摘要 生物土壤結(jié)皮作為干旱區(qū)土壤表層主要的覆蓋者,生存于其中的微生物在調(diào)節(jié)旱區(qū)碳循環(huán)的氣候敏感性方面發(fā)揮著重要作用。目前氣候變暖對(duì)生物結(jié)皮微生物群落及其呼吸作用的研究結(jié)論尚有分歧。為了更加準(zhǔn)確預(yù)測(cè)未來(lái)干旱地區(qū)的碳收支,本文歸納了模擬氣候變暖的增溫試驗(yàn)中不同試驗(yàn)周期、不同季節(jié)和不同類(lèi)型的生物結(jié)皮碳排放規(guī)律,并結(jié)合微生物豐度和有機(jī)碳的變化分析了引起碳排放差異的內(nèi)在原因。短期增溫(低于2 a)導(dǎo)致生物結(jié)皮中苔蘚或地衣豐度顯著性降低,從而增加土壤有機(jī)碳含量,碳排放量是否同步增加取決于土壤含水量。長(zhǎng)期增溫(大于5 a)降低了微生物對(duì)溫度和濕度的敏感性,微生物豐度和組成趨于穩(wěn)定,從而使有機(jī)碳含量和凈碳排放量保持相對(duì)穩(wěn)定。已有的研究結(jié)果揭示了生物結(jié)皮碳排放規(guī)律和原因,但微生物參與的內(nèi)在調(diào)控機(jī)制仍不明確。因此,今后需重點(diǎn)探究結(jié)皮微生物碳代謝對(duì)增溫的響應(yīng)機(jī)制,為評(píng)估干旱區(qū)碳平衡提供重要理論依據(jù)。
關(guān)鍵詞 生物土壤結(jié)皮; 增溫; 微生物群落組成; 有機(jī)碳; 凈碳排放量
中圖分類(lèi)號(hào) Q89 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1000-2421(2024)04-0051-09
干旱區(qū)約占全球陸地總面積的45%,在調(diào)節(jié)全球生物地球化學(xué)循環(huán)和地表水平衡等方面發(fā)揮著重要的生態(tài)作用[1-2]。隨著全球工業(yè)化進(jìn)程加快,溫室氣體排放量增速,預(yù)計(jì)到22 世紀(jì)初全球平均溫度將增加1.4~4.5 ℃ (IPCC, 2021),而干旱區(qū)是最容易受到氣候變化影響的地區(qū)之一[3-4]。了解干旱區(qū)如何響應(yīng)持續(xù)的氣候變化,對(duì)于制定有效的生態(tài)系統(tǒng)可持續(xù)發(fā)展策略至關(guān)重要。
干旱區(qū)生物土壤結(jié)皮(biological soil crusts,簡(jiǎn)稱(chēng)生物結(jié)皮)覆蓋面積可達(dá)70% 以上[5],是干旱區(qū)生態(tài)系統(tǒng)中的重要組成部分。生物結(jié)皮主要是由藍(lán)藻優(yōu)先拓殖荒漠生境,隨后其他細(xì)菌、地衣、苔蘚等相繼生長(zhǎng)其上,膠結(jié)和捆綁土壤顆粒,從而在沙土表面形成的一層易剝離的生物土壤復(fù)合層[6]。結(jié)皮微生物除了具有穩(wěn)定沙土和提高土壤肥力等功能外,在調(diào)節(jié)碳循環(huán)中也發(fā)揮著重要作用[7-10]。據(jù)估計(jì),生物結(jié)皮年累積碳釋放總量約占干旱地區(qū)的42%~66%[11-12]。氣候變化會(huì)使干旱區(qū)微生物多樣性和豐度降低,從而導(dǎo)致代謝功能喪失和有機(jī)碳含量下降[13]。對(duì)于結(jié)皮微生物而言,對(duì)增溫和增溫引起的土壤濕度降低更加敏感[14-15]。研究表明即使升溫0.34 ℃,也會(huì)導(dǎo)致荒漠土壤中微生物呼吸敏感性變化比其他生態(tài)系統(tǒng)中的更大[16],增溫會(huì)使結(jié)皮中的優(yōu)勢(shì)物種快速死亡并降低碳代謝速率[17]。演替后期結(jié)皮微生物豐度的下降,將導(dǎo)致土壤穩(wěn)定性、保水性和碳儲(chǔ)量降低[18-19],從而導(dǎo)致土地荒漠化問(wèn)題加劇。因此,為了準(zhǔn)確預(yù)測(cè)未來(lái)干旱地區(qū)的碳收支,本文以增溫對(duì)生物結(jié)皮微生物群落組成和呼吸作用為重點(diǎn),探討不同試驗(yàn)周期、不同地區(qū)、不同類(lèi)型結(jié)皮中,優(yōu)勢(shì)生物、細(xì)菌種類(lèi)和豐度的變化規(guī)律,以及微生物變化所引起的有機(jī)碳和碳排放量的改變,并分析導(dǎo)致這些變化的潛在原因,旨在為預(yù)測(cè)未來(lái)旱地功能和了解氣候變化對(duì)全球碳循環(huán)的擾動(dòng)提供參考依據(jù)。
1 生物結(jié)皮微生物群落組成和豐度對(duì)增溫的響應(yīng)
