摘要 重金屬污染對糧食安全及人體健康造成巨大威脅,目前已開發(fā)出許多農田重金屬污染修復方法。硒的補充顯著降低作物對重金屬的吸收,同時促進作物在重金屬污染土壤中的生長,施硒已成為阻控作物吸收重金屬的新途徑。本文對施硒阻控作物吸收重金屬的5 種機制即硒改變土壤重金屬的生物有效性、硒與重金屬競爭植物攝取通道、硒促進植物根系鐵膜形成、硒誘導植物根系形態(tài)及結構變化、硒調控植物重金屬螯合和轉運基因表達等研究進展進行了綜述,同時對施硒阻控作物吸收重金屬潛在風險及未來研究重點進行展望,以期為將來利用硒作為重金屬阻控劑提供參考。
關鍵詞 重金屬; 硒; 農作物; 土壤修復; 鐵膜; 植物根系
中圖分類號 X53 文獻標識碼 A 文章編號 1000-2421(2024)04-0112-09
礦山的開采、過度使用化肥和殺蟲劑以及污水灌溉等人為活動會導致農田土壤嚴重的重金屬及類金屬污染[1-2],其中,As、Cd、Hg、Sb、Zn、Cu、Cr、Pb 等重金屬的污染對糧食安全及人體健康造成極大的威脅[3-6]。目前已開發(fā)出多種重金屬污染修復方式,包括利用超富集植物蜈蚣草(Pteris vittata L.)和東南景天(Sedum alfredii Hance)等對重金屬進行吸收提取、利用生物炭或有機肥對土壤重金屬進行吸附和鈍化、通過重金屬轉化微生物對其進行解毒及固定等途徑[7-9]。硒(Se)是人體和動物必需的微量元素,作為30 多種硒蛋白及硒酶的重要活性中心,在維持人體抗氧化、抗癌及免疫調節(jié)中發(fā)揮重要作用[10-11]。長期的硒攝入不足可能會引發(fā)克山病、大骨節(jié)病等疾?。?1-12]。膳食中的硒攝入是人體主要的硒補充方式,因此,農作物的硒生物強化受到廣泛的關注[13-14]。研究表明,作為一種硒強化措施,葉面施硒或施加含硒肥料等方式不僅能促進作物富硒、提高作物產(chǎn)量和品質,還能顯著降低蔬菜和谷物中As、Cd、Pb、Hg、Cr、Sb 和Cu 等重金屬的積累。硒已被廣泛認為是一種新型高效的作物吸收重金屬阻控劑[15-18]。本文主要介紹在土壤-植物系統(tǒng)中由硒介導的重金屬的遷移及轉化,并闡釋硒介導的阻控植物重金屬吸收的潛在機制,以期為施用硒肥阻控作物重金屬積累提供一定科學依據(jù)。
1 硒阻控作物吸收重金屬機制
1.1 硒改變土壤重金屬的生物有效性
施加到土壤中的硒會與土壤重金屬發(fā)生復雜的相互作用,從而改變土壤重金屬的生物有效性[18]。硒在土壤中的生物有效性及鈍化重金屬的效果受到pH 值、Eh 值、有機質及土壤微生物等土壤特性的影響[19](圖1)。土壤pH 值的變化直接影響土壤中重金屬的溶解性和土壤顆粒對重金屬的吸附能力。土壤pH 值的增加會提高土壤顆粒表面負電荷含量,從而增加As、Sb、Se 等類金屬含氧陰離子的流動性,但降低Cd、Pb、Cu、Hg 等重金屬陽離子的生物有效性[20-22]。研究發(fā)現(xiàn),提高土壤pH 值可以增強Se 阻控水稻Cd 吸收的效果[23]。此外,Huang 等[24]報道向稻田土壤中施加1 mg/kg 的亞硒酸鈉(強堿弱酸鹽)可顯著增加根際和非根際土壤的pH 值,從而降低稻田土壤中Cd 的流動性和水稻中Cd 的含量。然而,土壤pH 類金屬的提高同時會導致As、Sb 等類金屬的活化,因此,在利用硒處理As 和Cd 等重金屬復合污染時需要綜合考慮土壤pH 對修復效果的影響。
水稻種植涉及淹水及排水2 種水分管理方式,稻田土壤的Eh 變化對硒及土壤重金屬的生物有效性有著重要影響[20-21](圖1)。長期淹水后的土壤Eh 降低,當土壤Eh 降低至?200 mV 以下時,四或六價硫及硒的含氧陰離子被還原為負二價硫或負二價硒,二價鎘陽離子會優(yōu)先與負二價硫形成硫化鎘,此外也能與負二價硒形成硒化鎘沉淀,從而降低鎘的流動性及鎘在植物中的含量[25-26]。與之相反,土壤長期淹水不利于硒阻控植物對As 等類金屬陰離子的吸收。稻田淹水產(chǎn)生的厭氧環(huán)境會促進As(Ⅴ)還原為As(Ⅲ)并導致Fe/Mn 氧化物的還原從而促進砷的解吸附,最終提高砷的流動性和毒性[20]。同時,淹水厭氧的環(huán)境導致Se(Ⅳ)還原為不溶的單質硒沉淀,降低生物有效性硒的含量,從而極大降低硒拮抗植物砷吸收的效果[18,26]。Wan 等[27]發(fā)現(xiàn),在有氧條件下施加硒可降低水稻對As 的吸收,但在淹水條件下施加硒反而促進砷在水稻中的積累。因此,利用施硒阻控作物重金屬吸收時應根據(jù)土壤污染情況調整土壤淹水狀況,以保證最佳的修復效果。
