摘" "要:興安-蒙古造山帶是古亞洲洋東段洋盆俯沖、閉合形成的增生造山帶,但對(duì)該地區(qū)古亞洲洋俯沖形式、閉合時(shí)限及興蒙造山帶構(gòu)造背景仍存在較大爭(zhēng)議。東烏珠穆沁旗巴彥呼熱地區(qū)位于興蒙造山帶中部,區(qū)內(nèi)出露寶力高廟組為一套陸相中酸性火山碎屑巖-正常沉積碎屑巖建造。通過(guò)對(duì)該組流紋巖主、微量元素地球化學(xué)分析和LA-ICP-MS鋯石U-Pb定年,精確厘定寶力高廟組火山巖形成時(shí)代,分析巖石地球化學(xué)特征。寶力高廟組流紋巖富集Rb,Th,Sr,虧損Nb,Ta,Ti元素。符合典型高分異“A”型花崗巖特點(diǎn),顯示后碰撞花崗巖特征,形成于造山后地殼減薄階段。寶力高廟組流紋巖鋯石U-Pb定年顯示206Pb/238U加權(quán)平均年齡為(299.6±2.5) Ma(MSWD=1.5),時(shí)代為晚石炭—早二疊世。流紋巖SiO2含量70.80%~79.81%,MgO含量0.05%~0.50%,TiO2含量0.05%~0.23%,K2O含量3.25%~9.33%;微量元素Rb,La,Nd,Zr,Sm富集,相對(duì)虧損Sr,Ba,強(qiáng)烈虧損P,Ti;明顯負(fù)銪異常及高鋯石飽和溫度(708.5℃~899.3℃),表明寶力高廟組流紋巖為形成于造山后地殼減薄階段地殼部分熔融的產(chǎn)物。綜合巖石地球化學(xué)、年代學(xué)及構(gòu)造背景,認(rèn)為興蒙造山帶中段東烏珠穆沁旗巴彥呼熱地區(qū)在晚石炭—早二疊世處于后碰撞伸展環(huán)境,這為興蒙造山帶構(gòu)造-巖漿演化提供新的證據(jù)。
關(guān)鍵詞:寶力高廟組;流紋巖;鋯石U-Pb年齡;地球化學(xué);東烏珠穆沁旗
中亞造山帶(CAOB)是由蛇綠混雜巖帶、島弧、微陸塊、弧前和弧后盆地組成的增生造山帶,因其特殊性和重要性,是國(guó)內(nèi)外學(xué)者長(zhǎng)期研究的焦點(diǎn)[1-10]。其東段的興蒙造山帶(IMDOB)內(nèi)大量晚古生代巖漿巖是研究西伯利亞和華北兩個(gè)板塊拼合及古亞洲洋最終關(guān)閉時(shí)限的重要載體。但對(duì)于古亞洲洋的俯沖模式及閉合時(shí)限目前尚存較大爭(zhēng)議。一種觀點(diǎn)認(rèn)為古亞洲洋向南、北雙向俯沖,發(fā)育一系列溝-弧-盆體系,晚二疊—早三疊世結(jié)束俯沖,其閉合標(biāo)志為索倫-西拉木倫-長(zhǎng)春縫合帶[1-4];另種觀點(diǎn)亦認(rèn)為是向南、北雙向俯沖,但于晚泥盆世發(fā)生閉合,形成二連-賀根山縫合帶,之后處于伸展構(gòu)造環(huán)境,大規(guī)模的巖漿活動(dòng)代表后造山伸展作用[11,12],并發(fā)育有限規(guī)模的小洋盆,于早—中三疊世發(fā)生閉合[13]。
巴彥呼熱地區(qū)位于內(nèi)蒙古東烏珠穆沁旗東北約150 km,處于興蒙造山帶中部,屬大興安嶺弧盆系列東烏珠穆沁旗-多寶山島弧構(gòu)造帶,區(qū)內(nèi)發(fā)育大量晚古生—早中生代中-酸性火山巖。本文以巴彥呼熱地區(qū)火山巖為研究對(duì)象,通過(guò)全巖主微量元素地球化學(xué)特征、LA-ICP-MS鋯石U-Pb年代學(xué)等分析研究,精確厘定研究區(qū)火山巖形成時(shí)代,分析巖石地球化學(xué)屬性,探討其形成的構(gòu)造環(huán)境和深部動(dòng)力學(xué)過(guò)程,為興蒙造山帶構(gòu)造-巖漿演化提供新的證據(jù)。
1" 地質(zhì)背景與巖石學(xué)特征
