林小淳,劉曉瑜,2,袁欣,2,張隆隆,2,劉斯文,2,馮亞鑫,趙曉倩,黃園英,2*
(1. 國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心,北京 100037;2. 自然資源部生態(tài)地球化學(xué)重點(diǎn)實(shí)驗(yàn)室,北京 100037; 3. 中國(guó)地質(zhì)大學(xué)(北京)水資源與環(huán)境學(xué)院,北京 100083)
離子型稀土礦中稀土元素主要以三價(jià)離子的形式存在,開(kāi)采的浸礦工藝常用電解質(zhì)溶液置換出稀土離子[1-2]。因此,稀土礦山土壤主要問(wèn)題是氨氮和重金屬的復(fù)合污染,和Pb2+含量超過(guò)背景值[3]。在開(kāi)采中大量使用銨鹽浸礦劑等導(dǎo)致與稀土礦物共生的含鉛礦物釋放出鉛離子,同時(shí)降低了土壤pH,提高了重金屬的遷移性,重金屬等有害元素通過(guò)水循環(huán)系統(tǒng)進(jìn)入生態(tài)系統(tǒng),并在人體中累積效應(yīng)給區(qū)域人群健康帶來(lái)巨大的潛在風(fēng)險(xiǎn)[4-7]。目前已有研究對(duì)稀土礦山土壤的生態(tài)修復(fù)技術(shù)系統(tǒng)性研究較少,尤其對(duì)鉛和氨氮的復(fù)合污染修復(fù)亟需開(kāi)展深入研究[8-11]。稀土礦山的土壤修復(fù)為實(shí)現(xiàn)環(huán)境友好型礦山和可持續(xù)資源利用提供重要支撐,對(duì)減輕環(huán)境污染、保護(hù)生態(tài)系統(tǒng)、維護(hù)人類健康都有重要意義。
目前,吸附重金屬離子和氨氮是應(yīng)用最廣泛的方法,該方法效果好、成本低、具有環(huán)保價(jià)值[12]。天然沸石是一種優(yōu)質(zhì)的黏土礦物吸附材料,研究表明與石灰、磷酸鹽相比,沸石在修復(fù)重金屬(如鎘、銅、鉛、鋅、錳等)污染土壤方面表現(xiàn)更為出色,同時(shí)對(duì)氨氮、總磷、氟、諾氟沙星等也有良好的吸附效果[13-16]。張曦等[17]研究了氨氮在天然沸石上的吸附及解吸,沸石的最大吸附量可達(dá)115mg/g;張宏華等[18]實(shí)驗(yàn)說(shuō)明天然沸石對(duì)水中的Pb2+和Cu2+具有較好的吸附能力;秦余麗等[19]發(fā)現(xiàn)施用沸石可以降低土壤中Cd 有效態(tài),還能增加作物生長(zhǎng)量。天然沸石對(duì)氨氮具有優(yōu)先選擇的交換性,對(duì)陽(yáng)離子選擇交換的順序?yàn)椋?0]:Cs+>Rb+>K+>NH4+>Pb2+>Ag+>Ba2+>Na+>Sr2+>Ca2+>Li+>Cd2+>Cu2+>Zn2+。Caputo 等[21]綜合大量實(shí)驗(yàn)數(shù)據(jù),研究了天然沸石的離子交換能力及熱力學(xué)吸附參數(shù),表明斜發(fā)沸石對(duì)NH4+、Pb2+、Cs+、Ba2+具有良好的選擇性。
然而天然沸石含有較多雜質(zhì),在實(shí)際應(yīng)用中,通常通過(guò)改性調(diào)控孔隙結(jié)構(gòu)和表面離子特性來(lái)提高其吸附和交換能力,因此沸石的改性工藝一直是修復(fù)材料的研究熱點(diǎn),當(dāng)前有熱改性、微波改性、酸堿改性、無(wú)機(jī)鹽改性、有機(jī)改性等工藝[22-30]。佟小薇等[31]通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)加熱和無(wú)機(jī)酸改性的沸石未明顯促進(jìn)對(duì)氨氮的吸附,反而可能有抑制效果,而堿改性沸石明顯地提高了氨氮的吸附效率。木醋液是由生物質(zhì)緩慢熱解生成的植物酸,具有較強(qiáng)的抗氧化活性、抗病毒活性和抑菌活性等,因而被用于土壤改良劑、抗菌劑等領(lǐng)域。Chen 等[32]和Liu 等[33]將木醋液作為添加劑,提升去除銅、鎘、鎳等污染物的效果。Li 等[34]實(shí)驗(yàn)表明木醋液改性沸石不僅具有良好的抗菌性,還能有效地去除廢水和土壤中重金屬。
