韩一区二区视频免费看| 国国产精品蜜臀av免费| 伦精品一区二区三区| 国产综合精华液| 日本熟妇午夜| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 婷婷色综合www| av在线蜜桃| 国产美女午夜福利| 国产精品无大码| 久久久久久久大尺度免费视频| 日韩精品有码人妻一区| 免费黄频网站在线观看国产| 精品久久久久久久久av| 日韩欧美一区视频在线观看 | 日本黄大片高清| 久久韩国三级中文字幕| 一个人看视频在线观看www免费| 午夜亚洲福利在线播放| 国产精品一区二区在线观看99| videossex国产| 天堂中文最新版在线下载 | 最近中文字幕2019免费版| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡| 亚洲精品第二区| 免费看a级黄色片| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 午夜免费男女啪啪视频观看| 嫩草影院新地址| 亚洲成色77777| 国产亚洲av嫩草精品影院| 欧美精品人与动牲交sv欧美| 青春草国产在线视频| 日韩中字成人| 最近最新中文字幕大全电影3| 在线观看三级黄色| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 欧美日韩综合久久久久久| 男人和女人高潮做爰伦理| 久久热精品热| 久热久热在线精品观看| av免费在线看不卡| 亚洲丝袜综合中文字幕| 偷拍熟女少妇极品色| 欧美激情久久久久久爽电影| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 日本色播在线视频| 老女人水多毛片| 国产精品三级大全| 中文资源天堂在线| 美女内射精品一级片tv| 三级国产精品欧美在线观看| 少妇熟女欧美另类| 少妇被粗大猛烈的视频| 亚洲在线观看片| 狂野欧美激情性xxxx在线观看| 日本熟妇午夜| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 亚洲国产成人一精品久久久| 爱豆传媒免费全集在线观看| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区成人| av.在线天堂| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 国产乱人偷精品视频| 深爱激情五月婷婷| 少妇高潮的动态图| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| 久久精品国产亚洲av天美| 又粗又硬又长又爽又黄的视频| 久久亚洲国产成人精品v| 一个人观看的视频www高清免费观看| 日本-黄色视频高清免费观看| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 国产探花极品一区二区| 高清欧美精品videossex| 国产黄色免费在线视频| 别揉我奶头 嗯啊视频| 日韩av免费高清视频| 特级一级黄色大片| 高清欧美精品videossex| 久久久午夜欧美精品| 熟妇人妻不卡中文字幕| 精品久久久久久久久av| 久久久久国产网址| 国产老妇伦熟女老妇高清| 欧美日韩在线观看h| 涩涩av久久男人的天堂| 噜噜噜噜噜久久久久久91| 国产精品.久久久| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 丝袜喷水一区| 免费大片18禁| 肉色欧美久久久久久久蜜桃 | 菩萨蛮人人尽说江南好唐韦庄| 可以在线观看毛片的网站| 免费观看性生交大片5| 天堂中文最新版在线下载 | 22中文网久久字幕| 久久久久久久国产电影| 国产黄a三级三级三级人| 国产精品99久久久久久久久| 亚洲综合精品二区| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 深爱激情五月婷婷| 精品熟女少妇av免费看| 亚洲精品中文字幕在线视频 | 麻豆久久精品国产亚洲av| 国产精品久久久久久精品古装| 亚洲一级一片aⅴ在线观看| 日韩成人伦理影院| 最近手机中文字幕大全| 91aial.com中文字幕在线观看| 亚洲av在线观看美女高潮| 一级毛片电影观看| 国产男女超爽视频在线观看| 51国产日韩欧美| 国产精品av视频在线免费观看| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| 中文天堂在线官网| 内地一区二区视频在线| 欧美国产精品一级二级三级 | 欧美激情国产日韩精品一区| 2021少妇久久久久久久久久久| 欧美日韩在线观看h| 国产精品麻豆人妻色哟哟久久| 一级毛片久久久久久久久女| 精品熟女少妇av免费看| 免费看日本二区| 欧美精品国产亚洲| 国产毛片a区久久久久| 国产人妻一区二区三区在| 美女主播在线视频| 国产欧美日韩精品一区二区| 免费观看无遮挡的男女| 国产乱人视频| 尤物成人国产欧美一区二区三区| 国产精品精品国产色婷婷| 国产精品久久久久久久电影| 天堂俺去俺来也www色官网| 亚洲精品乱久久久久久| 久久久久久久久久成人| 国产老妇伦熟女老妇高清| 黄片wwwwww| 男女无遮挡免费网站观看| 一二三四中文在线观看免费高清| 久久久亚洲精品成人影院| 日日啪夜夜爽| 国产综合精华液| 我的老师免费观看完整版| 国产欧美日韩一区二区三区在线 | 国产成人精品福利久久| 狂野欧美激情性bbbbbb| 七月丁香在线播放| 久久精品国产亚洲av涩爱| 国产老妇伦熟女老妇高清| 最新中文字幕久久久久| 欧美高清成人免费视频www| 一区二区三区乱码不卡18| 国产一区二区三区av在线| 青春草视频在线免费观看| 91精品伊人久久大香线蕉| 午夜福利在线在线| 99热这里只有是精品50| 欧美zozozo另类| 亚洲精品视频女| 丝袜喷水一区| 国精品久久久久久国模美| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 久久精品久久精品一区二区三区| 在线观看av片永久免费下载| 中文字幕人妻熟人妻熟丝袜美| 少妇裸体淫交视频免费看高清| 国产高潮美女av| 精品亚洲乱码少妇综合久久| 国产精品女同一区二区软件| 午夜福利网站1000一区二区三区| 久久精品国产亚洲av天美| 一级二级三级毛片免费看| 亚洲av日韩在线播放| 亚洲不卡免费看| 欧美一区二区亚洲| 国产高潮美女av| 尤物成人国产欧美一区二区三区| 午夜免费鲁丝| 国产乱人视频| 久久久a久久爽久久v久久| 国产av国产精品国产| 婷婷色麻豆天堂久久| 在线观看一区二区三区激情| 午夜福利视频精品| 日日啪夜夜撸| 久久久久久久亚洲中文字幕| 一个人观看的视频www高清免费观看| 国产亚洲5aaaaa淫片| 夜夜爽夜夜爽视频| 王馨瑶露胸无遮挡在线观看| 成人黄色视频免费在线看| 少妇的逼水好多|