興蒙造山帶處于中亞造山帶東段(圖1-a),以一系列近NW向斷層為界,可將其劃分成5個(gè)次級(jí)構(gòu)造單元,由南向北依次可劃分為:南造山帶、索倫縫合帶、北造山帶、二連-賀根山蛇綠混雜巖帶和烏梁雅斯太大陸邊緣帶(圖1-b)[6,10,14],通常索倫縫合帶被認(rèn)為是古亞洲洋最終縫合位置[1,15]。巴彥呼熱地區(qū)位于興蒙造山帶中段烏梁雅斯太大陸邊緣帶,屬草原覆蓋區(qū),大部分為第四系,地層出露連續(xù)性較差,但古生界和中生界均有不同程度分布。區(qū)內(nèi)出露地層由老到新依次為(圖1-c):中—下奧陶統(tǒng)多寶山組、中—上奧陶統(tǒng)裸河組、下泥盆統(tǒng)泥鰍河組、中—上泥盆統(tǒng)塔爾巴格特組、石炭—二疊系寶力高廟組、中侏羅統(tǒng)塔木蘭溝組、上侏羅統(tǒng)滿克頭鄂博組、下白堊統(tǒng)大磨拐河組。區(qū)內(nèi)地層走向整體呈NWW向,與區(qū)域構(gòu)造方向一致。區(qū)內(nèi)構(gòu)造較為復(fù)雜,古生代褶皺表現(xiàn)為NE向線性緊閉褶皺;中新生代褶皺表現(xiàn)為寬緩背向斜構(gòu)造;斷裂構(gòu)造表現(xiàn)為NE向古生代斷裂被NNE向及NW向中新生代斷裂切割和改造。受西伯利亞板塊、古蒙古洋殼和華北地臺(tái)多期次俯沖、碰撞和對(duì)接作用影響,東烏珠穆沁旗巴彥呼熱地區(qū)各種巖石類型、不同形成時(shí)代和不等產(chǎn)出規(guī)模的侵入巖體分布廣泛(圖1-c),其中以晚古生代花崗巖類侵入巖最為發(fā)育。
2" 樣品測(cè)試方法
本次在巴彥呼熱地區(qū)共采集寶力高廟組流紋巖樣品20件,樣品新鮮且具代表性,采樣位置見(jiàn)圖1-c。在對(duì)所有樣品進(jìn)行巖相學(xué)觀察的基礎(chǔ)上,篩選14件進(jìn)行全巖地球化學(xué)測(cè)試分析,1件進(jìn)行鋯石U-Pb定年。樣品主微量含量測(cè)試均由中國(guó)地質(zhì)調(diào)查局天津中心實(shí)驗(yàn)室完成。主量元素分析采用XRF法,微量元素分析采用ICP-MS法,主、微量元素分析誤差lt;5%,分析結(jié)果見(jiàn)表1。
鋯石樣品的挑選、制靶、陰極發(fā)光照相及LA-ICP-MS鋯石U-Pb年齡測(cè)試均在中國(guó)地質(zhì)調(diào)查局天津中心實(shí)驗(yàn)室完成。U-Pb同位素年齡測(cè)定由激光剝蝕電感耦合等離子體質(zhì)譜儀(LA-ICP-MS)完成,激光剝蝕束斑直徑30 μm、頻率10 Hz、剝蝕深度30 μm,樣品同位素比值及元素含量計(jì)算采用ICPMSDATACAL程序,普通鉛校正采用ComPbCorr#3.17校正程序[16],U-Pb諧和圖、年齡分布頻率圖繪制和年齡權(quán)重平均計(jì)算采用Isoplot/Exv.3.0軟件程序完成[17]。
3" 巖石地球化學(xué)特征
寶力高廟組為一套陸相中酸性火山碎屑巖-正常沉積碎屑巖建造,據(jù)巖性組合可分為4段[18-20],研究區(qū)內(nèi)寶力高廟組主要為灰白-灰紫色流紋巖、灰綠色安山巖和深灰-灰綠色英安巖,次為灰綠色英安質(zhì)含角礫晶屑凝灰?guī)r、灰綠色安山質(zhì)含角礫凝灰?guī)r、紫紅色流紋質(zhì)含角礫巖屑熔結(jié)凝灰?guī)r及灰黃色泥質(zhì)粉砂巖、長(zhǎng)石石英砂巖和礫巖(圖2-a)。流紋巖為斑狀結(jié)構(gòu)、基質(zhì)顯微嵌晶結(jié)構(gòu),塊狀構(gòu)造,巖石斑晶為斜長(zhǎng)石、石英,斜長(zhǎng)石約占3%,呈板狀,粒徑約1 mm,石英斑晶含量2%,呈熔蝕渾圓狀?;|(zhì)含量約95%,由不規(guī)則粒狀石英和長(zhǎng)石微晶組成,流動(dòng)構(gòu)造不發(fā)育(圖2-b)。
3.1" 主量元素特征
巴彥呼熱地區(qū)寶力高廟組流紋巖的SiO2含量較高(70.80%~79.81%),平均75.93%,顯示高硅特征;具較低Al2O3含量(11.14%~14.18%),平均12.50%;MgO含量低(0.05%~0.50%),平均值0.16%;CaO含量較低(0.08%~0.58%),平均0.26%;全堿(Na2O+K2O)含量為(6.51%~11.87%),K2O含量(3.25%~9.33%)明顯高于Na2O(1.22%~4.17%),TiO2含量為0.05%~0.23%。鐵(Fe2O3+FeO)含量(0.96%~3.62%)中等,Mg#變化較大,為2.59~20.27。