本文針對(duì)離子型稀土礦山鉛和氨氮復(fù)合污染的修復(fù)材料研制難點(diǎn),分別選用木醋液、氫氧化鈉、木醋液+氫氧化鈉對(duì)沸石進(jìn)行改性,通過(guò)實(shí)驗(yàn)室模擬水中動(dòng)力吸附實(shí)驗(yàn)初步分析不同改性沸石的吸附性能;柱淋濾實(shí)驗(yàn)確定改性沸石的最佳添加比例;穩(wěn)定化實(shí)驗(yàn)比較不同改性沸石對(duì)鉛和氨氮的穩(wěn)定效果,并探究鉛和氨氮的化學(xué)形態(tài)變化及其對(duì)環(huán)境影響。利用掃描電鏡(SEM))、比表面積測(cè)定(BET)、X 射線衍射(XRD),分析改性前后沸石的形貌結(jié)構(gòu)及物相組成變化。綜合考慮制備工藝及成本后,選擇堿改性沸石進(jìn)行現(xiàn)場(chǎng)中試,在實(shí)際應(yīng)用中驗(yàn)證修復(fù)材料的穩(wěn)定化效果。本文研究為稀土礦山鉛和氨氮復(fù)合污染土壤的修復(fù)提供技術(shù)支撐,同時(shí)為進(jìn)一步廣泛、高效地應(yīng)用堿改性沸石提供參考。
供試材料:天然斜發(fā)沸石(NZ)由浙江神石礦業(yè)有限公司提供,主要成分為:氧化硅69.58%、氧化鋁12.2%、氧化鈣2.59%、氧化鎂0.13%、氧化鉀1.13%、氧化鈉2.59%、氧化鈦0.14%、氧化錳0.07%、氧化鐵0.11%、三氧化二鐵0.9%。木醋液(WV) 由河北天善生物技術(shù)有限公司提供。供試土壤采于江西省贛州市“贛州銳源生物科技有限公司”內(nèi)某廢棄稀土礦山的堆場(chǎng)底部,通過(guò)連續(xù)提取法(BCR)初步測(cè)定其中Pb 可還原態(tài)7.78mg/kg,酸可提取態(tài)3.69mg/kg,該土壤將用于改性沸石穩(wěn)定效果室內(nèi)模擬實(shí)驗(yàn)。
主要試劑:硫酸鎂、氯化鉛、氯化鈣、氯化鉀、氯化鈉、碳酸氫鈉等試劑均為分析純,去離子水。
采用Sigma 500 型掃描電子顯微鏡(德國(guó)蔡司公司)對(duì)改性后沸石的形貌進(jìn)行表征;通過(guò)Ultima Ⅳ型X 射線衍射儀(日本Rigaku 公司)分析改性后沸石的結(jié)構(gòu)變化;使用Autosorb-1 型比表面與孔隙度分析儀(美國(guó)康塔儀器公司)測(cè)試改性沸石的比表面積及孔容;使用TJA-IRIS-Advantage 型電感耦合等離子體發(fā)射光譜儀(美國(guó)ThermoFisher 公司)測(cè)試重金屬元素鉛的含量;使用UV-1800 紫外可見(jiàn)分光光度計(jì)(日本Shimadzu 公司)測(cè)試氨氮的含量。
將天然沸石經(jīng)過(guò)烘干、研磨、過(guò)70 目篩后,分別浸泡在氯化鈉溶液、木醋液、氫氧化鈉溶液、氫氧化鈉和木醋液的混合溶液中,攪拌均勻后轉(zhuǎn)移至反應(yīng)釜,置于烘箱中95℃加熱4h。待混合物冷卻至室溫后,用蒸餾水清洗至上清液pH=7,在105℃干燥4h 后研磨過(guò)70 目篩,分別制得氯化鈉改性沸石(NaCl-MZ)、木醋液改性沸石(WV-MZ)、堿改性沸石(NaOH-MZ)、堿和木醋液改性沸石(NaOH-WVMZ),其中WV 前分別加100%、10%、2%、1%以表示浸泡沸石的混合溶液中木醋液濃度百分比。
為了快速確定不同條件下改性材料對(duì)重金屬鉛和氨氮的吸附效果,選擇用1.3 節(jié)制備的改性沸石,分別對(duì)鉛和氨氮溶液開(kāi)展動(dòng)力吸附學(xué)實(shí)驗(yàn),從而確定吸附性能最佳的材料。