除土壤pH、Eh 等理化性質外,土壤微生物可通過對硒及土壤重金屬的轉化介導形成不溶性硒化物沉淀,最終降低重金屬的生物有效性(圖1)。Wang等[28]報道稻田土壤中施加硫酸鹽及亞硒酸鹽可通過形成HgS 或HgSe 沉淀,從而降低水稻中甲基汞的含量。由于Se 對Hg 的結合親和力大于S,施加亞硒酸鹽對汞污染修復效果優(yōu)于施加硫酸鹽[29]。He 等[30]構建的活性污泥反應器通過微生物介導的HgSe 生物礦化,實現(xiàn)Hg 與Se 的共去除。亞硒酸鹽可在土壤微生物轉化作用下與Cd 反應生成CdSe 沉淀,從而降低Cd 的流動性和遷移率[31]。土壤中生物有效性Se 及Cd 的比例直接影響土壤難溶性CdSe 的形成[31-32]。Zhang 等[31]發(fā)現(xiàn),當土壤中硒和鎘的生物有效物質的量比大于0.7 時,增加的生物有效性硒才能將酸性土壤中的Se(Ⅳ)還原為Se(?Ⅱ),隨后形成難溶性CdSe,最終顯著降低玉米中Cd 的含量。然而,當硒和鎘物質的量比低于0.7 時,Se 和Cd 可能以CdSeO3 和CdSeO4 的形式更高效地被根部吸收,導致玉米中鎘的積累[31]。Guo 等[32]在水培試驗中發(fā)現(xiàn),外源硒或鎘的施加會降低水稻對另一種金屬的吸收和轉運。當Se/Cd 物質的量比大于1 時,水稻各部位Cd 的濃度和轉移因子同時達到最低值,硒與鎘的相互拮抗吸收可能與CdSe 形成相關。與Cd 類似,研究指出Cu 可在希瓦氏菌的轉化下與硒形成CuSe 沉淀進而實現(xiàn)共解毒[33]。除了直接介導硒與重金屬不溶硒化物的合成外,某些硒氧化細菌可通過對土壤難利用態(tài)硒的溶解及低價態(tài)硒的氧化作用,將低生物可利用度的低價態(tài)硒轉化為流動性更高的高價態(tài)硒,從而提升土壤硒的生物有效性。An等[34]通過施加硒氧化農桿菌T3F4 提高土壤硒的流動性,從而促進小白菜對硒的吸收并降低砷的積累。Guo 等[35]報道數(shù)株硒氧化細菌可活化土壤中的硒,最終提高小白菜的硒含量同時阻控鎘的吸收。
1.2 硒與砷銻等類金屬競爭植物攝取通道
除了直接改變土壤重金屬的生物有效性之外,硒還可以通過與砷等類金屬競爭離子攝取通道從而降低作物中類金屬的含量[34,36](圖2)。水稻根部通過硅轉運蛋白非特異性的攝取As(Ⅲ)離子,它屬于水通道蛋白亞家族中的類NOD26 膜內在蛋白[37]。由于As(Ⅴ)與磷酸鹽結構相似,植物根系可通過磷酸鹽轉運蛋白對As(Ⅴ)進行吸收[38]。與As(Ⅲ)類似,Se(Ⅳ)也被證實可以通過根系的硅轉運通道而被植物非特異性吸收[39]。此外,Zhang 等[40]發(fā)現(xiàn)水稻的磷酸鹽轉運蛋白OsPT2 參與對亞硒酸鹽的主動吸收。已有許多研究報道硒通過與砷競爭植物根系攝取通道從而拮抗砷的吸收。An 等[34]在水培體系中加入10 μmol/L Se(Ⅳ)將小白菜對As(Ⅴ)的50%生長抑制濃度提高2 倍,有效降低砷對植物的毒性,并顯著降低植株地上部分砷的含量。然而,一些研究發(fā)現(xiàn),在As(Ⅲ)暴露的水培水稻體系中加入Se(Ⅳ)僅阻控As 從水稻根部向莖的轉運,但會促進As在其根中的積累[36,41],說明硒阻控植物吸收砷不僅由競爭攝取通道介導,還存在其他機制。此外,多個研究發(fā)現(xiàn)硒的施加降低了銻對植物的毒性和植物中的銻積累[15,42]。已有研究報道,Sb(Ⅲ)與Se(Ⅳ)均可以被植物根系的水甘油通道蛋白進行非特異性攝?。?3]。因此,競爭植物根部的硅酸鹽攝取通道,也可能是硒降低銻毒性和吸收的重要途徑。
1.3 硒促進植物根表鐵膜形成
鐵膜是水稻等水生植物根表由鐵的氧化物或氫氧化物形成的鐵斑塊,對As、Cd、Hg、Sb、Zn 及Cu 等重金屬均有較強吸附能力,已被廣泛報道作為植物吸收重金屬的屏障[44-50]。已有研究報道發(fā)現(xiàn)施加一定劑量的硒能改變水稻根表鐵膜及其吸附重金屬的含量(圖2)。Zhou 等[44]的研究發(fā)現(xiàn),在水培體系中硒的施加能促進水稻根表鐵膜中無機汞的積累進而降低莖中汞的含量。Huang 等[48]的研究發(fā)現(xiàn)亞硒酸鹽的施加刺激了水稻根系徑向氧的釋放,從而促進根系微環(huán)境亞鐵離子的氧化,最終提高根表鐵膜的含量和Cd 的阻控效果。硒對植物根表鐵膜的形成受到根系暴露的重金屬的價態(tài)及其生物有效性濃度等諸多因素的影響。Liu 等[51]的研究發(fā)現(xiàn)硒的施加僅能促進Sb(Ⅲ)而非Sb(Ⅴ)暴露下的水稻根表鐵膜的形成。有研究報道,硒的施加僅在低鎘污染土壤中通過促進水稻鐵膜形成并阻控鎘,而對高濃度鎘污染土壤中水稻鐵膜的形成無顯著影響[52]。
