摘要: 基于有界算子的本質(zhì)之一: 當(dāng)原象集有界時象集一定有界, 提出算子有界的反問題, 即當(dāng)算子T的象集有界時, 如何判斷其原象集有界. 先引入算子反向有界的概念, 再利用權(quán)函數(shù)方法和實分析技巧, 討論積分算子反向有界的等價參數(shù)條件, 并給出反向有界積分算子的構(gòu)造定理. 最后給出一些特例.
關(guān)鍵詞: 非齊次核; 積分算子; 反向有界算子; 逆向Hilbert型積分不等式; 構(gòu)造定理
中圖分類號: O178" 文獻(xiàn)標(biāo)志碼: A" 文章編號: 1671-5489(2024)04-0858-08
Inverse Problem for a Class of Bounded IntegralOperators with Non-homogeneous Kernel
ZHANG Lijuan1, HONG Yong1, LIAO Jianquan2
(1. College of Data Science, Guangzhou Huashang College, Guangzhou 511300, China;
2. College of Mathematics, Guangdong University of Education, Guangzhou 510303, China)
Abstract: One of the essence of" bounded operators" is that the" image set must be bounded when the original" image set is bounded, we propose
the inverse problem of operator boundedness: how to determine the boundedness of"" the original image set of an operator T "when its image set is bo
unded. We first introduce the concept of operator reverse boundedness, and then use weight" function method and real analysis techniques to discuss" the equivalent parametric conditions for
reverse boundedness of integral operators, and give" a construction theorem for reverse boundedness of" integral operators. Finally, some special cases are given.
Keywords: non-homogeneous kernel; integral operator; reverse bounded operator; inverse Hilbert-type integral inequality; construction theorem
1 引言與預(yù)備知識
設(shè)1p+1q=1(pgt;1), Hardy等[1]給出了Hilbert積分不等式: 若f∈Lp(0,+∞), g∈Lq(0,+∞), 則有
∫+∞0∫+∞01x+yf(x)g(y)dxdy≤πsin(π/p)‖f‖p‖g‖q,
其中常數(shù)因子πsin(π/p)是最佳值. 由該不等式可導(dǎo)出具有相同核1x+y的積分算子T:
T(f)(y)=∫+∞01x+yf(x)dx
是Lp(0,+∞)中的有界算子, 且T的算子范數(shù)‖T‖=πsin(π/p). 目前, 關(guān)于Hilbert型不等式及相關(guān)算子的研究已取得豐碩成果
[2-14], 并形成了較完整的理論體系[15]. 由于一個算子T有界是指存在常數(shù)Mgt;0, 使得‖T(f)‖≤M‖f‖, 因此其本質(zhì)是T將有界
集映射成有界集, 即當(dāng)原象集有界時, 象集也有界. 顯然, 其反問題是: 當(dāng)T的象集有界時, 如何保證T的原象集有界. 這需要研究反向不等式‖f‖≤
‖T(f)‖, 由此需引入算子反向有界的概念, 也需要探討相關(guān)的逆向Hilbert型不等式. 近年來, 關(guān)于逆向Hilbert型不等式的研究已有許多成果
[16-19], 但尚不完善. 文獻(xiàn)[20]探討了擬齊次核積分算子有界的等價參數(shù)條件, 本文在此基礎(chǔ)上, 討論非齊次核積分算子反向有界的問題, 得到積分算子反向有界的充分必要條件.
將Lebesgue空間Lr(0,+∞)進(jìn)行帶權(quán)推廣: 設(shè)r≠0, α∈瘙綆, 記
Lαr(0,+∞)=f(x): ∫+∞0xαf(x)rdx1/rlt;+∞.
當(dāng)rgt;1時, Lαr(0,+∞)是賦范向量空間, 其范數(shù)是‖f‖r,α=∫+∞0xαf(x)rdx1
/r. 由于當(dāng)rlt;1(r≠0)時, Lαr(0,+∞)不能構(gòu)成通常意義上的向量空間, 為區(qū)別, 當(dāng)rlt;1(r≠0)時, 記‖f‖
*r,α=∫+∞0xαf(x)rdx1/r.
