• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Zeolite Crystal Size on the Catalytic Performance of Zn/ZSM-5 Zeolite for Olefin Conversion

    2024-01-20 10:43:04YUMengnanPANTaoJUYanaZHANGRanWUPeiWUZhijie
    石油學(xué)報(石油加工) 2024年1期

    YU Mengnan,PAN Tao,JU Ya′na,ZHANG Ran,WU Pei,WU Zhijie

    (1.State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC,China University of Petroleum, Beijing 102249,China;2.Petrochemical Research Institute,PetroChina,Beijing 100195,China)

    Abstract:Converting olefins in FCC gasoline into high-octane aromatics or iso-alkanes is an effective approach to produce clean gasoline in line with China Ⅵ vehicle emission standard. Zn-modified ZSM-5 (Zn/ZSM-5)zeolite has been regarded as the best catalyst for olefin aromatization. The structure-activity relationship between the acid properties of ZSM-5 zeolites with different crystal sizes and the selective conversion of olefins was systematically explored by adjusting the crystal size of zeolite. The XRD,SEM,TEM,UV-vis,XPS,F(xiàn)T-IR and NH3-TPD characterization results show that the crystal size of ZSM-5 has an influence on the distribution of acid sites inside and outside the zeolite,and Zn/ZSM-5 zeolite with the smallest crystal size of 100—200 nm has the highest relative content of ZnOH+ active species (57% of all Zn species)and a lower ratio of Br?nsted acid to Lewis acid (AB/AL=0.15). At the reaction temperature of 350 ℃,liquid volume space velocity (LHSV)of 1.5 h-1,volume ratio of H2(g)to 1-hexene(1)of 600,and hydrogen pressures of 0.1 and 2.0 MPa,the Zn/ZSM-5 zeolite catalyst exhibits a high aromatics selectivity (17.2%)and a high iso-alkane selectivity (50.0%)in the hydro-conversion of 1-hexene,respectively. The data indicate that the selective conversion of olefins in FCC gasoline into high-octane components can be promoted by reducing the crystal size of ZSM-5 zeolite.

    Key words:ZSM-5 zeolite;olefin;aromatization;gasoline;acid catalysis

    Reducing olefin mass fraction in gasoline by 15% has been included in China Ⅵ standard gasoline,in which the hydrocarbon and NOxemissions can be reduced by 6%[1-2]. The selective conversion of olefins to aromatics oriso-alkanes with a high octane number has been regarded as one of the best routes to reduce olefin content and recover octane number of FCC gasoline. Zn modified ZSM-5 (Zn/ZSM-5)zeolite based catalysts are frequently reported because of its characteristics of high aromatization activity and selectivity.

    The incorporation of Zn into ZSM-5 zeolite micropore can react Br?nsted (B)acid site and turn it to Lewis (L)acid (ZnOH+),in which L acid sites enroll in the dehydrogenation reaction and hydrogen transfer reaction for olefin aromatization[3-4]. However,the good capability of hydrogen transfer of Zn/ZSM-5 zeolite also leads to the formation of polycyclic aromatics and then deactivation by coking. Thus,ZSM-5 zeolite with small crystal size has been proposed to overcome the problem,in which the diffusion of reactants and products are improved by reducing diffusion distance within zeolite and the external surface area of zeolite is promoted for coke deposition.

    For the Zn modified zeolite obtained by impregnation,a small zeolite crystal size makes more Zn species access to B acid sites,leading to more metal L acid (ZnOH+)sites[5]. Thus,the relation between reactivity and stability of Zn modified zeolite and crystal size is complex and variable by the change of texture properties,acid types and amounts. Comparing with the Zn/ZSM-5 with different crystal size (250—2000 nm),Niu et al.[6]found that the sample with the smallest crystal size possessed most active metal species for aromatization. Li et al.[7]found that ZSM-5 zeolite with intra-crystalline mesopores created by alkali treatment could promote the distribution of Zn species and reacted with B acid sites into L acid (ZnOH+)sites for aromatization. Clearly,the access of B acid sites to Zn species is the key to control aromatization over Zn/ZSM-5. Moreover,our previous work showed that ratio of B/L acid sites,fractions of B acid sites within micropore and strong acid sites were sensitive to the zeolite crystal size,in which the size screening of ZSM-5 zeolites for methanol to propylene was highly required to realize high propylene selectivity and reaction stability[8]. Here,we attempted to clarify the effect of zeolite crystal size on the olefin conversion over Zn/ZSM-5 zeolite for olefin reduction in FCC gasoline via hydro-upgrading treatment. 1-Hexene,the typical olefin component in heavy FCC gasoline from PetroChina,was used as probe to screen suitable zeolite crystal size for Zn/ZSM-5. The relation between zeolite crystal size and olefin aromatization/isomerization performance was focused.

    1 Experiment

    1.1 Materials

    Sodium aluminate (NaAlO2,45% Al2O3),pseudo boehmite (AlOOH·nH2O,65% Al2O3),and zinc nitrate hexahydrate (Zn(NO3)2·6H2O,99%)were purchased from Tianjin Kermel Chemical Reagent Co. Ltd. Silica gel (0.075—0.150 mm, 99% SiO2)was purchased from Qingdao Haiyang Chemical Co. Ltd. Sodium hydroxide (NaOH,99%)and ammonium chloride (NH4Cl,>99% purity)were purchased from Sinopharm Chemical Reagent Co. Ltd. 2,6-di-tert-butylpyridine (C8H18O2,DTBP,98%),pyridine (C5H5N,98%)and cobalt nitrate (Co(NO3)2·6H2O,99%)were purchased from Alfa Aesar. Tetrapropylammonium bromide (C12H28BrN,98%)and 1-hexene (C6H12,98%)were purchased from Aladdin Reagent (Shanghai)Co. Ltd. All samples were used as received.

    1.2 Synthesis of zeolite

    Three ZSM-5 zeolites with a silicate-alumino gel composition ofn(SiO2)∶n(Al2O3)∶n(H2O)∶n(Na2O)∶n(TPABr)=100∶2∶823∶9∶9 were prepared by a two-step crystallization method,respectively[8]. ZSM-5A was obtained by nucleation (pre-crystallization)at 100 ℃ for 36 h and then crystallization at 170 ℃ for 24 h. ZSM-5B was prepared by nucleation (pre-crystallization)at 100 ℃ for 12 h and then crystallization at 170 ℃ for 24 h. ZSM-5C was obtained by the direct crystallization at 24 h. The commercial ZSM-5 zeolite from PetroChina with a molar ratio of SiO2/Al2O3at 60 was used as reference and recorded as ZSM-5D. Zn/ZSM-5 zeolite was prepared by wetness impregnation with 3.2% theoretical ZnO loading.

