摘要 以地層特性為依據(jù)有針對性地選擇PDC異形齒,可以降低其失效的概率并提高其機械鉆速和進尺。為了綜合對比脊形PDC齒的機械性能和破巖效果,對165斧形、135斧形、三刃3種脊形PDC齒的耐磨性能和抗沖擊性能進行測試,隨后選擇花崗巖進行3個吃入深度的單齒切削試驗和不同壓力下的全尺寸鉆頭模擬鉆進試驗,并與普通圓形齒的結(jié)果進行對比。結(jié)果表明:3種脊形PDC齒的耐磨性能均優(yōu)于圓形齒的;165斧形齒與三刃齒的抗沖擊性能優(yōu)于圓形齒的,而135斧形齒的沖擊點缺少材料支撐,其抗沖擊性能較差。在相同吃入深度下,脊形齒的切向力與法向力均低于圓形齒的相應力,且脊角越小切削力越小。135斧形齒的機械鉆速最快且適合高鉆壓;與165斧形齒比較,三刃齒在≤20.0 kN的低鉆壓下機械鉆速較快,在>20.0 kN的高鉆壓下機械鉆速較慢;圓形齒的機械鉆速最慢,所適合的鉆壓也較低。同時,當脊形齒的脊角變化時,其沖擊點的材料支撐也發(fā)生改變,進而影響其抗沖擊性能;且脊角變化會改變前方巖石內(nèi)部的應力集中,進而改變其破巖效果。
關(guān)鍵詞 PDC鉆頭;異形齒;脊形齒;機械性能;破巖效果
中圖分類號 TQ164;TG74;TE921文獻標志碼 A
文章編號1006-852X(2024)05-0599-08
DOI碼10.13394/j.cnki.jgszz.2023.0172
收稿日期2023-08-26 修回日期 2023-10-23
聚晶金剛石復合片(polycrystalline diamond compact,PDC)切削齒(簡稱PDC齒)憑借其卓越的性能在石油鉆探領域得到廣泛應用,目前PDC鉆頭已經(jīng)占據(jù)石油等領域80%的市場份額和90%的進尺[1]。同時,我國“十四五”期間對“兩深一非”油氣田增儲上產(chǎn)開展技術(shù)攻關(guān),而隨著鉆井深度增加,地層環(huán)境更加復雜[2-4],PDC齒的失效等問題增大了鉆井成本并制約了鉆井作業(yè)的效率[5]。這主要包括齒的耐磨性差異導致的鉆頭磨口面積迅速擴展,進而導致相同鉆壓下鉆頭的吃入深度降低和機械鉆速降低;另外,抗沖擊性較差導致PDC齒斷裂和其金剛石層剝落,使PDC齒失去切削能力,增加了起下鉆次數(shù),從而增加了鉆井周期和成本。
為了降低鉆井成本并提高鉆井效率,學者們一直在致力于優(yōu)化PDC齒的性能,并且已經(jīng)取得了一定的進展。例如,提升金剛石粉末的中值粒度會提高PDC齒的抗沖擊性能,降低金剛石粉末的中值粒度會提高其耐磨性能[6];通過合理的粒度配比可以同時提高PDC齒的耐磨和抗沖擊性能[7];WC脫鈷后用其微觀粒子填充金剛石顆粒間空隙,可以有效提高PDC齒的抗沖擊性能[8]等。
然而,僅僅依靠材料的改進并不能充分發(fā)揮PDC齒的潛力。通過對PDC齒磨損失效機理、沖擊失效機理和破巖機理的深入研究,PDC生產(chǎn)商設計出了不同形狀的PDC齒。在不改變基材的基礎上,通過改善PDC齒的切削穩(wěn)定性、耐磨性、抗沖擊性以及切削力等關(guān)鍵性能指標,可進一步優(yōu)化PDC齒的性能,使其能夠更好地應對復雜的鉆井工況[9-16]。
