• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有紅色熒光性質(zhì)的摻硒碳點(diǎn)在生物傳感和抗菌中的多功能應(yīng)用

    2024-01-20 03:55:48厲圓圓盧修聯(lián)劉欣雨
    關(guān)鍵詞:南京

    厲圓圓 盧修聯(lián) 劉欣雨 張 磊 景 蘇

    (南京工業(yè)大學(xué)化學(xué)與分子工程學(xué)院,南京 211816)

    0 Introduction

    Over the past decade,there has been a noteworthy rise in the utilization of carbon dots (CDs) in various biological and biomedical applications[1].This trend can be attributed primarily to their small size (1-20 nm), distinct optical characteristics, ease of functionalization, and biocompatibility[2].The ability to tune their functional properties gives CDs unique advantages in bioimaging, making them highly effective as nanocarriers for delivering various cargos in biosensing and tumor therapy applications[3].Among these properties,the fluorescence properties of CDs have sparked interest in their use as a replacement for semiconductor quantum dots[4].However, there are certain challenges associated with CDs that are composed exclusively of carbon atoms, such as poor solubility in water, low quantum yields, and mostly blue - wavelength emission[5].To address these challenges, doping carbon quantum dots with heteroatoms is a highly effective strategy to manipulate fluorescent properties[6].Interestingly,selenium is known to have semiconductor properties and can readily participate in redox reactions for reactive oxygen species regulation[7].Despite the crucial role of selenium in various biological processes,the application of selenium -doped carbon quantum dots in bioanalysis has not been extensively investigated.Xu group developed green-fluorescent seleniumdoped carbon quantum dots through the hydrothermal treatment of high-cost selenocystine under mild conditions[5].Su et al.reported ultrasmall selenium-doped carbon dots (Se-CDs) by using a reactor of internal circulation rotating packed bed, which emitted bright green luminescence under excitation of UV light[8].However, the significant background interference from fluorescent emissions in the green wavelength range hampers efficient biological imaging and other analytical processes[9].

    Herein, we have developed red-emission Se-CDs using a one-step hydrothermal method.Utilizing benzeneseleninic acid (BA) ando-phenylenediamine(o-PDA) as starting materials, the prepared Se-CDs have demonstrated three significant advantages(Scheme 1).Firstly, the presence of selenium has resulted in a red-shift in the fluorescence emission of CDs, shifting towards 675 nm.Secondly, the positively charged Se-CDs can effectively load negatively charged single-strand DNA (P1), showing an off-on sensing fluorescence signal to target molecule microRNA-21 (miR-21).Lastly, the redox activity of selenium has rendered Se-CDs effective in phototoxicity againstEscherichiacoli(E.coli)bacteria.

    Scheme 1 Schematic illustration of the synthesis of red-emission fluorescent Se-CDs and their applications in biosensing and antibacterial activities

    1 Experimental

    1.1 Reagent

    BA was purchased from energy chemical.o-PDA was purchased from Sinopharm Chemical Reagent Co.,Ltd.Phosphate - buffered saline (PBS, pH=7.4) and annealing buffer for DNA oligos (5X) were purchased from Beyotime Biotechnology.Deoxyribonuclease Ⅰ(DNase Ⅰ) was purchased from Beijing Solarbio Science&Technology Co.,Ltd.

    1.2 Synthesis of Se-CDs

    Se-CDs were synthesized through a hydrothermal method using BA ando-PDA as starting materials.In this process, a mixture of BA ando-PDA with a molar ratio of 2∶1 was dissolved in 10 mL of distilled water and sonicated until fully dissolved.Subsequently, the solution was transferred to a 15 mL polytetrafluoroethylene reaction vessel, and 5-6 drops of concentrated sulfuric acid were added.The mixture was then heated at 200 ℃for 12 h.After cooling to room temperature,the reaction mixture was transferred to a centrifuge tube and centrifuged at 10 000 r·min-1for 10 min to collect the supernatant.The supernatant was filtered through a 0.22 μm membrane and dialyzed against distilled water using a 500 Da dialysis bag for 6 h,with the dialysis solution changed every 2 h to remove any unreacted precursors.The Se-CDs were obtained by freeze-drying and stored in a refrigerator at 4 ℃until further use.DNA sequences and miR-21 (Table 1)were purchased from Sangon Biological Engineering Technology Co., Ltd.and Shanghai GenePharma Co.,Ltd.respectively.

    Table 1 Oligonucleotides used in this work

    1.3 Characterizations

    Transmission electron microscopic (TEM) images of Se-CDs were captured using a JEM-1400 (JEOL)operated at 100 kV.X-ray photoelectron spectroscopy(XPS) experiments were conducted using an ESCALAB 250 spectrometer (Thermo-VG Scientific Co., USA)equipped with an ultrahigh vacuum system.Theζpotentials and hydrodynamic diameters were determined using a Malvern Zetasizer Nano ZS90 instrument.Ultraviolet-visible-near infrared (UV-Vis-NIR)absorption spectra were measured using a UV-Vis spectrometer LAMBDA950 (PerkinElmer, Germany).Fourier transform infrared (FTIR) measurements were performed using a Nicolet iS50 spectrometer.Fluorescent spectra were recorded using an Edinburgh FLS1000 luminescence spectrometer.