流紋巖的鋁飽和指數(shù)A/CNK比值為1.07~2.08。從圖3-a中可看出[21],樣品點(diǎn)均落入流紋巖區(qū)域。從圖3-b中可看出,樣品點(diǎn)基本落入流紋巖區(qū)域,巖石類型與室內(nèi)鏡下鑒定結(jié)果一致。從圖3-c中可看出,樣品點(diǎn)均落入高鉀鈣堿性-鉀玄系列區(qū)域。從圖3-d中可看出,樣品點(diǎn)位于過(guò)鋁質(zhì)區(qū)域,指示流紋巖屬過(guò)鋁質(zhì)鉀玄-高鉀鈣堿性系列。從圖4可看出,隨SiO2含量增高,CaO、MgO、TiO2含量變化不明顯,無(wú)明顯相關(guān)性;而Al2O3、Fe2O3、K2O、P2O5含量呈下降趨勢(shì),具一定線性相關(guān)性。
3.2" 微量、稀土元素特征
寶力高廟組流紋巖的稀土元素總量(ΣREE)為13.41×10-6~200.08×10-6,平均64.25×10-6,低于地殼巖漿巖平均值(164×10-6)[23]。LREE為9.72×10-6~ 167.39×10-6,平均51.72×10-6,HREE為1.57×10-6~32.69×10-6,平均10.16×10-6。LREE/HREE為2.64~18.76,平均6.65。從圖5-a可看出,寶力高廟組流紋巖呈典型燕式分布的REE型式[10,23],具總體弱右傾、LREE富集、HREE相對(duì)虧損特點(diǎn)。(La/Yb)N為2.03~34.00,表明輕稀土分餾程度較重稀土更為顯著[24]。Eu負(fù)異常較明顯(δEu=0.04~0.96,平均0.29),說(shuō)明巖漿演化過(guò)程中發(fā)生結(jié)晶分異作用或部分熔融過(guò)程中源區(qū)有斜長(zhǎng)石殘留[25]。從圖5-b中可看出,寶力高廟組流紋巖總體富集Nd,Zr,略微虧損Nb,強(qiáng)烈虧損Ba,K,Sr,P,Ti等元素。
4" 鋯石U-Pb定年
鋯石U-Pb定年數(shù)據(jù)及計(jì)算結(jié)果詳見(jiàn)表2。流紋巖鋯石為灰白色,主要為長(zhǎng)柱狀晶體,長(zhǎng)120~" " "200 μm,伸長(zhǎng)系數(shù)為1.2~2.2。陰極發(fā)光圖像顯示具清晰的振蕩韻律環(huán)帶(圖6-a)。26個(gè)分析點(diǎn)的Th,U平均含量為128×10-6、290×10-6,Th/U比值0.37~0.7,屬巖漿結(jié)晶的產(chǎn)物。206Pb/238U最小值為(282±5)Ma,最大值為(312±7)Ma,計(jì)算得出206Pb/238U年齡為(298.2±2.3)Ma(MSWD=6.1)(圖6-b,c),206Pb/238U加權(quán)平均年齡為(299.6±2.5) Ma(MSWD=1.5),表明此年齡值可代表巖石結(jié)晶年齡,時(shí)代為晚石炭—早二疊世。
5" 討論
5.1" 巖石類型及源區(qū)特征
巴彥呼熱地區(qū)寶力高廟組流紋巖主量元素具高硅、低Mg、低Ti、富K、弱鋁質(zhì)特點(diǎn);微量元素呈Rb,La,Nd,Zr,Sm富集,相對(duì)虧損Sr,Ba,強(qiáng)烈虧損P,Ti;REE配分曲線呈燕式分布,且具明顯的負(fù)銪異常。這些特征均顯示與后碰撞或造山后構(gòu)造環(huán)境形成的“A”型花崗巖特征類似,即堿性、貧水和非造山花崗巖[27-32]。通過(guò)鋯石飽和溫度計(jì)算,巴彥呼熱地區(qū)寶力高廟組流紋溫度為708.5℃~899.3℃,平均溫度832.8℃,為高溫花崗巖,這與典型的“A”型花崗巖特征一致[33]。從圖7可看出[28],巴彥呼熱地區(qū)流紋巖均落入“A”型花崗巖區(qū),因此,寶力高廟組火山巖屬“A”型流紋巖。