1.4.1 鉛將0.5g 改性沸石分別投入到10mL 自配200mg/L 鉛溶液中進(jìn)行吸附實(shí)驗(yàn),即固液比為50g/L,并在175r/min、水浴溫度為25℃下每隔一定時(shí)間取樣,經(jīng)離心后,上清液通過(guò)0.45μm 水系濾膜過(guò)濾,使用電感耦合等離子體發(fā)射光譜儀測(cè)定重金屬鉛離子濃度,每組實(shí)驗(yàn)同時(shí)設(shè)置三個(gè)平行樣。
1.4.2 氨氮
將0.5g 改性沸石加入不同濃度自配氨氮溶液(30mg/L 和100mg/L)中,固液比為6g/L,并在175r/min、25℃下反應(yīng)24h,每隔一定時(shí)間取樣,經(jīng)離心后,上清液通過(guò)0.45μm 水系濾膜過(guò)濾,使用紫外分光光度計(jì)及比色法測(cè)定溶液中氨氮的濃度。每組實(shí)驗(yàn)同時(shí)設(shè)置三個(gè)平行樣。
經(jīng)過(guò)長(zhǎng)期的雨水沖刷淋濾作用,原土中氨氮和鉛濃度較低,因此將1.1 節(jié)采集的土壤添加一定量硫酸銨和氯化鉛,一定時(shí)間后形成老化土,測(cè)得土壤中鉛有效態(tài)濃度為11mg/kg,氨氮有效態(tài)濃度為117mg/kg。為了使室內(nèi)模擬實(shí)驗(yàn)結(jié)果更貼近堆場(chǎng)實(shí)際情況,淋濾水將模擬南方實(shí)際雨水的成分(表1),用去離子水加入硫酸鎂、氯化鈣、氯化鉀、碳酸氫鈉配制。
表1 模擬雨水成分Table 1 The composition of the simulative rainwater.
實(shí)驗(yàn)使用的有機(jī)玻璃柱長(zhǎng)20cm,內(nèi)徑5cm,在玻璃柱上下兩端分別填1cm 高的石英砂,3 根柱裝填材料如下:老化土(對(duì)照組)柱;老化土-1%NaOHMZ 柱;老化土-2%NaOH-MZ 柱(其中1%、2%表示按土壤的質(zhì)量百分比添加改性材料)。定期測(cè)試每個(gè)柱子淋出液中的鉛和氨氮含量,通過(guò)該實(shí)驗(yàn)確定改性沸石與土壤樣品的最佳混合比例。
將1.1 節(jié)在廢棄礦山堆場(chǎng)底部采集的土壤取100g 分別裝入每個(gè)燒杯中,按照一定質(zhì)量比例添加1.3 節(jié)制備的改性沸石,置于25℃恒溫箱中培養(yǎng),加去離子水調(diào)節(jié)土壤含水率為60%,每周取樣測(cè)量土壤中鉛的有效態(tài)和氨氮的形態(tài)。通過(guò)該實(shí)驗(yàn)考察不同改性沸石對(duì)土壤中鉛和氨氮的穩(wěn)定化效果,進(jìn)一步探究其對(duì)氨氮具體形態(tài)的影響。
1.7.1 鉛有效態(tài)測(cè)定方法
稱取10g 風(fēng)干過(guò)20 目篩的土樣,加入50mL 0.1mol/L 鹽酸浸提液,用振蕩器振蕩1.5h,過(guò)濾,用ICP-MS 測(cè)定溶液中的鉛濃度。
1.7.2 鉛形態(tài)順序提取方法
步驟1:提取鉛的酸可提取態(tài)。培養(yǎng)后的土壤樣品風(fēng)干,過(guò)60 目篩,稱取1g 土壤樣品置于50mL聚乙烯離心管中,加入0.11mol/L 乙酸,室溫下振蕩16h,3000r/min 下離心20min,取上清液過(guò)濾,用ICPMS 測(cè)定提取液中的鉛含量。殘?jiān)镉?0mL 去離子水沖洗,放入振蕩器中振蕩15min,在3000r/min下離心20min,倒掉上層清液,留下固體1 備用。
步驟2:提取鉛的可還原態(tài)。加40mL 0.5mol/L鹽酸羥胺于步驟1 留下的固體1 中,室溫下振蕩16h,分離測(cè)定均與步驟1 相同,留下固體2。