    1.3 Characterization

    The element composition of sample was analyzed by X-ray fluorescence (XRF)of PANalytical AxiosMAX. The structure of zeolite was characterized by Bruker D8 Advance Powder X-ray diffractometer with Cu-Kαradiation (λ=0.15418 nm)and recorded in the 2θrange of 5° to 50° at 5°/min scanning speed. The surface analysis of zeolites was characterized by the X-ray photoelectron spectroscopy (XPS)with a Fluorolog-Tau-3 (ISA-USA),and the binding energies were calibrated referring to C 1s peak at 284.6 eV. Scanning electron micrograph (SEM)images were collected on GeminiSEM 300 at 5—20 kV. The transmission electron micrograph used FEI Tecnai G2 F20 with an acceleration voltage of 200 kV. The UV-Vis spectra were collected on UV-1800-SPC ultraviolet spectrometer of Shanghai Meiji instrument Co. Ltd.,and recorded in the range of 200—800 nm.

    Nitrogen adsorption-desorption measurements used on Micromeritics ASAP 2020 multi-function adsorption instrument. The specific surface area and the pore size distribution were calculated by Brunauer-Emmett-Teller (BET)and Barrett-Joyner-Halenda (BJH)method,respectively.

    The temperature-programmed desorption of ammonia (NH3-TPD)was performed on a Huasi DAS-7000 chemisorption analyzer. The catalyst of 0.1 g was treated at 600 ℃ with flowing N2gas stream (30 mL/min)for 30 min,then cooled to 100 ℃,and the NH3gas stream (30 mL/min)was switched for 0.5 h. Finally,after switching back to N2(30 mL/min)atmosphere for 30 min,the amount of desorbed NH3was recorded by a thermal conductivity detector (TCD)with the temperature increased from 100 ℃ to 600 ℃ at 10 ℃/min ramping rate.

    The Fourier Transform infrared spectra of pyridine (FTIR-Py)was collected on a Bruker Tensor Ⅱ equipped with a liquid-nitrogen cooled mercury-cadmium-telluride (MCT)detector. The wafer samples were pretreated at 10-3Pa and 350 ℃ for 1 h. Then the temperature dropped to 100 ℃ to adsorb pyridine for 30 min,then degassed for 30 min. Finally,the pyridine was desorbed by rising temperature and the spectra were recorded at 200 ℃ and 350 ℃,respectively.

    1.4 Acid titration experiment

    The 2,6-di-tert-butylpyridine (DTBP)titration experiment was carried out in a fixed-bed reactor of Beijing Kunlun Yongtai Technology Co. Ltd. In the reaction of dehydration of methanol to dimethyl ether (DME),adding DTBP to calculate the content of B acid on the pore mouth and external surface since the bulky DTBP molecule has limited accessibility to B acid sites located in micropores of zeolites[9-10]. The fraction of B acid sites on the pore mouth and external surface (fsum)was calculated by the conversion of methanol before (x1)and after (x2) DTBP titration (formula (1)).

    (1)

    1.5 Catalytic reaction

    The selective conversion of 1-hexene was performed in a fixed-bed reactor,with the stainless-steel reaction tube (9 mm ID,450 mm length),under 2 MPa or 0.1 MPa hydrogen pressure,respectively. 1-Hexene and H2were pumped into a reactor at 350 ℃ and with liquid volume space velocity (LHSV)of 1.5 h-1,and the volume ratio of H2to 1-hexene was set to 600. The products were analyzed by gas chromatography (GC-7820),connected with HP-PONA column (50 m×0.2 mm×0.5 μm). The conversion of the reactants (x,%)and the mass selectivity of the products (s,%)were calculated according to the formula (2)and (3).

    (2)

    (3)

    w0,inandw0,out(%)were the mass fraction of the reactant at the inlet and outlet,respectively,andwi(%)represented the mass fraction of a product.

    The hydrogen transfer index (HTI)was defined as formula (4).

    (4)

    2 Results and discussions

    2.1 Structure and texture properties of zeolites

    Fig.1 shows the XRD patterns of ZSM-5 and Zn/ZSM-5 zeolites. All samples only show MFI topological structure characteristic diffraction peaks, indicating that ZSM-5 zeolites were successfully synthesized. The disappearance of characteristic diffraction peaks of ZnO at 31.8° and 36.3° may suggest the good dispersion of Zn species[11]. Similar crystallinity,bulk ratio of Si/Al and ZnO loading were obtained among these Zn/ZSM-5 zeolites (Table 1).

    Fig.1 XRD patterns of ZSM-5 and Zn/ZSM-5 zeolites(a)ZSM-5;(b)Zn/ZSM-5

    Table 1 Crystallinity,crystal size and composition of Zn/ZSM-5 zeolites

    Fig.2 shows the SEM and TEM images of Zn/ZSM-5 zeolite samples. Zn/ZSM-5A and Zn/ZSM-5B are characteristic of crystal assembly morphology with 100—200 nm and 400—500 nm,respectively. Some inter-crystalline mesopores are randomly observed in the TEM images of Zn/ZSM-5A and Zn/ZSM-5B zeolites,agreed with our previous work[8]. Zn/ZSM-5C and Zn/ZSM-5D zeolites show clear crystal boundary and large crystal size at 600—1000 nm and 3000—4000 nm respectively. The increase of crystal size is agreed with the crystallinity shown in Table 1,in which the relative crystallinity of Zn/ZSM-5 zeolite increases from 100% to 124% with the crystal size from 100—200 nm to 3000—4000 nm.

