摘 要:燃料電池技術(shù)作為一種新型清潔能源,有希望成為傳統(tǒng)化石燃料的替代品之一.氧還原反應(yīng)(ORR)是燃料電池的陰極反應(yīng),研究更穩(wěn)定、更經(jīng)濟(jì)的高活性電催化劑對(duì)實(shí)現(xiàn)燃料電池商業(yè)化發(fā)展具有重要意義.本研究基于高熵效應(yīng)的優(yōu)勢(shì),制備了多種過(guò)渡金屬共摻雜NSC材料(M-NSC,M=Co、Fe、Ni、Mn、Ce),旨在提高直接液體燃料電池陰極催化劑的催化性能.實(shí)驗(yàn)采用高溫?zé)峤夥ǚ謩e合成了三種M/C摩爾比的(CeMnFeCoNi)-NSC催化劑,研究了不同金屬添加量對(duì)材料微觀結(jié)構(gòu)和催化性能的影響.(CeMnFeCoNi)-NSC呈現(xiàn)二維層狀結(jié)構(gòu),擁有較大的比表面積,為催化反應(yīng)提供了更多的活性位點(diǎn).將(CeMnFeCoNi)-NSC作為直接甲醇燃料電池(DMFC)和直接硼氫化物燃料電池(DBFC)的陰極催化劑,單電池功率密度分別為19.86 mW·cm-2和73.81 mW·cm-2,優(yōu)于高溫?zé)峤夥ㄖ苽涞腇e-NC(DMFC:7.92 mW·cm-2;DBFC:52.12 mW·cm-2).這主要?dú)w因于在(CeMnFeCoNi)-NSC催化劑中金屬與N元素產(chǎn)生的M-N4基團(tuán)可以作為催化位點(diǎn),以及多種金屬之間的協(xié)同作用共同提高了其陰極活性.并且研究發(fā)現(xiàn)當(dāng)金屬總量與碳的摩爾比例為1∶50時(shí),表現(xiàn)出最優(yōu)異的電池性能.研究結(jié)果為開(kāi)展碳基電催化劑的成分設(shè)計(jì)和性能調(diào)控提供了新思路.
關(guān)鍵詞:燃料電池; 陰極; 氧還原反應(yīng); 雜原子摻雜碳
中圖分類號(hào):TB34
文獻(xiàn)標(biāo)志碼: A
Study on the performance of multi-atoms co-doped carbon" as cathodecatalyst for direct liquid fuel cells based on the high-entropy effect
JIAN Li-xiang1, FANG Yuan1*, WU Xin1, WANG Jing-di2, ZHU Jian-feng1
(1.School of Material Science and Engineering, Shaanxi University of Science amp; Technology, Xi′an 710021, China; 2.AVIC Creative Robotic Co., Ltd., Xi′an 710000, China)
Abstract:Fuel cells as a new type of clean energy,have become the potential alternatives to traditional fossil fuels.Oxygen reduction reaction (ORR) is the cathode procedure of fuel cells.It is of great significance to study more stable and economical high-activity electrocatalysts for the commercial development of fuel cells.Based on the advantages of high entropy effect,this work prepared multiple transition metal co-doped NSC materials (M-NSC,M=Co,F(xiàn)e,Ni,Mn,Ce),in order to improve the catalytic performance of cathode catalysts.(CeMnFeCoNi)-NSC catalysts with different metal/carbon ratio were synthesized by high-temperature pyrolysis,and the influence of metal addition amounts on the microstructure and catalytic performance were studied.(CeMnFeCoNi)-NSC shows two-dimensional layered structure,providing a larger specific surface area and more active sites.Then (CeMnFeCoNi)-NSC was used as the cathode catalyst of direct methanol fuel cells (DMFC) and direct borohydride fuel cells (DBFC),and the peak power densities were 19.86 and 73.81 mW·cm-2,respectively,Compared with that of Fe-NC based DMFC and DBFC,the peak power densities were 7.92 and 52.12 mW·cm-2,respectively.The high performance of (CeMnFeCoNi)-NSC is mainly attributed to the M-N4 groups formed by metals and nitrogen,and the synergistic effect among multiple metals.Furthermore,it was found that the superior cell performance was achieved with the metal-to-carbon ratio of 1∶50.This study provides a new idea for the composition design and performance regulation of carbon-based electrocatalysts.