步驟3:提取鉛的可氧化態(tài)。加10mL 8.8mol/L過(guò)氧化氫于步驟2 留下的固體2 中,離心管加蓋在室溫下反應(yīng)1h,在反應(yīng)過(guò)程中不斷搖晃,然后在85℃水浴中消解1h,前0.5h 不斷搖晃,去蓋消解,揮發(fā)至離心管中的過(guò)氧化氫減少到1~2mL,再向離心管中加入10mL 過(guò)氧化氫溶液并在85℃水浴加熱消解至近干,冷卻后向殘余物中加入50mL 1mol/L 乙酸銨,室溫下振蕩16h,分離測(cè)定與步驟1 相同,留下固體3。
步驟4:提取鉛的殘?jiān)鼞B(tài)。將前三步用去離子水沖洗的溶液及固體3 烘干,磨碎后用鹽酸、硝酸、高氯酸配制的混合酸對(duì)其進(jìn)行消解,分離測(cè)定均與步驟1 相同。
1.7.3 氨氮形態(tài)提取方法
土壤中氨氮的溶劑順序提取方法見(jiàn)表2。
2.1.1 對(duì)鉛的吸附效果
鉛溶液起始濃度為200mg/L 時(shí)(1.4.1 節(jié)),1.3節(jié)制備的改性沸石對(duì)鉛的吸附效果差異明顯(圖1),NaOH-MZ 和NaOH-2%WV-MZ 對(duì)鉛的去除效果較好,去除率均高達(dá)94%以上,兩者去除率非常接近。
2.1.2 對(duì)氨氮的吸附效果
氨氮溶液起始濃度為30mg/L 和100mg/L 時(shí)(1.4.2 節(jié)),1.3 節(jié)制備的改性沸石中NaOH-2%WVMZ 和NaOH-MZ 對(duì)兩種濃度氨氮的吸附量和去除率較接近,且吸附效果均優(yōu)于其他改性沸石(圖2);NaOH-2%WV-MZ 和NaOH-MZ 對(duì)30mg/L 氨氮的去除率分別為66%、65%,對(duì)100mg/L 氨氮的去除率均為44%;100%WV-MZ 的吸附效果最差,對(duì)兩種濃度氨氮的去除率分別為40%和24%。同種改性沸石對(duì)兩種濃度氨氮的吸附效果不同,隨著氨氮起始濃度增加,改性沸石對(duì)氨氮的去除率明顯下降,推測(cè)與沸石的投加量有關(guān);在投加量相同時(shí),氨氮濃度越高吸附位越快被占據(jù),越快達(dá)到吸附飽和,因此適當(dāng)增加改性沸石的投加量可以進(jìn)一步提高其吸附效率。
圖2 改性沸石對(duì)(a)30mg/L 和(b)100mg/L 氨氮吸附效果對(duì)比Fig. 2 Comparison of the adsorption effect of modified zeolites on (a) 30mg/L and (b) 100mg/L ammonia nitrogen.
廢棄稀土礦山的土壤是重金屬鉛和氨氮復(fù)合污染,綜合改性沸石對(duì)鉛和氨氮的去除效果,下文的實(shí)驗(yàn)將重點(diǎn)考察堿、堿和木醋液改性沸石對(duì)土壤中鉛和氨氮的穩(wěn)定性能。
添加堿改性沸石的老化土(1.5 節(jié))中,鉛有效態(tài)隨淋濾時(shí)間增加而呈現(xiàn)明顯降低的趨勢(shì),40 天后趨于穩(wěn)定(圖3a),而對(duì)照組中鉛有效態(tài)沒(méi)有明顯變化。0~40 天氫氧化鈉改性沸石添加比例為2%體系中鉛有效態(tài)降低速率大于添加比例為1%體系,前者的鉛有效態(tài)降低50%,后者降低38%。實(shí)驗(yàn)結(jié)果表明堿改性沸石的添加比例增加,對(duì)降低土壤中鉛的有效態(tài)效果更好。
圖3 堿改性沸石的添加比例對(duì)(a)鉛和(b)氨氮有效態(tài)的影響Fig. 3 Effect of the added proportion of alkali-modified zeolite on available (a) Pb and (b) ammonia nitrogen.