若1p+1q=1(0lt;plt;1, qlt;0), α,β∈瘙綆, K(x,y)≥0, gt;0, f∈Lαp(0,+∞), g∈Lβq(0,+∞), 則以K(x,y)為核的不等式
‖f‖*p,α‖g‖*q,β≤∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy,(1)
稱為逆向Hilbert型積分不等式, 稱為常數(shù)因子. 本文記
W1(s)=∫+∞0K(1,t)tsdt," W2(s)=∫+∞0K(t,1)tsdt,
A(K,f,g)=∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy.
引理1 設(shè)1p+1q=1(0lt;plt;1, qlt;0), α,β∈瘙綆, λ1λ2gt;0, K(x,y)=G(xλ1yλ2)是非負(fù)可測函數(shù), 則
ω1(x,β,q)=∫+∞0K(x,y)y-(β+1)/qdy=x(λ1/λ2)\W1-β+1q,
ω2(y,α,p)=∫+∞0K(x,y)x-(α+1)/pdx=y(λ2/λ1)\W2-α+1p.
若αλ1p+1λ2p=βλ2q+1λ1q, 則λ1W2-α+1p=λ2W1-β+1q.
證明: 易知K(x,y)=G(xλ1yλ2)具有如下性質(zhì): 對tgt;0, 有
K(tx,y)=K(x,tλ1/λ2y)," K(x,ty)=K(tλ2/λ1x,y).
特別地, K(t,1)=K(1,tλ1/λ2), K(1,t)=K(tλ2/λ1,1). 于是
ω1(x,β,q)= "∫+∞0K(1,xλ1/λ2y)y-(β+1)/qdy=x(λ1/λ2)
\∫+∞0K(1,t)t-(β+1)/qdt= "x(λ1/λ2)\W1-β+1q.
根據(jù)對稱性, 同理可得ω2(y,α,p)=y(λ2/λ1)\W2-α+1p.
若αλ1p+1λ2p=βλ2q+1λ1q, 則-λ1λ2β+
1q-1-1=-α+1p, 于是
W1-β+1q= "∫+∞0K(tλ2/λ1,1)t-(β+1)/qdt
=λ1λ2∫+∞0K(u,1)u-(λ1/λ2)\-1du= "λ1λ2∫+∞0K(u,1)u-
(α+1)/pdu=λ1λ2W2-α+1p,
故λ1W2-α+1p=λ2W1-β+1q.
引理2[21] 設(shè)1p+1q=1(0lt;plt;1, qlt;0), x∈Ω瘙綆n, f(x)≥0, g(x)
≥0, ω(x)≥0, 則有帶權(quán)的逆向Hlder積分不等式
∫Ωf(x)g(x)ω(x)dx≥∫Ωfp(x)ω(x)dx1/p∫Ωgq(x)ω(x)dx1/q,
當(dāng)且僅當(dāng)存在常數(shù)C使得fp(x)=Cgq(x)(x∈Ω)時, 不等式取等號.
2 非齊次核逆向Hilbert型積分不等式構(gòu)造定理
定理1 設(shè)1p+1q=1(0lt;plt;1, qlt;0), λ1λ2gt;0, α,β∈瘙綆, K(x,y)=G(xλ1yλ
2)是非負(fù)可測函數(shù), 0lt;W1-β+1qlt;+∞, 0lt;W2-α+1plt;+∞, 且存在常數(shù)σgt;0, 使得W1-
β+1q±σlt;+∞或W2-α+1p±σlt;+∞. 則:
1) 當(dāng)且僅當(dāng)αλ1p+1λ2p=βλ2q+1λ1q時, 存在常數(shù)gt;0, 使得
‖f‖*p,α‖g‖*q,β≤A(K,f,g),(2)
其中f∈Lαp(0,+∞), g∈Lβq(0,+∞);
2) 當(dāng)αλ1p+1λ2p=βλ2q+1λ1q時, 式(2)的最佳常數(shù)因子為
inf{}=λ11/qλ21/pW0 W0=λ2W1-β+1q=λ1W2-α+1p.
證明: 由于對稱性, 不妨設(shè)W1-β+1q±σlt;+∞.