鄒德永等[12]通過模擬和試驗相結(jié)合的方法研究發(fā)現(xiàn):與圓形齒相比,斧形齒在破巖過程中的切向力、軸向力波動較小,且其平均值也較低、破巖效率更高。CRANE等[13]對圓形齒和斧形齒進行了立式轉(zhuǎn)塔車床(vertical turret lathe,VTL)測試,結(jié)果發(fā)現(xiàn):斧形齒磨損時的金剛石層溫度比圓形齒的低20%,同時其磨口面積也小于圓形齒的;較低的磨口溫度意味著斧形齒在切削巖石過程中受到的熱損傷更小,具有更長的使用壽命??讞澚旱萚14]通過ABAQUS有限元模擬了140°、150°、160°脊角斧形齒鉆進礫石層時礫巖內(nèi)部的應力場分布,結(jié)果表明140°脊角的斧形齒以30°后傾角鉆進時的鉆進效率最高。趙東鵬等[15]在斧形齒的基礎上又研發(fā)了三刃齒(三棱齒)等新型多棱非平面PDC齒,并且認為三刃齒的防崩齒、防泥包等能力優(yōu)于斧形齒的。劉建華等[16]利用有限元模擬和現(xiàn)場試驗相結(jié)合的方法對比了三刃齒和圓形齒,模擬試驗結(jié)果表明:與圓形齒相比,三刃齒的切向力和切向力波動幅度均更??;現(xiàn)場試驗結(jié)果也證明:三刃齒具有較強的抗沖擊性能,將三刃齒分布在鉆頭肩部和鼻部,在沖擊性強的混合花崗巖地層鉆進時其仍具有較高的機械鉆速。李寧等[17]也使用三刃齒實現(xiàn)了在礫石層中提速的目標。
目前,脊形齒(斧形齒、三刃齒等)已經(jīng)廣泛應用于石油鉆探領域,并且憑借其優(yōu)異的齒形設計發(fā)揮了特有的破巖性能,但關(guān)于不同脊形齒機械性能和破巖效果差異的研究及對比還較少。因此,通過對比3種脊形齒的耐磨性能、抗沖擊性能和破巖效果,以期實現(xiàn)齒形設計和鉆頭布齒等方面的迭代優(yōu)化。
1試驗裝置和材料
1.1試驗裝置
1.1.1立式轉(zhuǎn)塔車床
耐磨性試驗和單齒破巖試驗均由CK型立式轉(zhuǎn)塔車床完成,該裝置由切削系統(tǒng)和測量系統(tǒng)2部分組成,其中切削系統(tǒng)由電機、轉(zhuǎn)盤、行程桿和懸臂組成。設備照片如圖1所示,轉(zhuǎn)盤夾緊巖石樣品后由電機驅(qū)動轉(zhuǎn)盤,進而帶動巖石沿中軸線旋轉(zhuǎn),行程桿和懸臂控制PDC齒以一定吃入深度和進給速度切削巖石樣品;測量系統(tǒng)由固定在切削齒上方的三向力傳感器、信號放大器和計算機組成,可以實時記錄并觀察切削過程中PDC齒的受力情況。
1.1.2落錘沖擊試驗機
試驗用落錘沖擊試驗機如圖2所示。圖2中:122D型落錘沖擊試驗機由控制系統(tǒng)和沖擊系統(tǒng)2部分組成,控制系統(tǒng)包括控制柜、電機和氣泵,沖擊系統(tǒng)包括鉸鏈、行程桿、沖擊部件(配重塊、沖擊靶材)、防二沖裝置和底座等。其工作過程為電機帶動鉸鏈提升沖擊部件到一定高度,隨后松開卡扣,沖擊部件自由落體,通過其勢能和動能的轉(zhuǎn)換,以設定的能量沖擊測試樣品,通過改變自由落體的高度和加減配重塊可滿足0~120 J的沖擊測試要求。
1.1.3全尺寸鉆頭室內(nèi)模擬鉆機
MK-7型全尺寸鉆頭室內(nèi)模擬鉆機由主機、泵站、操縱臺3部分組成。主機由回轉(zhuǎn)器、進給裝置、夾持器和機架組成,進給裝置可以控制回轉(zhuǎn)器沿導軌移動,夾持器用于夾持鉆頭,回轉(zhuǎn)器與夾持器配合可以控制鉆具的進給或拔起,機架為整個裝置提供支撐。操縱臺為模擬鉆機的控制中心,由控制閥、壓力表及管件組成,可控制進給、回轉(zhuǎn)、起拔、步移等動作。泵站是整個鉆機的動力源,由電動機、聯(lián)軸器、傳動裝置、油箱等組成。模擬鉆機局部照片如圖3所示。
1.2試驗材料
