摘要 為實(shí)現(xiàn)磨料球在砂輪基體表面有序化的自組裝,提出一種葉序排布磨料球砂輪的自組裝制造方法。從有界空間球體最密堆積結(jié)構(gòu)原理與植物組織的柱面葉序結(jié)構(gòu)理論出發(fā),設(shè)計(jì)一種磨料球自組裝砂輪的實(shí)驗(yàn)方法。首先對(duì)磨料球自組裝過程進(jìn)行仿真分析,然后探討相關(guān)尺寸參數(shù)與自組裝結(jié)構(gòu)之間的關(guān)系,并經(jīng)過計(jì)算得到不同尺寸參數(shù)下磨料球自組裝結(jié)構(gòu)。結(jié)果表明:通過自組裝方法能實(shí)現(xiàn)磨料球在砂輪基體表面的葉序排布;當(dāng)磨料球直徑恒定時(shí),磨料球在砂輪基體表面形成的葉序排布結(jié)構(gòu)的葉序系數(shù)隨著砂輪基體直徑的增大而減??;當(dāng)砂輪基體直徑恒定時(shí),磨料球在砂輪基體表面形成的葉序排布結(jié)構(gòu)的葉序系數(shù)隨著磨料球直徑的增大而增大。
關(guān)鍵詞 結(jié)構(gòu)化砂輪;自組裝;有序化排布;葉序排布;磨料球
中圖分類號(hào) TG74+3文獻(xiàn)標(biāo)志碼 A
文章編號(hào)1006-852X(2024)05-0644-08
DOI碼10.13394/j.cnki.jgszz.2023.0184
收稿日期2023-09-01 修回日期 2023-11-18
在磨削加工領(lǐng)域,結(jié)構(gòu)化砂輪相對(duì)于傳統(tǒng)砂輪具有更優(yōu)良的磨削性能,已經(jīng)引起相關(guān)工程技術(shù)人員和學(xué)者的廣泛重視。在傳統(tǒng)方法制造出的砂輪上,磨粒呈隨機(jī)排布,在磨削過程中易出現(xiàn)溫升過高、容屑空間小等問題,影響砂輪的磨削性能及使用壽命[1-2]。為了彌補(bǔ)傳統(tǒng)砂輪存在的不足,學(xué)者們研究發(fā)現(xiàn),砂輪結(jié)構(gòu)呈有序化,能有效解決傳統(tǒng)砂輪存在的諸多問題,顯著提升砂輪的磨削性能及使用壽命[3]。
隨著相關(guān)磨具制備技術(shù)的更新,目前結(jié)構(gòu)化砂輪的制備方法主要分為2種[4-6]:一是對(duì)制備好的砂輪通過特殊修正方法進(jìn)行處理實(shí)現(xiàn)結(jié)構(gòu)化,如在砂輪表面通過激光去除、機(jī)械修整等方法實(shí)現(xiàn)溝槽結(jié)構(gòu)化[7-10];二是在制備過程中通過特定方法使磨粒在砂輪基體表面有序排布實(shí)現(xiàn)結(jié)構(gòu)化,如通過模板法、點(diǎn)膠法等實(shí)現(xiàn)磨粒排布結(jié)構(gòu)化[11-17]。其中,模板法具有操作簡(jiǎn)單、效率高等優(yōu)點(diǎn),但會(huì)出現(xiàn)漏排、磨粒排布位置不準(zhǔn)確等問題;點(diǎn)膠法具有較高的磨粒排布精度,但存在工作效率低等問題。
在結(jié)構(gòu)化砂輪的制備方法中,既能夠獲得良好的磨粒排布又具有高效率的自組裝方法僅有少數(shù)報(bào)道。如MORONUKI等[18]通過噴嘴將顆粒懸浮液噴涂在旋轉(zhuǎn)運(yùn)動(dòng)的基體上,利用懸浮液中微米級(jí)SiO2顆粒間的相互作用力實(shí)現(xiàn)SiO2在拋光墊表面的有序化排布,但對(duì)于其他種類的磨料無(wú)法實(shí)現(xiàn)自組裝;龔勝等[19]通過控制磁場(chǎng)強(qiáng)度使被磁化的磨粒沿著磁力線實(shí)現(xiàn)有序化排布等,但無(wú)法實(shí)現(xiàn)按特定數(shù)學(xué)方程描述規(guī)律的精準(zhǔn)有序化排布。因此,如何實(shí)現(xiàn)不同幾何形狀和物理特性的磨料或磨料簇在砂輪表面按特定的規(guī)律自組裝成為一個(gè)新的命題。