1) 充分性. 設(shè)αλ1p+1λ2p=βλ2q+1λ1q, 根據(jù)引理1和引理2并注意到qlt;0, 有
A(K,f,g)= "∫+∞0∫+∞0x(α+1)/(pq)y(β+1)/(pq)f(x)y(β+1)/(pq)x(α+1)/(pq)g(y)K(x,y)dxdy≥ "∫+∞0∫+∞0x(α+1)/
qy(β+1)/qf(x)pK(x,y)dxdy1/p∫+∞0∫+∞0y(β+1)/
px(α+1)/pg(y)qK(x,y)dxdy1/q= "∫+∞0x(α+1)/qf(x)pω
1(x,β,q)dx1/p∫+∞0y(β+1)/pg(y)qω2(y,α,p)dy1/q
= "W1/p1-β+1qW1/q2-α+1p∫+∞0x
(α+1)/q+(λ1/λ2)\f(x)pdx1/p× "∫+∞0y(β+1)/p+(λ2/λ1)
\g(y)qdy1/q= "W1/p1-β+1qW1/q
2-α+1p∫+∞0xαf(x)pdx1/p∫+∞0yβg(y)qdy1/q= "W1/p1-β+1qW1/q
2-α+1p‖f‖*p,α‖g‖*q,β,
從而
‖f‖*p,α‖g‖*q,β≤W-1/p1-β+1qW-1/q2-α+1pA(K,f,g),
任取≥W-1/p1-β+1qW-1/q2-α+1p, 式(2)成立.
必要性. 設(shè)式(2)成立. 記αλ1p+1λ2p-βλ2q+1λ1q=c, 下面只
需證明c=0即可. 若cλ1lt;0, 取充分小的εgt;0, 令
f(x)=x-(α+1-λ1ε)/p,0lt;x≤1,0,xgt;1," g(y)=
y-(β+1+λ2ε)/q,y≥1,0,0lt;ylt;1,
則計算可得
‖f‖*p,α‖g‖*q,β=∫10x-1+λ1εdx1/p∫+∞1y-1
-λ2εdy1/q=1ελ11/pλ21/q.
由cλ1lt;0有-cλ1gt;0, 于是
A(K,f,g)= "∫10x-(α+1)/p+λ1ε/p∫+∞1K(x,y)y-(β+1)/q-λ2ε/qdydx
= "∫10x-(α+1)/p+λ1ε/p∫+∞1K(1,xλ1/λ2y)y-(β+1)/q-λ2ε/qdydx
= "∫10x-(α+1)/p+λ1ε/p+(λ1/λ2)\λ2ε/q-1\〗∫+∞xλ1/λ2K(1,t)t-(β+1)/
q-λ2ε/qdtdx≤ "∫10x-1-cλ1+λ1εdx∫+∞0K(1,t)t-(β+1)/q-λ2ε/qdt
= "1-cλ1+λ1εW1-β+1q-λ2εq,
從而可得
1λ11/pλ21/q≤ε-cλ1+λ1εW
1-β+1q-λ2εq.(3)
令
F(x)=K(1,t)t-(β+1)/q+σ,t≥1,K(1,t)t-(β+1)/q,0lt;tlt;1,
因為εgt;0充分小, qlt;0, 故0lt;λ2ε-qlt;σ, 于是0≤K(1,t)t-(β+1)/q-λ2ε/q≤F(t)(tgt;0), 且
∫+∞0F(t)dt= "∫10K(1,t)t-(β+1)/qdt+∫+∞1K(1,t)t-(β+1)/q+σdt
≤ "W1-β+1q+W1-β+1q+σlt;+∞.
綜上并根據(jù)Lebesgue控制收斂定理, 有
limε→0+ W1-β+1q-λ2εq= "limε→0+ ∫+∞0K(1,t)t-(β+1)/q-λ2ε/qdt= "∫+∞0K(1,t)t-(β+1)/qdt=W1-β+1qlt;+∞.
于是在式(3)中令ε→0+, 得
0lt;1λ11/pλ21/q≤0,(4)
矛盾. 故cλ1lt;0不成立.