試驗所用巖石樣品為芝麻白花崗巖,其原始高度為500 mm,外徑為1 100 mm,內(nèi)徑為280 mm。對花崗巖取樣并在無圍壓下進行力學性能測試,結(jié)果如表1所示。
沖擊試驗用靶材是WC-16Co硬質(zhì)合金,其出廠硬度為84 HRA。試驗用PDC齒由國內(nèi)某公司生產(chǎn),其4種齒形如圖4所示,圖4中的3種脊形齒的脊角分別為135°、165°和155°,是在圓形齒的基礎上激光切割而成。4種PDC切削齒均使用相同的原材料、粉末配方和燒結(jié)參數(shù)制備,并且進行了脫鈷處理。PDC齒金剛石層截面形貌如圖5所示。
1.3試驗方法及流程
1.3.1耐磨性試驗
用CK型立式轉(zhuǎn)塔車床將巖樣表面磨平,所用巖樣外徑為1 100 mm,內(nèi)徑為280 mm,高度為500 mm。調(diào)整車床懸臂高度使PDC齒下部與巖樣上表面相切,如圖6所示,隨后再下降0.50 mm,啟動轉(zhuǎn)盤,轉(zhuǎn)盤每旋轉(zhuǎn)1圈,懸臂向巖樣中心進給1.57 mm,并且保證PDC齒的吃入深度為0.50 mm。冷卻水以10 L/min的流量從噴嘴噴向PDC齒,用于模擬鉆井液對PDC齒的冷卻。在切削過程中PDC齒相對于巖石的切削速度為100 m/min。由于切削速度是定值,因此隨著懸臂向巖樣中心移動,轉(zhuǎn)盤的轉(zhuǎn)速逐漸加快,懸臂在巖樣外徑和內(nèi)徑時的轉(zhuǎn)速分別為29和114 r/min。懸臂從巖樣外徑移動到內(nèi)徑時切削1圈,每個齒均切削30圈,切削完成后測量PDC齒的磨口面積,以此評價PDC齒的耐磨性。
1.3.2落錘沖擊試驗
首先將需要測試的PDC齒以75°傾角釬焊在夾具上,并將夾具固定于沖擊試驗機的底座上。在控制柜上輸入沖擊能量,控制系統(tǒng)依據(jù)輸入的能量將沖擊靶材提升到一定高度,靶材自由落體沖擊PDC齒的刃部。沖擊靶材與PDC齒接觸后會反彈,此時防二沖裝置彈出,防止再次下落的沖擊靶材與PDC齒接觸。起始沖擊能量為2 J,后每次沖擊能量遞加2 J,在沖擊過程中記錄齒初次產(chǎn)生裂紋的能量和最終失效的能量(以PDC齒表面破損面積gt;30%為失效)。
1.3.3單齒切削試驗
為了減小試驗過程的干擾,先將巖樣表面磨平,后在巖樣表面預先挖出深度適當?shù)陌伎樱阅M不同吃入深度下的切削試驗。試驗中選擇的吃入深度分別為1.0、2.0和3.0 mm,所用巖樣外徑為1 100 mm,內(nèi)徑為280 mm,高度為500 mm。將PDC齒及夾具固定在轉(zhuǎn)塔車床懸臂下部,調(diào)整懸臂位置,使PDC齒移動到預留的凹坑中,打開三向力傳感器并啟動轉(zhuǎn)盤。設定轉(zhuǎn)盤線速度為20 m/min,使巖樣旋轉(zhuǎn),此時PDC齒以一定吃入深度切削巖樣,切削1 000 mm后停止,保存三向力傳感器測量數(shù)據(jù)。
1.3.4室內(nèi)鉆機模擬鉆進試驗
在MK-7型全尺寸鉆頭室內(nèi)模擬鉆機的鉆進過程中,首先將鉆井液注入泥漿桶,以10 MPa的壓力和450 L/min的流量確保鉆井液能及時清潔井底。隨后,將PDC齒釬焊到9.5英寸(24.13 cm)5刀翼測試鉆頭上,而后將鉆桿、隨鉆測量短節(jié)和鉆頭依次連接,并安裝到模擬鉆機上。在調(diào)整鉆頭位置后,打開采集軟件和水泵。設定鉆壓范圍為10.0~30.0 kN,隨后開始旋轉(zhuǎn)鉆桿并給進鉆頭。當壓力穩(wěn)定加載且各項數(shù)據(jù)穩(wěn)定后停止進給,關(guān)閉水泵并保存測量數(shù)據(jù)。