為了實(shí)現(xiàn)磨料球在砂輪表面的結(jié)構(gòu)化排布,基于球形顆粒在圓柱體有界空間內(nèi)堆積結(jié)構(gòu)的原理與植物組織單元的柱面葉序排布理論,提出了一種利用摩擦驅(qū)動(dòng)的方式實(shí)現(xiàn)磨料球在有界空間內(nèi)葉序排布的自組裝方法,并研究了相關(guān)參數(shù)的變化對(duì)磨料球自組裝排布結(jié)構(gòu)的影響規(guī)律。
1磨料球自組裝葉序排布的基本原理
葉序排布是指植物葉片為了更好地適應(yīng)生長(zhǎng)環(huán)境,其生物組織單元在空間上形成的輪生、對(duì)生、旋生和簇生等排布方式[20]。其中,旋生排布實(shí)現(xiàn)了幾何空間互補(bǔ)與最大填充效應(yīng),排布形成的左右螺旋滿足斐波那契級(jí)數(shù)或其衍生級(jí)數(shù)的數(shù)學(xué)規(guī)律,如菠蘿、松果和向日葵等的螺旋排布方式。與此同時(shí),MUGHAL等[21]對(duì)剛性球體在有限圓柱體空間內(nèi)最密實(shí)排布的研究表明,當(dāng)1lt;D=d(圓柱體直徑D和球體直徑d之比)≤2.873時(shí),有界空間中球體的最密堆積結(jié)構(gòu)將呈現(xiàn)葉序排布。
基于上述2種理論,為了實(shí)現(xiàn)磨料球在砂輪基體表面的葉序排布,設(shè)計(jì)了磨料球自組裝實(shí)驗(yàn)方法。依據(jù)植物原基的生長(zhǎng)結(jié)構(gòu)特征,將約束桶設(shè)計(jì)成底部為二次曲線旋成體形,頂部為圓柱形。為了避免砂輪基體表面磨料球排布出現(xiàn)多層現(xiàn)象,砂輪基體與裝置同軸心,且裝置圓柱體部分與砂輪基體之間的距離恒等于一顆球形顆粒直徑,約束桶與砂輪位置示意圖如圖1所示。利用該裝置,將限定在約束桶內(nèi)的磨料球進(jìn)行機(jī)械擾動(dòng),從而達(dá)到最緊密堆積,實(shí)現(xiàn)葉序排布。
利用該裝置進(jìn)行自組裝時(shí),初始磨料球采用任意堆積方式[22]。在實(shí)驗(yàn)過程中,裝置的約束桶相對(duì)砂輪基體進(jìn)行周期性旋轉(zhuǎn),然后將磨料球顆粒倒入實(shí)驗(yàn)裝置中,利用磨料球與約束桶和砂輪基體之間的相互作用力,驅(qū)使約束桶內(nèi)的磨料球堆積結(jié)構(gòu)趨于穩(wěn)定,形成葉序排布。
2磨料球的自組裝過程仿真
2.1仿真條件與策略
首先利用三維建模軟件SoildWorks建立實(shí)驗(yàn)裝置與砂輪基體的三維模型,在實(shí)驗(yàn)裝置圓柱體底部幾何中心建立三維坐標(biāo)系,然后將三維模型以stl格式導(dǎo)入EDEM軟件中。磨料顆粒由氧化鋁粉及黏土經(jīng)高溫?zé)Y(jié)而成,粒度為1200號(hào),形狀為球形。磨料球顆粒與裝置的基本物理特性參數(shù)如表1、表2所示。