Key words:fuel cell; cathode; oxygen reduction reaction; heteroatom-doped carbon
0 引言
隨著不可再生資源逐步枯竭,環(huán)境污染問(wèn)題日益嚴(yán)重,傳統(tǒng)化石燃料已經(jīng)不能兼顧人們對(duì)能源及環(huán)保的雙重需求[1-3].燃料電池因其不受卡諾循環(huán)限制,效率高且便于運(yùn)輸儲(chǔ)存,被認(rèn)為是最具前景的綠色、可持續(xù)能源轉(zhuǎn)化技術(shù)[4-6].其中直接液體燃料電池(DLFC)是以甲酸、甲醇、乙醇和硼氫化物等作為液體燃料,將化學(xué)能轉(zhuǎn)換為電能的裝置.因其具有高能量密度、電池結(jié)構(gòu)簡(jiǎn)單、便于儲(chǔ)存和運(yùn)輸?shù)葍?yōu)點(diǎn)受到廣大學(xué)者關(guān)注[7].
氧還原反應(yīng)(ORR)作為燃料電池的陰極反應(yīng)[8],目前ORR的首選催化劑是鉑基催化劑[9].但由于Pt基催化劑的稀缺性、高成本,抗甲醇毒化性較差等缺點(diǎn)限制了DLFC的發(fā)展[10,11],因此尋找廉價(jià)且儲(chǔ)量豐富、高氧還原活性和耐甲醇毒性的非貴金屬催化劑尤為重要.非貴金屬催化劑主要有過(guò)渡金屬Fe、Co、Ni、Mn等元素中的一種或多種單質(zhì)及其相應(yīng)的氧化物、氫氧化物、碳化物、硫化物、氮化物和大環(huán)化合物等[12].近年來(lái)的一些研究表明,過(guò)渡金屬原子-氮-碳(M-N-C)催化劑具有獨(dú)特的電子特性,如Co-N-C[13]、Fe-N-C[14]和Mn-N-C[15]等材料作為ORR催化劑具有良好的催化性能,在酸性和堿性電解質(zhì)中都表現(xiàn)出較好的電化學(xué)穩(wěn)定性,使M-N-C成為非貴金屬催化劑的佼佼者[16].這是因?yàn)榈c過(guò)渡金屬的配位可以有效地調(diào)節(jié)局部電子結(jié)構(gòu),促進(jìn)氧的吸附,最終提高ORR的電催化活性[17].但是M-N-C材料仍存在催化位點(diǎn)不足、氧吸附能力差等缺點(diǎn).研究發(fā)現(xiàn)Ce摻雜氮碳材料時(shí),可以通過(guò)Ce3+和Ce4+之間的轉(zhuǎn)換提高材料的儲(chǔ)氧、釋氧能力,從而提升催化劑的氧氣吸附能力[18].
近年來(lái),由五種或五種以上等量或大約等量金屬形成的高熵合金,其所具備的高熵效應(yīng)可以明顯的提升材料的電催化性能和催化選擇性[19,20].在高混合熵的影響下高熵材料中元素的固溶能力大大增強(qiáng),各個(gè)原子隨機(jī)分布在晶體點(diǎn)陣中,不同的金屬原子半徑、化學(xué)鍵相差較大,每個(gè)原子周圍的環(huán)境以及占位均不一樣,使高熵材料擁有更高的無(wú)序狀態(tài)和缺陷程度,呈現(xiàn)出特殊的物理和化學(xué)特性[21,22].Ranganathan等[23]提出,不同性質(zhì)的元素組合在一起會(huì)影響合金的宏觀性能,并且元素之間的協(xié)同作用會(huì)使合金出現(xiàn)在某些特性.Li等[24]合成的(Hf,Zr,La,V,Ce,Ti,Nd,Gd,Y,Pd)O2-x納米粒子,與商業(yè) Pd/C相比,表現(xiàn)出高ORR活性和優(yōu)異的穩(wěn)定性,說(shuō)明通過(guò)合理的高熵化設(shè)計(jì),有望實(shí)現(xiàn)電催化劑的性能優(yōu)化.