依據(jù)演替先后順序,將生物結(jié)皮分為藍(lán)藻結(jié)皮、地衣結(jié)皮和苔蘚結(jié)皮,3 種類(lèi)型結(jié)皮的優(yōu)勢(shì)生物分別為藍(lán)藻、地衣和苔蘚[20]。除了這些優(yōu)勢(shì)生物外,結(jié)皮中還存在著豐富的細(xì)菌,它們是土壤有機(jī)質(zhì)降解、異養(yǎng)呼吸、發(fā)酵等代謝途徑的重要參與者[10,21]。增溫會(huì)改變這些微生物的組成和豐度,這些變化不僅決定著生物結(jié)皮儲(chǔ)存和釋放的碳含量,也影響著生物結(jié)皮在干旱區(qū)的覆蓋面積,關(guān)系著生態(tài)系統(tǒng)的恢復(fù)與保護(hù)。因此,我們重點(diǎn)分析生物結(jié)皮中優(yōu)勢(shì)生物和細(xì)菌的組成、豐度對(duì)增溫的響應(yīng)。
1.1 優(yōu)勢(shì)生物
不同優(yōu)勢(shì)生物對(duì)增溫的響應(yīng)和適應(yīng)性存在差異。為了更準(zhǔn)確評(píng)估氣候變暖對(duì)它們的影響,研究者圍繞豐度和物種豐富度變化開(kāi)展了長(zhǎng)期增溫試驗(yàn)。根據(jù)試驗(yàn)地點(diǎn)和樣品不同將這些研究分為3類(lèi):(1)騰格里沙漠:苔蘚結(jié)皮和地衣結(jié)皮,增溫范圍0.5~2 ℃;(2)西班牙中東部:苔蘚和地衣混合結(jié)皮,增溫范圍2~3 ℃;(3)科羅拉多高原:藍(lán)藻、苔蘚和地衣混合結(jié)皮,增溫范圍2~4 ℃。增溫對(duì)這3 種類(lèi)型中優(yōu)勢(shì)生物的影響不同(表1)。在第1 種類(lèi)型中,自然條件下,優(yōu)勢(shì)生物組成和生物量(用葉綠素含量指示),以及結(jié)皮覆蓋度在十幾年里未發(fā)生明顯變化,經(jīng)增溫處理后,苔蘚生物量下降了約69%,導(dǎo)致苔蘚結(jié)皮平均覆蓋度顯著(Plt;0.05)降低了17%~37%,而地衣生物量和地衣結(jié)皮覆蓋度下降幅度很小,苔蘚和地衣物種豐富度無(wú)變化[22-24]。第2 種類(lèi)型中苔蘚、地衣物種豐富度和結(jié)皮覆蓋度的變化更復(fù)雜。依據(jù)初始覆蓋度值,分別將低于20% 和高于50% 的混合結(jié)皮稱(chēng)為低覆蓋度生物結(jié)皮(low biocrusts cover,LBC)和高覆蓋度生物結(jié)皮(high biocrusts cover,HBC)[25-27]。LBC 總覆蓋度在自然條件下顯著(Plt;0.05)增加,增溫使LBC 總覆蓋度小幅度增加或降低,但LBC 中地衣結(jié)皮覆蓋度和地衣種類(lèi)經(jīng)增溫后降低。HBC 總覆蓋度在對(duì)照組和增溫處理組中的下降幅度大于20%,增溫處理組降低幅度高于對(duì)照組,這主要是由于地衣結(jié)皮覆蓋度大幅度降低,地衣種類(lèi)和相對(duì)豐度也減少,苔蘚結(jié)皮覆蓋度略有增加。第3 種類(lèi)型中,自然條件下苔蘚結(jié)皮覆蓋度呈波動(dòng)增加,增溫后其覆蓋度急劇減少了約15%~20%,而具鞘微鞘藻結(jié)皮覆蓋度增加了25%~30%,地衣結(jié)皮覆蓋度小范圍降低[28-29]。
導(dǎo)致不同地區(qū)優(yōu)勢(shì)生物變化規(guī)律差異的原因很可能與土壤濕度有關(guān)。在騰格里沙漠和西班牙中東部的增溫試驗(yàn)是通過(guò)開(kāi)頂箱增溫,而科羅拉多高原是紅外輻射器增溫。開(kāi)頂箱對(duì)土壤含水量的影響相對(duì)較小,而紅外輻射器可降低30% 的土壤含水量[30]??屏_拉多高原年降雨量高于騰格里沙漠,其土壤濕度也較高,經(jīng)增溫后2 個(gè)地區(qū)的土壤濕度很可能相差不大,且低于西班牙地區(qū)。因此,我們猜測(cè)影響優(yōu)勢(shì)生物豐度變化的第1 個(gè)原因?yàn)橥寥罎穸?,在相?duì)干燥的條件下,增溫導(dǎo)致苔蘚相對(duì)豐度大幅度下降,而在相對(duì)濕潤(rùn)的土壤,增溫導(dǎo)致地衣相對(duì)豐度和物種種類(lèi)降低。Finger-Higgens 等[31]在科羅拉多高原開(kāi)展的23 a 自然增溫觀測(cè)試驗(yàn)表明,地衣種類(lèi)和生物量下降,從而導(dǎo)致地衣結(jié)皮平均覆蓋度下降,而苔蘚結(jié)皮覆蓋度小幅度增加,這一結(jié)果驗(yàn)證了我們的假設(shè)。第2 個(gè)原因是優(yōu)勢(shì)生物之間的競(jìng)爭(zhēng)關(guān)系,當(dāng)苔蘚或地衣豐度降低時(shí),藍(lán)藻將搶占空出來(lái)的生態(tài)位[32]。地衣和苔蘚存在時(shí),它們占據(jù)了藍(lán)藻絕大部分生存空間,也限制了藍(lán)藻向地表移動(dòng)獲得光的機(jī)會(huì)。當(dāng)增溫導(dǎo)致地衣或苔蘚豐度下降時(shí),對(duì)土壤濕度和營(yíng)養(yǎng)條件要求更低的藍(lán)藻開(kāi)始大量生長(zhǎng)。在科羅拉多高原混合結(jié)皮中,藍(lán)藻結(jié)皮初始覆蓋度高于晚期結(jié)皮[28-29],而在其他的研究中,晚期結(jié)皮中只存在著少量的藍(lán)藻結(jié)皮,晚期結(jié)皮覆蓋度降低時(shí)藍(lán)藻也能占據(jù)少部分區(qū)域。