    1.4 Preparation of P1-functionalized Se-CDs (Se-CDs-P1)

    34 μL of Se-CDs solution with varying concentrations (0, 50, 100, 200, 500, 800, 1 000 μg·mL-1) was combined with 200 μL of the dye-labeled recognition DNA(P1)at a concentration of 100μmol·L-1.The mixture was incubated in a dark environment with gentle shaking for 12 h while maintaining the appropriate temperature conditions.After incubation, the mixture was centrifuged at 15 000 r·min-1for 20 min.Subsequently,the resulting Se-CDs-P1 probe could be redispersed in PBS and stored at 4 ℃.

    1.5 Detection of miR-21

    200 μL of the Se-CDs-P1 solution (1.0 μmol·L-1equitant P1) was mixed with different concentrations of miR-21.The mixtures were incubated in the dark on a shaker at 37 ℃for 3 h while monitoring the changes in fluorescence using an excitation wavelength of 565 nm.Then, the DNase Ⅰsystem was introduced by adding 1.5 μL of DNase Ⅰ(10 kU·mL-1) into the detection solution.The solution was then incubated in the dark on a shaker for an additional 30 min.The changes in fluorescence were recorded once again using the same excitation wavelength of 565 nm.This experiment was repeated three times in parallel to ensure the reliability and accuracy of the results.

    1.6 Antibacterial activities of Se-CDs

    To investigate the antibacterial activities of Se-CDs, Se-CD solutions with concentrations of 0.01,0.07, 0.13, and 0.33 mg·mL-1were prepared.Subsequently, 0.1 mL of each Se-CD solution was added to 0.1 mL of anE.colimedium with an OD600(the optical density at 600 nm) value of approximately 0.2 in the wells of a 96-well plate.Control samples were also prepared using theE.colisolution without any Se-CDs.Upon the addition of Se-CD solutions to theE.colisamples, the OD600values were measured every hour using a microplate reader.

    2 Results and discussion

    2.1 Synthesis and characterization of Se-CDs

    Se-CDs were synthesized through a hydrothermal method using BA ando-PDA as precursors.The utilization of BA as a precursor for synthesizing Se-CDs offered several advantages, including accessibility,high selenium content,stability,reactivity,and compatibility with scalable synthesis methods.Specifically,BA is commercially available and relatively affordable compared to other selenium precursors,such as selenocysteine.Moreover, BA has a selenium content of 42.1%,surpassing the selenium precursor 3-selenocyanatopropan-1-amine, which contains 38.7% selenium[10].This higher selenium content enhanced the effectiveness of BA as a dopant for CDs.Additionally, BA demonstrated good stability, making it suitable for handling and storage[11].It was also reactive under appropriate reaction conditions, allowing for efficient conversion into selenium species during the synthesis process.This reactivity facilitated the formation of Se-CDs with high yield and quality.

    Following purification, the morphology of the Se-CDs was examined using TEM, as depicted in Fig.1A.The TEM analysis revealed an average diameter of(3.92±0.85) nm for the Se-CDs (Fig.1B).The FTIR(Fig.1C) analysis provided additional molecular confirmation regarding the composition and structure of the Se-CDs.It revealed a broad band around 3 134 cm-1,indicating the presence of hydroxyl (O—H) or amino(N—H)groups on the surface of the CDs.This observation provides important information on the functional groups present in the Se-CDs.These functional groups are derived from nitrogen or oxygen-containing groups in the carbon source.Furthermore, peaks observed at 1 623,1 520,1 400,1 020,and 760 cm-1can be attributed to stretching vibrations of C=O, C=C/C=N,C—N, C—O, and C—H bonds, respectively.To determine the doping state of selenium in Se-CDs, we performed FTIR and XPS analyses on the solid form of dried Se-CDs.XPS analysis further confirmed the composition of Se-CDs, which consists of four elements: C,N, O, and Se.The core levels corresponding to C1s(284.8 eV), N1s(401.4 eV), O1s(532.1 eV), and Se3d(56.8 eV) were identified (Fig.1D).In the high-resolution XPS spectra, specific peak assignments for various functional groups were observed.In the C1sspectrum(Fig.1G), peaks at 284.8, 286.4, and 289.0 eV were identified, corresponding to C—C, C—O, and C=O bonds, respectively.The N1sspectrum (Fig.1H) displayed peaks at 401.8, 400.9, and 399.7 eV, attributed to C=N, N—H, and C—N bonds, respectively.Similarly, in the O1sspectrum (Fig.1E), peaks at 533.3 and 532.0 eV were assigned to C—O and C=O bonds,respectively.The XPS spectrum of Se3ddisplayed peak positions at 56.1 and 54.9 eV,indicating the presence of selenium in different oxidation states (Se4+/Se2+)within the sample (Fig.1F).The peak at 56.1 eV suggested the existence of selenium in a higher oxidation state, potentially corresponding to selenium in the Se4+.Conversely,the peak at 54.9 eV indicated the presence of selenium in a lower oxidation state,potentially corresponding to selenium in the Se2+.This observation aligned with the typical binding energy range for Se in XPS spectra[12].Thus, XPS analysis offered valuable insights into the chemical bonding and composition of the Se-CDs, providing significant information about their molecular structure and elemental composition.Moreover, theζpotential of the Se-CDs was determined to beζ=(8.15±0.68)mV (Fig.1K).The positiveζpotential of the Se-CDs enhances their affinity towards negatively charged oligonucleotides, such as P1, facilitating their further binding and interaction.