老化土中氨氮的有效態(tài)隨淋濾時(shí)間增加(圖3b)而呈現(xiàn)降低趨勢(shì),添加2%和1%氫氧化鈉改性沸石的氨氮有效態(tài)降低速率高于對(duì)照組,且6 天后就趨于穩(wěn)定;添加比例為2%體系的老化土中氨氮有效態(tài)降低73%,比例為1%體系降低65%,對(duì)照組下降約20%。綜上所述,土壤中堿改性沸石的添加比例為2%時(shí),鉛和氨氮的有效態(tài)降低效果最好,為下一步穩(wěn)定化實(shí)驗(yàn)提供改性沸石添加比例作參考。
在土壤中添加2%的不同改性沸石(1.6 節(jié)),老化7 天后鉛的有效態(tài)含量均降低(圖4);其中NaOH-MZ可降低鉛有效態(tài)20%,NaOH-2%WV-MZ 可降低鉛有效態(tài)26%,明顯優(yōu)于對(duì)照組和NaCl-MZ 體系。進(jìn)一步實(shí)驗(yàn)顯示:隨著穩(wěn)定化時(shí)間延長(zhǎng),土壤中鉛有效態(tài)含量持續(xù)降低(表3);在第6 周時(shí),添加2%的NaOH-MZ 和NaOH-2%WV-MZ 穩(wěn)定化效果最佳,鉛有效態(tài)固化率分別為52%和59%。
圖4 不同改性沸石(2%添加比例)7 天后土壤中鉛有效態(tài)含量Fig. 4 Available Pb content in the soil after 7 days of different modified zeolites (2%).
表3 不同沸石對(duì)土壤中鉛有效態(tài)的影響(2%添加比例)Table 3 Effect of different zeolites (2%) on Pb effective status in soil.
圖5為土壤添加2% 不同改性沸石老化15 天后氨氮的形態(tài)變化(1.6 節(jié)):添加2% 的NaOH-MZ使土壤中氨氮水溶態(tài)降低16.1%,而離子交換態(tài)和殘?jiān)鼞B(tài)分別增加13.7%、2.4%;添加2% 的NaOH-2%WV-MZ 使土壤中氨氮水溶態(tài)降低11.3%,而離子交換態(tài)和殘?jiān)鼞B(tài)分別增加11%、0.3%。實(shí)驗(yàn)結(jié)果進(jìn)一步表明NaOH-MZ 和NaOH-2%WV-MZ 不僅能對(duì)土壤中鉛起到穩(wěn)定化效果,同時(shí)將氨氮的形態(tài)由不穩(wěn)定態(tài)向穩(wěn)定態(tài)轉(zhuǎn)化。
圖5 不同改性沸石(2%添加比例)在15 天后土壤中氨氮形態(tài)分布Fig. 5 Ammonia nitrogen morphology in soil for 15 days after addition of different modified zeolites (2%).
2.4.1 掃描電鏡分析微觀結(jié)構(gòu)變化
綜合以上實(shí)驗(yàn)結(jié)果,選擇堿和堿+木醋液改性沸石進(jìn)行表征。先通過(guò)掃描電鏡對(duì)比改性前后沸石結(jié)構(gòu)的變化:天然沸石為密實(shí)的平整結(jié)構(gòu),表面上分布著不規(guī)則的雜質(zhì)顆粒(圖6a);經(jīng)NaOH-2%WV 改性后沸石結(jié)構(gòu)變疏松,表面平整干凈,附著的雜質(zhì)部分被去除(圖6b);經(jīng)NaOH 改性后沸石結(jié)構(gòu)變得疏松多空隙,層與層之間的空隙變多且增大(圖6c),這些空隙有利于吸附質(zhì)分子滲透到沸石的結(jié)構(gòu)中,并與沸石表面的基團(tuán)發(fā)生作用,從而提升其吸附性能。
圖6 天然沸石及改性沸石的掃描電鏡圖像Fig. 6 SEM images of natural zeolites and modified zeolites.