2試驗結(jié)果及分析
2.1 PDC齒的耐磨性
在評估不同齒形對PDC齒耐磨性的影響時,利用三維形貌儀測量PDC齒磨損后的磨口面積,從而獲得定量的評價結(jié)果。4種齒形的磨口形貌如圖7所示,磨損面積測量結(jié)果如圖8所示。圖8中:135斧形齒的磨損面積最小,165斧形齒、三刃齒的次之,圓形齒的磨損面積最大,因而齒的耐磨性也有此順序。因試驗中所用PDC齒的原材料和燒結(jié)工藝相同,因此可以假設不同齒形的金剛石層具有相同的磨耗比。在圓形齒的基礎上利用激光切割或者線切割將其多余部分去除即可得到脊形齒,如圖9的藍色區(qū)域展示了圓形齒加工成脊形齒所去除的部分。因此,脊形齒與巖石的接觸面積較小,這意味著在切削過程中脊形齒與巖石之間產(chǎn)生的摩擦熱較少。
由于PDC中的催化劑Co相對于金剛石相具有更大的熱膨脹系數(shù)[18],故在摩擦熱的作用下PDC齒內(nèi)部會存在熱應力。另外,在高溫和Co的催化下,會發(fā)生金剛石相向石墨相轉(zhuǎn)變的過程[19],且石墨形式的碳密度較小,進一步增加了磨口的內(nèi)應力。這2個因素共同作用加速了PDC齒的磨損過程。因此,在PDC齒切削巖石過程中,接觸面積較小的脊形齒產(chǎn)生的摩擦熱較少,其磨口面積也較小,從而具有更好的耐磨性。
2.2 PDC齒的抗沖擊性能
抗沖擊性能表示材料在變形和斷裂過程中吸收能量的能力。PDC齒抗沖擊性能越好,其在鉆井過程中遇到鉆頭振動或非均質(zhì)地層時,所能承受的沖擊載荷越高,發(fā)生斷裂的可能性越低。因此,提高PDC鉆頭切削齒的抗沖擊性能可有效延長PDC齒的使用壽命。
利用漸進式落錘沖擊試驗機測試圓形齒和脊形齒的抗沖擊性能,PDC齒的斷裂能如圖10所示,圖中的斷裂能越大,齒的抗沖擊性能越好。齒的幾種代表性斷口如圖11所示。由圖10可以看出:除了135斧形齒外,其余脊形齒的抗沖擊性能均優(yōu)于圓形齒的。齒的脊形設計改變了PDC齒的抗沖擊性能,當脊角較小時,由于其支撐點缺少支撐材料,PDC齒的抗沖擊性能略有降低[20];當脊角增大時,PDC齒的抗沖擊性能提升。
2.3單齒切削時的切向力和法向力
在PDC齒切削花崗巖的過程中,產(chǎn)生的切向力和法向力是影響其切削性能的關(guān)鍵參數(shù)。切向力代表了PDC齒在破碎巖石時所需的切削力,是唯一做功的力,與鉆井過程中施加的扭矩密切相關(guān);而法向力則用于維持PDC齒的吃入深度,相當于鉆井過程中的鉆壓。由于PDC齒徑向的受力較小,且在切削過程中不做功,因此將重點分析PDC齒切削花崗巖時的切向力和法向力,并探討不同齒形對這些力的影響。
圖12為不同吃入深度下的切削力。通過圖12可發(fā)現(xiàn),脊形齒切削巖石時所需的切向力和維持吃入深度的法向力均小于圓形齒的。對于三刃齒和斧形齒而言,這一結(jié)果可通過以下機理解釋:齒面突出的脊率先與巖石接觸,巖石與脊的接觸點產(chǎn)生應力集中,此處的巖石內(nèi)部率先產(chǎn)生裂紋,并沿PDC齒前進方向擴展;脊角越小巖石內(nèi)部的應力集中就越明顯,所需的切削力就越小。因此,135斧形齒的切向力小于165斧形齒的,其法向力也是如此。同時,雖然三刃齒的脊角為155°,小于165斧形齒的165°,但是其“脊”與齒側(cè)面不垂直,因而其脊角不能和斧形齒的脊角直接對比,也不符合脊角越小切削力越小的規(guī)律。