我們推測(cè)相同微區(qū)內(nèi)藍(lán)藻結(jié)皮覆蓋度越高,與苔蘚或地衣的競(jìng)爭(zhēng)越激烈,藍(lán)藻將占據(jù)更多的缺失區(qū)域。地衣種類(lèi)的不同也會(huì)影響增溫的結(jié)果。西班牙地區(qū)地衣結(jié)皮主要物種為Dip?loschistes diacapsis,該物種有時(shí)很容易從土壤中分離[33],增溫加速了其菌絲體的分離并通過(guò)風(fēng)擴(kuò)散到其他地方[26];D. diacapsis 對(duì)溫度較為敏感,2 a 的增溫即可導(dǎo)致其覆蓋度下降約10%[34]??傊?,增溫所引起的優(yōu)勢(shì)生物組成和豐度的變化受土壤濕度、物種競(jìng)爭(zhēng)強(qiáng)弱和物種種類(lèi)等因素的相互作用。
1.2 細(xì)菌
與優(yōu)勢(shì)生物相比,細(xì)菌群落組成與相對(duì)豐度受增溫的影響較小。經(jīng)2 a 或6 a 的2 ℃增溫處理后,通過(guò)擴(kuò)增子測(cè)序獲得的細(xì)菌相對(duì)豐度數(shù)據(jù)表明,無(wú)論是在門(mén)還是屬水平,只有少數(shù)物種相對(duì)豐度發(fā)生變化,但藍(lán)藻結(jié)皮的覆蓋度改變[35-36]。在全球范圍內(nèi),雖然生物結(jié)皮中細(xì)菌的種類(lèi)和相對(duì)豐度存在差異,但主要的細(xì)菌為藍(lán)細(xì)菌門(mén)、放線菌門(mén)、變形桿菌門(mén)、酸桿菌門(mén)和擬桿菌門(mén)[37-40],這些細(xì)菌大部分為革蘭氏陰性菌。Maestre 等[27]檢測(cè)磷脂脂肪酸cy17:0 與16:1ω7 的比值,該比值反映了革蘭氏陰性菌所經(jīng)歷的生理應(yīng)激程度,增溫2 ℃后的16 個(gè)月和53 個(gè)月該值增加,這反映了微生物生理活性發(fā)生了變化。除藍(lán)藻外的細(xì)菌多位于結(jié)皮下層,表層的藍(lán)藻、地衣和苔蘚起到了一定的緩沖作用[41]。另外,優(yōu)勢(shì)生物覆蓋度的變化影響著土壤中營(yíng)養(yǎng)物質(zhì)的含量,結(jié)皮中的細(xì)菌長(zhǎng)期生存于營(yíng)養(yǎng)物質(zhì)相對(duì)緊缺的條件下,具有快速響應(yīng)營(yíng)養(yǎng)物質(zhì)變化的潛力。因此,增溫使細(xì)菌群落組成和相對(duì)豐度處于動(dòng)態(tài)平衡狀態(tài)。
2 生物結(jié)皮呼吸作用對(duì)增溫的響應(yīng)
生物結(jié)皮呼吸作用的強(qiáng)弱關(guān)系著干旱地區(qū)總碳排放量[11-12]。目前大部分增溫試驗(yàn)中的呼吸速率是指單位時(shí)間內(nèi)凈CO2 排放量,即總呼吸作用產(chǎn)生的CO2減去光合作用吸收的CO2[42]。結(jié)皮中呼吸作用的底物包括光合作用產(chǎn)生和外源輸入的有機(jī)碳,有機(jī)碳含量的變化影響著呼吸作用和凈碳排放量。其中,顆粒態(tài)有機(jī)碳(particulate organic carbon,POC)和礦物結(jié)合態(tài)有機(jī)碳(mineral-associated organic carbon,MAOC)常用于評(píng)估土壤有機(jī)碳(soil organiccarbon,SOC)對(duì)氣候變化的響應(yīng)[43-44]。因此,下文將從土壤有機(jī)碳(POC 和MAOC)和凈碳排放量含量變化間接分析增溫對(duì)生物結(jié)皮呼吸作用的影響。
2.1 有機(jī)碳含量
增溫后有機(jī)碳含量增加或降低很可能與生物結(jié)皮類(lèi)型有關(guān)。田暢[45]對(duì)藍(lán)藻結(jié)皮和苔蘚結(jié)皮進(jìn)行2 a的1~2 ℃增溫后,藍(lán)藻結(jié)皮覆蓋度升高了9.53%,POC 含量顯著(Plt;0.001)降低了30.14%,MAOC 含量降幅??;苔蘚結(jié)皮覆蓋度降低了5.73%,POC 和MAOC 含量分別顯著(Plt;0.001)增加了22.53% 和36.49%。由于MAOC 比POC 更不容易分解[43],POC 具有更快的周轉(zhuǎn)速率,更容易受到環(huán)境變化的影響[46-47]。在短期增溫試驗(yàn)中,藍(lán)藻結(jié)皮覆蓋度的增加伴隨著微生物生物量的增加,再加上溫度升高使微生物分解和呼吸速率增加[48],從而加速結(jié)皮中POC 的分解。微生物殘?bào)w是MAOC 主要組成物質(zhì)[49],苔蘚的死亡直接增加了MAOC 的含量,進(jìn)而增加POC 含量。Díaz-Martínez 等[50]對(duì)地衣和苔蘚混合生物結(jié)皮的增溫試驗(yàn)結(jié)果表明,9 a 的2~3 ℃增溫使高覆蓋度生物結(jié)皮(HBC)POC 和MAOC 含量無(wú)明顯變化。HBC 覆蓋度在前5 a 降低,之后保持穩(wěn)定(圖1),雖然5 a 后增溫組與對(duì)照組的有機(jī)碳含量無(wú)顯著性差異,但覆蓋度的不同表明兩組處理中碳輸入和碳輸出含量不同,即碳平衡狀態(tài)不同。綜上,有機(jī)碳在短期試驗(yàn)中的變化取決于結(jié)皮覆蓋度的變化,而在長(zhǎng)期試驗(yàn)中有機(jī)碳含量趨于穩(wěn)定。