    Fig.2 SEM and TEM images of Zn/ZSM-5 zeolites(a),(e)Zn/ZSM-5A;(b),(f)Zn/ZSM-5B;(c),(g)Zn/ZSM-5C;(d),(h)Zn/ZSM-5D

    Fig.3 shows the N2sorption curve and pore size distribution of Zn/ZSM-5 zeolite with different crystal sizes. N2adsorption volume of all zeolites increases sharply with the increase of relative adsorption pressure in the range ofp/p0from 0 to 0.2. This,indicates the presence of microporous structures in zeolites. Zn/ZSM-5A and Zn/ZSM-5B zeolites show obvious hysteretic structure withp/p0at 0.45—1.00,characteristic of mesopore structure. All zeolite samples show 4 nm mesopore in their pore size distribution diagrams,which is due to the capillary phenomenon reported by Groen et al.[12-13]. Table 2 shows the texture properties of Zn/ZSM-5 samples. Zn/ZSM-5A zeolite shows the largest mesoporous size range with 20—30 nm,this is agreed with its smallest crystal size. The external surface area and mesoporous volume decreases with increasing zeolite crystal size.

    Fig.3 N2 adsorption-desorption isotherms and pore size distribution of Zn/ZSM-5 zeolites(a)N2 adsorption-desorption isotherms;(b)Pore size distribution

    Table 2 Texture properties of Zn/ZSM-5 zeolites

    2.2 Al distribution in ZSM-5 zeolite

    The distribution and location of framework Al in zeolite is sensitive to catalytic performance of zeolite[14]. Al-O-(Si-O)n-Al (n≤2)denoted as Alpairand Al-O-(Si-O)n-Al (n≥3)denoted as Alsinglehave been proposed to distinguish the Al distribution[15]. Three types of Alpaircan be distinguished in ZSM-5 zeolite:α,βandγtypes due to the location in the straight channel,intersection channel,and sinusoidal channel,respectively[16]. Mlinar et al.[17]proposed that the Alpairin ZSM-5 zeolite is the active sites for propylene dimerization. Sazama et al.[18]found the adjacent Alpairpromotes hydrogen transfer reaction and isolated Alsingleis inclined to cracking reaction. In addition,the distribution of Al on the pore also affects the conversion of hydrocarbons on ZSM-5 zeolites. Janda et al.[19]found that cracking reaction is favorable toαAlpairandγAlpair,while dehydrogenation is more favorable forβAlpair. Liu et al.[20]showed that Alpairwas beneficial to the conversion of olefins to aromatics on ZSM-5. Thus,to compare the aromatization performance of as-prepared Zn/ZSM-5 zeolites,the Al distribution should be firstly distinguished.

    For ZSM-5 zeolite,Co2+ion introduced by ion-exchanging treatment can share its balance with A1pairand make the identification of Alpairvia UV-Vis characterization. Fig.4 shows all ZSM-5 zeolites exhibit a wide absorption peak in the range of 14000—24000 cm-1,which corresponds to the d-d transition of Co (Ⅱ)cations at different sites. These sites and their numbers are obtained by deconvolution of the UV-Vis spectra. The peak at 15100 cm-1representsα-type cations (Co2+ions interacting withα-type Alpair),and the peaks at 16000 cm-1corresponding toβ-type cations (Co2+ions interacting withβ-type Alpair). The transition absorption peaks ofγ-type cations (Co2+ions interacting withγ-type Alpair)are at 20100 and 22000 cm-1[20-21]. The contents of these sites are listed in Table 3. Combined with the bulk composition of Al elements from XRF results,the fraction of Alsingleand Alpairin the zeolite framework was calculated. All ZSM-5 zeolite samples show a high fraction of Alsingle(>65%),and similar contents of Alsingleand Alpair. All ZSM-5 zeolites show a high fraction ofβ-type Alpair(>80%),indicating that the Alpairin all ZSM-5 zeolite samples are mostly located in the position of intersection channel. In addition,the similar distribution ofα,βandγtype Alpairalso shows that the distribution of Alpairin ZSM-5 zeolites is basically the same. Thus,the interfere of the Al location on the aromatization performance over these as-prepared Zn/ZSM-5 zeolite can be excluded.

    Table 3 Distribution of framework Al in Co-exchanged ZSM-5 zeolites

    Fig.4 UV-Vis spectra of Co-exchanged ZSM-5 zeolites(a)Co/ZSM-5A;(b)Co/ZSM-5B;(c)Co/ZSM-5C;(d)Co/ZSM-5D

    2.3 Zn species in Zn/ZSM-5 zeolite

    The surface properties of Zn species were analyzed by XPS spectra. As shown in Fig.5,two Zn species with binding energies at 1021.8 and 1022.8 eV are distinguished to ZnO and ZnOH+species,respectively[22]. A higher binding energy of ZnOH+species is due to the strong interaction between Zn species and zeolite framework Al. Table 4 shows that with the increase of the crystal size of ZSM-5 zeolite from 100—200 nm to 3000—4000 nm the proportion of ZnO gradually increases from 43.0% to 64.1%,while ZnOH+fraction gradually decreases from 57.0% to 30.9%. The results show that smaller crystals are beneficial to the formation of ZnOH+species. This is agreed with the DTBP titration results that more B acid sites at the external surface and open mouth of zeolite are formed in ZSM-5 with small crystal size (Table 6). Then,ZSM-5 zeolite with small crystal size possesses more accessibility of Zn to B acid sites,thus increasing the formation of ZnOH+active species. It can be also found that the small crystal has a relatively higher surface content of Zn species,and the highest value at 5.5% of 100—200 nm Zn/ZSM-5A is observed (Table 4).

    Fig.5 XPS spectra of Zn 2p3/2 of Zn/ZSM-5 zeolites

    Table 4 Zn species distribution of Zn/ZSM-5 zeolites

    Fig.6 shows the FT-IR spectra of hydroxyl over ZSM-5 and Zn/ZSM-5 zeolites. All ZSM-5 zeolites have obvious absorption peaks at 3609 cm-1, corresponding to B acid site from framework Al (Si-O(H)-Al) of ZSM-5 zeolites. The other absorption peak at the higher wave number 3742 cm-1represents the terminal Si-OH at the external surface of zeolite[23-24]. ZSM-5A shows such absorption peak,whose intensity is much higher than other ZSM-5 zeolite with larger crystal size. This is agreed that the Si-OH are generally formed at the external surface of zeolite,the smaller crystal size and the higher content of Si-OH is realized. In addition,internal Si-OH nest formed by the internal defect site of ZSM-5 zeolite is usually observed at peak 3500 cm-1[25]. Here,no internal Si-OH on all ZSM-5 zeolites suggests few defects within zeolite crystals in consistent with the TEM characterization.