    Fig.1 (A)TEM image and(B)hydrodynamic diameter distribution of Se-CDs;(C)FTIR spectra of Se-CDs,BA,and o-PDA;(D)XPS spectra and high-resolution(E)O1s,(F)Se3d,(G)C1s,and(H)N1s XPS spectra of Se-CDs;(I)UV-Vis absorption spectra of Se-CDs;(J)Dependence of fluorescence emission spectra of Se-CDs on excitation wavelength;(K)ζ potential of Se-CDs

    Then, spectroscopy methods were employed to characterize the optical properties of Se-CDs, revealing a fluorescence quantum yield (ΦF) of 4.69%.As shown in Fig.1I, Se-CDs demonstrated a broad absorption range from ultraviolet to near-infrared (200-800 nm),with absorption peaks observed at 250, 400, 480, and 615 nm.The two low-wavelength absorptions at 220 and 400 nm can be attributed to theπ→π* andn→π* transitions within the carbon core, respectively.The maximum excitation and emission wavelengths of Se-CDs were determined to be 560 and 675 nm,respectively(Fig.1J).The Se-CDs exhibited a remarkable redshift towards 675 nm,surpassing the red-shift observed in selenium-doped graphene quantum dots (563 nm)[13]and selenium-doped carbon quantum dots synthesized through the hydrothermal treatment of selenocystine(490 nm)[5].This significant red-shift demonstrated the superior fluorescent wavelength property of the Se-CDs synthesized from the precursor BA.Importantly, the fluorescence emission spectrum of Se-CDs remained consistent independent of the excitation wavelength.When the excitation wavelength increased from 500 to 560 nm, the maximum emission wavelength remained unchanged.The stability of the photoluminescence wavelength of CDs is crucial to ensure accurate results in specific detection applications[14].The aforementioned findings contributed to the successful synthesis of Se-CDs and provided valuable insights into their optical properties for potential applications.

    2.2 Biosensing of miR-21

    miR-21 is known to be dysregulated in various diseases, such as cancer, cardiovascular diseases, and neurodegenerative disorders[15].Its detection can serve as a biomarker for early disease diagnosis and prognosis[16].To enable the detection of miR-21, the Se-CDs need to be assembled with a complementary P1 sequence that recognizes miR-21.The large surface area and positive charge of CDs facilitate the easy modification of negatively charged P1 onto their surface through physical adsorption[17].This assembly process formed the Se - CDs - P1 probe.After removing the unmodified free P1,the obtained Se-CDs-P1 probe was verified by UV-Vis-NIR absorption and circular dichroism spectroscopy analysis(Fig.2A and 2B).The absorption spectra demonstrated that the functionalization of Se-CDs with the P1 sequence resulted in a distinct peak in the absorption intensity at 260 nm, which can be attributed to the characteristic absorption of DNA.In the circular dichroism spectra, the addition of Se-CDs-P1 caused a blue shift in the circular dichroism signal of P1,indicating the interaction between Se-CDs and the DNA bases.Notably, the negative peak around 250 nm exhibited more pronounced changes compared to the positive peak near 280 nm.This observation suggests that the binding between Se-CDs and the nucleic acid primarily impacts the conformation and stacking of the DNA bases, resulting in alterations in the CD spectra.These analyses provide supporting evidence for the interaction between Se-CDs and the P1 sequence.

    Fig.2 (A)UV-Vis absorption spectra of Se-CDs,3′-TMR-P1,and Se-CDs+3′-TMR-P1;(B)Circular dichroism spectra of 3′-TMR-P1 and Se-CDs+3′-TMR-P1;(C)Detection of quenching efficiency of Se-CDs for different fluorescent dye labeling sequences;Fluorescence response of 3′-TMR-P1 to(D)Se-CDs and(E)C-CDs at the excitation wavelength of 544 nm;(F)Indirect bandgap(Eg)calculation of Se-CDs and C-CDs

    To achieve sensitive signal transduction for miR-21 detection, we aimed to incorporate a reporter molecule into the P1 sequence.For this purpose, we conducted several optimization experiments.As shown in Fig.2C, the signal displayed the maximum response when the P1 sequence was modified with the TAMRA(TMR) reporter at the 3′ end of the sequence.Therefore, for subsequent detection, we employed 3′-TMRP1 as the optimal recognition moiety.It is worth highlighting that target-triggered signal transduction occurred because the signal unit of the Se-CDs-P1 probe alone was in the off state due to the quenching effect of selenium, which is similar to that of heavy atoms.However, in the case of CDs in the absence of doped selenium, the reporting unit signal on P1 would remain unaffected (Fig.2D and 2E).To validate this result, indirectEgcalculations were conducted on Se-CDs and non-Se-doped CDs.The indirectEgof both samples was determined using UV diffuse reflectance spectroscopy (Fig.2F).TheEgvalue of Se-CDs was 1.69 eV, whereas that of carbon quantum dots without selenium doping (C-CDs) was 1.95 eV.The lowerEgvalue of Se-CDs signified a stronger light absorption capacity, as photon energy can be utilized to induce electron transition to the conduction band[18].Therefore,Se-CDs are more effective in affecting the signal of TMR, thus accelerating their potential as functional carriers for DNA assembly and constructing sensors.