2.2 凈碳排放量
很多研究報(bào)道了增溫對(duì)生物結(jié)皮凈碳排放的影響,但是促進(jìn)還是抑制仍存在爭(zhēng)議。在騰格里沙漠開(kāi)展的野外短期(低于2 a)增溫試驗(yàn)(0.5~2 ℃)結(jié)果表明,增溫抑制了生物結(jié)皮累積凈碳排放[51-54];而在科羅拉多高原和西班牙中東部地區(qū),短期增溫(2~4 ℃)導(dǎo)致凈碳排放量顯著(Plt;0.05)增加[55-57](圖1)。干旱區(qū)域的光合作用和呼吸作用,都受土壤濕度和溫度的影響[58-59]。理論上小幅度的變暖會(huì)提高細(xì)胞內(nèi)多種酶活性,從而促進(jìn)代謝活動(dòng)的進(jìn)行;而變暖引起的土壤干燥度降低又會(huì)抑制微生物活性[60](表2)。Sun 等[61]通過(guò)Meta 分析整合了全球已發(fā)表的文獻(xiàn),探究了增溫試驗(yàn)對(duì)生物結(jié)皮凈碳排放量的影響,結(jié)果表明:在相對(duì)濕潤(rùn)的地區(qū),升溫增加了生物結(jié)皮凈碳排放量,而在干燥條件下則抑制。騰格里沙漠的年降雨量占另外2 個(gè)地區(qū)年降雨量的比例為53%~69%(表1),這表明騰格里沙漠相對(duì)干燥,增溫引起的土壤濕度進(jìn)一步下降,從而降低了生物結(jié)皮凈碳排放量;而另外2 個(gè)地區(qū)相對(duì)濕潤(rùn)且年均氣溫較高,這些地區(qū)的生物結(jié)皮對(duì)溫度敏感性較低,升溫會(huì)促進(jìn)碳排放。因此,增溫導(dǎo)致的不同地區(qū)凈碳排放量差異是由氣候條件不同引起的,特別是氣溫和降雨量。
同一地區(qū)不同季節(jié)的降水量變化特征導(dǎo)致了凈碳排放量的季節(jié)變化差異。騰格里沙漠80% 以上的年降水量集中在夏季和秋季,這2 個(gè)季節(jié)為結(jié)皮的生長(zhǎng)季節(jié),另外2 個(gè)地區(qū)的生長(zhǎng)季節(jié)為春季和冬季。由表2 可見(jiàn),在生長(zhǎng)季節(jié),生物結(jié)皮累積碳排放量遠(yuǎn)高于非生長(zhǎng)季節(jié),且增溫引起的波動(dòng)更大[42,58,61]。土壤呼吸的季節(jié)性變化與降水、溫度和土壤含水量密切相關(guān)[11,60]。生物結(jié)皮中的苔蘚、地衣和藻類(lèi)等在土壤水分含量極低時(shí)進(jìn)入休眠狀態(tài),當(dāng)環(huán)境中出現(xiàn)少量可用水時(shí)快速恢復(fù)至活躍狀態(tài)[6]。在生長(zhǎng)季節(jié),結(jié)皮微生物獲得水分的機(jī)會(huì)和時(shí)間都增加。在中等溫度和水分含量下,生物結(jié)皮光合活性趨于最大值,而呼吸活性呈線性增加趨勢(shì)[58,62]。這些結(jié)果表明降水量差異引起的呼吸速率不同是決定凈碳排放量增加與否的主要因素。
不同類(lèi)型生物結(jié)皮的凈碳排放量對(duì)增溫的響應(yīng)也不同。在相同地區(qū),凈碳排放量隨著演替而增加:藍(lán)藻結(jié)皮lt;地衣結(jié)皮lt;苔蘚結(jié)皮。這是由于演替后期土壤有機(jī)碳含量豐富,苔蘚自養(yǎng)呼吸和微生物異養(yǎng)呼吸都較高[22,63]。經(jīng)增溫處理后,苔蘚結(jié)皮年累積碳排放量下降幅度大于地衣結(jié)皮,藍(lán)藻結(jié)皮的波動(dòng)較?。?3-54,64](表2)。激活和維持苔蘚的代謝活動(dòng)所需水分含量高于地衣和藍(lán)藻,而增溫縮短了土壤濕潤(rùn)時(shí)間[65],更強(qiáng)烈地抑制了苔蘚結(jié)皮的呼吸作用。與苔蘚相比,地衣對(duì)水分的依賴(lài)性更小[66],保持土壤水分能力較差[3],從而使其對(duì)溫度和濕度的敏感性較弱。
與短期試驗(yàn)不同,在這些地區(qū)開(kāi)展的長(zhǎng)期(大于5 a)增溫試驗(yàn)都表明生物結(jié)皮累積凈碳排放量在后期與對(duì)照組無(wú)明顯差異[22,42,56](表2)。Dacal 等[56]通過(guò)分析土壤濕度在增溫試驗(yàn)中的變化,指出溫度升高是調(diào)節(jié)生物結(jié)皮呼吸短期變化的主要驅(qū)動(dòng)力,長(zhǎng)期變化主要由熱適應(yīng)性決定。土壤呼吸熱適應(yīng)性是干旱地區(qū)特有的屬性[16]。在長(zhǎng)期試驗(yàn)的前幾年,由于增溫會(huì)抑制地衣或苔蘚的生長(zhǎng),導(dǎo)致生物結(jié)皮覆蓋度發(fā)生變化,但6 a 之后趨于穩(wěn)定[22-26]。雖然穩(wěn)定后的結(jié)皮覆蓋度低于對(duì)照組,但優(yōu)勢(shì)生物豐度的顯著降低同時(shí)影響著光合作用和呼吸作用,從而影響土壤有機(jī)碳含量,經(jīng)長(zhǎng)期增溫后呼吸作用對(duì)溫度不敏感,有機(jī)碳含量也無(wú)明顯變化,這些因素的共同作用使結(jié)皮凈碳排放量趨于穩(wěn)定(圖1)。