總之,在鉆井時相同的鉆壓下脊形齒PDC鉆頭具有更高的吃入深度,且機械鉆速更快;同時由于脊形齒切向力更小,脊形齒鉆頭所需的扭矩更小。此外,脊形齒在巖石切削過程中能夠更好地排渣,減少切削面的堵塞現(xiàn)象,從而降低了切向力需求。
2.4模擬鉆機鉆進測試
為了驗證單齒切削試驗中獲得的切向力和法向力數(shù)據(jù)的準確性,并進一步探究其在全尺寸鉆頭鉆進巖石試驗中的適用性,進行全尺寸鉆頭模擬鉆進試驗,旨在模擬實際的鉆井工況,評估脊形齒在實際鉆井條件下的性能。
隨鉆測量并記錄模擬鉆進過程中的鉆壓與機械鉆速,每種齒形共有4~5個數(shù)據(jù)點;且為了更加清楚地觀測機械鉆速與鉆壓的關(guān)系,以虛線的形式添加了其變化趨勢線,結(jié)果如圖13所示。由圖13可知:圓形齒鉆頭能承受的鉆壓范圍是10.7~26.4 kN,而脊形齒鉆頭承受鉆壓較高,為12.0~30.0 kN;在共同鉆壓區(qū)間內(nèi),圓形齒的機械鉆速最低,135斧形齒的機械鉆速最高;165斧形齒與三刃齒鉆頭的機械鉆速在鉆壓為20.0 kN附近發(fā)生了反轉(zhuǎn),鉆壓≤20.0 kN時三刃齒鉆頭的機械鉆速較高,鉆壓>20.0 kN時則相反。
另外,通過與單齒切削試驗對比分析可以確定:單齒切削試驗中獲得的切削力和法向力數(shù)據(jù)與全尺寸鉆頭模擬鉆井的試驗結(jié)果基本一致,單齒切削試驗的結(jié)論可以推廣到全尺寸鉆頭的切削過程中。
3結(jié)論
(1)試驗所用的脊形齒是在圓形齒的基礎上激光切割或線切割而成,在切削巖石時其與巖石的接觸面積更小,切削巖石過程中產(chǎn)生的熱量更少,因而其產(chǎn)生的磨口面積更小,耐磨性較高。
(2)165斧形齒和三刃齒與沖擊靶材接觸點下部有足夠的金剛石材料支撐,因此其抗沖擊性能優(yōu)于圓形齒的;而135斧形齒齒面過于尖銳,其沖擊點缺少支撐材料,因而更容易失效,導致其抗沖擊性能降低。
(3)單齒切削花崗巖試驗結(jié)果表明,在不同吃入深度下,不同PDC齒的切向力與法向力具有一致性,從高到低依次是圓形齒、三刃齒、165斧形齒和135斧形齒。斧形齒的切向力、法向力與脊角密切相關(guān),脊角越小,脊越突出,在巖石內(nèi)部形成的應力集中越大,更容易破碎巖石和壓入巖石,同時脊形設計更利于排出巖屑。
(4)全尺寸鉆頭模擬鉆進試驗結(jié)果表明,在相同的鉆井參數(shù)下鉆進花崗巖時,135斧形齒的機械鉆速最快,其次是165斧形齒和三刃齒,圓形齒的機械鉆速最慢,且不能承受較高的鉆壓。這與單齒切削結(jié)果具有一致性,也證明單齒切削試驗結(jié)果可以推廣到全尺寸鉆頭切削過程中。
(5)采用脊形齒可以降低切削過程中的能耗,在難吃入地層選擇小脊角的脊形齒可以提高破巖效率,從而提高鉆井效率。
參考文獻:
[1]SCOTT D.A bit of history:Overcoming early setbacks,PDC bits now drill 90%-plus of worldwide footage[J].Drilling Contractor,2015,71(4):60-68.
[2]張明杰,李國軍,郭書生,等.隨鉆測壓技術(shù)在高溫高壓大斜度氣井中的應用[J].新疆石油天然氣,2012,8(3):45-47.
ZHANG Mingjie,LI Guojun,GUO Shusheng,et al.Application of formation pressure testing while drilling in HTHP high deviated gas well in south sea[J].Xinjang Oil and Gas,2012,8(3):45-47.