2.4.2 比表面積及孔徑變化
沸石樣品在120℃的真空環(huán)境中脫氣2h,經(jīng)物理吸附儀測(cè)試比表面積及孔容,由表4 可知NaOH和NaOH-2%WV 對(duì)沸石的比表面積和孔容影響不大,結(jié)合以上2.1 節(jié)的實(shí)驗(yàn)結(jié)果可知堿和木醋液改性沸石提升了其吸附鉛和氨氮的性能。推測(cè)NaOH 破壞部分沸石的內(nèi)部結(jié)構(gòu)通道,同時(shí)在OH-環(huán)境下形成新的非晶態(tài)顆粒堵塞閉合部分孔徑,導(dǎo)致比表面積略微減小。實(shí)驗(yàn)結(jié)果表明,比表面積并非堿改性沸石吸附能力的主要影響因素,堿改性沸石吸附能力受到靜電、絡(luò)合、氫鍵等相互作用的影響,以羥基配位、離子交換吸附等為主。
表4 改性沸石的比表面積和孔容變化Table 4 Specific surface area and pore volume variation of the modified zeolites.
2.4.3 X 射線衍射分析晶體結(jié)構(gòu)變化
如圖7 所示,三條譜線主要的衍射特征峰均為斜發(fā)沸石,沒(méi)有新的特征衍射峰,說(shuō)明堿和木醋液改性沒(méi)有改變沸石主要的晶體結(jié)構(gòu)。NaOH 和NaOH-2%-WV 改性后沸石的礦物組成含量改變,兩種改性方法使斜發(fā)沸石的特征峰增強(qiáng),相應(yīng)占比都增加2%;而石英和微斜長(zhǎng)石的特征峰減弱,NaOH-MZ 中石英含量減少3%,NaOH-2%WV-MZ 中石英含量減少6%,說(shuō)明堿改性沸石主要是陽(yáng)離子交換和硅組分浸出的過(guò)程。結(jié)合比表面積減小的實(shí)驗(yàn)現(xiàn)象,推測(cè)石英等雜質(zhì)在堿改性過(guò)程中轉(zhuǎn)化為活性的硅酸鹽和非晶態(tài)二氧化硅,有利于提高沸石吸附性能。Jia 等[35]認(rèn)為堿和木醋液改性沸石中斜發(fā)沸石的含量增加會(huì)增強(qiáng)對(duì)鉛的吸附能力,2.1 節(jié)及2.3 節(jié)的實(shí)驗(yàn)結(jié)果驗(yàn)證了這一結(jié)論。
圖7 天然沸石及改性沸石的XRD 圖譜Fig. 7 XRD patterns of the natural zeolite and the modified zeolites.
在1.1 節(jié)所述的廢棄稀土礦山選擇43m×14m長(zhǎng)方形地塊作為實(shí)驗(yàn)區(qū),將其平整后按照2.5m×4m劃分48 個(gè)小區(qū),小區(qū)之間用15cm 寬×15cm 高的土埂隔開(kāi)。經(jīng)2.1 節(jié)初步分析不同改性沸石的吸附性能,堿和堿-木醋液這兩種方法改性的沸石對(duì)鉛和氨氮的吸附效果最好;經(jīng)2.2 節(jié)確定土壤中改性沸石最佳添加比例為2%;經(jīng)2.3 節(jié)實(shí)驗(yàn)結(jié)果表明添加2%的堿和堿+木醋液改性沸石對(duì)土壤中鉛和氨氮的穩(wěn)定效果均為最佳,且兩種沸石的穩(wěn)定效果較為接近;綜合上述實(shí)驗(yàn)結(jié)果,考慮制備工藝流程和成本,本文最終選擇堿改性沸石進(jìn)行中試實(shí)驗(yàn)。
隨機(jī)選6 個(gè)區(qū)未添加修復(fù)材料作為CK 組;任選3 個(gè)區(qū)添加2%堿改性沸石材料并命名為T3 組;定期測(cè)試實(shí)驗(yàn)區(qū)土壤的氨氮含量,各實(shí)驗(yàn)組的氨氮平均值見(jiàn)表5。實(shí)驗(yàn)結(jié)果顯示:土壤中的氨氮含量隨著時(shí)間增加呈下降趨勢(shì),2 個(gè)月時(shí)施加堿改性沸石的土壤中氨氮含量遠(yuǎn)少于對(duì)照組,6 個(gè)月吸附穩(wěn)定94.61%的氨氮,說(shuō)明在實(shí)際應(yīng)用中使用堿改性沸石能有效地減少土壤中氨氮含量。
表5 中試實(shí)驗(yàn)土壤中氨氮的含量Table 5 The content of ammonia nitrogen in the experimental soil.