3 總結(jié)與展望
本文總結(jié)了生物結(jié)皮微生物群落組成及其呼吸作用經(jīng)增溫后所發(fā)生的變化,并探討了引起這些變化的潛在機(jī)制,如圖1 所示。在短期增溫過(guò)程中,土壤含水量是決定結(jié)皮中優(yōu)勢(shì)生物組成和豐度以及凈碳排放量變化的主要因素。短期增溫會(huì)導(dǎo)致相對(duì)干燥地區(qū)結(jié)皮中苔蘚豐度急劇下降,而相對(duì)濕潤(rùn)地區(qū)結(jié)皮中地衣豐度和種類(lèi)大幅度降低,優(yōu)勢(shì)生物豐度降低會(huì)使土壤有機(jī)碳含量增加;由于干燥地區(qū)呼吸作用被抑制,凈碳排放量與有機(jī)碳含量的變化存在延遲效應(yīng),而在濕潤(rùn)地區(qū),二者同步變化。經(jīng)長(zhǎng)期增溫后,結(jié)皮覆蓋度不可逆性降低,結(jié)皮中微生物對(duì)溫度和濕度的敏感性降低,結(jié)皮優(yōu)勢(shì)生物和細(xì)菌相對(duì)豐度、組成趨于穩(wěn)定,從而使有機(jī)碳含量和凈碳排放量保持相對(duì)穩(wěn)定。已有的這些研究結(jié)果很少涉及生物結(jié)皮光合活性和細(xì)菌代謝活性的變化。為進(jìn)一步深入探究結(jié)皮微生物參與的碳代謝對(duì)增溫響應(yīng)的內(nèi)在機(jī)制,今后的研究可以從以下幾個(gè)方面展開(kāi)。
1)在開(kāi)展長(zhǎng)期試驗(yàn)時(shí),增加檢測(cè)碳排放量的時(shí)間點(diǎn)。已有的長(zhǎng)期增溫研究大多只檢測(cè)了其中幾年中十幾天的生物結(jié)皮碳排放量。相同地區(qū),土壤溫度和濕度在不同月份和不同年份中存在差異,隔幾年采樣不便于精確判斷碳排放發(fā)生變化的轉(zhuǎn)折點(diǎn);每個(gè)月份中存在著一定的降水事件,通過(guò)每個(gè)月固定日期的碳排放量計(jì)算年累積碳排放量會(huì)存在偏差。為了更加準(zhǔn)確地反映增溫試驗(yàn)中碳排放規(guī)律,需每年進(jìn)行多次監(jiān)測(cè),且監(jiān)測(cè)時(shí)間應(yīng)綜合考慮天氣的影響。
2)同時(shí)檢測(cè)生物結(jié)皮凈呼吸速率和光合速率,分別探究結(jié)皮作為“碳源”和“碳匯”對(duì)增溫的響應(yīng)。目前大部分研究只關(guān)注于增溫對(duì)生物結(jié)皮凈碳排放量的影響,但不同地區(qū)苔蘚、地衣、藍(lán)藻和細(xì)菌等種類(lèi)不同,再加上不同的氣候條件,不同地區(qū)生物結(jié)皮的光合速率和呼吸速率存在較大差異,凈碳排放量對(duì)增溫的響應(yīng)主要受光合作用還是呼吸作用的影響仍需闡明,這將有助于解釋不同區(qū)域凈碳排放量存在差異的內(nèi)在原因。
3)開(kāi)展增溫對(duì)生物結(jié)皮中碳分配影響的研究。結(jié)皮中微生物種類(lèi)眾多,且微生物在促進(jìn)碳循環(huán)的過(guò)程中發(fā)揮著重要作用。增溫導(dǎo)致的苔蘚或地衣豐度降低,不僅影響著結(jié)皮中的總輸入量碳,二者的殘?bào)w也為其他異養(yǎng)微生物提供了有機(jī)質(zhì),從而使結(jié)皮中原有的碳分配規(guī)律發(fā)生改變,并隨著時(shí)間的推移達(dá)到新的平衡狀態(tài)。在今后的研究中,可以通過(guò)穩(wěn)定同位素標(biāo)記法探究增溫對(duì)碳元素在微生物之間轉(zhuǎn)換的影響,以及微生物代謝活性的變化,并闡明碳元素在結(jié)皮中保存和輸出的具體含量和存在形式,為評(píng)估在氣候變化條件下干旱地區(qū)在全球碳循環(huán)中的貢獻(xiàn)提供數(shù)據(jù)支持。
參考文獻(xiàn)References
[1] TAKESHIMA A,KIM H,SHIOGAMA H,et al.Global aridity
changes due to differences in surface energy and water balance
between 1.5 ℃ and 2 ℃ warming[J/OL].Environmental
research letters,2020,15(9):0940a7[2024-06-03]. https://
iopscience.iop.org/article/10.1088/1748-9326/ab9db3.