綜上所述,本文基于高熵效應(yīng)的優(yōu)勢(shì),制備了多種過(guò)渡金屬共摻雜NSC材料((CeMnFeCoNi)-NSC)作為燃料電池的陰極催化劑,研究了不同金屬摻雜量對(duì)材料微觀結(jié)構(gòu)和催化性能的影響,發(fā)現(xiàn) (CeMnFeCoNi)-NSC呈現(xiàn)二維層狀結(jié)構(gòu),擁有較大的比表面積,為催化反應(yīng)提供了更多的活性位點(diǎn),并且當(dāng)金屬摻雜量摩爾比為1∶50時(shí),材料在直接甲醇燃料電池(DMFC)和直接硼氫化物燃料電池(DBFC)電池系統(tǒng)中表現(xiàn)出最優(yōu)異的電池性能,分別達(dá)到了19.86 mW·cm-2和73.81 mW·cm-2,為開(kāi)展碳基復(fù)合材料的成分設(shè)計(jì)和性能調(diào)控提供了新思路和新契機(jī).
1 實(shí)驗(yàn)部分
1.1 實(shí)驗(yàn)原料及儀器
1.1.1 主要試劑
六水合硝酸鈷(Co(NO3)2·6H2O)購(gòu)自科密歐化學(xué)試劑有限公司;甲醛(CH2O)購(gòu)自阿拉丁試劑(上海)有限公司;氫氧化鉀(KOH)、硝酸鐵(Fe(NO3)3·9H2O)、硝酸鎳(Ni(NO3)2·6H2O)、硝酸錳水溶液(Mn(NO3)2)、硝酸鈰(Ce(NO3)3·6H2O)、鹽酸(HCl)、硫脲(CH4N2S)和尿素(CH4N2O)均購(gòu)自中國(guó)國(guó)藥集團(tuán)化學(xué)試劑有限公司.上述化學(xué)試劑均為分析純,使用時(shí)未經(jīng)進(jìn)一步純化.
1.1.2 主要儀器
恒溫鼓風(fēng)干燥箱WGL-202E購(gòu)自上海博訊實(shí)業(yè)有限公司;電池測(cè)試系統(tǒng)BTS-400購(gòu)自中國(guó)深圳新威爾電子有限公司;高速離心機(jī)TG16-WS購(gòu)自湖南湘儀實(shí)驗(yàn)室儀器開(kāi)發(fā)有限公司;管式爐ZT-40-20Y購(gòu)自合肥科晶材料技術(shù)有限公司.
1.2 催化劑的制備
1.2.1 (CeMnFeCoNi)-NSC的制備
采用高溫?zé)峤夥ㄖ苽洌–eMnFeCoNi)-NSC,具體步驟如下:取5.57 g尿素溶解于120 mL蒸餾水中,在后續(xù)加入8 mL甲醛(250 mL塑料燒杯)在500 r/min轉(zhuǎn)速下磁力攪拌15 min得到混合溶液A.再將一定摩爾比的硝酸鐵、硝酸鈷、硝酸鈰、硝酸錳和硝酸鎳加入溶液A中,使燒杯中PH為4.繼續(xù)進(jìn)行攪拌,1 h后溶液由清澈變渾濁.再過(guò)3 h后,發(fā)生分層現(xiàn)象,并倒掉上清液.進(jìn)行4次離心,得到白色沉淀.再加入2 mol/L鹽酸,使其固化48 h.固化后,離心水洗8~9次,呈中性,得到脲醛樹(shù)脂微球.再進(jìn)行冷凍干燥12 h后,隨后在管式爐中進(jìn)行預(yù)碳化(300 ℃保溫2 h).取出黑色粉末與氫氧化鉀等質(zhì)量比充分研磨,隨后再次放入管式爐800 ℃保溫2 h得到產(chǎn)物(CeMnFeCoNi)-NSC.
當(dāng)金屬添加總量與碳的摩爾比(M∶C)分別為1∶100、1∶50和1∶25時(shí)分別定義產(chǎn)物為(CeMnFeCoNi)-NSC-1∶100、(CeMnFeCoNi)-NSC-1∶50和(CeMnFeCoNi)-NSC-1∶25.