除以上因素外,硒的施加劑量、價態(tài)及施加時機均會影響硒對植物根表鐵膜形成及重金屬阻控效果。Chang 等[45]報道低劑量(1.0 mg/kg)的硒能夠促進鐵膜的形成從而降低水稻中Cd 的含量,而高劑量(8.0 mg/kg)的硒抑制水稻根表鐵膜的形成,說明硒對鐵膜的形成影響具有劑量效應。最近的研究發(fā)現(xiàn),Se(Ⅳ)和Se(Ⅵ)均能有效降低水稻莖葉中砷的積累,但Se(Ⅳ)會促進砷從鐵膜中向根中的轉運,而Se(Ⅵ)則顯著降低鐵膜中砷向根部的轉移[49],表明硒的價態(tài)對鐵膜的砷阻控至關重要,但其作用機制尚不明確。此外,施加硒的時期對鐵膜阻控重金屬的效果至關重要。Huang 等[50]的研究發(fā)現(xiàn),在分蘗期施加Se(Ⅳ)是降低糙米中鎘含量的最佳時期,分蘗期施硒能刺激抽穗期的水稻根表產(chǎn)生大量的鐵膜,最大程度地抑制了根系對鎘的吸收和鎘從根系向籽粒的轉運。
1.4 硒誘導植物根系形態(tài)及結構變化
根系的形態(tài)及結構對植物抵御重金屬的毒性和脅迫起著重要作用[53-54]。Huang 等[53]研究表明,具有較大的表面積、較長的根長和較多根尖的辣椒品種具有更高Cd 積累量,減少根毛、側根數(shù)量和根的長度,有利于植物降低根系對重金屬的攝取和吸收。在對水稻的研究中發(fā)現(xiàn),單位根表面積更小、根孔隙度更大的水稻植株,其籽粒中鎘積累量更低[54]。已有研究表明,硒能通過誘導植物根系形態(tài)及結構發(fā)生變化,從而降低植物對重金屬的吸收和積累[55-58](圖2)。Malheiros 等[55]發(fā)現(xiàn),施加Se(Ⅳ)可降低水稻生長素和乙烯的生物合成相關基因的表達量,從而抑制根系主根和側根的生長。此外,Wu 等[56]的研究發(fā)現(xiàn),水培體系中加入0.5 mg/L 的Se(Ⅳ)能調控植物生長素的運輸及信號轉導從而降低根的表面積和根尖數(shù)量,進而降低植物根系及地上部分對鎘的吸收。Ding 等[57]發(fā)現(xiàn),硒能顯著降低水稻根系須根的含量而促進主根的發(fā)育,從而降低根系對鎘的吸收。施加硒可降低水稻植株在Sb(Ⅲ)暴露下的根叉及細根的數(shù)量,從而降低植物地上部的銻含量[17]。然而,也有研究發(fā)現(xiàn)硒的施加并未影響根系的形態(tài),但小白菜地上部分的鎘含量顯著降低,說明不同植物存在不同的硒阻控鎘吸收的機制[58]。
除了誘導植物根系形態(tài)或結構的改變外,硒還可通過改變根系細胞壁組成成分介導重金屬的阻控。細胞壁主要由纖維素、半纖維素、果膠、木質素等物質組成,可通過與重金屬的結合作用降低植物根系對重金屬的吸收[59-60]。施硒可增加細胞壁中半纖維素、木質素和果膠等物質的合成來提高細胞壁的厚度和對重金屬的螯合能力,從而有效降低植物根系對重金屬的吸收[15,51]。Yang 等[61]的研究發(fā)現(xiàn),施加Se(Ⅵ)顯著提高小白菜根中果膠和半纖維素的含量,并通過提升果膠甲基酯酶活性促進果膠的合成,增強細胞壁對Cd 的結合作用,從而降低植物地上部分鎘的含量。此外,Wang 等[62]的研究發(fā)現(xiàn),除了通過促進植物根細胞壁果膠、半纖維素和木質素的合成降低鎘吸收外,硒的施加還可以促進根內皮層和外皮層凱氏帶的沉積,從而阻斷Cd 的轉運,并誘導細胞壁中羧基、羰基或酰胺基的釋放而與Cd 結合,最終阻控根系對鎘的吸收。
1.5 硒調控植物重金屬螯合和轉運基因表達
除上述機制外,硒還可通過調控植物重金屬螯合和轉運相關基因的表達進而降低重金屬的吸收和毒性(圖2)。Cui 等[63]的研究發(fā)現(xiàn),Se(Ⅳ)的施加促進水稻參與鎘向液泡轉運的OsHMA3 基因的表達,但降低了參與鎘吸收基因OsNramp5 和轉運基因Os?LCT1 的表達量,從而將鎘更多地固定在液泡中,同時降低根系對鎘的攝入和向地上部分的轉移。Huang 等[64]報道,Se(Ⅳ)誘導水稻根系中液泡鎘轉運OsNramp1 和OsMHA3 基因上調表達,促進鎘在液泡中的隔離;同時,硒刺激水稻植物螯合素(PC)的合成,降低植物根系中鎘的毒性和流動性。此外,納米硒的施加使葉片及花序梗中的OsLCT1,OsCCX2和OsPCR1 鎘轉運相關基因下調表達,從而降低鎘向水稻籽粒的轉移和積累[65]。葉面噴施1 mg/L 的Se(Ⅳ)可誘導油菜葉片細胞植物螯合素PCS1 的合成,從而促進PC-Cd 復合物的形成并將鎘螯合物隔離在液泡中[66]。Se(Ⅳ)的施加可誘導小麥根系鎘攝入轉運蛋白TaNramp5 的下調表達,同時刺激鎘外排蛋白TaTM20 和TaHMA3 上調表達,從而降低植物對鎘的吸收和積累[67]。也有研究發(fā)現(xiàn),Se(Ⅵ)能提高砷暴露條件下水稻根系硝酸鹽轉運蛋白NRT、磷酸鹽轉運蛋白PHT、鉀通道蛋白KCP 的表達,進而促進植物對必需元素的吸收和利用來抵御砷的脅迫[68]。