[2] LI S L,BOWKER M A,XIAO B. Biocrust impacts on dryland
soil water balance:a path toward the whole picture[J].
Global change biology,2022,28(21):6462-6481.
[3] MAESTRE F T,BENITO B M,BERDUGO M,et al.Biogeography
of global drylands[J].New phytologist,2021,231(2):
540-558.
[4] SONG J,WAN S Q,PIAO S L,et al. A Meta-analysis of
1119 manipulative experiments on terrestrial carbon-cycling responses
to global change[J]. Nature ecology amp; evolution,
2019,3(9):1309-1320.
[5] FERRENBERG S,TUCKER C L,REED S C. Biological
soil crusts:diminutive communities of potential global importance
[J]. Frontiers in ecology and the environment,2017,15
(3):160-167.
[6] BELNAP J, WEBER B, BüDEL B. Biological soil crusts
as an organizing principle in drylands[M]//Ecological studies.
Switzerland:Springer International Publishing, 2016:3-13.
[7] CHAMIZO S,CANTóN Y,RODRíGUEZ-CABALLERO
E,et al. Biocrusts positively affect the soil water balance in
semiarid ecosystems[J]. Ecohydrology,2016,9(7):1208-
1221.
[8] RODRíGUEZ-CABALLERO E,CASTRO A J,CHAMIZO
S,et al.Ecosystem services provided by biocrusts:from ecosystem
functions to social values[J].Journal of arid environments,
2018,159:45-53.
[9] DOU W Q,XIAO B,REVILLINI D,et al.Biocrusts enhance
soil organic carbon stability and regulate the fate of new-input
carbon in semiarid desert ecosystems[J/OL].Science of the total
environment,2024,918:170794[2024-06-03]. https://
doi.org/10.1016/j.scitotenv.2024.170794.
[10] WANG Q,ZHANG Q Y,HAN Y C,et al.Carbon cycle in the
microbial ecosystems of biological soil crusts[J/OL].Soil biology
and biochemistry,2022,171:108729 [2024-06-03].
https://doi.org/10.1016/j.soilbio.2022.108729.
[11] ZHAO Y,ZHANG Z S,HU Y G,et al.The seasonal and successional
variations of carbon release from biological soil crustcovered
soil[J]. Journal of arid environments,2016,127:
148-153.
[12] MORILLAS L,BELLUCCO V,LO CASCIO M,et al.Contribution
of biological crust to soil CO2 efflux in a Mediterranean
shrubland ecosystem[J].Geoderma,2017,289:11-19.
[13] COLEINE C,DELGADO-BAQUERIZO M,DIRUGGIERO
J,et al. Dryland microbiomes reveal community adaptations
to desertification and climate change[J/OL].The ISME
journal,2024,18(1):wrae056[2024-06-03].https://doi.org/
10.1093/ismejo/wrae056.
[14] BOWKER M A,MAESTRE F T,ELDRIDGE D,et al.Biological
soil crusts (biocrusts) as a model system in community,
landscape and ecosystem ecology[J].Biodiversity and conservation,
2014,23(7):1619-1637.
[15] CHAMIZO S,RODRíGUEZ-CABALLERO E,SáNCHEZCA?ETE
E P,et al.Temporal dynamics of dryland soil CO2
efflux using high-frequency measurements:patterns and dominant
drivers among biocrust types,vegetation and bare soil[J/
OL].Geoderma,2022,405:115404[2024-06-03].https://doi.
org/10.1016/j.geoderma.2021.115404.
[16] CAREY J C,TANG J W,TEMPLER P H,et al.Temperature
response of soil respiration largely unaltered with experimental
warming[J].PNAS,2016,113(48):13797-13802.
[17] STEVEN B,BELNAP J,KUSKE C R.Chronic physical disturbance
substantially alters the response of biological soil
crusts to a wetting pulse,as characterized by metatranscriptomic
sequencing[J/OL].Frontiers in microbiology,2018,9:2382
[2024-06-03].https://doi.org/10.3389/fmicb.2018.02382.
[18] RODRIGUEZ-CABALLERO E,BELNAP J,BüDEL B,et
al. Dryland photoautotrophic soil surface communities endangered
by global change[J]. Nature geoscience,2018,11:
185-189.
[19] REED S C,COE K K,SPARKS J P,et al.Changes to dryland
rainfall result in rapid moss mortality and altered soil fertility
[J].Nature climate change,2012,2:752-755.
[20] LAN S B,THOMAS A D,TOOTH S,et al.Small-scale spatial
heterogeneity of photosynthetic fluorescence associated
with biological soil crust succession in the tengger desert,China
[J].Microbial ecology,2019,78(4):936-948.
[21] HAN Y C,WANG Q,LI Q,et al.Active metabolism and biomass
dynamics of biocrusts are shaped by variation in their successional
state and seasonal energy sources[J/OL].Science of
the total environment,2022,831:154756 [2024-06-03].
https://doi.org/10.1016/j.scitotenv.2022.154756.
[22] LI X R,JIA R L,ZHANG Z S,et al.Hydrological response of
biological soil crusts to global warming:a ten-year simulative
study[J].Global change biology,2018,24(10):4960-4971.
[23] LI X R,SUN J Y,ZHANG H X,et al. Warming decreases
desert ecosystem functioning by altering biocrusts in drylands
[J].Journal of applied ecology,2023,60(12):2676-2687.
[24] LI X R,HUI R,ZHANG P,et al. Divergent responses of
moss- and lichen-dominated biocrusts to warming and increased
drought in arid desert regions[J/OL].Agricultural and
forest meteorology,2021,303:108387[2024-06-03].https://
doi.org/10.1016/j.agrformet.2021.108387.