1.2.2 Fe-NC的制備
為了進(jìn)行性能對(duì)比,采用高溫?zé)峤夥ㄖ苽淞薋e-NC催化劑,具體步驟如下:取5.57 g尿素溶解于120 mL蒸餾水中,在后續(xù)加入8 mL甲醛(250 mL塑料燒杯)在500 r/min轉(zhuǎn)速下磁力攪拌15 min.將硝酸鐵加入其中,使燒杯中PH為4.繼續(xù)進(jìn)行攪拌,1 h后溶液由清澈變渾濁.再過(guò)3 h后,發(fā)生分層現(xiàn)象,并倒掉上清液.進(jìn)行4次離心,得到白色沉淀.再加入2 mol/L鹽酸,使其固化48 h.固化后,離心水洗8~9次,呈中性.再將中性產(chǎn)物進(jìn)行冷凍干燥12 h后,放入管式爐800 ℃保溫2 h得到產(chǎn)物Fe-NC.
1.3 表征與性能測(cè)試
1.3.1 催化劑的結(jié)構(gòu)表征
通過(guò)掃描電子顯微鏡(型號(hào)S4800,日本日立)觀察不同比例陰極催化劑和電極截面的微觀結(jié)構(gòu).
通過(guò)透射電子顯微鏡(型號(hào)FEI Tecnai G2 F20 S-TWIN,美國(guó)FEI)通過(guò)與INCA300X射線能譜儀配合使用,進(jìn)一步分析制備的電極表面材料的元素種類以及分布情況.
通過(guò)X射線衍射儀(型號(hào)D8 Advance,德國(guó)布魯克)進(jìn)行樣品的X射線衍射(XRD)測(cè)試,采用D/max 2200PC Cu靶Kα輻射,2θ=5 °~45 °,掃描速率為2 °·min-1.
通過(guò)拉曼光譜分析儀(型號(hào)Renishaw-invia,英國(guó)-Renishaw)對(duì)樣品進(jìn)行拉曼光譜分析,對(duì)其分子結(jié)構(gòu)進(jìn)行研究,其激光波長(zhǎng)為532 nm,功率為3.35 mW.
1.3.2 電池性能表征
陰極的制備:將0.045 g催化劑、0.006 g碳納米管、0.05 g 30 %的PTFE在乙醇中均勻分散后,涂敷在泡沫鎳上1 cm2的區(qū)域,真空干燥后與氣體擴(kuò)散層(GDL)一起在2 MPa下靜壓20 s即可使用.
陽(yáng)極的制備:DMFC陽(yáng)極的制備是將0.006 g鉑釕碳和0.006 g膜溶液在乙醇中均勻分散,然后涂敷在泡沫鎳上1 cm2的區(qū)域,真空干燥后并在2 MPa的壓力下靜壓20 s即可使用.DBFC陽(yáng)極的方法與DMFC相同,將催化劑替換成0.05 g 30%的PTFE和0.07 g CoO.
單電池的組裝通過(guò)將陽(yáng)極、去離子水浸泡后的聚合物纖維膜(PFM)、陰極按圖1所示進(jìn)行依次組裝,氣體擴(kuò)散層面在通氣口一側(cè),燃料在陽(yáng)極一側(cè).直接甲醇燃料電池(DMFC)的燃料使用的是 KOH(4 mol/L)和 CH3OH(5 mol/L)的混合溶液,直接硼氫化物燃料電池(DBFC)燃料使用的是KBH4 (0.8 mol/L)和 KOH(6 mol/L)的混合溶液.通過(guò)新威BTS400型電池測(cè)試系統(tǒng)連接,進(jìn)行性能測(cè)試.
2 結(jié)果與討論
2.1 微觀形貌分析
(CeMnFeCoNi)-NSC催化劑的微觀形貌如圖2(a)~(e)所示.其中圖2(a)~(b)為樣品的SEM和TEM圖像,從圖中可以看出(CeMnFeCoNi)-NSC為二維層狀結(jié)構(gòu),該結(jié)構(gòu)具有較大的比表面積,為催化反應(yīng)提供了更多的活性位點(diǎn),可以顯著提高氧還原反應(yīng)的效率.對(duì)樣品進(jìn)行元素分析,結(jié)果如圖2(c)~(e)所示,催化劑中含有C、S、N、Ce、Fe、Mn、Co和Ni八種元素,各種元素均勻分布在樣品中.