    Since we have demonstrated the signal switch of the Se-CDs-P1 probe, we performed the sensing measurements by using a well-established mimic of miR-21, which is referred to as the target P2 (named as P2)DNA, before introducing the actual miR-21 target.As shown in Fig.3A and 3B, a noticeable recovery in fluorescence intensity was observed after a 3 h incubation of Se-CDs-P1 with P2.As the concentrations of P2 increased, the fluorescence intensity of the probe solution exhibited a linear relationship with the logarithm of the P2 amount (Fig.3C and 3D), thereby confirming the sensing feasibility of Se-CDs.Subsequently, we introduced miR-21 to the Se-CDs+3′-TMR-P1 probe detection system.As depicted in Fig.3E and 3F, we observed a direct positive correlation between the fluorescence intensity of the probe and the concentration of the target miR-21 within the range of 0.2-10 μmol·L-1.The detection limit was 0.078 μmol·L-1at a signal-tonoise ratio of 3 with a regression coefficient of 0.994.To further enhance the sensitivity of the Se-CDs probe,we employed DNase Ⅰ.DNase Ⅰ is an enzyme responsible for degrading DNA molecules into smaller fragments[19].By incorporating DNase Ⅰinto the detection system, we aimed to improve the specificity and reliability of the assay by minimizing the impact of unwanted DNA contaminants[20].Furthermore, the addition of DNase Ⅰresulted in the detachment of 3′-TMR-P1 from the Se-CDs surface, thereby enhancing the chances of recognizing the target miR-21 (Fig.3G).The sensing performance demonstrated an improved detection limit of 6.76 nmol·L-1, and the method achieved a high level of accuracy with a regression coefficient of 0.998(Fig.3H and 3I).Notably,this detection limit was 11.5 times lower compared to the detection limit without DNase Ⅰ,revealing a substantial increase in sensitivity.Therefore, the Se-CDs-based probe showed promise in the sensitive detection of biomolecules when used in conjunction with the DNase Ⅰ-mediated amplification method.

    Fig.3 (A)Quenching effect of different concentrations of Se-CDs on 3′-TMR-P1;(B)Fluorescence recovery detection by adding P2 in Se-CDs+3′-TMR-P1;(C)Fluorescence response and(D)linear relationship of Se-CDs+3′-TMR-P1 with different concentrations of P2;(E)Fluorescence response relationship of Se-CDs+3′-TMR-P1 after treatment with different concentrations of miR-21 and(F)linear detection curve of miR-21 sequence(n=3);(G)Detection mechanism of DNase Ⅰ-mediated signal amplification;(H)Fluorescence response and (Ⅰ)linear relationship of Se-CDs-3′-TMR-P1 with different concentrations of miR-21 in the presence of DNase Ⅰ

    2.3 Antibacterial activities of Se-CDs

    For the demonstration of the antibacterial activities, Se-CD solutions at the concentrations of 0.01,0.07, 0.13, and 0.33 mg·mL-1were utilized as treating agents for the incubation ofE.coli.With the 560 nm light irradiation (among which Se-CDs have the strong absorption),the growth rate ofE.colidecreased with an increase in the weight concentration of Se-CDs, and final OD600values for various weight concentrations were respectively 0.37, 0.35, 0.31, 0.23, and 0.20 after culturing for 180 min (Fig.4A).An obvious inhibition ofE.coliwas observed at weight concentrations of 0.13 and 0.33 mg·mL-1of Se-CDs.As a control,E.colialone in the presence of Se-CDs revealed normal growth and the value of OD600reached 0.38 after the culture for 180 min.Moreover, in the absence of light irradation, with increasing concentrations of Se-CDs,there was a downward trend in the growth rate ofE.coli(Fig.4B).However, even after 180 min, no significant inhibition was observed, suggesting that Se-CDs exhibited a noticeable phototoxic inhibitory effect on bacteria.