2 使用硒阻控作物中重金屬吸收的潛在風險
盡管施加硒阻控植物吸收各種重金屬的效果得到廣泛的驗證,以亞硒酸鹽為主要成分的重金屬葉面阻隔劑也得到一定的應用,但是使用硒修復重金屬污染也存在潛在的風險[18,57]。硒的施用劑量、作物的種類、土壤的理化環(huán)境及土壤重金屬的組成和濃度均可能影響硒對重金屬的阻控效果[18]。重金屬污染土壤中施加硒在保證阻控效果的前提下,需要盡可能降低硒的使用劑量,以防止土壤出現(xiàn)硒過量甚至硒污染的情況。硒污染會導致硒在植物體內過度積累,如果人體攝入過量的硒,會對人體健康產(chǎn)生危害[69]。不當?shù)奈┘觿┝靠赡芷鸩坏阶杩刂亟饘俚淖饔?,反而促進作物中重金屬的積累。Ding 等[57]發(fā)現(xiàn),給暴露于12 mg/L Cd(Ⅱ)脅迫下的水稻施加0.2 mg/L Se(Ⅳ)不能使水稻中鎘含量降低,反而增強鎘在水稻中的積累。此外,也有研究報道Se(Ⅳ)雖能降低小白菜根系對鎘的親和力,但Se(Ⅳ)含氧陰離子同時可通過電荷緩沖,降低Cd(Ⅱ)陽離子轉運的電荷屏障,從而顯著提高根系對Cd(Ⅱ)吸收[70]。Wan 等[27]報道,在淹水條件下施加低劑量的Se(Ⅳ)會增加水稻籽粒砷的濃度,而在有氧條件下硒的施加顯著降低水稻的砷積累。因此,施硒修復重金屬污染時需控制土壤水分,長期淹水可能影響其修復效果,甚至促進作物對重金屬的吸收。
在某些條件下,硒可能改變植物吸收重金屬元素的價態(tài),因而影響硒對重金屬的修復效果。有研究發(fā)現(xiàn),盡管施加硒顯著降低水稻籽粒中總砷的含量,但卻提高了稻米中As(Ⅲ)的含量,而As(Ⅲ)的毒性遠高于As(Ⅴ)[71]。此外,某些條件下,硒的施加可能降低植物對其他必需營養(yǎng)元素的吸收。Feng等[72]的研究發(fā)現(xiàn),硒的施加顯著降低水稻植株的銻含量,但同時降低了水稻植株地上部鉀、錳及鎂的含量。Sousa 等[73]發(fā)現(xiàn),盡管施加硒顯著降低植物中砷的積累,但卻降低植物莖和根中的鐵錳及鋅的含量。因此,在使用硒進行重金屬污染修復時,需要對土壤的污染狀況和土壤性質進行詳細調研,確保修復措施既有效又安全,不會對環(huán)境和人體健康造成額外的風險[74]。
3 展望
施硒作為一種硒強化手段,不僅能促進作物富硒,提升作物品質,同時也在阻控作物重金屬吸收方面展現(xiàn)出良好的應用前景。由于土壤-植物體系的復雜性,不同的作物及土壤的性質、重金屬污染程度等因素均會影響硒對重金屬的修復效果,硒降低植物重金屬吸收機制的研究需要更深入的研究。未來的研究有以下幾個重點:(1)需進一步明確土壤中不同形態(tài)的Se 與重金屬的互作機制,闡釋多大劑量的Se 能阻控作物重金屬的積累;(2)進一步探究土壤pH、Eh、有機質等理化因子如何影響硒修復重金屬的效果;(3)探究硒的施加量對不同作物吸收重金屬的阻控效果,優(yōu)化出阻控特定作物吸收重金屬的安全硒施加劑量;(4)除Se(Ⅳ)及Se(Ⅵ)外,納米硒毒性更小且容易被植物吸收,需開展更多納米硒阻控植物吸收重金屬的研究;(5)除鎘之外,硒如何在基因水平調控植物攝入及轉運其他重金屬的機制尚不明確,有待進一步的闡釋;(6)實際重金屬復合污染土壤多為復合污染,硒對復合污染如砷鎘共污染的修復效果的研究鮮有報道,需更多的研究;(7)施加硒對土壤微生物群落和重金屬轉化功能菌株的影響少有研究,硒對土壤生態(tài)平衡的影響尚不明確。通過對硒阻控植物吸收重金屬機制的闡釋,不僅能實現(xiàn)對毒性重金屬精準高效阻控,同時能避免硒施加所帶來的潛在風險。
參考文獻 References
[1] LI H S,GU Y G,LIANG R Z,et al.Heavy metals in riverine/estuarine
sediments from an aquaculture wetland in metropolitan areas,
China:characterization,bioavailability and probabilistic ecological
risk[J/OL]. Environmental pollution,2023,324:121370
[2024-05-28].https://doi.org/10.1016/j.envpol.2022.120370.