若cλ1gt;0, 取充分小的εgt;0, 令
f(x)=x-(α+1+λ1ε)/p,x≥1,0,0lt;xlt;1," g(y)=y-(β+1-λ1ε)/q,0lt;y≤1,0,ygt;1,
則類似式(3)的推導(dǎo)方法, 可得
1λ11/pλ21/q≤ελ1c+λ1εW
1-β+1q+λ2εq.(5)
同理, 利用W1-β+1q-σlt;+∞及Lebesgue控制收斂定理, 有
limε→0+ W1-β+1q+λ2εq=W1-β+1qlt;+∞,
于是在式(5)中令ε→0+, 可得式(4), 矛盾, 因此cλ1gt;0也不成立.
綜上可得cλ1=0, 從而c=0.
2) 設(shè)αλ1p+1λ2p=βλ2q+1λ1q, 則c=0. 根據(jù)引理1, 有λ1
W2-α+1p=λ2W1-β+1q=W0, 若式(2)的最佳常數(shù)因子不是
λ11/qλ21/p/W0, 則存在常數(shù)M0gt;0, 使得‖f‖*p,α‖g‖*q,β≤0A(K,f,g), 且
0lt;λ11/qλ21/pW0=λ11/q
λ21/pλ2W-11-β+1q=λ1λ21/qW-11-β+1q.
由于c=0, 類似推導(dǎo)式(3)的方法, 可得
1λ11/pλ21/q≤0λ1W
1-β+1q-λ2εq,
令ε→0+, 則有1λ11/pλ21/q≤0λ
1W1-β+1q, 于是可得
0≥λ1λ21/qW-11-β+1q,
與0lt;λ1λ21/qW-11-β+1q
矛盾, 故λ11/qλ21/pW0是式(2)的最佳常數(shù)因子.
注1 當(dāng)0lt;plt;1, qlt;0, λ1λ2gt;0時, 1λ2p≠1λ1q. 根據(jù)定理1可知, 對非齊次核K(x,y)=G(x
λ1yλ2)(λ1λ2gt;0), 不存在常數(shù)gt;0, 使得‖f‖*p‖g‖*q≤A(K,f,g)成立, 即當(dāng)
α=β=0時, 非齊次核K(x,y)=G(xλ1yλ2)(λ1λ2gt;0)不能構(gòu)建逆向Hilbert型積分不等式A(K,f,g)≤A(K,f,g).
3 非齊次核積分算子反向有界的充要條件
設(shè)K(x,y)≥0, 定義以K(x,y)為核的積分算子T為
T(f)(y)=∫+∞0K(x,y)f(x)dx,(6)
若‖f‖*p,α≤‖T(f)‖*p,γ, 則稱T是Lαp(0,+∞)到Lγp(0,+∞)的反向有界算子, 并記
‖T‖*=sup‖f‖*p,α‖T(f)‖*p,γ: f∈Lαp(0,+∞), ‖T(f)‖*p,γ≠0.
根據(jù)Hilbert型不等式的基本理論, 逆向Hilbert型積分不等式(1)等價于算子不等式
‖f‖*p,α≤‖T(f)‖*p,β(1-p).(7)
于是根據(jù)定理1, 可得如下積分算子T反向有界的充分必要條件.
定理2 設(shè)1p+1q=1(0lt;plt;1, qlt;0), λ1λ2gt;0, α,β∈瘙綆, K(x,y)=G(xλ1y
λ2)是非負(fù)可測函數(shù), 0lt;W1-β+1qlt;+∞, 0lt;W2-α+1plt;+∞, 存在常數(shù)σgt;0, 使得W1-β+1q±σlt;+∞或W2-α+1p±σlt;+∞, 積分算子T由式(6)定義. 則:
1) 當(dāng)且僅當(dāng)αλ1p+1λ2p=βλ2q+1λ1q時, T是Lαp(0,+∞)
到Lβ(1-p)p(0,+∞)的反向有界算子, 且‖T‖*≤W-1/p1-β+1qW-1/q2-α+1p;
2) 當(dāng)αλ1p+1λ2p=βλ2q+1λ1q時, ‖T‖*=W-1/p
1-β+1qW-1/q2-α+1p=
λ11/qλ21/pW0.