2.2 X射線衍射(XRD)分析
圖3為不同比例的(CeMnFeCoNi)-NSC催化劑以及Fe-NC催化劑的XRD分析,四種催化劑均在26.3 °處顯示出了明顯的特征峰,對(duì)應(yīng)了石墨碳標(biāo)準(zhǔn)卡片(PDF#No.01-0640)的(002)晶面,但是并沒(méi)有檢測(cè)出其他明顯特征峰,原因可能是過(guò)渡金屬摻雜量過(guò)少.
2.3 拉曼散射光譜(Raman)分析
不同比例的(CeMnFeCoNi)-NSC催化劑以及Fe-NC催化劑的拉曼光譜如圖4所示,四種催化劑均在1 337 cm-1和1 590 cm-1存在特征峰,對(duì)應(yīng)碳材料的D和G峰,分別代表缺陷碳和石墨化碳.根據(jù)圖4所示數(shù)據(jù)可以計(jì)算出D峰和G峰的強(qiáng)度比(ID/IG),表明了樣品中對(duì)應(yīng)的缺陷數(shù)目.三種比例(CeMnFeCoNi)-NSC催化劑以及Fe-NC催化劑的ID/IG分別為1.05、1.09、1.03和0.97,這表明經(jīng)過(guò)多原子共摻雜的(CeMnFeCoNi)-NSC催化劑缺陷數(shù)量也顯著提升,并且當(dāng)金屬添加量與碳摩爾比為1∶50時(shí)(CeMnFeCoNi)-NSC的缺陷程度最大.
2.4 X射線光電子能譜(XPS)分析
圖5(a)是(CeMnFeCoNi)-NSC-1∶50的XPS全譜圖,圖中含有C、N、O、S四種元素.圖5(b)展示了(CeMnFeCoNi)-NSC樣品的C 1s光譜,可以擬合為三個(gè)峰,分別在 284.6 eV、285.6 eV和286.7 eV處對(duì)應(yīng)C-C,C-N和C-S鍵,表明了N和S在碳基體中的成功摻雜[25].圖5(c)是N 1s擬合圖,可以分為四個(gè)不同類型的特征峰,分別對(duì)應(yīng)398.3 eV處的吡啶氮、399.3 eV的M-N、400.5 eV處的吡咯氮和位于401.3 eV處的石墨氮基團(tuán)[26],吡咯氮的出現(xiàn)提高了催化劑的本征催化活性、較好的O2吸附能和對(duì)ORR催化的四電子反應(yīng)選擇性[27].其中M-N基團(tuán)的出現(xiàn)證明了過(guò)渡金屬的成功摻雜[28].
O 1s擬合圖中樣品的XPS光譜如圖5(d)所示.在530.4 eV、531.6 eV和533.3 eV的光譜中可以觀察到三個(gè)峰,分別對(duì)應(yīng)于吸附在催化劑表面的水分子、C-O鍵和晶格氧[29].圖5(e)是樣品的S 2p擬合光譜,分別在163.9 eV處對(duì)應(yīng)的C-S-C2p3/2、164.7 eV的C-S-C2p1/2、167.8 eV的Ox-S以及168.7 eV對(duì)應(yīng)C-SOx-C峰.這表明了S的成功摻雜,C-S-C鍵的存在可以提高催化劑的ORR性能.C-SOx-C有助于吸附氧分子以提高材料的穩(wěn)定性和耐久性能[30].
2.5 (CeMnFeCoNi)-NSC電池陰極結(jié)構(gòu)分析
圖6(a)、(b)為電池陰極的橫截面以及聚合物纖維膜的SEM圖像,陰極為三明治結(jié)構(gòu),分為催化劑層、泡沫鎳和氣體擴(kuò)散層.圖6(b)為陰極和陽(yáng)極之間電解質(zhì)膜的微觀結(jié)構(gòu),聚合物纖維膜(PFM)為多層網(wǎng)狀結(jié)構(gòu),該結(jié)構(gòu)在保證穩(wěn)定的條件下提供了更多的通道,使陰離子交換可以更加快速的進(jìn)行.