[2] ZHANG B,HOU H,HUANG Z,et al.Estimation of heavy metal
soil contamination distribution,hazard probability,and population
at risk by machine learning prediction modeling in Guangxi,
China[J/OL]. Environmental pollution,2023,330:121607
[2024-05-28].https://doi.org/10.1016/j.envpol.2023.121607.
[3] NIU S,XIA Y,YANG C,et al.Impacts of the steel industry
on sediment pollution by heavy metals in urban water system
[J/OL]. Environmental pollution,2023,335:122364[2024-
05-28].https://doi.org/10.1016/j.envpol.2023.122364.
[4] LUO X S,YU S,ZHU Y G,et al.Trace metal contamination
in urban soils of China[J/OL]. Science of the total environment,
2012,421/422:17-30.
[5] WANG P,CHEN H P,KOPITTKE P M,et al. Cadmium
contamination in agricultural soils of China and the impact on
food safety[J].Environmental pollution,2019,249:1038-1048.
[6] ZHAO F J.Strategies to manage the risk of heavy metal(loid)
contamination in agricultural soils[J].Frontiers of agricultural
science and engineering,2020,7(3):333-338.
[7] LIU X,F(xiàn)U J W,TANG N,et al.Phytate induced arsenic uptake
and plant growth in arsenic-hyperaccumulator Pteris vitta?
ta[J].Environmental pollution,2017,226:212-218.
[8] TU C,WEI J,GUAN F,et al.Biochar and bacteria inoculated
biochar enhanced Cd and Cu immobilization and enzymatic activity
in a polluted soil[J/OL]. Environment international,
2020,137:105576[2024-05-28]. https://doi. org/10.1016/j.
envint.2020.105576.
[9] XIA X,WU S,ZHOU Z,et al.Microbial Cd(Ⅱ) and Cr(Ⅵ) resistance
mechanisms and application in bioremediation[ J/OL].
Journal of hazardous materials,2020,401:123685[2024-05-28].
https://doi.org/10.1016/j.jhazmat.2020.123685.
[10] DINH Q T,CUI Z,HUANG J,et al.Selenium distribution in
the Chinese environment and its relationship with human
health:a review[J]. Environment international,2018,112:
294-309.
[11] RAYMAN M P.Selenium and human health[J].The lancet,
2012,379(9822):1256-1268.
[12] HUAWEI Z,JAY C,GERALD C.Selenium in bone health:
roles in antioxidant protection and cell proliferation[J].Nutri‐
ents,2013,5(1):97-110.
[13] MALAGOLI M,SCHIAVON M,DALL’ACQUA S,et al.
Effects of selenium biofortification on crop nutritional quality
[J/OL].Frontiers in plant science,2015,6:280[2024-05-28].
https://doi.org/10.3389/fpls.2015.00280.
[14] ZHANG S,ZHU H,CEN H,et al.Effects of various forms of
selenium biofortification on photosynthesis,secondary metabolites,
quality,and lignin deposition in alfalfa (Medicago sativa
L.)[J/OL].Field crops research,2023,108801[2024-05-28].
https://doi.org/10.1016/J.FCR.2022.108801.
[15] DING Y,WANG R,GUO J,et al.The effect of selenium on
the subcellular distribution of antimony to regulate the toxicity
of antimony in paddy rice[J].Environmental science amp; pollution
research,2015,22(7):5111-5123.
[16] DEBOJYOTI M,CHANDRA S S,DIBAKAR G.Seed priming
with Se mitigates As-induced phytotoxicity in rice seedlings
by enhancing essential micronutrient uptake and translocation
and reducing As translocation[J]. Environmental science
and pollution research,2018,25:26978-26991.
[17] WU Q,F(xiàn)ENG R,GUO J,et al.Interactions between selenite
and different forms of antimony and their effects on root morphology
of paddy rice[J].Plant and soil,2016,413(1/2):1-12.
[18] FENG R W,ZHAO P P,ZHU Y M,et al.Application of inorganic
selenium to reduce accumulation and toxicity of metals
and metalloids in plants:the main mechanisms,concerns,and
risks[J/OL].Science of the total environment,2021,771(6):
144776 [2024-05-28]. https://doi. org/10.1016/j. scitotenv.