    Fig.6 FT-IR spectra of hydroxyl groups for ZSM-5 and Zn/ZSM-5 zeolites(a)ZSM-5;(b)Zn/ZSM-5

    After the deposition of Zn species onto ZSM-5 zeolite,the intensity of absorption peak due to Si-O(H)-Al peak obviously decreased,and a new absorption peak at 3673 cm-1can be found. This is assigned to the hydroxyl groups originated from L acid sites (ZnOH+species)[26]. The change of absorption peak intensity can be explained by that ZnOH+species is formed via the interaction of Zn cations with Si-O(H)-Al and turn to L acid sites (Si-O[Zn(OH)+]-Al). Among all Zn/ZSM-5 zeolites,a high intensity of absorption peak of Si-O(H)-Al but a low intensity of peak due to ZnOH+sites is observed on the sample with large zeolite crystal. This means that reducing zeolite crystal size is beneficial to the formation of ZnOH+species by the interaction of Zn cations with framework Al,which is consistent with the results obtained by XPS. Again,the absorption peak due to framework Si-O(H)-Al shows a weak shift from 3609 to 3614 cm-1after Zn introduction,this should be due to the fact that Zn cations preferentially react with strong B acid sites,rendering relatively weaker B acid sites. On the other hand,the peak due to terminal Si-OH shows little change after Zn introduction,indicating no obvious interaction between Zn cations and Si-OH.

    2.4 Acid property

    The acid content and acid strength of zeolite was obtained by NH3-TPD (Fig.7)and the B/L acid amount ratio(AB/AL)was obtained by Py-IR (Fig.8). Three desorption temperatures of NH3-TPD spectra over all ZSM-5 and Zn/ZSM-5 zeolites were observed at the range of 200—220 ℃,300—320 ℃ and 420—440 ℃,assigning to weak,medium and strong acid sites,respectively[27]. All ZSM-5 zeolites have almost the same total acid content (0.40—0.44 mmol/g)owing to close ratio of SiO2/Al2O3. However,the acid strength varied with zeolite crystal size. Table 5 shows that the desorption temperature corresponding to strong acid sites increases from 424 ℃ to 431 ℃ with the growth zeolite crystal size. This should be due to the confinement effect of micropores,in which the strong acid amount also increases gradually from 0.13 to 0.19 mmol/g.

    Fig.7 NH3-TPD profiles of ZSM-5 and Zn/ZSM-5 zeolites(a)ZSM-5;(b)Zn/ZSM-5

    Fig.8 shows that the intensity of strong B acid absorption peak of ZSM-5 zeolite increases slightly with zeolite crystal size,while decreases for L acid sites,resulting in the growth of the B/L acid amount ratio. NH3-TPD and Py-IR spectra together indicate that a small crystal size of ZSM-5 zeolite is beneficial to weaking acid strength,reduce the ratio of B/L acid sites and increase the fraction of medium strong acid sites. After the deposition of Zn species,the amount of strong acid of Zn/ZSM-5 zeolite decreased,while the amount of medium strong acid increased (Fig.7). Such change should be attributed to that the amount of B acid sites decreases while the amount of L acid site increases (Fig.8). The absorption peak due to L acid sites also shows a red shift from 1450 cm-1to 1455 cm-1,indicating the formation of new L acid sites (ZnOH+). Comparing to NH3-TPD spectra of bulk ZSM-5,the desorption peak temperature of strong acid sites over all Zn/ZSM-5 zeolites decreased,indicating prior interaction between strong B acid sites with Zn cations,agreeing with the results of XPS and FT-IR spectra (Fig.5 and Fig.6).

    Fig.8 Py-IR spectra of the ZSM-5 and Zn/ZSM-5 zeolites(a)ZSM-5;(b)Zn/ZSM-5

    Table 5 shows that the reduction of crystal size can significantly reduce the amount of B acid site from 0.09 to 0.05 mmol/g and the ratio of B/L acid sites from 0.30 to 0.15,and increase the amount and fraction of medium-strong acid from 0.06 to 0.11 mmol/g and 15.1% to 29.6% of Zn/ZSM-5 zeolite,respectively. Zn/ZSM-5A zeolite with the smallest crystal size shows the lowest B/L acid amount ratio at 0.15 and the highest fraction of medium-strong acid at 29.6%.

    In addition to the acid amount and strength,the acid site distribution of zeolite is also sensitive to catalytic performance. Table 6 shows the amount and fraction of B acid sites within and outside ZSM-5 and Zn/ZSM-5 zeolite via DTBP titration. With the increase of crystal size,the fraction of B acid sites on the pore mouth and external surface (fsum)of ZSM-5 zeolite decreases gradually from 55.5% to 18.0%,indicating that the small crystal is beneficial for the access of B acid site to reactants. After the impregnation with Zn cations,fsumobviously decreased,suggesting that the consuming surface B acid sites by the interaction between Zn and framework Al. Zn/ZSM-5A zeolite with the smallest crystal size shows the highestfsum,at 44.5%.

    Table 5 Acid properties of ZSM-5 and Zn/ZSM-5 zeolites

    Table 6 Acid sites distribution of ZSM-5 and Zn/ZSM-5 zeolites

    2.5 Catalytic performance

    Table 7 shows the selective distribution of products for the reaction of 1-hexene catalyzed by ZSM-5 and Zn/ZSM-5 zeolites with different crystal size under 2.0 MPa hydrogen pressure. All samples show a fully complete conversion of 1-hexene and a high selectivity of alkanes (>97%),but a low aromatics selectivity (<3%)using a high H2pressure for olefin conversion. Bulk ZSM-5 zeolite samples show high selectivity of light paraffin (C1—C3selectivity at 48.8%—50.8%)owing to the cracking over excess B acid sites. With the increase of ZSM-5 zeolite crystal size,the selectivity ofiC4—iC4+alkanes decreases whilenC4—nC4+alkane selectivity increases,leading to the decrease of mass ratio ofiso-alkane ton-alkane from 0.43 to 0.37. Clearly,the small ZSM-5 zeolite crystal is good for isomerization.