2.6 (CeMnFeCoNi)-NSC電池性能分析
在室溫下,分別以Fe-NC和不同配比下(CeMnFeCoNi)-NSC催化劑組裝DMFC和DBFC,研究其在低溫下的單電池性能.圖7是DBFC的極化曲線和功率密度曲線,隨著電流密度的增大電壓逐步降低,室溫下Fe-NC的功率密度為52.12 mW·cm-2,(CeMnFeCoNi)-NSC催化劑的性能隨著金屬添加量的逐漸升高,功率密度呈現(xiàn)先增高后降低的趨勢(shì),分別是71.3 mW·cm-2、73.81 mW·cm-2和69.84 mW·cm-2, (CeMnFeCoNi)-NSC催化劑的性能相比于Fe-NC材料有極為明顯的提升.
圖8為DBFC的極化曲線和功率密度曲線,隨著電流密度的增大電壓逐步降低,室溫下Fe-NC材料功率密度為7.92 mW·cm-2,金屬添加量摩爾比為1∶100、1∶50和1∶25的 (CeMnFeCoNi)-NSC催化劑的功率密度分別為16.17 mW·cm-2、19.86 mW·cm-2和13.03 mW·cm-2,結(jié)合圖7可知四個(gè)電池系統(tǒng)中均以(CeMnFeCoNi)-NSC-1∶50表現(xiàn)出最為優(yōu)異的性能,并且多種雜原子共摻雜碳材料性能遠(yuǎn)高于Fe-NC材料,這說(shuō)明了多種雜原子間存在著協(xié)同作用,極大的增強(qiáng)了氧還原反應(yīng)的活性.
3 結(jié)論
本研究基于高熵化效應(yīng),在氮、硫共摻雜碳材料中引入了多種雜原子得到(CeMnFeCoNi)-NSC 催化劑,通過(guò)優(yōu)化催化劑中金屬與碳的比例,研究了金屬原子摩爾比與催化劑微觀結(jié)構(gòu)及單電池性能的關(guān)系.與高溫?zé)峤釬e-NC催化劑對(duì)比,多原子共摻雜的(CeMnFeCoNi)-NSC 催化劑的缺陷密度更高,在室溫下電池性能測(cè)試中,F(xiàn)e-NC催化劑的DBFC和DMFC功率密度分別為52.12 mW·cm-2和7.92 mW·cm-2,而(CeMnFeCoNi)-NSC 催化劑的性能均優(yōu)于Fe-NC,并且當(dāng)金屬添加量與碳摩爾比為1∶50時(shí),功率密度分別為73.81 mW·cm-2和19.86 mW·cm-2.這主要?dú)w因于在(CeMnFeCoNi)-NSC 催化劑中金屬與N元素產(chǎn)生的M-N4基團(tuán)可以作為催化位點(diǎn),并且多種金屬之間的協(xié)同作用共同提高了其陰極活性.
參考文獻(xiàn)
[1] Zou C,Zhao Q,Zhang G,et al.Energy revolution:From a fossil energy era to a new energy era [J].Natural Gas Industry B,2016,3(1):1-11.
[2] Chen T,Qiu X,F(xiàn)eng H,et al.Solid digestate disposal strategies to reduce the environmental impact and energy consumption of food waste-based biogas systems [J].Bioresource Technology,2021,325:124 706.
[3] Wu X,Pan A,She Q.Direct and indirect effects of climate aid on carbon emissions in recipient countries [J].Journal of Cleaner Production,2021,290:125 204.
[4] Deng H,Zhang Y,Zheng X,et al.paper as cathode gas diffusion electrode for water management of passive mu-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol [J].Energy,2015,82:236-241.
[5] Yuan W,Zhang Y,Zhang N,et al.Carbon riveted Pt-MnO2/reduced graphene oxide anode catalyst for DMFC [J].Catalysis Communications,2017,100:66-70.
[6] Vecchio C L,Sebastián D,Alegre C,et al.Carbon-supported Pd and Pd-Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration [J].Journal of Electroanalytical Chemistry,2018,808:464-473.
[7] Chang J,Wang G,Zhang W,et al.Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells [J].Journal of Energy Chemistry,2022,68:439-453.
[8] 房世超.燃料電池用聚芳醚類陰離子交換膜的制備及性能研究 [D].南京:南京理工大學(xué),2013.