結(jié)晶分異是“A”型花崗巖巖漿主要演化機(jī)制[28,34-38]。在哈克圖解中(圖4),樣品Al2O3和CaO含量隨SiO2增加而降低,表明斜長(zhǎng)石/鉀長(zhǎng)石從巖漿中分離。此外,SiO2與TiO2、Fe2O3T、MgO和P2O5呈負(fù)相關(guān),指示黑云母、磷灰石和鐵-鈦氧化物發(fā)生分離結(jié)晶。從圖8可看出,流紋巖在巖漿演化過(guò)程中,斜長(zhǎng)石和鉀長(zhǎng)石的結(jié)晶分異起主導(dǎo)作用,微量元素Sr,Ba和Eu呈顯著負(fù)異常也證實(shí)這一點(diǎn)(圖6)。從圖8-a中可知,花崗質(zhì)熔體中副礦物主要受到獨(dú)居石和褐簾石的分離結(jié)晶影響,而受磷灰石、榍石和鋯石的影響不明顯。Nb,Ta,Ti和P的負(fù)異常是由鈦鐵礦、榍石和獨(dú)居石分離結(jié)晶所致。
“A”型花崗巖可分為“Al”型和“A2”型兩個(gè)亞類[29]。從圖9可看出,樣品絕大多數(shù)落入“A1”型花崗巖區(qū)域,少量落入“A1”與“A2”過(guò)渡地帶。綜上分析,推斷巖石屬“A1”型流紋巖。
流紋巖Nb/Ta為5.89~15.62,平均11.56(表1),低于幔源巖石(Nb/Ta=17.57)比值[39],相對(duì)于更接近陸殼源巖石(Nb/Ta≈11)[39,40];Nd/Th為0.36~3.52,平均值為1.59(表1),遠(yuǎn)低于幔源巖石(Nd/Th>15),接近殼源巖石(Nd/Th=3)[41],上述特征表明,流紋巖巖漿可能源于地殼。同時(shí),流紋巖Rb/Sr為2.93~32.49,平均16.84,遠(yuǎn)高于原始地幔(0.03)和陸殼平均Rb/Sr值(0.24)[39,42],同樣說(shuō)明其來(lái)源于地殼。
從圖5-a可看出,流紋巖稀土元素呈明顯的Eu負(fù)異常(0.21~8.28,均值2.57),反映斜長(zhǎng)石的分離結(jié)晶作用或源區(qū)部分熔融過(guò)程中存在大量斜長(zhǎng)石的殘留。(La/Yb)N為2.03~34.00,平均7.44;(Gd/Yb)N為0.78~3.26,平均1.36,呈輕稀土元素相對(duì)富集、重稀土元素相對(duì)虧損的特點(diǎn),表現(xiàn)出輕、重稀土元素輕度分餾現(xiàn)象,說(shuō)明巖漿源區(qū)部分熔融時(shí)存在富重稀土元素的石榴子石和角閃石的少量殘留。從圖5可看出,巖石富集Rb,Th,Sr等,相對(duì)虧損Nb,Ta,Ti等,表現(xiàn)出大離子親石元素富集、高場(chǎng)強(qiáng)元素相對(duì)虧損特征,顯示巖漿源區(qū)具殼源地球化學(xué)特征。P和Ti虧損說(shuō)明巖漿經(jīng)歷了磷灰石及鈦鐵礦等礦物的分離結(jié)晶作用,Ti嚴(yán)重虧損,可能為大規(guī)模地殼重熔作用所致。
5.2" 巖石形成的地球動(dòng)力學(xué)過(guò)程
寶力高廟組主要分布于蘇尼特左旗、阿巴嘎旗、東烏珠穆沁旗和興安盟西部等地[43,44]。本次流紋巖鋯石U-Pb同位素年齡為(298.2±2.3) Ma,該結(jié)果與附近高廟敖包地區(qū)寶力高廟組流紋巖((303.4±6.7)Ma)和巴彥敖包地區(qū)該組含晶屑流紋巖((305±4.1)Ma)年齡一致[16,18];也與蘇尼特左旗白音烏拉流紋巖((300.0±2.9)Ma)和拉拜農(nóng)場(chǎng)流紋巖((303.8±3.6)Ma)年齡一致[45,46]。前人對(duì)東烏珠穆沁旗和蘇尼特左旗等地區(qū)寶力高廟組火山碎屑巖、粗面巖、安山巖等進(jìn)行了測(cè)年分析,年齡為297~320.1 Ma[16,17,47-49]。本次研究的東烏珠穆沁旗巴彥呼熱地區(qū)寶力高廟組流紋巖形成于(298.2±2.3)Ma,屬晚石炭世早期—早二疊世,與前人研究成果一致。
中泥盆世古亞洲洋北向俯沖,陸殼拉張出現(xiàn)弧后洋盆-二連-賀根山洋盆[1,50],推斷二連-賀根山洋盆的蛇綠巖形成于359~333 Ma[7,50,51];在二連-賀根山蛇綠巖帶兩側(cè)烏里雅斯太大陸邊緣和北部造山帶地區(qū)分布有大量石炭—二疊紀(jì)花崗巖((320~276) Ma),此類酸性巖漿多具“A”型花崗巖特征[52-56],指示該時(shí)期興蒙造山帶整體處于后造山伸展階段[15,57]。同時(shí)期形成的寶力高廟組,為陸相裂隙-中心式火山噴發(fā)形成[58],在興蒙造山帶中廣泛分布,且?guī)r性組合可進(jìn)行對(duì)比[16-18]。