[3]王擴軍,孫浮,石明江,等.超深井稠油試油技術(shù)開發(fā)與應用[J].新疆石油天然氣,2008(1):59-63,111.
WANG Kuojun,SUN Fu,SHI Mingjiang,et al.Technology development of heavy oil testing in ultra-deep well and its application[J].Xinjang Oil and Gas,2008(1):59-63,111.
[4]馮國良,解忠義.高溫高壓超深探井鉆井技術(shù)在費爾干納盆地的研究與應用[J].新疆石油天然氣,2011,7(4):21-27.
FENG Guoliang,XIE Zhongyi.Research on drilling engineering technology under high temperature and high pressure at extra deep exploration well infergana basin and its application[J].Xinjang Oil and Gas,2011,7(4):21-27.
[5]王贊,王曉琪,陳立強,等.渤海油田鉆井降本增效技術(shù)現(xiàn)狀與展望[J].新疆石油天然氣,2022,18(1):66-72.
WANG Zan,WANG Xiaoqi,CHEN Liqiang,et al.Status and prospect of technologies to reduce cost and increase efficiency for drilling in bohai oilfield[J].Xinjang Oil and Gas,2022,18(1):66-72.
[6]MIESS D,RAI G.Fracture toughness and thermal resistance of polycrystalline diamond compacts[J].Materials Science and Engineering A,1996,209(1/2):270-276.
[7]FLOOD G M.Dense packing particle size distribution for PDC cutters:US11279002B2[P].2022-03-22.
[8]孫偉,趙海峰,張?zhí)煜?,?提高金剛石復合片抗沖擊性能的試驗研究[J].鉆采工藝,2018,41(6):87.
SUN Wei,ZHAO Haifeng,ZHANG Tianxiang,et al.Experimental study on how to improve impact resistance of polycrystalline diamond compact[J].Drilling and Production Technology,2018,41(6):87.
[9]RAHMANI R,PASTUSEK P,YUN G,et al.Investigation of geometry and loading effects on PDC cutter structural integrity in hard rocks[J].SPE Drilling and Completion,2020,36(1):199598.