2020.144776.
[19] NATASH A,SHAHID M,NIAZI N K,et al. A critical review
of selenium biogeochemical behavior in soil-plant system
with an inference to human health[J].Environmental pollution,
2018,234:915-934.
[20] SHEN B,WANG X,ZHANG Y,et al.The optimum pH and
Eh for simultaneously minimizing bioavailable cadmium and arsenic
contents in soils under the organic fertilizer application[J/
OL].Science of the total environment,2019,711:135229[2024-
05-28].https://doi.org/10.1016/j.scitotenv.2019.135229.
[21] FENG R W,WANG L Z,YANG J G,et al.Underlying mechanisms
responsible for restriction of uptake and translocation of
heavy metals(metalloids) by selenium via root application in
plants[J/OL]. Journal of hazardous materials,2021,402:
123570 [2024-05-28]. https://doi. org/10.1016/j.
jhazmat.2020.123570.
[22] ZENG F R,ALI S,ZHANG H T,et al.The influence of pH
and organic matter content in paddy soil on heavy metal availability
and their uptake by rice plants[J].Environmental pollution,
2011,159(1):84-91.
[23] WAN Y,CAMARA A Y,YU Y,et al.Cadmium dynamics in
soil pore water and uptake by rice:influences of soil-applied
selenite with different water managements[J]. Environmental
pollution,2018,240:523-533.
[24] HUANG Q Q,XU Y M,Liu Y Y,et al.Selenium application
alters soil cadmium bioavailability and reduces its accumulation
in rice grown in Cd-contaminated soil[J].Environmental
science and pollution research,2018,25:31175-31182.
[25] NAKAMARU Y M,ALTANSUVD J. Speciation and bioavailability
of selenium and antimony in non-flooded and wetland
soils:a review[J].Chemosphere,2014,111:366-371.
[26] MASSCHELEYN P H,DELAUNE R D,PATRICK W H.
Biogeochemical behavior of selenium in anoxic soils and sediments:
an equilibrium thermodynamics approach[J].Journal of
environmental science amp; health part A:environmental science
amp; engineering amp; toxicology,1991,26(4):555-573.
[27] WAN Y,CAMARA A Y,HUANG Q Q,et al. Arsenic uptake
and accumulation in rice (Oryza sativa L.) with selenite
fertilization and water management[J].Ecotoxicology and environmental
safety,2018,156:67-74.
[28] WANG Y J,DANG F,ZHONG H,et al. Effects of sulfate
and selenite on mercury methylation in a mercury-contaminated
rice paddy soil under anoxic conditions[J]. Environmental
science and pollution research,2016,23(5):4602-4608.
[29] WANG Y,DANG F,ZHAO J,et al.Selenium inhibits sulfatemediated
methylmercury production in rice paddy soil[J].Environmental
pollution,2016,213:232-239.
[30] HE Z F,SHEN J Q,ZHAO Y H,et al.Microbial antagonistic
mechanisms of Hg(Ⅱ) and Se(Ⅳ) in efficient wastewater
treatment using granular sludge[J/OL].Water research,2024,
253:121311[2024-05-28]. https://doi. org/10.1016/j. watres.
2024.121311.
[31] ZHANG Z Z,YUAN L X,QI S H,et al.The threshold effect
between the soil bioavailable molar Se∶Cd ratio and the accumulation
of Cd in corn (Zea mays L.) from natural Se-Cd rich
soils[J]. Science of the total environment,2019,688:1228-
1235.
[32] GUO Y K,MAO K,CAO H R,et al. Exogenous selenium
(cadmium) inhibits the absorption and transportation of cadmium
(selenium) in rice[J/OL].Environmental pollution,2021,
268(Pt A):115829[2024-05-28].https://doi.org/10.1016/j.
envpol.2020.115829.
[33] WANG X,WANG L,CHEN L,et al.AQDS activates extracellular
synergistic biodetoxification of copper and selenite via
altering the coordination environment of outer-membrane proteins
[J].Environmental science amp; technology,2022,56(19):
13786-13797.
[34] AN L J,ZHOU C Z,ZHAO L P,et al. Selenium-oxidizing
Agrobacterium sp.T3F4 decreases arsenic uptake by Brassica
rapa L.under a native polluted soi[l J].Journal of environmental
sciences( China),2024,138(4):506-515.
[35] GUO J Y,LUO X,ZHANG Q Y,et al.Contributions of selenium-
oxidizing bacteria to selenium biofortification and cadmium
bioremediation in a native seleniferous Cd-polluted sandy loam soil
[J/OL].Ecotoxicology and environmental safety,2024,272:116081
[2024-05-28].https://doi.org/10.1016/j.ecoenv.2024.116081.
[36] WANG K,WANG Y Q,Wan Y N,et al.The fate of arsenic in
rice plants( Oryza sativa L.):influence of different forms of selenium
[ J/OL].Chemosphere,2021,264(Pt 1):128417[2024-
05-28].https://doi.org/10.1016/j.chemosphere.2020.128417.
[37] MA J F,YAMAJI N,MITANI N,et al.Transporters of arsenite
in rice and their role in arsenic accumulation in rice grain
[J].PNAS,2008,105(29):9931-9935.
[38] CAO Y,SUN D,CHEN J,et al. Phosphate transporter
PvPht1;2 enhances phosphorus accumulation and plant
growth without impacting arsenic uptake in plants[J].Environmental
science amp; technology,2018,52(7):3975-3981.