前人研究表明,俯沖板片斷裂導(dǎo)致弧后伸展、地殼減薄,可誘發(fā)軟流圈地幔上涌,形成類似于洋島玄武巖(OIB)的巖漿[59,60]。本次研究的寶力高廟組流紋巖顯示了后碰撞花崗巖的特征,且分布較集中??紤]到研究區(qū)位于烏里雅斯臺(tái)大陸邊緣的構(gòu)造環(huán)境[2,6],因此,研究區(qū)火山巖可能為幔源巖漿底侵的晚古生代新生下地殼物質(zhì)部分熔融而成,與該時(shí)代整體構(gòu)造環(huán)境一致。
6" 結(jié)論
(1) 巴彥呼熱地區(qū)寶力高廟組流紋巖富集Rb,Th,Sr等,相對(duì)虧損Nb,Ta,Ti等,表現(xiàn)出大離子親石元素富集、高場(chǎng)強(qiáng)元素相對(duì)虧損的特點(diǎn),輕稀土元素相對(duì)富集、重稀土元素相對(duì)虧損,且輕、重稀土元素輕度分餾。顯示巖漿源區(qū)具殼源特征。
(2) 巴彥呼熱地區(qū)寶力高廟組流紋巖鋯石U-Pb年齡為(299.6±2.5)Ma(MSWD=1.5),形成時(shí)代為晚石炭—早二疊世。
(3) 巴彥呼熱地區(qū)寶力高廟組流紋巖由幔源巖漿底侵新生下地殼物質(zhì)部分熔融形成。
(4) 據(jù)巖石化學(xué)特征,結(jié)合區(qū)域構(gòu)造演化背景認(rèn)為,晚石炭—早二疊世興蒙造山帶巴彥呼熱地區(qū)處于碰撞后伸展階段,形成于造山后地殼減薄階段。
致謝:衷心感謝雜志編輯和匿名審稿專家提出的寶貴修改意見(jiàn)。
參考文獻(xiàn)
[1] Xiao W J,Windley B F,Hao J,et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia,China:Termination of the central Asian orogenic belt[J].Tectonics,2003,22(6):1069.
[2] Xiao W J,Windley B F,Yong Y,et al.Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J].Journal of Asian Earth Sciences,2009,35(3-4):323-333.
[3] Xiao W J,Windley B F,Allen M B,et al.Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J].Gondwana Research,2013, 23(4):1316-1341.
[4] Li J Y.Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,2006,26(3-4):207-224.
[5] Jian P,Liu D Y,Kr?ner A,et al.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt,Inner Mongolia of China:Implications for continental growth[J].Lithos,2008,101(3-4):233-259.
[6] Jian P,Liu D Y,Kr?ner A,et al.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone,Central Asian Orogenic Belt,China and Mongolia[J].Lithos,2010,118(1-2):169-190.
[7] Jian P,Kriner A,Windley B F,et al.Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia (China):A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J].Lithos,2012,142-143:48-66.