在定理2中取λ1=λ2=1, 可得下列推論.
推論1 設(shè)1p+1q=1(0lt;plt;1, qlt;0), α,β∈瘙綆, K(x,y)=G(xy)是非負(fù)可測函數(shù), 0lt;W1-β+1qlt;+∞, 0lt;W2-α+1plt;+∞, 存在σgt;0, 使得W1-β+1q±σlt;+∞或
W2-α+1p±σlt;+∞, 積分算子T由式(6)定義. 則:
1) 當(dāng)且僅當(dāng)α+1p=β+1q時, T是Lαp(0,+∞)到Lβ(1-p)p(0,+∞)的反向有界算子,
且‖T‖*≤W-1/p1-β+1qW-1/q2-α+1p;
2) 當(dāng)α+1p=β+1q時, ‖T‖*=W1-β+1q=W2-α+1p.
推論2 設(shè)1p+1q=1(0lt;plt;1, qlt;0), λ1gt;0, λ2gt;0, agt;0, -alt;1λ1
αp-1qlt;b, αλ1p+1λ2p=βλ2q+1λ1q, 積分算子T為
T(f)(y)=∫+∞0(min{1,xλ1yλ2})b(1+xλ1yλ2)af(x)dx,
則T是Lαp(0,+∞)到Lβ(1-p)p(0,+∞)的反向有界算子, 即
‖f‖*p,α≤0(a,b,α,β)‖T(f)‖*p,β(1-p),
且‖T‖*=0(a,b,α,β)=1λ1/q1λ1/p2∫101(1+t)a(ta-(1/λ1)
(1/q-α/p)-1+tb+(1/λ2)(1/p-β/q)-1)dt-1.
證明: 根據(jù)αλ1p+1λ2p=βλ2q+1λ1q和-alt;1λ1αp-1qlt;b可知, a-1λ11q-αpgt;0, b+1λ21p-βqgt;0, 從而0(a,b,α,β)中的積分收斂. 記
K(x,y)=G(xλ1yλ2)=(min{1,xλ1yλ2})b(1+xλ1yλ2)a (xgt;0, ygt;0),
則K(x,y)≥0, 且
W1-β+1q= "∫+∞0K(1,t)t-(β+1)/qdt=∫+∞0(min{1
,tλ2})b(1+tλ2)at-(β+1)/qdt= "∫101(1+tλ2)atbλ2-(β+
1)/qdt+∫+∞11(1+tλ2)at-(β+1)/qdt=
1λ2∫101(1+u)aub+(1/λ2)(1/p-β/q)-1du+1λ2∫+∞11(1+u)
au(1/λ2)(1/p-β/q)-1du= "1λ2∫101(1+u)aub+(1/λ2)
(1/p-β/q)-1du+1λ2∫101(1+t)ata-(1/λ2)(1/p-β/q)-1dt=
1λ2∫101(1+t)atb+(1/λ2)(1/p-β/q)-1d
t+1λ2∫101(1+t)ata-(1/λ1)(1/q-α/p)-1dt
= "1λ2∫101(1+t)a(ta-(1/λ1)(1/q-α/p)-1+tb+(1/λ2)(1/p-β/q)-1)dtlt;+∞.
類似可得W2-α+1plt;+∞.
因為a-1λ11q-αpgt;0, b+1λ21p-βqgt;0, 所以根據(jù)實數(shù)的稠密性, 可知存在常數(shù)σgt;0, 使得
a-1λ11q-αp±σλ2gt;0," b+1λ21p-βq±σλ2gt;0.
計算易得
W1-β+1q±σ=1λ2∫101(1+t)a(ta-(1/λ1)(1/q-α/p)±σ/λ2-1+tb+(1/λ2)(1/p-β/q)±σ/λ2-1)dt,
從而W1-β+1q±σlt;+∞. 又由于
W0=λ2W1-β+1q=∫101(1+t)a(ta-(1/λ1)(1/q-α/p)-1+tb+(1/λ2)(1/p-β/q)-1)dt,
故1W0λ1/q1λ1/p2=0(a,b,α,β).