[39] ZHAO X Q,MITANI N,YAMAJI N,et al. Involvement of
silicon influx transporter OsNIP2;1 in selenite uptake in rice
[J].Plant physiology,2010,153(4):1871-1877.
[40] ZHANG L H,HU B,LI W,et al.OsPT2,a phosphate transporter,
is involved in the active uptake of selenite in rice[J].
New phytologist,2014,201(4):1183-1191.
[41] YOUNOUSSA,WAN A,YU Y N,et al.Effect of selenium
on uptake and translocation of arsenic in rice seedlings (Oryza
sativa L.)[J].Ecotoxicology and environmental safety,2018,
148:869-875.
[42] LU Y Q,WU J X,LI J K.The alleviating effects and underlying
mechanisms of exogenous selenium on both Sb(Ⅲ) and Sb
(Ⅴ) toxicity in rice seedlings (Oryza sativa L.)[J].Environmental
science and pollution research,2023,30(38):89927-
89941.
[43] VIDYA C S N,SHETTY R,BOKOR B,et al.Do antimonite
and silicon share the same root uptake pathway by lsi1 in Sor?
ghum bicolor L. Moench?[J/OL]. Plants (Basel),2023,12
(12) : 2368 [2024-05-28]. https://doi. org/10.3390/
plants12122368.
[44] ZHOU X B,LI Y Y. Effect of iron plaque and selenium on
mercury uptake and translocation in rice seedlings grown in solution
culture[J]. Environmental science and pollution research,
2019,26(14):13795-13803.
[45] CHANG H,ZHOU X B,WANG W H,et al.Effects of selenium
application in soil on formation of iron Plaque outside roots
and cadmium uptake by rice plants[J/OL].Advanced materials
research,2013,750-752[2024-05-28]. https://doi. org/
10.4028/www.scientific.net/AMR.750-752.1573.
[46] ZANDI P,YANG J J,DARMA A,et al. Iron plaque formation,
characteristics,and its role as a barrier and/or facilitator
to heavy metal uptake in hydrophyte rice(Oryza sativa L.)[J].
Environmental geochemistry and health,2023,45 (3) :
525-559.
[47] ZANDI P,YANG J J,XIA X,et al.Do sulfur addition and rhizoplane
iron plaque affect chromium uptake by rice (Oryza sa?
tiva L.) seedlings in culture solution?[J/OL].Journal of hazardous
materials,2020,388:121803[2024-05-28]. https://
doi.org/10.1016/j.jhazmat.2019.121803.
[48] HUANG G X,DING C F,LI Y S,et al.Selenium enhances iron
plaque formation by elevating the radial oxygen loss of roots to
reduce cadmium accumulation in rice( Oryza sativa L.)[J/OL].
Journal of hazardous materials,2020,398:122860[2024-05-28].
https://doi.org/10.1016/j.jhazmat.2020.122860.
[49] WANG K,WANG Y Q,ZHANG C,et al.Selenite and selenate
showed contrasting impacts on the fate of arsenic in rice
(Oryza sativa L.) regardless of the formation of iron plaque[J/
OL]. Environmental pollution,2022,312:120039[2024-05-
28].https://doi.org/10.1016/j.envpol.2022.120039.
[50] HUANG G X,DING C F,GUO F Y,et al.The optimum Se
application time for reducing Cd uptake by rice (Oryza sativa
L.) and its mechanism[J]. Plant and soil,2018,431(1/2):
231-243.
[51] LIU Y,LV H Q,YANG N,et al.Roles of root cell wall components
and root plaques in regulating elemental uptake in rice
subjected to selenite and different speciation of antimony[J].
Environmental and experimental botany,2019,163:36-44.
[52] HUANG G X,DING C F,GUO F Y,et al.Underlying mechanisms
and effects of hydrated lime and selenium application
on cadmium uptake by rice( Oryza sativa L.) seedlings[J].Environmental
science and pollution research,2017,24(23):
18926-18935.
[53] HUANG B F,XIN J L,DAI H W,et al.Root morphological
responses of three hot pepper cultivars to Cd exposure and
their correlations with Cd accumulation[J].Environmental science
and pollution research,2015,22(2):1151-1159.
[54] HUANG L,Li W C,TAM N F Y,et al.Effects of root morphology
and anatomy on cadmium uptake and translocation in
rice ( Oryza sativa L.)[J].Journal of environmental sciences,
2019,75:296-306.
[55] MALHEIROS R S P,COSTA L C,AVILA R T,et al.Selenium
downregulates auxin and ethylene biosynthesis in rice
seedlings to modify primary metabolism and root architecture
[J].Planta,2019,250(1):333-345.
[56] WU K Y,WANG L Z,WU Z H,et al.Selenite reduced cadmium
uptake,interfered signal transduction of endogenous phytohormones,
and stimulated secretion of tartaric acid based on a
combined analysis of non-invasive micro-test technique,transcriptome
and metabolome[J/OL]. Plant physiology and biochemistry,
2024,206:108107[2024-05-28]. https://doi. org/
10.1016/j.plaphy.2023.108107.
[57] DING Y Z,F(xiàn)ENG R W,WANG R G,et al.A dual effect of
Se on Cd toxicity:evidence from plant growth,root morphology
and responses of the antioxidative systems of paddy rice
[J].Plant and soil,2014,375(1/2):289-301.