廢棄離子型稀土礦山土壤中重金屬鉛和氨氮易遷移進(jìn)入環(huán)境中,對(duì)下游水體產(chǎn)生潛在生態(tài)風(fēng)險(xiǎn)。針對(duì)此復(fù)合污染問(wèn)題,本文分別使用氯化鈉、木醋液、氫氧化鈉、氫氧化鈉+木醋液對(duì)天然沸石進(jìn)行改性,分析了改性前后沸石的結(jié)構(gòu)變化,堿和木醋液改性使沸石變得疏松多空隙,石英等雜質(zhì)減少,吸附性能顯著增強(qiáng)。動(dòng)力吸附實(shí)驗(yàn)表明堿和堿-木醋液改性沸石對(duì)鉛和氨氮的吸附性能較好;柱淋濾實(shí)驗(yàn)確定土壤中改性沸石的最佳添加比例為2%,使鉛和氨氮的有效態(tài)分別降低50%、73%;穩(wěn)定化實(shí)驗(yàn)證明添加2%堿改性沸石,使鉛有效態(tài)固化率達(dá)52%,同時(shí)氨氮由不穩(wěn)定的水溶態(tài)向穩(wěn)定的殘?jiān)鼞B(tài)轉(zhuǎn)化;現(xiàn)場(chǎng)中試驗(yàn)證2% 堿改性沸石能吸附穩(wěn)定土壤氨氮達(dá)94.61%。
本研究對(duì)稀土礦山鉛和氨氮復(fù)合污染土壤的修復(fù)具有重要科學(xué)意義,為探究不同改性沸石的吸附性能提供了理論依據(jù),為開(kāi)發(fā)高效土壤修復(fù)技術(shù)、保護(hù)生態(tài)環(huán)境、實(shí)現(xiàn)可持續(xù)發(fā)展提供技術(shù)支撐。改性沸石具有來(lái)源廣泛、價(jià)格低廉、生產(chǎn)工藝簡(jiǎn)便等優(yōu)點(diǎn),具備在實(shí)際應(yīng)用中批量生產(chǎn)和廣泛應(yīng)用的潛力。盡管本文的室內(nèi)實(shí)驗(yàn)和現(xiàn)場(chǎng)試驗(yàn)結(jié)果顯示了堿改性沸石對(duì)土壤中鉛和氨氮的吸附穩(wěn)定效果,但還需要進(jìn)一步研究其長(zhǎng)期穩(wěn)定性和持久性,以及在不同環(huán)境下的應(yīng)用效果。
Alkali-Modified Zeolite: Adsorption Performance for Pb and Ammonia-Nitrogen and Its Remediation Effect on Soil from Rare Earth Mines
LIN Xiaochun1,LIU Xiaoyu1,2,YUAN Xin1,2,ZHANG Longlong1,2,LIU Siwen1,2,F(xiàn)ENG Yaxin3,ZHAO Xiaoqian3,HUANG Yuanying1,2*
(1. National Research Center for Geoanalysis, Beijing 100037, China; 2. Key Laboratory of Ministry of Natural Resources for Eco-Geochemistry, Beijing 100037, China; 3. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083,China)
HIGHLIGHTS
(1) Zeolite modification was explored using salt, alkali, and organic acid-alkali for enhanced adsorption. Modified zeolite by sole sodium hydroxide or combined with wood vinegar displayed efficient Pb and ammonia-nitrogen removal from water.
(2) Optimal 2% sodium hydroxide-modified zeolite addition significantly reduced Pb and ammonia-nitrogen in cocontaminated soil. Field tests demonstrated 94.61% ammonia-nitrogen reduction after 6 months.
(3) Comprehensive procedures for diverse zeolite modifications were described. Rigorous verification, spanning lab to field, yielded optimal parameters for abandoned rare earth mine soil remediation. These findings offer robust technical guidance.