    After the introduction of Zn cations,the selectivity ofnC4—nC4+alkanes and aromatics in Zn/ZSM-5 zeolite changes a bit,but the selectivity of C1—C3alkanes significantly decreases from 48.8%—50.8% to 26.2%—28.4% and the selectivity ofiC4—iC4+alkanes greatly increases from 26.5%—29.3% to 43.6%—50.0%,respectively. These results show that Zn modification promotes the isomerization selectivity and inhibits cracking. The introduction of Zn greatly reduces the amount and strength of B acid sites in ZSM-5 zeolite and produces a large amount of medium strong L acid (ZnOH+).

    Table 7 Product distribution of ZSM-5 and Zn/ZSM-5 zeolites at hydrogen pressure of 2.0 MPa

    Corado et al.[28]and Corma et al.[29]have shown that both L acid and B acid can carry out isomerization reaction and the acid strength is the important factor determining isomerization performance, in which medium-strong acid site is responsible for isomerization reaction. Fig.9 shows the relationship between the fraction of medium-strong acid sites and the selectivity ofiso-alkanes and the mass ratio ofiso-alkane ton-alkane,respectively. The results show that the fraction of medium-strong acid sites in ZSM-5 and Zn/ZSM-5 zeolites is positively correlated with theiso-alkane selectivity and mass ratio ofiso-alkane ton-alkane,which is consistent with the results of Su et al.[30]. For Zn/ZSM-5 zeolite,the formation of new medium-strong L acid sites (ZnOH+)clearly promotes the isomerization performance. As a result,Zn/ZSM-5A with the smallest crystal size shows the highest fraction of medium-strong acid sites (29.6%),and then the highestiso-alkane selectivity (50.0%)and mass ratio ofiso-alkane ton-alkane (1.08).

    In order to clarify the effect of Zn introduction on the aromatization performance of ZSM-5 zeolite,the conversion of 1-hexene at a much lower hydrogen pressure (0.1 MPa)was applied to reduce the hydrogenation rate and equilibrium. The growth of crystal size increases the amount of B acid sites in Zn/ZSM-5 zeolite from 0.05 mmol/g to 0.09 mmol/g (Table 5),which leads to more cracking products (C1—C3alkanes).

    ZSM-5; Zn/ZSM-5Fig.9 Relationship of ZSM-5 and Zn/ZSM-5 zeolites between the fraction of medium-strong acid sites and iso-alkanes selectivity (s)and the mass ratio of iso-alkanes to n-alkanes,respectively Conditions:Temperature 350 ℃;H2 pressure 2.0 MPa; molar ratio of H2/1-hexene 600;LHSV 1.5 h-1

    For olefin aromatization,the acid amount ratio of B/L is usually screened to balance the roles of B and L acid sites. Fig. 10 shows the relationship between the B/L acid amount ratio and the aromatics selectivity. B/L acid amount ratio shows a negative correlation with aromatics selectivity,in which the lower the B/L acid amount ratio,the higher aromatics selectivity in the products. Therefore,the increase of crystal size increases the B/L acid amount ratio of Zn/ZSM-5 zeolite from 0.15 to 0.30 (Table 5)leading to decreasing aromatics selectivity. In addition,the olefins selectivity in Zn/ZSM-5 zeolite increases from 8.6% to 13.5% (Table 8)with the growth of zeolite crystal size,suggesting that large crystal possesses less dehydrogenation active site (ZnOH+)in Zn/ZSM-5 zeolites,thus making it difficult for dehydrogenation and hydrogen transfer to form aromatics. Here,hydrogen transfer index (HTI,ratio of C4alkanes/C4alkenes)is used to represent the hydrogen transfer ability of zeolites. Table 8 shows that the HTI value decreases with the growth of zeolite crystal size. These data together show that reducing zeolite crystal size is beneficial to form ZnOH+species as dehydrogenation active site,and to reduce the amount of B acid sites and the ratio of B/L acid sites,then improve the olefin aromatization performance.

    Table 8 Products distribution of Zn/ZSM-5 zeolites at hydrogen pressure of 0.1 MPa

    Fig.11 shows the relation of aromatic distribution with thefsumof Zn/ZSM-5 zeolites. C8+aromatics mass fraction increases with thefsum,in agreement with that large aromatics are difficult to form and diffuse throughout ZSM-5 zeolite micropores. Specially,besides the lowfsum,Zn/ZSM-5D possesses nanosheet morphology with about 400 nm (Fig.2). Owing to the reduction in the diffusion path via forming sheet structure as well as the low fraction of B acid sites on the pore mouth and external surface acid sites,Zn/ZSM-5D zeolite possess the lowest selectivity of heavy aromatics (C8+components). In other words,the zeolite with large crystal size (Zn/ZSM-5D)shows good selectivity of light aromatics (C6—C8aromatics). The results show that the change of acid distribution caused by the crystal size of ZSM-5 zeolite has a great influence on the composition of aromatics in the products.

    Fig.10 Relationship of Zn/ZSM-5 between aromatics selectivity (s)and B/L acid amount ratio (AB/AL) Reaction conditions:Temperature 350 ℃;H2 pressure 0.1 MPa; molar ratio of H2/1-hexene 600;LHSV 1.5 H-1

    fsum—The fraction of Br?nsted acid sites on the pore mouth and external surfaceFig.11 Distribution of aromatics and fsum for Zn/ZSM-5 zeolites Reaction condition:Temperature 350 ℃;H2 pressure 0.1 MPa; molar ratio of H2/1-hexene 600;LHSV 1.5 H-1

    In a word,Zn/ZSM-5A with small crystal size (100—200 nm)are more likely to form ZnOH+species as medium-strong L acid sites,and greatly reduce the amount of B acid sites and B/L acid amount ratio. Therefore,it showed the highest isomerization selectivity of 50.0% for 1-hexene conversion at high hydrogen pressure (2.0 MPa),and also the highest aromatization selectivity of 17.2% for 1-hexene conversion at low hydrogen pressure (0.1 MPa). In addition,the acid distribution sensitive to zeolite crystal size has a great influence on aromatics composition of Zn/ZSM-5 zeolite. Reducing crystal size of ZSM-5 zeolite can significantly increase the fraction of B acid sites on the open mouth and external surface of zeolite,leading to a high mass fraction of C8+aromatics.