[8] Xu B,Charvet J,Chen Y,et al.Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China):Framework,kinematics,geochronology and implications for tectonicevolution of the Central Asian Orogenie Belt[J].Gondwana Research,2013,23(4):1342-1364.
[9] Xu B,Zhao P,Wang Y Y,et al.The pre-Devonian tectonic frarnework of Xing'an-Mongolia orogenic belt(xMOB) in north China[J].Journal of Asian Earth Sciences,2015,97:183-196.
[10] 華北,高雪,胡兆國(guó),等.興蒙造山帶西段烏珠新烏蘇花崗巖巖石成因和構(gòu)造背景:地球化學(xué)、U-Pb年代學(xué)和Sr-Nd-Hf同位素約束[J].巖石學(xué)報(bào),2020,36(5):1426-1444.
[11] 邵濟(jì)安.中朝板塊北緣中段地殼演化[M].北京:北京大學(xué)出版社,1991.
[12] 唐克東.中朝板塊北側(cè)褶皺帶構(gòu)造演化及成礦規(guī)律[M].北京:北京大學(xué)出版社,1992.
[13] 徐備,趙盼,鮑慶中,等.興蒙造山帶前中生代構(gòu)造單元?jiǎng)澐殖跆絒J].巖石學(xué)報(bào),2014,30(7):1841-1857.
[14] Yuan Ling-ling,Zhang Xiao-hui,Xue Fu-hong,et al.Juvenile crustal recycling in an accretionary orogen:Insights from contrasting Early Permian granites from central Inner Mongolia, North China[J].Lithos,2016,264:524-539.
[15] 李可,張志誠(chéng),馮志碩,等.興蒙造山帶中段北部晚古生代兩期巖漿活動(dòng)及其構(gòu)造意義[J].地質(zhì)學(xué)報(bào),2015,89(2):272-288.
[16] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology,2002,192(1):59-79.
[17] Ludwig KR.User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronological Center[J].Special Publication,2003,1-74.
[18] 辛后田,滕學(xué)建,程銀行.內(nèi)蒙古東烏旗寶力高廟組地層劃分及其同位素年代學(xué)研究[J].地質(zhì)調(diào)查與研究,2011,34(1):1-9.
[19] 武躍勇,鞠文信,邵永旭,等.內(nèi)蒙古查干敖包地區(qū)上石炭—下二疊統(tǒng)寶力高廟組特征及時(shí)代[J].中國(guó)地質(zhì),2015,(4):937-947.
[20] 何付兵,魏波,徐吉祥,等.內(nèi)蒙古巴彥敖包地區(qū)寶力高廟組火山巖地球化學(xué)特征、鋯石U-Pb年齡及地質(zhì)意義[J].中國(guó)地質(zhì),2017,44(6):1159-1174.
[21] Middlemost EAK.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,1994,37(3-4):215-224.
[22] Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minor elements[J].Lithos,1989,22(4):247-263.
[23] 趙凱,姚華舟,王建雄,等.厄立特里亞Koka花崗巖鋯石U-Pb年代學(xué)、地球化學(xué)特征及其地質(zhì)意義[J].地球科學(xué),2020,45(1):156-167.
[24] Deng J,Liu XF,Wang QF,et al.Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking:Lithospheric extension in the North China craton,eastern Asia[J].GSA Bulletin,2017.129(11-12):1379-1407.
[25] 高雪.義敦地體晚白堊世與侵入巖有關(guān)的多金屬成礦作用[D].中國(guó)地質(zhì)大學(xué)(北京),2018.
[26] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.).Magmatism in the Ocean Basins[J].Geological Society,London,Special Publication,1989,42(1):313-345.
[27] Jackson N J,Walsh J N,Pegram E.Geology,geochemistry and petrogenesis of late Precambrian granitoids in the Central Hijaz Region of the Arabian Shield[J].Contributions to Mineralogy amp; Petrology,1984,87(3):205-219.
[28] Whalen,JB,Currie KL et al.A-type granites: geochemical characteristics,discrimination and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95(4):407-419.
[29] Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology,1992,20(7):641-644.
[30] 陳勇,付樂(lè)兵,黎瓊禮,等.西準(zhǔn)噶爾北金齊地區(qū)英安斑巖地球化學(xué)特征及地質(zhì)意義[J].新疆地質(zhì),2020,38(2):139-146.
[31] 張旗,王元龍,金惟俊,等.造山前、造山和造山后花崗巖的識(shí)別[J].地質(zhì)通報(bào),2008,27(1):1-18.
[32] 楊立強(qiáng),高雪,和文言.義敦島弧晚白堊世斑巖成礦系統(tǒng)[J].巖石學(xué)報(bào),2015,31(11):3155-3170.