綜上并根據(jù)定理2知結(jié)論成立. 證畢.
在推論2中取b=0, α=p1q-λ1τ, β=q1p-λ2τ, 0lt;τlt;a, 易驗證它們滿足推論2的所有條件, 且
a-1λ11q-αp
+b+1λ21p-βq=a,
a-1λ11q-αp=a-τ," b+1λ21p-βq=τ.
根據(jù)Beta函數(shù)的性質(zhì), 有0(a,b,α,β)=λ1/q1λ1/p2B(a-τ,τ), 于是根據(jù)推論2可得如下推論.
推論3 設(shè)1p+1q=1(0lt;plt;1, qlt;0), λ1gt;0, λ2gt;0, 0lt;τlt;a, 積分算子T為
T(f)(y)=∫+∞01(1+xλ1yλ2)af(x)dx,
則T是Lp(1/q-λ1τ)p(0,+∞)到Lλ2pτ-1p(0,+∞)的反向有界算子:
‖f‖*p,p(1/q-λ1τ)≤λ1/q1λ1/p2B(a-τ,τ)‖T(f)‖*p,λ2pτ-1,
且‖T‖*=λ1/q1λ1/p2B(a-τ,τ).
參考文獻(xiàn)
[1] HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities [M]. Gambridge: Gambridge University Press, 1934: 255\|268.
[2] RASSIAS M Th, YANG B C. A Multidimensional Half-Discrete Hilbert-Type Inequality andRiemann Zeta Function [J]. Applied Mathematics and Computation, 2013, 225: 263-277.
[3] HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple Integral Inequality with"the Non-homogeneous Kernel and Its Applications [J]. Journal of Inequalities and Applications, 2017, 2017: 316-1-316-12.
[4] 洪勇. 準(zhǔn)齊次核的Hardy-Hilbert型級數(shù)不等式 [J]. 數(shù)學(xué)年刊, 2012, 33A(6): 679-686. (HONG Y. Hardy-Hilbert Type Series Inequality with a Quasi-homogeneous Kernel [J]. Chinese Annals of Mathematics, 2012, 33A(6): 679-686.)
[5] 洪勇. 一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用[J]. 數(shù)學(xué)年刊, 2014, 35A(1): 21-30. (HONG Y. On the Norm of Hilbert-Type Singular Multiple Integral Operator with Quasi-homogeneous Kernel and Application [J]. Chinese Annals of Mathematics, 2014, 35A(1): 21-30.)
[6] 楊必成. 關(guān)于一個Hilbert類積分不等式的推廣及應(yīng)用 [J]. 應(yīng)用數(shù)學(xué), 2003, 16(2): 82-86. (YANG B C. On a Generalization of a Hilbert’s Type Integral Inequality and Its Applications [J]. Mathematica Applicata, 2003, 16(2): 82-86.)
[7] 楊必成. 關(guān)于一個推廣的Hardy-Hilbert不等式 [J]. 數(shù)學(xué)年刊, 2002, 23A(2): 247-254. (YANG B C. On an Extension of Hardy-Hilbert’s Inequality [J]. Chinese Annals of Mathematics, 2002, 23A(2): 247-254.)
[8] 洪勇. 具有齊次核的Hilbert型積分不等式的構(gòu)造特征及應(yīng)用 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2017, 55(2): 189-194. (HONG Y. Structural Characteristics and Applications of Hilbert’s Type Integral Inequalities with Homogeneous Kernel [J]. Journal of Jilin University (Science Edition), 2017, 55(2): 189-194.)
[9] 高明哲. Hardy-Riesz拓廣了的Hilbert不等式的一個改進(jìn) [J]. 數(shù)學(xué)研究與評論, 1994, 14(2): 255-259. (GAO M Z. An Improvement of Hardy-Riesz’s Extension of the Hilbert Inequality [J]. Journal of Mathematical Research and Exposition, 1994, 14(2): 255-259.)
[10] LIU T, YANG B C, HE L P. On a Multidimensional Hilbert-Type Integral Inequality with Logarithm Function [J]. Mathematical Inequalities and Applications, 2015, 18(4): 1219-1234.