    Fig.4 Effects of various concentrations of Se-CDs on E.coli growth in the(A)presence and(B)absence of light radiation

    The observed antibacterial activities of Se-CDs againstE.colican be attributed to several factors.Firstly, selenium can undergo redox reactions and generate reactive oxygen species (ROS)[21].These ROS,such as free radicals, can cause oxidative damage to the bacterial cell wall, nucleic acids, proteins, and membrane lipids.This oxidative stress disrupts essential cellular functions and leads to bacterial growth inhibition and cell death.Secondly, the photoactivation of Se-CDs under 560 nm light irradiation played a significant role in enhancing their antibacterial efficacy.The strong absorption of Se-CDs at this specific wavelength enabled efficient energy transfer, triggering the generation of ROS and amplifying their antimicrobial effects[22].This light - induced activation provided a targeted and controlled approach for bacterial inhibition, potentially minimizing any detrimental effects on surrounding healthy cells or tissues[23-24].Overall, the Se-CDs synthesized in this study demonstrated effective photo-antibacterial properties againstE.coli.

    3 Conclusions

    In summary, Se-CDs were successfully synthesized using a green hydrothermal method and the utilization of simple precursors like BA and amine derivatives.Se-CDs were thoroughly characterized using techniques such as TEM, XPS, and various spectroscopy methods.In terms of their spectral properties, the synthesized Se-CDs displayed a red-shift in fluorescence emission and a reduced indirectEgin comparison to non-Se-doped CDs.Furthermore, the positively charged Se-CDs can be efficiently modified by negatively charged P1.It is worth noting that the presence of selenium can impact the reporter unit of the DNA(P1).The developed Se-CDs-P1 probe demonstrated desirable sensing performance for miR-21 with the assistance of DNase Ⅰ-mediated amplification.Lastly,the redox-active selenium facilitated the Se-CDs to exhibit phototoxicity againstE.coli,making them effective in combating bacterial growth.The results of this work underscore the encouraging properties exhibited by Se-doped carbon nanomaterials, showcasing their significant potential for diverse bioanalytical applications.