[33] 吳福元,李獻(xiàn)華,楊進(jìn)輝,等.花崗巖成因研究的若干問(wèn)題[J].巖石學(xué)報(bào),2007,23(6):1217-1238.
[34] Collins W J,Beams S D,White A J R,et al.Nature and origin of A-type granites with particular reference to southeastern Australia[J].Contributions to Mineralogy amp; Petrology,1982,80:189-200.
[35] Clemens J D,Holloway J R,White A J R.Origin of A- type granites:Experimental constraints[J].American Mineralogist,1986,71:317-324.
[36] Creaser R A,Price R C,Wormald R J.A-type granites revisited:Assessment of a residual-sourcemode[J].Geology,1991,19:163-166.
[37] King P L,White A J R,Chappell B W.Characterization and origin of aluminous A type granites of the Lachlan Fold Belt,southeastern Australia[J].Journal of Petrology,1997,36:371-391.
[38] King P L,Chappell B W,Allen C M.,et al.Are A-type granites the high- temperature felsic granites?Evidence from fractionated granites of the Wangrah Suite[J].Australian Journal of Earth Sciences,2001,48:501-514.
[39] Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology,1995,120(3):347-359.
[40] Tlaylor S R,Rudick R L,Mclennan S M,et a1.Rare earth element patterns in Archean high-grade metased-iments and their tectonic significance[J].Geoehimica Et Cosmochimica Acta,1986,50(10):2267-2279.
[41] Bea, F.,Montero,P.,.Behavior of accessory phases and redistribution of Zr,REE,Y,Th,and U during metamorphism and partial melting of metapelites in the lower crust:an example from the Kinzigite Formation of Ivrea-Verbano,NW Italy[J].Geochimica Et Cosmochimica Acta,1999,63:1133-1153.
[42] Pearce JA,Harris NBW,Tindle AG.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,1984,25(4):956-983.
[43] 內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局.內(nèi)蒙古自治區(qū)區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1991,589-609.
[44] 內(nèi)蒙古自治區(qū)地質(zhì)礦產(chǎn)局.內(nèi)蒙古自治區(qū)巖石地層[M].武漢:中國(guó)地質(zhì)大學(xué)出版社,1996,263-264.
[45] 賀淑賽,李秋根,王宗起,等.內(nèi)蒙古中部寶力高廟組長(zhǎng)英質(zhì)火山巖U-Pb-Hf同位素特征及其地質(zhì)意義[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,51(1):50-64.
[46] 谷鳳羽.內(nèi)蒙古蘇尼特左旗地區(qū)寶力高廟組上段火山巖的成因[D].石家莊經(jīng)濟(jì)學(xué)院, 2014.
[47] 趙芝.大興安嶺北部晚古生代巖漿作用及其構(gòu)造意義[D].吉林大學(xué),2011.
[48] 李朋武,張世紅,高銳,等.內(nèi)蒙古中部晚石炭—早二疊世古地磁新數(shù)據(jù)及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2012,42(1):423-440.
[49] 李曉偉.內(nèi)蒙古蘇尼特左旗地區(qū)寶力高廟組下段火山巖巖石學(xué)特征[D].石家莊經(jīng)濟(jì)學(xué)院,2014.
[50] 黃波,付冬,李樹(shù)才,等.內(nèi)蒙古賀根山蛇綠巖形成時(shí)代及構(gòu)造啟示[J].巖石學(xué)報(bào),2016,32(1):158-176.
[51] Zhang Z,Li K,Li J,et al.Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex:Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt[J].Journal of Asian Earth ences,2015,97(1):279-293.
[52] 鮑慶中,張長(zhǎng)捷,吳之理,等.內(nèi)蒙古東南部晚古生代裂谷區(qū)花崗質(zhì)巖石鋯石SHRIMP U-Pb定年及其地質(zhì)意義[J].中國(guó)地質(zhì),2007,34(5):790-798.
[53] 鮑慶中,張長(zhǎng)捷,吳之理,等.內(nèi)蒙古白音高勒地區(qū)石炭紀(jì)石英閃長(zhǎng)巖SHRIMP鋯石U-Pb年代學(xué)及其意義[J].吉林大學(xué)學(xué)報(bào)(地),2007,37(1):15-23.
[54] 程銀行,滕學(xué)建,辛后田,等.內(nèi)蒙古東烏旗狠麥溫都爾花崗巖SHRIMP鋯石U-Pb年齡及其地質(zhì)意義[J].巖石礦物學(xué)雜志,2012,31(3):323-334.