    3 Conclusion

    (1)ZSM-5 zeolites with similar SiO2/Al2O3molar ratio (55—60),Al distribution and different crystal sizes (100—4000 nm)were screened for the 1-hexene selective conversion toiso-alkane and aromatics,respectively. The ZSM-5A zeolite with small crystals (100—200 nm)shows hierarchical pore structure formed by nanocrystal aggregation and ZSM-5D zeolite with largest crystal size is the characteristic of sheet morphology. UV-Vis spectra of Co-exchanged ZSM-5 zeolites shows that Alpairis mainly located in the intersection channel (β-type Alpair)for all the ZSM-5 samples.

    (2)The modification by Zn impregnation leads to decrease in B acid sites via the interaction between Zn cations and B acid site to form ZnOH+species. Reducing zeolite crystal size can greatly reduce the amount of B acid sites of ZSM-5 zeolite and increase the amount of ZnOH+species as L acid sites,thus further reducing the ratio of B/L acid sites and increasing the fraction of medium-strong acid sites. Zn/ZSM-5A zeolite with the smallest crystal size has the lowest B/L acid amount ratio at 0.15 and the highest fraction of medium-strong acid sites at 29.6%.

    (3)For the 1-hexene conversion with 2.0 MPa hydrogen pressure,the isomerization is predominant prior to aromatization,and the selectivity ofiso-alkanes is sensitive to the fraction of medium-strong acid sites,in which Zn/ZSM-5A with the smallest crystal size shows the highest selectivity. Also,Zn/ZSM-5A zeolite with the lowest B/L acid amount ratio is benefited for the formation of aromatics in the conversion of 1-hexene at 0.1 MPa hydrogen pressure.