ABSTRACT BACKGROUND:Co-contaminated soils in rare earth mining areas, particularly with Pb and ammonia-nitrogen,present a significant environmental challenge. These contaminants have the potential for lasting, irreversible effects on both ecosystems and human health. Therefore, developing efficient, sustainable, and cost-effective soil remediation techniques is critical. Remediation in these areas is not only vital for reducing environmental pollution and protecting ecosystems but also supports sustainable mining practices and resource utilization.Current research in this field, especially regarding Pb and ammonia-nitrogen co-contamination, is limited.Zeolite adsorption, a popular method globally, is effective in treating heavy metal contamination in soils, showing superior results over lime and phosphate treatments. However, enhancing the adsorption capacity of natural zeolite is necessary, for which various modification methods are being explored. Among these, wood vinegar, a product of biomass pyrolysis, shows promise in improving pollutant removal due to its antimicrobial properties. This study explores the potential of wood vinegar as an additive to alkali-modified zeolite to stabilize heavy metals and ammonia-nitrogen in soils.OBJECTIVES:In order to tackle the remediation of co-contaminated soil in rare earth mines.METHODS:Wood vinegar, sodium hydroxide, and wood vinegar-sodium hydroxide were employed for zeolite modification, and Pb and ammonia-nitrogen speciation were determined by a continuous extraction method.Dynamic adsorption experiments were conducted to preliminarily analyze distinct modified zeolites’ adsorption performance. Optimal mixing ratio of modified zeolites with soil samples was determined by column leaching experiments.Through indoor stabilization experiments, the stabilization effects of different modified zeolites on Pb and ammonia-nitrogen were compared, and chemical speciation changes and their environmental implications were discussed. Investigating the stabilizing impact of various modified zeolites on soil Pb and ammonia-nitrogen,including their influence on specific ammonia-nitrogen forms, was further explored. SEM, BET, and XRD analyses were employed to assess morphological changes and phase composition variations of zeolites before and after modification. Considering process and cost, alkali-modified zeolite was chosen for pilot-scale tests, verifying the stabilization efficacy of remediation materials in practical applications.RESULTS: Adsorption performance in aqueous solutions.NaOH-MZ (modified zeolite by sodium hydroxide)and NaOH-2%WV-MZ (modified zeolite by sodium hydroxide combined with 2% wood vinegar) exhibited outstanding performance in Pb removal, achieving over 94% removal from a 200mg/L initial concentration. For ammonia-nitrogen removal, NaOH-2%WV-MZ and NaOH-MZ outperformed other zeolites, with removal rates of 66% and 65% for 30 mg/L, and 44% for 100mg/L. The adsorption efficiency of modified zeolite on ammonianitrogen varied with concentration, suggesting a correlation with zeolite dosage. Increasing modified zeolite dosage can enhance adsorption efficiency, as higher concentrations of ammonia-nitrogen reach saturation more rapidly.Column leaching experiments.At a 2% addition ratio of alkali-modified zeolite in soil, the most effective reduction in available Pb and ammonia-nitrogen forms was observed. Reduction trends continued over time, with a 50% decrease in Pb available form after 40 days and a 73% decrease in ammonia-nitrogen’s available form after 6 days.Stabilization effects on soil Pb and ammonia-nitrogen.NaOH-MZ and NaOH-2%WV-MZ exhibited stabilization effects on soil Pb and facilitated the transformation of ammonia-nitrogen. After 7 days, NaOH-MZ reduced available Pb content by 20%, and NaOH-2%WV-MZ by 26%, surpassing control and NaCl-MZ. The stabilization effect persisted over time, with optimal outcomes observed in the 6th week for 2% NaOH-MZ and NaOH-2%WV-MZ.Microscopic analysis.Alkali-modified zeolites showed structural changes favoring adsorption, with NaOH-2%WV modification leading to a looser structure with enhanced adsorption potential. The alkaline modification process involves cation exchange and leaching of silica components, transforming impurities like quartz into active silicates and amorphous silica.Pilot-scale tests.In an abandoned rare earth mining area, pilot-scale tests demonstrated the efficacy of 2% alkali-modified zeolite in reducing soil ammonia-nitrogen content. After 6 months, a remarkable reduction of 94.61% was achieved, highlighting the potential of alkali-modified zeolites for sustainable soil remediation.CONCLUSIONS:Alkali and alkali-wood vinegar modifications enhanced zeolite structure, reducing impurities like quartz, and improving adsorption. Experiments show that alkali-modified zeolites, particularly at a 2% addition rate, effectively remove Pb and ammonia-nitrogen, achieving up to 50% Pb stabilization and a 94.61% reduction in ammonia-nitrogen in field trials. This research informs effective soil remediation technologies and sustainable development. While showing promise, further investigation is needed to assess long-term stability.
KEY WORDS:modified zeolite; ionic rare earth mine; available Pb; ammonia nitrogen form; soil remediation