[55] 許立權(quán),鞠文信,劉翠,等.內(nèi)蒙古二連浩特北部阿仁紹布地區(qū)晚石炭世花崗巖Sr-Yb分類及其成因[J].地質(zhì)通報(bào),2012(9):50-59.
[56] 周文孝.內(nèi)蒙古錫林浩特地區(qū)古生代巖漿作用的年代學(xué)與地球化學(xué)研究[D].中國(guó)地質(zhì)大學(xué)(北京),2012.
[57] 張曉暉,翟明國(guó).華北北部古生代大陸地殼增生過(guò)程中的巖漿作用與成礦效應(yīng)[J].巖石學(xué)報(bào),2010,26(5):1329-1341.
[58] 弓貴斌,王全旗.內(nèi)蒙古自治區(qū)阿巴嘎旗地區(qū)上石炭統(tǒng)至下二疊統(tǒng)寶力高廟組火山巖特征與環(huán)境研究[J].西部資源,2011(2):69-73.
[59] 張維峰,徐大良,彭練紅,等.武當(dāng)隆起西段牌樓新元古代A1型花崗巖的發(fā)現(xiàn)及其地質(zhì)意義[J].地球科學(xué),2018,43(7):2389-2403.
[60] 曹錦山,王國(guó)良,劉建棟,等.東昆侖東段早泥盆世“A”型花崗巖的確定—來(lái)自烏蘭東地區(qū)都南啞合黑云母花崗巖鋯石U-Pb年代學(xué)、元素地球化學(xué)證據(jù)[J].新疆地質(zhì),2023,41(2):167-177.
[61] Wu FY,Jahn Bm,Wilde SA,et al.Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis[J].Lithos,2003,66:241-273
Geochronology, Geochemistry Characteristics and Geological Significance of the Rhyolite
of the Baoligaomiao Formation in the East Wuzhumuqin County, Inner Mongolia
Zhao Lei1, Yuan Shuai2, Hua Bei3, Hu Zhaoguo1, Wei Zhengyu1,
Li Ning1, Su Feng1, Li Jianwei1, Liu Sen1, Hou Rongna4
(1.Geology Exploration Institute of Shandong Zhengyuan,China Metallurgical Geology Bureau,Jinan,Shandong,
250014,China;2.Tekesi County Bureau of Natural Resources,Tekesi,Xinjiang,835500,China;3.Xinjiang
Geologica l Exploration Institute of China Metallurgical Geology Bureau,Urumqi,Xinjiang,830063,China;
4.Shandong Zhaojin Geological Survey CO.,LTD.Zhaoyuan,Shandong,265400,China)
Abstract: Xing'an-Mongolia orogenic belt is a accretive orogenic belt formed by subduction and closure of the oceanic basin in the eastern part of the ancient Asian Ocean. However, there are still great disputes about the subduction form, closure time and the tectonic setting of the Xing 'an-Mongolia orogenic belt in this area. The Bayanhure area of East Wuzhumuqin County is located in the central part of Xing’an-Inner Mongolia Orogenic Belt. Baoligaomiao Formation consist of intermediate-acidic and terrigenous sediments. Based on the geochemical analysis of the main and trace elements of the whole rhyolite and LA-ICP-MS zircon U-Pb dating, the formation age of the volcanic rocks of the Baoligaomiao Formation in the study area was accurately determined, and the geochemical characteristics of the rocks are analyzed.These rocks are enriched in Rb、Th、Sr,and depleted in Nb, Sr, P and Ti,resembling typical characteristics of highly fractionated A type grantites. It shows the characteristics of post-collision granite, which formed in the post-orogenic crustal thinning stage.The rhyolite of Baoligaomiao Formation has SiO2 contents of 70.80%~79.81%, MgO contents of 0.05%~0.50%, TiO2 contents of 0.05%~0.23%, K2O contents of 3.25%~9.33%. Meanwhile, these rocks are enriched in Rb, La, Nd, Zr, Sm, depleted in Sr, Ba, P, Ti ,with slightly negative Eu anomaly. and highly zircon saturation temperatures. The geochemical characteristics of rhyolite show A2-type granites, which should be formed under post-collision settings and partly from conglomerate substance of the lower crust. Zircons from Baoligaomiao Formation rhyolite yielded weighted mean 206Pb/238U ages of 299.6±2.5Ma(MSWD=1.5). According to all the above, It is concluded that the Bayanhure area of East Wuzhumuqin County in the central Xing-Meng Orogenic belt was under a post-collision extensional setting in the Late Paleozoic.This provides new evidence for the tectonic-magmatic evolution of the Xing-Meng Orogenic belt.
Key words: Baoligaomiao Formation; rhyolite; Zircon U-Pb age; Geochemistry; East Wuzhumuqin County