[25] ESCOLAR C,MARTíNEZ I,BOWKER M A,et al.Warming
reduces the growth and diversity of biological soil crusts in
a semi-arid environment:implications for ecosystem structure
and functioning[J]. Biological sciences,2012,367(1606):
3087-3099.
[26] LADRóN DE GUEVARA M,GOZALO B,RAGGIO J,et
al.Warming reduces the cover,richness and evenness of lichendominated
biocrusts but promotes moss growth:insights from
an 8 year experiment[J]. New phytologist,2018,220(3):
811-823.
[27] MAESTRE F T,ESCOLAR C,BARDGETT R D,et al.
Warming reduces the cover and diversity of biocrust-forming
mosses and lichens,and increases the physiological stress of
soil microbial communities in a semi-arid Pinus halepensis
plantation[J/OL]. Frontiers in microbiology,2015,6:865
[2024-06-03].https://doi.org/10.3389/fmicb.2015.00865.
[28] FERRENBERG S,REED S C,BELNAP J. Climate change
and physical disturbance cause similar community shifts in biological
soil crusts[J].PNAS,2015,112(39):12116-12121.
[29] PHILLIPS M L,MCNELLIS B E,HOWELL A,et al.Biocrusts
mediate a new mechanism for land degradation under a
changing climate[J].Nature climate change,2022,12:71-76.
[30] 朱彪,陳迎. 陸地生態(tài)系統(tǒng)野外增溫控制實(shí)驗(yàn)的技術(shù)與方法
[J]. 植物生態(tài)學(xué)報(bào),2020,44(4):330-339.ZHU B,CHEN Y.
Techniques and methods for field warming manipulation experiments
in terrestrial ecosystems[J]. Chinese journal of plant
ecology,2020,44(4):330-339 (in Chinese with English abstract).
[31] FINGER-HIGGENS R,DUNIWAY M C,F(xiàn)ICK S,et al.Decline
in biological soil crust N-fixing lichens linked to increasing
summertime temperatures[J/OL].PNAS,2022,119(16):
e2120975119[2024-06-03]. https://doi. org/10.1073/pnas.
2120975119.
[32] TUCKER C,F(xiàn)ERRENBERG S,REED S C.Modest residual
effects of short-term warming,altered hydration,and biocrust
successional state on dryland soil heterotrophic carbon and nitrogen
cycling[J/OL]. Frontiers in ecology and evolution,
2020,8:467157[2024-06-03]. https://doi. org/10.3389/fevo.
2020.467157.
[33] BALLESTEROS M,AYERBE J,CASARES M,et al.Successful
lichen translocation on disturbed gypsum areas:a test
with adhesives to promote the recovery of biological soil crusts
[J/OL]. Scientific reports,2017,7:45606[2024-06-03].
https://doi.org/10.1038/srep45606.
[34] BALDAUF S,PORADA P,RAGGIO J,et al. Relative humidity
predominantly determines long-term biocrust-forming
lichen cover in drylands under climate change[J]. Journal of
ecology,2021,109(3):1370-1385.
[35] STEVEN B,KUSKE C R,GALLEGOS-GRAVES L V,et
al. Climate change and physical disturbance manipulations result
in distinct biological soil crust communities[J]. Applied
and environmental microbiology,2015,81(21):7448-7459.
[36] ANTONINKA A,CHUCKRAN P F,MAU R L,et al. Responses
of biocrust and associated soil bacteria to novel climates
are not tightly coupled[J/OL].Frontiers in microbiology,
2022,13:821860[2024-06-03].https://doi.org/10.3389/
fmicb.2022.821860.
[37] ABED R M M,TAMM A,HASSENRüCK C,et al.Habitatdependent
composition of bacterial and fungal communities in
biological soil crusts from Oman[J/OL]. Scientific reports,
2019,9(1):6468[2024-06-03]. https://doi. org/10.1038/
s41598-019-42911-6.
[38] FISHER K,JEFFERSON J S,VAISHAMPAYAN P.Bacterial
communities of mojave desert biological soil crusts are
shaped by dominant photoautotrophs and the presence of hypolithic
niches[J/OL].Frontiers in ecology and evolution,2020,7:
518[2024-06-03].https://doi.org/10.3389/fevo.2019.00518.
[39] GARCIA-PICHEL F. The microbiology of biological soil
crusts[J].Annual review of microbiology,2023,77:149-171.
[40] DENG S Q,ZHANG D Y,WANG G H,et al.Biological soil
crust succession in deserts through a 59-year-long case study
in China:how induced biological soil crust strategy accelerates
desertification reversal from decades to years[J/OL].Soil biology
and biochemistry,2020,141:107665 [2024-06-03].
https://doi.org/10.1016/j.soilbio.2019.107665.
[41] DELGADO-BAQUERIZO M,MAESTRE F T,ELDRIDGE
D J,et al.Biocrust-forming mosses mitigate the impact of aridity
on soil microbial communities in drylands:observational evidence
from three continents[J].New phytologist,2018,220(3):
824-835.
[42] DARROUZET-NARDI A,REED S C,GROTE E E,et al.
Observations of net soil exchange of CO2 in a dryland show experimental
warming increases carbon losses in biocrust soils
[J].Biogeochemistry,2015,126(3):363-378.
[43] LAVALLEE J M,SOONG J L,COTRUFO M F.Conceptualizing
soil organic matter into particulate and mineral-associated
forms to address global change in the 21st century[J].Global
change biology,2020,26(1):261-273.
[44] GEORGIOU K,KOVEN C D,WIEDER W R,et al. Emergent
temperature sensitivity of soil organic carbon driven by
mineral associations[J].Nature geoscience,2024,17:205-212.