[9] Rao S,Xiu R,Si J,et al.In situ synthesis of nanocomposite membranes:Comprehensive improvement strategy for direct methanol fuel cells [J].Chem Sus Chem,2014,7(3):822-828.
[10] Song X,Zhang D.Bimetallic Ag-Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells) [J].Energy,2014,70:223-230.
[11] Xu M W,Gao G Y,Zhou W J,et al.Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution [J].Journal of Power Sources,2008,175(1):217-220.
[12] Zheng H,Modibedi M,Mathe M,et al.The thermal effect on the catalytic activity of MnO2 (α,β,and γ) for oxygen reduction reaction [J].Materials Today:Proceedings,2017,4(11):11 624-11 629.
[13] Shu C,Yang X,Chen Y,et al.Nano-Fe3O4 grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane [J].Rsc Advances,2016,6(43):37 012-37 017.
[14] Yoon J,Kim S,Park H,et al.Molecular M-N4 macrocycles in a nitrogen-carbon matrix as a highly durable oxygen reduction reaction (ORR) electrocatalysts in acid media [J].Materials Letters,2021,291:129 561.
[15] Ma J,Li J,Wang R,et al.Hierarchical porous S-doped Fe-N-C electrocatalyst for high-power-density zinc-air battery [J].Materials Today Energy,2021,19:100 624.
[16] Kim H Y,Ju Y W.Fabrication of Mn-NC catalyst for oxygen reduction reactions using Mn-embedded carbon nanofiber [J].Energies,2020,13(10):2 561-2 572.
[17] Zhou X,Shen Q,Yuan K,et al.Unraveling charge state of supported Au single-atoms during CO oxidation [J].Journal of the American Chemical Society,2018,140(2):554-557.
[18] Li J C ,Qin X,Xiao F,et al.Highly dispersive cerium atoms on carbon nanowires as oxygen reduction reaction electrocatalysts for zn-air batteries[J].Nano Letters,2021,10:4 508-4 515.
[19] Wang S Q,Ye H Q.First-principles studies on the component dependences of High-entropy alloys [J].Advanced Materials Research,2011,338:380-383.
[20] Miracle D.Critical assessment 14:High entropy alloys and their development as structural materials [J].Materials Science and Technology,2015,31(10):1 142-1 147.
[21] 趙 鳴,丁立剛,李保衛(wèi).高熵材料判據(jù)及其在玻璃陶瓷研究中的應(yīng)用 [J].當(dāng)代化工研究,2019(9):1-4.
[22] 孫魯超,任孝旻,杜鐵鋒,等.高熵化設(shè)計(jì):稀土硅酸鹽材料關(guān)鍵性能優(yōu)化新策略 [J].無(wú)機(jī)材料學(xué)報(bào),2021,36(4):339-346.
[23] Ranganathan S.Alloyed pleasures:Multimetallic cocktails [J].Current Science,2003,85(5):1 404-1 406.
[24] Li T,Yao Y,Ko B H,et al.Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions [J].Advanced Functional Materials,2021,31(21):2 010 561.
[25] Zhou D,Yang L,Yu L,et al.Fe/N/C hollow nanospheres by Fe (III)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction [J].Nanoscale,2015,7(4):1 501-1 509.
[26] Aramaki K.XPS and EPMA studies on self-healing mechanism of a protective film composed of hydrated cerium (III) oxide and sodium phosphate on zinc [J].Corrosion Science,2003,45(1):199-210.
[27] Zhang N,Zhou T,Chen M,et al.High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst [J].Energy amp; Environmental Science,2020,13(1):111-118.
[28] Xu X,Xia Z,Zhang X,et al.Atomically dispersed Fe-NC derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells [J].Applied Catalysis B:Environmental,2019,259:118 042.
[29] Wang F,Zhang P,You S,et al.Co8FeS8 wrapped in Auricularia-derived N-doped carbon with a micron-size spherical structure as an efficient cathode catalyst for strengthening charge transfer and bioelectricity generation [J].Journal of Colloid and Interface Science,2020,567:65-74.
[30] Guo M,Wang L,Gao Y,et al.Trace sulfur promoted Fe,N-codoped carbon black as electrocatalyst for oxygen reduction reaction [J].International Journal of Hydrogen Energy,2019,44(7):3 625-3 635.
【責(zé)任編輯:陳 佳】