[10]劉偉吉,陽飛龍,董洪鐸,等.異型PDC齒混合切削破碎花崗巖特性研究[J].工程力學,2023,40(3):245-256.
LIU Weiji,YANG Feilong,DONG Hongze,et al.Investigate on the mixed-cutting of specially-shaped pdc cutters in granite[J].Engineering Mechanics,2023,40(3):245-256.
[11]楊燦,王鵬,饒開波,等.大港油田頁巖油水平井鉆井關(guān)鍵技術(shù)[J].石油鉆探技術(shù),2020,48(2):34-41.
YANG Can,WANG Peng,RAO Kaibo,et al.Key technologies for drilling horizontal shale oil wells in the dagang oilfield[J].Petroleum Drilling techniques,2020,48(2):34-41.
[12]鄒德永,潘龍,崔煜東,等.斧形PDC切削齒破巖機理及試驗研究[J].石油機械,2022,50(1):34-40.
ZOU Deyong,PAN Long,CUI Yudong,et al.Rock breaking mechanism and experimental study of axe-shaped pdc cutter[J].Petroleum Machinery,2022,50(1):34-40.
[13]CRANE D,ZHANG Y,DOUGLAS C,et al.Innovative PDC cutter with elongated ridge combines shear and crush action to improve PDC bit performance:SPE middle east oilamp;gas show and conference[C].Chengdu:SPE,2017.
[14]孔棟梁.底礫巖地層PDC鉆頭損壞機理及鉆頭優(yōu)化設計研究[D].青島:中國石油大學(華東),2011.
KONG Dongliang.Research on damage mechanism and optimization design of PDC bit in bottom conglomerate formation[D].Qingdao:China University of Petroleum(East China),2011.
[15]趙東鵬,馬姍姍,牛同健,等.石油鉆探用非平面聚晶金剛石復合片的開發(fā)[J].金剛石與磨料磨具工程,2017,37(6):49-52.
ZHAO Dongpeng,MA Shanshan,NIU Tongjian.Research ofpolycrystalline diamond compact having non-planar surface for oildrilling[J].Diamond and Abrasives Engineering,2017,37(6):49-52.
[16]劉建華,令文學,王恒.非平面三棱形PDC齒破巖機理研究與現(xiàn)場試驗[J].石油鉆探技術(shù),2021,49(5):46-50.
LIU Jianhua,LING Wenxue,WANG Heng.Study on rock breaking mechanism and field test of triangular prismatic PDC cutters[J].Petroleum Drilling Techniques,2021,49(5):46-50.
[17]李寧,周波,文亮,等.塔里木油田庫車山前礫石層提速技術(shù)研究[J].鉆采工藝,2020,43(2):143.
LI Ning,ZHOU Bo,WEN Liang,et al.Research on speed-increasing technology of gravel layer in Kuqa piedmont of Tarim Oilfield[J].Drilling and Production Technology,2020,43(2):143.
[18]HUANG H,ZHAO B,WEI W,et al.Effect of cobalt content on the performance of polycrystalline diamond compacts[J].International Journal of Refractory Metals and Hard Materials,2020,92:105312.
[19]WESTRAADT J E,SIGALAS I,NEETHLING J H.Characterisation of thermally degraded polycrystalline diamond[J].International Journal of Refractory Metals and Hard Materials,2015,48:286-292.
[20]WEI J,LIU W,GAO D.Effect of cutter shape on the resistance of PDC cutters against tip impacts[J].SPE Journal,2022,27(5):3035-3050.