[45] 田暢. 沙地生物結(jié)皮層土壤微生物和有機(jī)碳對(duì)短期增溫及氮
添加的響應(yīng)[D]. 北京:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院教育部
水土保持與生態(tài)環(huán)境研究中心),2023:93-95.TIAN C.Response
of soil microorganisms and organic carbon in biocrust
to short-term warming and nitrogen addition in sandy land[D].
Beijing:Research Center for Eco-Environmental Sciences,
Chinese Academy of Sciences,2023:93-95 (in Chinese with
English abstract) .
[46] POEPLAU C,DON A,SIX J,et al.Isolating organic carbon
fractions with varying turnover rates in temperate agricultural
soils:a comprehensive method comparison[J]. Soil biology
and biochemistry,2018,125:10-26.
[47] COTRUFO M F,LAVALLEE J M. Soil organic matter formation,
persistence,and functioning:a synthesis of current understanding
to inform its conservation and regeneration[J].Advances
in agronomy,2022,172:1-66.
[48] LEHMANN A,ZHENG W S,RILLIG M C.Soil biota contributions
to soil aggregation[J]. Nature ecology amp; evolution,
2017,1(12):1828-1835.
[49] ANGST G,MUELLER K E,CASTELLANO M J,et al.Unlocking
complex soil systems as carbon sinks:multi-pool management
as the key[J/OL].Nature communications,2023,14
(1):2967[2024-06-03]. https://doi. org/10.1038/s41467-
023-38700-5.
[50] DíAZ-MARTíNEZ P,PANETTIERI M,GARCíA-PALACIOS
P,et al. Biocrusts modulate climate change effects on
soil organic carbon pools:insights from a 9-year experiment
[J].Ecosystems,2023,26(3):585-596.
[51] GUAN C,ZHANG P,ZHAO C M,et al.Effects of warming
and rainfall pulses on soil respiration in a biological soil crustdominated
desert ecosystem[J/OL]. Geoderma,2021,381:
114683 [2024-06-03]. https://doi. org/10.1016/j. geoderma.
2020.114683.
[52] GUAN C,LI X R,CHEN N,et al. Warming effects on soil
respiration in moss-dominated crusts in the Tengger Desert,
Northern China[J].Plant and soil,2019,443(1):591-603.
[53] GUAN C,LI X R,ZHANG P,et al.Effect of global warming
on soil respiration and cumulative carbon release in biocrustdominated
areas in the Tengger Desert,Northern China[J].
Journal of soils and sediments,2019,19(3):1161-1170.
[54] HU Y G,XU B X,WANG Y N,et al.Reference for different
sensitivities of greenhouse gases effluxes to warming climate
among types of desert biological soil crust[J/OL].Science of
the total environment,2022,830:154805 [2024-06-03].
https://doi.org/10.1016/j.scitotenv.2022.154805.
[55] ESCOLAR C,MAESTRE F T,REY A.Biocrusts modulate
warming and rainfall exclusion effects on soil respiration in a
semi-arid grassland[J]. Soil biology and biochemistry,2015,
80:9-17.
[56] DACAL M,GARCíA-PALACIOS P,ASENSIO S,et al.
Contrasting mechanisms underlie short- and longer-term soil
respiration responses to experimental warming in a dryland
ecosystem[J].Global change biology,2020,26(9):5254-5266.
[57] ZELIKOVA T J,HOUSMAN D C,GROTE E E,et al.
Warming and increased precipitation frequency on the Colorado
Plateau:implications for biological soil crusts and soil processes
[J].Plant and soil,2012,355(1):265-282.
[58] GROTE E E,BELNAP J,HOUSMAN D C,et al.Carbon exchange
in biological soil crust communities under differential
temperatures and soil water contents:implications for global
change[J].Global change biology,2010,16(10):2763-2774.
[59] GONG J N,WANG B,JIA X,et al.Modelling the diurnal and
seasonal dynamics of soil CO2 exchange in a semiarid ecosystem
with high plant-interspace heterogeneity[J].Biogeosciences,
2018,15(1):115-136.
[60] FANG C,YE J S,GONG Y H,et al. Seasonal responses of
soil respiration to warming and nitrogen addition in a semi-arid
alfalfa-pasture of the Loess Plateau,China[J]. Science of the
total environment,2017,590:729-738.
[61] SUN J Y,YU K L,CHEN N,et al.Biocrusts modulate carbon
losses under warming across global drylands:a Bayesian metaanalysis
[J/OL]. Soil biology and biochemistry,2024,188:
109214 [2024-06-03]. https://doi. org/10.1016/j. soilbio.
2023.109214.
[62] TUCKER C L,F(xiàn)ERRENBERG S,REED S C.Climatic sensitivity
of dryland soil CO2 fluxes differs dramatically with biological
soil crust successional state[J]. Ecosystems,2019,22
(1):15-32.
[63] HU R,WANG X P,XU J S,et al.The mechanism of soil nitrogen
transformation under different biocrusts to warming and
reduced precipitation:From microbial functional genes to enzyme
activity[J/OL].Science of the total environment,2020,
722:137849[2024-06-03]. https://doi. org/10.1016/j. scitotenv.
2020.137849.
[64] DARROUZET-NARDI A,REED S C,GROTE E E,et al.
Patterns of longer-term climate change effects on CO2 efflux
from biocrusted soils differ from those observed in the short
term[J].Biogeosciences,2018,15(14):4561-4573.
[65] GARCíA-PALACIOS P,ESCOLAR C,DACAL M,et al.
Pathways regulating decreased soil respiration with warming
in a biocrust-dominated dryland[J]. Global change biology,
2018,24(10):4645-4656.
[66] ELDRIDGE D J,REED S,TRAVERS S K,et al.The pervasive
and multifaceted influence of biocrusts on water in the
world’s drylands[J]. Global change biology,2020,26(10):
6003-6014.
(責(zé)任編輯:邊書(shū)京)