    猜你喜歡
    南京
    南京比鄰
    “南京不會忘記”
    南京大闖關(guān)
    江蘇南京卷
    南京·九間堂
    金色年華(2017年8期)2017-06-21 09:35:27
    南京·鴻信云深處
    金色年華(2017年7期)2017-06-21 09:27:54
    南京院子
    電影(2017年1期)2017-06-15 16:28:04
    又是磷復(fù)會 又在大南京
    南京:誠實(shí)書店開張
    南京、南京
    国产精品国产av在线观看| 欧美在线一区亚洲| 国产深夜福利视频在线观看| 可以免费在线观看a视频的电影网站| 日韩视频在线欧美| 国产一区二区 视频在线| 少妇 在线观看| 久久九九热精品免费| 宅男免费午夜| 欧美国产精品va在线观看不卡| 久久午夜综合久久蜜桃| 免费高清在线观看视频在线观看| 国产在线观看jvid| 人人澡人人妻人| 成人手机av| 亚洲欧美激情在线| 只有这里有精品99| 国产精品香港三级国产av潘金莲 | 亚洲久久久国产精品| 无遮挡黄片免费观看| 国产精品久久久久久精品电影小说| 王馨瑶露胸无遮挡在线观看| e午夜精品久久久久久久| 国产成人精品在线电影| av欧美777| 国产精品久久久久久精品古装| 18在线观看网站| 国产高清不卡午夜福利| 日韩av免费高清视频| bbb黄色大片| 肉色欧美久久久久久久蜜桃| 十八禁网站网址无遮挡| 岛国毛片在线播放| 久久鲁丝午夜福利片| 国产黄色视频一区二区在线观看| 99九九在线精品视频| 免费女性裸体啪啪无遮挡网站| 久久国产精品大桥未久av| 免费看不卡的av| 99国产精品免费福利视频| 黑丝袜美女国产一区| 久久女婷五月综合色啪小说| 国产在线免费精品| 亚洲人成77777在线视频| 天堂中文最新版在线下载| 黄频高清免费视频| 麻豆av在线久日| 国产成人影院久久av| 男女下面插进去视频免费观看| 久久99一区二区三区| 伊人亚洲综合成人网| 观看av在线不卡| 国产麻豆69| 18禁裸乳无遮挡动漫免费视频| 国产国语露脸激情在线看| 日本色播在线视频| 91国产中文字幕| 麻豆国产av国片精品| av福利片在线| 男人操女人黄网站| 又大又黄又爽视频免费| 亚洲精品乱久久久久久| 国产97色在线日韩免费| 国产一区二区在线观看av| 18禁黄网站禁片午夜丰满| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美精品济南到| 国产成人一区二区三区免费视频网站 | 免费一级毛片在线播放高清视频 | 欧美精品高潮呻吟av久久| 亚洲国产毛片av蜜桃av| 久久亚洲精品不卡| 久久亚洲国产成人精品v| 国产av一区二区精品久久| 高清视频免费观看一区二区| 免费看不卡的av| 十八禁网站网址无遮挡| 欧美激情高清一区二区三区| 亚洲黑人精品在线| 麻豆国产av国片精品| 午夜av观看不卡| 国产精品一国产av| 亚洲天堂av无毛| 两人在一起打扑克的视频| 91麻豆av在线| √禁漫天堂资源中文www| 亚洲国产中文字幕在线视频| 多毛熟女@视频| 男男h啪啪无遮挡| netflix在线观看网站| 中文字幕av电影在线播放| 9191精品国产免费久久| 午夜日韩欧美国产| 男人爽女人下面视频在线观看| 国产视频一区二区在线看| 亚洲 国产 在线| 国产一区有黄有色的免费视频| 欧美黑人精品巨大| 在线精品无人区一区二区三| 国产精品九九99| 肉色欧美久久久久久久蜜桃| 日本av免费视频播放| 少妇人妻久久综合中文| 777米奇影视久久| 国产精品一区二区在线不卡| 一本大道久久a久久精品| 另类精品久久| 赤兔流量卡办理| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕大全免费视频 | 大片免费播放器 马上看| 超碰成人久久| 欧美+亚洲+日韩+国产| 男女午夜视频在线观看| 国产av一区二区精品久久| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 婷婷色综合大香蕉| 国产男女超爽视频在线观看| 18禁国产床啪视频网站| 欧美日韩亚洲综合一区二区三区_| 美女主播在线视频| 91麻豆av在线| 国产成人av激情在线播放| 男男h啪啪无遮挡| 老司机影院成人| 欧美日韩亚洲高清精品| 美女午夜性视频免费| 亚洲国产看品久久| 久久久久精品人妻al黑| 岛国毛片在线播放| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区欧美精品| 美女主播在线视频| 又粗又硬又长又爽又黄的视频| 99国产精品99久久久久| 午夜两性在线视频| 久久亚洲精品不卡| 久久国产精品大桥未久av| 久久天躁狠狠躁夜夜2o2o | 高清视频免费观看一区二区| 在线av久久热| 丝袜脚勾引网站| 宅男免费午夜| 国产成人欧美在线观看 | 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 免费看十八禁软件| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 精品免费久久久久久久清纯 | 国产亚洲欧美在线一区二区| 亚洲精品国产一区二区精华液| 久久精品久久久久久久性| 90打野战视频偷拍视频| 欧美另类一区| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 亚洲中文日韩欧美视频| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 国产视频首页在线观看| 日日夜夜操网爽| 母亲3免费完整高清在线观看| 久久九九热精品免费| 国产欧美日韩综合在线一区二区| 最新的欧美精品一区二区| bbb黄色大片| 激情五月婷婷亚洲| 真人做人爱边吃奶动态| 久久久欧美国产精品| 日本色播在线视频| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av涩爱| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 一二三四社区在线视频社区8| 首页视频小说图片口味搜索 | 久久久亚洲精品成人影院| 久久久久久久精品精品| 国产主播在线观看一区二区 | 欧美av亚洲av综合av国产av| 久久性视频一级片| 在现免费观看毛片| 国产精品一区二区在线观看99| 一级片'在线观看视频| 性色av一级| 欧美日韩亚洲综合一区二区三区_| 男女高潮啪啪啪动态图| 丝瓜视频免费看黄片| 母亲3免费完整高清在线观看| av在线播放精品| 国产在线观看jvid| 日本午夜av视频| 老司机亚洲免费影院| 尾随美女入室| 可以免费在线观看a视频的电影网站| 亚洲五月色婷婷综合| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 晚上一个人看的免费电影| 国产福利在线免费观看视频| 高清不卡的av网站| 天天影视国产精品| 人人妻人人澡人人看| 美女国产高潮福利片在线看| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 热re99久久精品国产66热6| 色94色欧美一区二区| 日本猛色少妇xxxxx猛交久久| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| 精品国产乱码久久久久久男人| 国产精品人妻久久久影院| 久久精品亚洲熟妇少妇任你| 日韩电影二区| 操出白浆在线播放| 精品国产超薄肉色丝袜足j| 精品国产一区二区三区久久久樱花| www.