[58] ZHAO Y Y,HU C X,WU Z C,et al.Selenium reduces cadmium
accumulation in seed by increasing cadmium retention in
root of oilseed rape(Brassica napus L.)[J]. Plant physiology
and biochemistry,2019,158,161-170.
[59] GALL H L,PHILIPPE F,DOMON J,et al.Cell wall metabolism
in response to abiotic stress[J/OL].Plants,2015,4(1):
112[2024-05-28].https://doi.org/10.3390/plants4010112.
[60] KRZESLOWSKA M. The cell wall in plant cell response to
trace metals:polysaccharide remodeling and its role in defense
strategy[J].Acta physiologiae plantarum,2011,33(1):35-51.
[61] YANG L,HUANG S Q,LIU Y,et al.Selenate regulates the
activity of cell wall enzymes to influence cell wall component
concentration and thereby affects the uptake and translocation
of Cd in the roots of Brassica rapa L.[J/OL].Science of the
total environment,2022,821:153156[2024-05-28]. https://
doi.org/10.1016/j.scitotenv.2022.153156.
[62] WANG L Z,WU K Y,LIU Z Q,et al.Selenite reduced uptake/
translocation of cadmium via regulation of assembles and
interactions of pectins,hemicelluloses,lignins,callose and Casparian
strips in rice roots[J/OL].Journal of hazardous materials,
2023,448:130812 [2024-05-28]. https://doi. org/
10.1016/j.jhazmat.2023.130812.
[63] CUI J H,LIU T X,LI Y D,et al.Selenium reduces cadmium
uptake into rice suspension cells by regulating the expression
of lignin synthesis and cadmium-related genes[J]. Science of
the total environment,2018,644:602-610.
[64] HUANG H L,LI M,RIZWAN M,et al.Synergistic effect of
silicon and selenium on the alleviation of cadmium toxicity in
rice plants[J/OL].Journal of hazardous materials,2021,401:
123393 [2024-05-28]. https://doi. org/10.1016/j.
jhazmat.2020.123393.
[65] WANG C R,RONG H,ZHANG X B,et al.Effects and mechanisms
of foliar application of silicon and selenium composite
sols on diminishing cadmium and lead translocation and affiliated
physiological and biochemical responses in hybrid rice
(Oryza sativa L.) exposed to cadmium and lead[J/OL].Chemosphere,
2020,251:126347[2024-05-28]. https://doi. org/
10.1016/j.chemosphere.2020.126347.
[66] ISMAEL M A,ELYAMINE A M,ZHAO Y Y,et al.Can selenium
and molybdenum restrain cadmium toxicity to pollen
grains in Brassica napus?[J/OL].International journal of molecular
sciences,2018,19(8):2163[2024-05-28].https://doi.
org/10.3390/ijms19082163.
[67] ZHOU J,ZHANG C,DU B Y,et al. Soil and foliar applications
of silicon and selenium effects on cadmium accumulation
and plant growth by modulation of antioxidant system and Cd
translocation:comparison of soft vs.durum wheat varieties[J/
OL].Journal of hazardous materials,2021,402:123546[2024-
05-28].https://doi.org/10.1016/j.jhazmat.2020.123546.
[68] PANDEY C,GUPTA M. Selenium amelioration of arsenic
toxicity in rice shows genotypic variation:a transcriptomic and
biochemical analysis[J]. Journal of plant physiology,2018,
231:168-181.
[69] ETTEIEB S,MAGDOULI S,ZOLFAGHARI M,et al.Monitoring
and analysis of selenium as an emerging contaminant in
mining industry:a critical review[J/OL]. Science of the total
environment,2020,698:134339[2024-05-28]. https://doi.
org/10.1016/j.scitotenv.2019.134339.
[70] YU Y,YUAN S L,ZHUANG J,et al.Effect of selenium on
the uptake kinetics and accumulation of and oxidative stress induced
by cadmium in Brassica chinensis[ J].Ecotoxicology and
environmental safety,2018,162:571-580.
[71] LV H Q,CHEN W X,ZHU Y M,et al.Efficiency and risks of
selenite combined with different water conditions in reducing
uptake of arsenic and cadmium in paddy rice[J/OL].Environmental
pollution,2020,262:114283[2024-05-28]. https://
doi.org/10.1016/j.envpol.2020.114283.
[72] FENG R W,WEI C Y,TU S X,et al.Interactive effects of selenium
and antimony on the uptake of selenium,antimony and
essential elements in paddy-rice[J]. Plant and soil,2013,365
(1/2):375-386.
[73] SOUSA G V,TELES V L G,PEREIRA E G,et al.Interactions
between as and Se upon long exposure time and effects
on nutrients translocation in golden flaxseed seedlings[J/OL].
Journal of hazardous materials,2021,402:123565[2024-05-
28].https://doi.org/10.1016/j.jhazmat.2020.123565.
[74] 高婕妤,周小娟,萬翔,等. 湖北省建始縣土壤硒分布特征及
影響因素分析[J]. 華中農業(yè)大學學報,2023,42(1):212-218.
GAO J Y,ZHOU X J,WAN X,et al.Characteristics and influencing
factors of selenium distribution in soil in Jianshi County,
Hubei Province[J].Journal of Huazhong Agricultural University,
2023,42(1):212-218(in Chinese with English abstract).
(責任編輯:陸文昌)