作者簡介
謝志濤,男,1988年生。主要研究方向:油氣井工程技術(shù)。E-mail:karamaysy@163.com
(編輯:周萬里)
Mechanical properties and rock-breaking effects of ridge-shaped PDC teeth
XIE Zhitao,ZHAO Yuxuan,GUO Yong,WU Desheng,LI Yadong
(Research Institute of Engineering Technology,PetroChina Xinjiang Oilfield Company,Karamay 834000,Xinjiang,China)
Abstract Objectives:With the depletion of easily recoverable oil reservoirs,the focus of oil and gas exploration and development in China has shifted to\"two deeps and non-conventional\"oil and gas fields.This transformation is not only accompanied by a significant increase in well depth and more complex formation challenges but also presents more stringent requirements for the design and construction of drilling engineering,which directly leads to a significant exten-sion of the drilling cycle.The length of the drilling cycle is a key factor in determining drilling costs.Therefore,for a longtime,scholars have been committed to improving the mechanical penetration rate and the durability of polycrystal-line diamond composite(PDC)bits.The main purpose of this study is to analyze geological characteristics in depth,ac-curately match and optimize the design of special-shaped teeth in PDC drill bits,in order to significantly reduce the risk of drill bit failure and greatly improve mechanical drilling speed and footage.Given the wide application of PDC bits in hard rock drilling and their key impact on the cost and efficiency of drilling operations,this study focuses on the design and optimization of ridge-shaped PDC teeth,aiming to explore more suitable tooth structures for specific geological conditions through scientific testing and comparative analysis.This will promote innovation and efficiency improve-ments in drilling technology.Methods:Based on round teeth,the wear resistance,impact resistance,and rock-breaking effect of three types of ridge-shaped teeth were systematically tested.First,the wear resistance and impact resistance of three typical ridge-shaped PDC teeth?namely the 165 axe-shaped,135 axe-shaped,and three-edged cutters?were tested to quantitatively evaluate their mechanical properties.Subsequently,granite was selected as the representative rock sample,and the single-tooth cutting tests were conducted with three different penetration depths to simulate the cutting effect under various drilling pressures during actual drilling.Additionally,a full-size bit simulation drilling test was designed to evaluate the drilling performance of each tooth shape under different pressures,and the data were com-pared with those of round teeth.This series of tests aimed to fully reveal the advantages and disadvantages of ridge-shaped PDC teeth in terms of wear resistance,impact resistance,and rock-breaking effectiveness.Results:The test res-ults show that the three ridge-shaped PDC cutters significantly outperform the round teeth in terms of wear resistance.The 135 axe-shaped cutter,with the smallest ridge angle,exhibited the greatest improvement in wear resistance,indicat-ing that the ridge design enhances the durability of PDC cutters and bits.In terms of impact resistance,the 165 axe-shaped cutter and the three-edged cutter performed excellently and could effectively withstand high impact loads,while the 135 axe-shaped cutter had relatively weaker impact resistance due to insufficient support at the impact point.Fur-ther analysis of the cutting force data revealed that the tangential force and normal forces of ridge-shaped cutters were lower than those of round cutters at the same cutting depth.The smaller the ridge angle,the smaller the cutting force,which indicates that the ridge design helps reduce cutting resistance and improve drilling efficiency.The full-size drill bit simulation drilling test results showed that the 135 axe-shaped cutter achieved the fastest mechanical drilling speed and is suitable for high-pressure operations.The three-edged cutter performed better in the low-pressure range(≤20 kN),while the round teeth had the slowest drilling speed and a lower suitable drilling pressure range.Additionally,the variation in ridge tooth angle not only affects the impact resistance but also directly influences the rock-breaking effect by altering the stress distribution within the rock.Conclusions:Through systematic testing and comparative analysis,this study has verified the significant advantages of ridge-shaped PDC cutters in improving drilling efficiency and redu-cing the risk of drill bit failure.Specifically,the ridge design effectively enhances the wear resistance and impact resist-ance of the drill bit while reducing cutting force and increasing mechanical drilling speed.The performance differences of the various ridge-shaped cutters under different drilling pressure conditions provide a scientific basis for the flexible selection of drill bit types based on formation conditions during drilling operations.In the future,further optimization of ridge-shaped PDC cutter designs,especially for specific formation conditions,will be an important direction for im-proving mechanical drilling speeds and reducing operational costs.
Key words PDC bit;special-shaped teeth;ridge-shaped teeth;mechanical property;rock-breaking effect