熟女人妻精品国产| 欧美精品高潮呻吟av久久| 国产精品一国产av| 麻豆乱淫一区二区| 在线看a的网站| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 国产国语露脸激情在线看| 亚洲专区国产一区二区| 久久国产精品大桥未久av| 久久国产精品人妻蜜桃| 80岁老熟妇乱子伦牲交| 国产成人欧美在线观看 | 成人国产av品久久久| 国产一区二区 视频在线| tube8黄色片| 亚洲色图 男人天堂 中文字幕| 亚洲精品日本国产第一区| 美女高潮到喷水免费观看| 男女高潮啪啪啪动态图| 日韩电影二区| 国产精品成人在线| 男女国产视频网站| 中文欧美无线码| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 国产黄色免费在线视频| 激情五月婷婷亚洲| 国产成人a∨麻豆精品| 亚洲五月色婷婷综合| 久久亚洲精品不卡| 美女大奶头黄色视频| av一本久久久久| 午夜视频精品福利| 亚洲精品自拍成人| 欧美 亚洲 国产 日韩一| 亚洲国产日韩一区二区| 欧美精品av麻豆av| 久久久精品免费免费高清| 操美女的视频在线观看| 免费在线观看影片大全网站 | www.熟女人妻精品国产| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品在线美女| 汤姆久久久久久久影院中文字幕| a级毛片黄视频| 午夜福利在线免费观看网站| 国产99久久九九免费精品| 午夜免费男女啪啪视频观看| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 在线观看免费视频网站a站| 日本午夜av视频| 亚洲精品第二区| 肉色欧美久久久久久久蜜桃| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| av天堂久久9| 天天躁狠狠躁夜夜躁狠狠躁| 日韩制服骚丝袜av| 纯流量卡能插随身wifi吗| 视频在线观看一区二区三区| 手机成人av网站| 亚洲人成77777在线视频| 一级毛片女人18水好多 | 日日爽夜夜爽网站| 亚洲,欧美,日韩| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 黄色 视频免费看| 一级,二级,三级黄色视频| av不卡在线播放| 成人免费观看视频高清| 一区二区三区四区激情视频| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| av视频免费观看在线观看| 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠躁躁| 观看av在线不卡| 丰满饥渴人妻一区二区三| 永久免费av网站大全| av国产久精品久网站免费入址| 在线天堂中文资源库| 欧美精品av麻豆av| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 亚洲成人免费av在线播放| 少妇人妻 视频| 少妇粗大呻吟视频| 日本色播在线视频| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 黄网站色视频无遮挡免费观看| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 免费观看人在逋| 亚洲国产最新在线播放| 99精国产麻豆久久婷婷| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 99久久综合免费| 久久鲁丝午夜福利片| 我的亚洲天堂| 日本黄色日本黄色录像| 丁香六月欧美| 色94色欧美一区二区| 亚洲色图综合在线观看| 日韩,欧美,国产一区二区三区| 在线观看国产h片| 国产主播在线观看一区二区 | www.999成人在线观看| 精品一区在线观看国产| 国产91精品成人一区二区三区 | 国产一区亚洲一区在线观看| 久久久国产欧美日韩av| 可以免费在线观看a视频的电影网站| 新久久久久国产一级毛片| 久久久精品国产亚洲av高清涩受| 成年av动漫网址| 亚洲人成电影免费在线| www.自偷自拍.com| 亚洲av成人精品一二三区| 少妇粗大呻吟视频| 男女边摸边吃奶| 黑人欧美特级aaaaaa片| 国产淫语在线视频| 日本午夜av视频| 蜜桃在线观看..| 三上悠亚av全集在线观看| 亚洲第一av免费看| 久久久久久久久久久久大奶| 大码成人一级视频| 成人影院久久| 免费日韩欧美在线观看| 午夜免费观看性视频| 丝袜美腿诱惑在线| 久久精品久久久久久噜噜老黄| 人人妻人人添人人爽欧美一区卜| 欧美精品啪啪一区二区三区 | 99国产精品99久久久久| 亚洲精品一卡2卡三卡4卡5卡 | 少妇精品久久久久久久| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 亚洲国产成人一精品久久久| 男女之事视频高清在线观看 | 亚洲 国产 在线| 男的添女的下面高潮视频| 9色porny在线观看| 国产欧美日韩一区二区三区在线| 国产精品.