[11] 洪勇. 帶對稱齊次核的級數(shù)算子的范數(shù)刻畫及其應(yīng)用 [J]. 數(shù)學(xué)學(xué)報(中文版), 2008, 15(2): 365-370. (HONG Y. On the Norm of a Series Operator with a Symmetric and Homogeneous Kernel and Its Application [J]. Acta Mathematica Sinca (Chinese Series), 2008, 51(2): 365-370.)
[12] 洪勇, 溫雅敏. 齊次核的Hilbert型級數(shù)不等式取最佳常數(shù)因子的充要條件 [J]. 數(shù)學(xué)年刊, 2016, 37A(3): 329-336. (HONG Y, WEN Y M. A Necessary and Sufficient Condition of That Hilbert Type Series Inequality with Homogeneous Kernel Has the Best Constant Factor [J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.)
[13] 楊必成, 王愛珍. 一個全平面非齊次核的Hilbert積分不等式 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2018, 56(4): 819-824. (YANG B C, WANG A Z."A Hilbert’s Integral Inequality in the Whole Plane with Non-homogeneous Kernel [J]. Journal of Jilin University (Science Edition), 2018, 56(4): 819-824.)
[14] 洪勇. 一類具有最佳常數(shù)因子的Hardy型多重積分不等式 [J]. 數(shù)學(xué)物理學(xué)報, 2011, 31A(6): 1586-1591.(HONG Y. On a Multipe Hardy-Type Integral Inequality with a Best" Constant Factor and Its Application [J]. Acta Mathematica Scientia, 2011, 31A(6): 1586-1591.)
[15] 洪勇, 和炳. Hilbert型不等式的理論與應(yīng)用 [M]. 北京: 科學(xué)出版社, 2023: 271-427. (HONG Y, HE B. Theory and Applications of Hilbert-Type Inequalities [M]. Beijing: Science Press, 2023: 271-427.)
[16] RASSIAS M Th, YANG B C, RAIGORDSKII A M. Two Kindsof the Reverse Hardy-Type Integral Inequalities with the Equivalent forms Related to the Extended Riemann Zeta Function [J]. Applicable Analysis and Discrete Mathematics, 2018, 12: 273-296.
[17] 洪勇, 陳強(qiáng). 非齊次核逆向Hilbert型積分不等式的最佳搭配參數(shù)及算子表達(dá)式 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2022, 60(4): 845-852. (HONG Y, CHEN Q. Optimal Matching Parameters for Inverse Hilbert-Type Integral Inequality with Non-homogeneous Kernel and Operator Expression [J]. Journal of Jilin University (Sciense Edition), 2022, 60(4): 845-852.)
[18] 楊必成, 陳強(qiáng). 一類非齊次核逆向的Hardy型積分不等式成立的等價條件 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2017, 55(4): 804-808. (YANG B C, CHEN Q. Equivalent Conditions of Existence of a Class of Reverse Hardy-Type Integral Inequalities with Non-homogeneous Kernel [J]. Journal of Jilin University (Science Edition), 2017, 55(4): 804-808.)
[19] RASSIAS M Th, YANG B C, MELETIOU G C, et al. A More Accurate Half-Discrete Hilbert-Type Inequality in Whole Plane and the Reverses [J/OL]. Annals of Functional Analysis, (2021-06-29)[2023-09-08]. https://doi.org/10.1007/s43034-012-00133-w.
[20] HONG Y, HE B, YANG B C. Necessary and Sufficient Conditions for the Validity of Hilbert Type Integral Inequalities with a Class of Quasi-homogeneous Kernels and Its Application in Operator Theory [J]. Journal of Mathematics Inequalities, 2018, 12(3): 777-788.
[21] 匡繼昌. 常用不等式 [M]. 5版. 濟(jì)南: 山東科學(xué)技術(shù)出版社, 2021: 4-43. (KUANG J C. Applied Inequalities [M]. 5th ed. Jinan: ShangdongScience and Technology Press, 2021: 4-43.)
(責(zé)任編輯: 李 琦)