    日韩国内少妇激情av| 久久久国产成人精品二区| 99久久国产精品久久久| 免费在线观看成人毛片| av片东京热男人的天堂| 国产单亲对白刺激| 99热这里只有精品一区 | 亚洲av日韩精品久久久久久密| 久久精品综合一区二区三区| 久久中文看片网| 国产精品免费一区二区三区在线| 国产精品九九99| 国产精品日韩av在线免费观看| 久久久久久久精品吃奶| 亚洲人成电影免费在线| 精品久久久久久久人妻蜜臀av| 在线观看免费视频日本深夜| 亚洲男人天堂网一区| 欧美zozozo另类| 国产单亲对白刺激| 手机成人av网站| 国产av在哪里看| av有码第一页| 很黄的视频免费| 国产1区2区3区精品| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 成人av在线播放网站| 欧美久久黑人一区二区| 超碰成人久久| 亚洲国产看品久久| 1024视频免费在线观看| 久久人妻av系列| 国产精品98久久久久久宅男小说| 91麻豆精品激情在线观看国产| 久久精品91无色码中文字幕| xxx96com| 亚洲人成网站在线播放欧美日韩| 2021天堂中文幕一二区在线观| 国产激情偷乱视频一区二区| cao死你这个sao货| 久久中文字幕一级| 九九热线精品视视频播放| 国产成年人精品一区二区| 午夜福利免费观看在线| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说| 99久久国产精品久久久| 欧美中文综合在线视频| 国产精品电影一区二区三区| 在线十欧美十亚洲十日本专区| 精品国产超薄肉色丝袜足j| 97碰自拍视频| 99久久精品热视频| 国产亚洲欧美在线一区二区| 久久婷婷人人爽人人干人人爱| 最近视频中文字幕2019在线8| 亚洲成av人片免费观看| 看免费av毛片| 国产亚洲精品第一综合不卡| 欧美日韩乱码在线| 成人18禁在线播放| 久久精品91蜜桃| 欧美午夜高清在线| 成人手机av| 亚洲天堂国产精品一区在线| 久久婷婷成人综合色麻豆| 十八禁网站免费在线| 禁无遮挡网站| 看片在线看免费视频| 午夜视频精品福利| 俄罗斯特黄特色一大片| www.精华液| av免费在线观看网站| 国产高清激情床上av| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 身体一侧抽搐| 视频区欧美日本亚洲| x7x7x7水蜜桃| 熟妇人妻久久中文字幕3abv| 少妇被粗大的猛进出69影院| 一级作爱视频免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 亚洲国产欧美一区二区综合| 一本精品99久久精品77| 男人舔女人的私密视频| 久久精品国产亚洲av高清一级| 久久精品国产99精品国产亚洲性色| 亚洲av成人一区二区三| 色噜噜av男人的天堂激情| 人成视频在线观看免费观看| 国产精品一区二区免费欧美| 国产三级中文精品| 香蕉丝袜av| 性欧美人与动物交配| 欧美性长视频在线观看| 免费av毛片视频| 日本一二三区视频观看| 国产精品电影一区二区三区| 午夜福利在线在线| 啪啪无遮挡十八禁网站| 级片在线观看| 少妇粗大呻吟视频| 国产欧美日韩一区二区三| 18禁美女被吸乳视频| 1024视频免费在线观看| 久久久国产精品麻豆| 亚洲男人天堂网一区| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全免费视频| 国产精品久久视频播放| 亚洲人成伊人成综合网2020| 夜夜躁狠狠躁天天躁| 一二三四在线观看免费中文在| 成年版毛片免费区| 99国产综合亚洲精品| 亚洲黑人精品在线| 好男人在线观看高清免费视频| 一卡2卡三卡四卡精品乱码亚洲| 在线播放国产精品三级| 国产亚洲精品一区二区www| 一级黄色大片毛片| 一进一出抽搐gif免费好疼| 在线视频色国产色| 国产三级黄色录像| 亚洲aⅴ乱码一区二区在线播放 | 一级毛片高清免费大全| 日本黄色视频三级网站网址| 欧美黑人精品巨大| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 婷婷丁香在线五月| 日日爽夜夜爽网站| 国产精品亚洲一级av第二区| 成人三级黄色视频| 91成年电影在线观看| 久久九九热精品免费| 精品高清国产在线一区| 亚洲国产精品999在线| 人成视频在线观看免费观看| xxx96com| 男人舔奶头视频| 久久久精品欧美日韩精品| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 国产av不卡久久| 国产成人精品久久二区二区91| 亚洲成人久久性| 久久久久久免费高清国产稀缺| 身体一侧抽搐| www日本黄色视频网| avwww免费| 亚洲无线在线观看| 国产亚洲av嫩草精品影院| 精品日产1卡2卡| 特级一级黄色大片| 又粗又爽又猛毛片免费看| www.999成人在线观看| 麻豆av在线久日| 亚洲欧美精品综合久久99| 中文字幕高清在线视频| 夜夜看夜夜爽夜夜摸| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| 成人国语在线视频| 国产av麻豆久久久久久久| 少妇人妻一区二区三区视频| 成年人黄色毛片网站| 丁香六月欧美| av国产免费在线观看| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 美女黄网站色视频| 很黄的视频免费| 婷婷亚洲欧美| 久久精品影院6| 欧美黄色淫秽网站| 悠悠久久av| 精品免费久久久久久久清纯| 免费一级毛片在线播放高清视频| 国产精品久久久人人做人人爽| 哪里可以看免费的av片| 中出人妻视频一区二区| 精品电影一区二区在线| cao死你这个sao货| 最新美女视频免费是黄的| 亚洲中文字幕日韩| 久久久国产欧美日韩av| 丰满的人妻完整版| 国产精品日韩av在线免费观看| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 欧美一级毛片孕妇| 国产亚洲精品一区二区www| 大型黄色视频在线免费观看| 久久精品影院6| 亚洲色图 男人天堂 中文字幕| 国产片内射在线| 9191精品国产免费久久| 亚洲 欧美 日韩 在线 免费| 欧美日本亚洲视频在线播放| 国产三级黄色录像| 亚洲人成电影免费在线| 日日夜夜操网爽| 精品国产亚洲在线| 黄片小视频在线播放| 久久亚洲真实| 午夜成年电影在线免费观看| av福利片在线观看| 亚洲成人久久爱视频| xxx96com| 亚洲一区中文字幕在线| 91字幕亚洲| 国产私拍福利视频在线观看| 国产亚洲精品久久久久5区| 亚洲成人久久爱视频| 中文字幕最新亚洲高清| 在线看三级毛片| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 午夜激情av网站| av在线播放免费不卡| 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 一a级毛片在线观看| 啪啪无遮挡十八禁网站| 日本在线视频免费播放| 亚洲熟女毛片儿| 欧美午夜高清在线| 午夜免费激情av| 亚洲人成网站高清观看| 免费在线观看影片大全网站| 久久久久久国产a免费观看| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 亚洲狠狠婷婷综合久久图片| 久久久久国内视频| 国产69精品久久久久777片 | 亚洲黑人精品在线| 99热只有精品国产| 性色av乱码一区二区三区2| 久久久久久亚洲精品国产蜜桃av| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 久热爱精品视频在线9| 成人三级黄色视频| 亚洲18禁久久av| 俄罗斯特黄特色一大片| 美女 人体艺术 gogo| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 色综合亚洲欧美另类图片| 欧美黑人巨大hd| 999久久久国产精品视频| 中文字幕人成人乱码亚洲影| 宅男免费午夜| 国内毛片毛片毛片毛片毛片| 制服诱惑二区| 高清在线国产一区| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 两个人视频免费观看高清| 可以免费在线观看a视频的电影网站| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 欧美极品一区二区三区四区| 日韩欧美国产一区二区入口| 国产熟女午夜一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲人成77777在线视频| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| cao死你这个sao货| 好看av亚洲va欧美ⅴa在| 亚洲片人在线观看| aaaaa片日本免费| 成人特级黄色片久久久久久久| 叶爱在线成人免费视频播放| 看免费av毛片| 88av欧美| 久久久久精品国产欧美久久久| 亚洲真实伦在线观看| 香蕉国产在线看| 国产精品乱码一区二三区的特点| or卡值多少钱| 一级毛片女人18水好多| 少妇被粗大的猛进出69影院| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看 | 日日爽夜夜爽网站| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 老汉色∧v一级毛片| 久久久久久久精品吃奶| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频| 草草在线视频免费看| 欧美色欧美亚洲另类二区| 国产99白浆流出| 狠狠狠狠99中文字幕| 日日爽夜夜爽网站| 男女床上黄色一级片免费看| www.