久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲中文字幕日韩| 久久国产精品大桥未久av| 爱豆传媒免费全集在线观看| 欧美日韩精品网址| avwww免费| 别揉我奶头~嗯~啊~动态视频 | 欧美成人午夜精品| 波野结衣二区三区在线| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 操出白浆在线播放| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 精品国产乱码久久久久久小说| 欧美日韩av久久| 久久鲁丝午夜福利片| 国产精品 欧美亚洲| 免费在线观看影片大全网站 | 人人妻人人添人人爽欧美一区卜| 久热这里只有精品99| 99热网站在线观看| 亚洲三区欧美一区| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 悠悠久久av| 99国产精品一区二区蜜桃av | 免费黄频网站在线观看国产| 如日韩欧美国产精品一区二区三区| 一本大道久久a久久精品| 国产淫语在线视频| 精品国产乱码久久久久久小说| 亚洲精品日本国产第一区| 国产亚洲欧美在线一区二区| 国产高清videossex| 黑人巨大精品欧美一区二区蜜桃| 男的添女的下面高潮视频| 啦啦啦视频在线资源免费观看| 欧美在线黄色| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 叶爱在线成人免费视频播放| 成人三级做爰电影| 韩国精品一区二区三区| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 天天操日日干夜夜撸| 丰满少妇做爰视频| 亚洲久久久国产精品| 欧美日韩亚洲国产一区二区在线观看 | 首页视频小说图片口味搜索 | 精品国产一区二区久久| 女人爽到高潮嗷嗷叫在线视频| 91精品三级在线观看| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 国产免费福利视频在线观看| 9191精品国产免费久久| 日韩,欧美,国产一区二区三区| 亚洲欧美成人综合另类久久久| 精品国产超薄肉色丝袜足j| 久久久久精品人妻al黑| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 国产在线视频一区二区| 国产97色在线日韩免费| 久久久久久免费高清国产稀缺| 免费观看人在逋| 精品少妇久久久久久888优播| 青春草视频在线免费观看| 国产欧美日韩综合在线一区二区| 久热爱精品视频在线9| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 视频在线观看一区二区三区| 亚洲国产欧美日韩在线播放| e午夜精品久久久久久久| 精品国产一区二区三区四区第35| 欧美精品av麻豆av| 欧美激情极品国产一区二区三区| 我要看黄色一级片免费的| 人成视频在线观看免费观看| 韩国高清视频一区二区三区| 黄色片一级片一级黄色片| 涩涩av久久男人的天堂| 男女高潮啪啪啪动态图| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 中文乱码字字幕精品一区二区三区| 国产成人影院久久av| 悠悠久久av| 最新在线观看一区二区三区 | 性少妇av在线| 欧美97在线视频| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区综合在线观看| 精品国产国语对白av| 亚洲七黄色美女视频| 久久久久国产精品人妻一区二区| 美女主播在线视频| 一个人免费看片子| 国产男女内射视频| 久久av网站| 中文字幕av电影在线播放| 一级毛片黄色毛片免费观看视频| 久久久久国产精品人妻一区二区| 99热国产这里只有精品6| 午夜福利视频在线观看免费| svipshipincom国产片| 欧美人与善性xxx| 亚洲成人手机| 99国产精品一区二区蜜桃av | 各种免费的搞黄视频| 欧美黑人精品巨大| 黄色a级毛片大全视频| 美女脱内裤让男人舔精品视频| 精品福利观看| 久9热在线精品视频| 91成人精品电影| 国产精品 欧美亚洲| 在线天堂中文资源库| 夜夜骑夜夜射夜夜干| 日韩av不卡免费在线播放| 另类精品久久| 在线观看免费午夜福利视频| 青春草视频在线免费观看| 亚洲欧美日韩高清在线视频 | 国产精品.久久久| 久久久久网色| 香蕉国产在线看| 精品亚洲成a人片在线观看| 亚洲国产中文字幕在线视频| 亚洲国产日韩一区二区| 国产精品久久久久成人av| 视频在线观看一区二区三区| 99久久人妻综合| 大片电影免费在线观看免费| www.999成人在线观看| 欧美乱码精品一区二区三区| 亚洲精品日韩在线中文字幕| 黑人巨大精品欧美一区二区蜜桃| 久久久精品94久久精品| 国产亚洲欧美在线一区二区| 国产精品99久久99久久久不卡| 国产熟女午夜一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频高清一区二区三区二| 最近中文字幕2019免费版| 久久久久国产精品人妻一区二区| 日韩制服骚丝袜av| 亚洲人成网站在线观看播放| 99国产精品99久久久久| 日韩av不卡免费在线播放| 欧美+亚洲+日韩+国产| 国产亚洲欧美精品永久| 国产在线免费精品| 国产精品一区二区精品视频观看| 精品国产一区二区久久| 久久天堂一区二区三区四区| 大片免费播放器 马上看| 日韩人妻精品一区2区三区| 久久久久久人人人人人| 大片电影免费在线观看免费| av有码第一页| 国产精品一区二区精品视频观看| 国产精品秋霞免费鲁丝片| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 大型av网站在线播放| 女人被躁到高潮嗷嗷叫费观| www.精华液| 美女高潮到喷水免费观看| 亚洲欧美中文字幕日韩二区| 99热国产这里只有精品6| 精品人妻在线不人妻| 在线观看免费高清a一片| 国产精品久久久久久人妻精品电影 | 人人澡人人妻人| 免费女性裸体啪啪无遮挡网站| 啦啦啦啦在线视频资源| 久久久久国产一级毛片高清牌| 亚洲精品美女久久av网站| 欧美日韩av久久| 亚洲国产av影院在线观看| 久久天堂一区二区三区四区| 日韩免费高清中文字幕av| 亚洲五月婷婷丁香| 午夜福利视频在线观看免费| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 亚洲av综合色区一区| 一边亲一边摸免费视频| 亚洲av电影在线进入| 亚洲精品成人av观看孕妇| 日本午夜av视频| 久热这里只有精品99| 亚洲国产最新在线播放| 国产精品偷伦视频观看了| 日本欧美视频一区| 日日爽夜夜爽网站| 日韩av不卡免费在线播放| 涩涩av久久男人的天堂| xxxhd国产人妻xxx| 天天操日日干夜夜撸| 国产深夜福利视频在线观看| av天堂久久9| 男女之事视频高清在线观看 | 免费人妻精品一区二区三区视频| 亚洲成人免费av在线播放| 天堂8中文在线网| 国产成人精品久久久久久| 久久久久久久大尺度免费视频| 国产激情久久老熟女| 亚洲人成77777在线视频| 久久久精品区二区三区| 国产亚洲欧美精品永久| 老司机影院毛片| 欧美亚洲日本最大视频资源| 亚洲国产中文字幕在线视频| 欧美日韩综合久久久久久| 久久久精品区二区三区| 免费久久久久久久精品成人欧美视频| 美女高潮到喷水免费观看| 国产日韩欧美视频二区| 各种免费的搞黄视频| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 日本av免费视频播放| 久久精品熟女亚洲av麻豆精品| 亚洲国产欧美网| 亚洲五月婷婷丁香| av欧美777| 人妻人人澡人人爽人人| 欧美日韩福利视频一区二区| 欧美老熟妇乱子伦牲交|