精华液| 无遮挡黄片免费观看| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| 久久久久久免费高清国产稀缺| 麻豆国产97在线/欧美 | 国产亚洲精品久久久久5区| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 亚洲一区二区三区色噜噜| 99热只有精品国产| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一及| 非洲黑人性xxxx精品又粗又长| 岛国在线观看网站| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 在线视频色国产色| 婷婷丁香在线五月| 国产一区二区在线观看日韩 | 天天躁夜夜躁狠狠躁躁| 母亲3免费完整高清在线观看| 丁香六月欧美| 欧美黑人精品巨大| 无人区码免费观看不卡| 日韩精品青青久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 国产精华一区二区三区| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 国产精品久久久久久久电影 | 欧美日韩亚洲综合一区二区三区_| www.熟女人妻精品国产| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 最好的美女福利视频网| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 一本精品99久久精品77| 国产成人精品久久二区二区免费| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久毛片微露脸| www国产在线视频色| 白带黄色成豆腐渣| 亚洲,欧美精品.| 国产亚洲欧美98| 精品少妇一区二区三区视频日本电影| 黄色女人牲交| 精品久久久久久久人妻蜜臀av| 久久99热这里只有精品18| 特大巨黑吊av在线直播| 久久亚洲精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 国产在线观看jvid| 婷婷丁香在线五月| 久久婷婷人人爽人人干人人爱| 午夜成年电影在线免费观看| 亚洲激情在线av| 亚洲第一电影网av| 丰满的人妻完整版| 两个人看的免费小视频| 国产精品一区二区三区四区久久| 啦啦啦韩国在线观看视频| 波多野结衣高清作品| 啦啦啦观看免费观看视频高清| 久久精品影院6| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久| 真人做人爱边吃奶动态| 久久中文字幕一级| 激情在线观看视频在线高清| 亚洲精品久久国产高清桃花| 国产99白浆流出| 国产熟女午夜一区二区三区| 此物有八面人人有两片| 欧美中文日本在线观看视频| 中文字幕人成人乱码亚洲影| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 日本在线视频免费播放| 国产成年人精品一区二区| 一级毛片女人18水好多| 精品久久久久久久毛片微露脸| 搡老熟女国产l中国老女人| 我要搜黄色片| 国产黄片美女视频| 毛片女人毛片| 99久久久亚洲精品蜜臀av| 日本一区二区免费在线视频| 亚洲真实伦在线观看| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 美女扒开内裤让男人捅视频| 美女黄网站色视频| 久久 成人 亚洲| a级毛片a级免费在线| 亚洲一区二区三区不卡视频| cao死你这个sao货| 国产精品久久久久久久电影 | 国产精品九九99| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 亚洲一区中文字幕在线| 男插女下体视频免费在线播放| 我的老师免费观看完整版| 久99久视频精品免费| 97碰自拍视频| 99久久综合精品五月天人人| 99久久精品热视频| 怎么达到女性高潮| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点| 这个男人来自地球电影免费观看| 一区二区三区高清视频在线| 最新在线观看一区二区三区| 国产三级中文精品| 一级作爱视频免费观看| 久久精品亚洲精品国产色婷小说| 国产成+人综合+亚洲专区| 99久久精品热视频| 99精品久久久久人妻精品| 白带黄色成豆腐渣| or卡值多少钱| 欧美一级a爱片免费观看看 | 男插女下体视频免费在线播放| 国产精品国产高清国产av| 99国产综合亚洲精品| 可以在线观看毛片的网站| 国产私拍福利视频在线观看| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 国产精品 欧美亚洲| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 欧美成人性av电影在线观看| 日本黄色视频三级网站网址| x7x7x7水蜜桃| 久久精品aⅴ一区二区三区四区| 99精品在免费线老司机午夜| 亚洲无线在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美人与性动交α欧美精品济南到| 好男人电影高清在线观看| 久久久国产成人精品二区| 久久精品夜夜夜夜夜久久蜜豆 | 国产一区在线观看成人免费| 国产aⅴ精品一区二区三区波| 19禁男女啪啪无遮挡网站| 国产熟女xx| 亚洲美女黄片视频| 色尼玛亚洲综合影院| 亚洲男人天堂网一区| 久久久久久久久中文| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 无人区码免费观看不卡| 一a级毛片在线观看| 男女那种视频在线观看| 久久久精品欧美日韩精品| 成人国产综合亚洲| 1024手机看黄色片| 日韩欧美精品v在线| 成人18禁在线播放| 亚洲中文av在线| 日本熟妇午夜| 日本一二三区视频观看| 国产av在哪里看| 午夜成年电影在线免费观看| 床上黄色一级片| 久久精品亚洲精品国产色婷小说| 这个男人来自地球电影免费观看| 97碰自拍视频| www.精华液| 亚洲精品美女久久av网站| 一本大道久久a久久精品| 亚洲精品久久国产高清桃花| 成人国产一区最新在线观看| 亚洲男人的天堂狠狠| 国产欧美日韩精品亚洲av| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看 | videosex国产| 国产黄片美女视频| 国产成人aa在线观看| 日韩 欧美 亚洲 中文字幕| 九色国产91popny在线| 色综合站精品国产| 色老头精品视频在线观看| 后天国语完整版免费观看| 精品久久久久久,| 亚洲男人的天堂狠狠| 国产av不卡久久| 在线十欧美十亚洲十日本专区| 青草久久国产| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 欧美性猛交黑人性爽| 午夜激情av网站| 免费在线观看黄色视频的| 亚洲国产看品久久| 可以在线观看毛片的网站| 亚洲av熟女| 黄色 视频免费看| 99久久综合精品五月天人人| 免费高清视频大片| 岛国在线观看网站| 后天国语完整版免费观看| 亚洲国产精品999在线| 国产精品一区二区免费欧美| 制服丝袜大香蕉在线| 国产乱人伦免费视频| 18美女黄网站色大片免费观看| 女同久久另类99精品国产91| 亚洲片人在线观看| 母亲3免费完整高清在线观看| av免费在线观看网站| 欧美黑人巨大hd| 免费无遮挡裸体视频| 大型av网站在线播放| 国产午夜精品论理片| 一边摸一边做爽爽视频免费| 免费看十八禁软件| 婷婷精品国产亚洲av| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av| 国产精品99久久99久久久不卡| 日本一二三区视频观看| 一区二区三区激情视频| a在线观看视频网站| 在线观看www视频免费| 国产av又大| 亚洲专区中文字幕在线| 中文字幕精品亚洲无线码一区| 成人国产一区最新在线观看| 久久久久性生活片| 久久国产乱子伦精品免费另类| 欧美一级毛片孕妇| 日韩精品免费视频一区二区三区| 成人18禁在线播放| 黄片小视频在线播放| 亚洲专区字幕在线| 最近在线观看免费完整版| 五月伊人婷婷丁香| 成人欧美大片| 午夜福利在线观看吧| 女人高潮潮喷娇喘18禁视频| 国产在线精品亚洲第一网站| av视频在线观看入口| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 最近视频中文字幕2019在线8| 夜夜看夜夜爽夜夜摸| 精品久久蜜臀av无| 国产黄a三级三级三级人| 亚洲色图av天堂| 免费在线观看亚洲国产| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 狂野欧美白嫩少妇大欣赏| 午夜免费观看网址| 免费在线观看视频国产中文字幕亚洲| 最近在线观看免费完整版| 国产主播在线观看一区二区| 91在线观看av| 一本一本综合久久| 99re在线观看精品视频| 一级毛片精品| 日韩大码丰满熟妇| 亚洲成人中文字幕在线播放| 真人做人爱边吃奶动态| 久久久久九九精品影院| 国产一区在线观看成人免费| 久久久久久久久中文| 午夜福利视频1000在线观看| av国产免费在线观看| 精品高清国产在线一区| 亚洲五月婷婷丁香| 99re在线观看精品视频| 欧美高清成人免费视频www| 久久九九热精品免费| 男女下面进入的视频免费午夜| 日韩欧美在线乱码| 久久午夜亚洲精品久久| 久久精品aⅴ一区二区三区四区| 欧美乱码精品一区二区三区| 给我免费播放毛片高清在线观看| 一a级毛片在线观看| 欧美日本视频| 欧美乱妇无乱码| 亚洲美女视频黄频| 亚洲一区二区三区不卡视频| 在线观看日韩欧美| 宅男免费午夜| 激情在线观看视频在线高清|