為保證磨料球在砂輪基體表面實(shí)現(xiàn)單層有序排布,砂輪基體與約束桶為同軸心放置,且砂輪底面高于約束桶圓柱部分與半球形旋成體部分交界處2/5磨料球直徑。為保證磨料球在裝置內(nèi)的堆積排布結(jié)構(gòu)穩(wěn)定,縮短磨料球排布結(jié)構(gòu)由亂序到有序排布的時(shí)間,自組裝過程中約束桶進(jìn)行周期為0.5 s的360°周期性轉(zhuǎn)動(dòng)。在約束桶運(yùn)動(dòng)過程中,在約束桶上方將球形顆粒倒入裝置,受重力影響,磨料球顆粒將會(huì)滾動(dòng)至約束桶與砂輪基體之間的空間中逐漸堆積排布。自組裝過程中觀察磨料球在約束桶內(nèi)的排布結(jié)構(gòu),待排布結(jié)構(gòu)穩(wěn)定后約束桶停止運(yùn)動(dòng),自組裝仿真結(jié)束。
基于上述仿真條件分別對(duì)2種不同類型尺寸參數(shù)進(jìn)行仿真:一是當(dāng)磨料球直徑恒定為5.0 mm,砂輪基體直徑分別為30、35、40和45 mm時(shí)進(jìn)行仿真;二是當(dāng)砂輪基體直徑恒定為30 mm,磨料球直徑分別為4.5、5.5、6.5和7.0 mm時(shí)進(jìn)行仿真,其中當(dāng)砂輪基體直徑為35 mm時(shí)的仿真結(jié)果圖如圖2所示。
通過仿真結(jié)果可知,顆粒在裝置內(nèi)呈螺旋結(jié)構(gòu),且能觀察到明顯的斜列線對(duì),該結(jié)構(gòu)與圓柱面葉序生長(zhǎng)結(jié)構(gòu)相似。
2.2仿真結(jié)果與分析
VAKARELOV[23]提出了一種圓柱形螺旋葉序結(jié)構(gòu)的評(píng)價(jià)方法,當(dāng)在圓柱面能明顯觀察到多條平行斜列線且已知連續(xù)3個(gè)原基的線性距離時(shí),將圓柱面沿母線進(jìn)行平面展開,展開后參數(shù)如圖3所示,圖中橫坐標(biāo)代表原基在圓柱面上橫向位置坐標(biāo),縱坐標(biāo)代表原基
在圓柱面上垂直的位置坐標(biāo)。根據(jù)圖3可對(duì)該類型的葉序排布結(jié)構(gòu)進(jìn)行排布參數(shù)的計(jì)算。
葉序結(jié)構(gòu)參數(shù)計(jì)算方程為:
式中:a、b、c分別為原基Ao與距離原基Ao最近的2個(gè)生長(zhǎng)原基Am、An三點(diǎn)構(gòu)成的三角形的3條邊;m、n為葉序模式中左、右斜列線的條數(shù);r、R、ax、d分別為葉序系數(shù)、生長(zhǎng)半徑、線性散度、生長(zhǎng)角。
在自組裝仿真結(jié)束后,提取裝置圓柱面上顆粒的三維坐標(biāo),并將圓柱面沿母線展開,將顆粒柱面三維坐標(biāo)轉(zhuǎn)換為平面二維坐標(biāo)。當(dāng)磨料球顆粒直徑恒定為5.0 mm,砂輪基體直徑分別為30、35、40和45 mm時(shí)磨料球顆粒的柱面展開圖和圓柱排布圖如圖4所示。
由圖4可知:砂輪基體直徑分別為30、35、40和45 mm,在不同尺寸參數(shù)條件下,在磨料球裝置內(nèi)的排布結(jié)構(gòu)可觀察到多條平行斜列線,且根據(jù)顆粒三維柱面坐標(biāo)轉(zhuǎn)換為二維平面坐標(biāo)可確定各顆粒間的線性距離。
綜上,利用VAKARELOV[23]對(duì)葉序結(jié)構(gòu)的評(píng)價(jià)方法對(duì)各參數(shù)進(jìn)行計(jì)算,計(jì)算結(jié)果如表3所示。當(dāng)磨料球尺寸恒定為5.0 mm,砂輪基體分別為30、35、40和45 mm時(shí)磨料球在砂輪基體表面的排布為葉序結(jié)構(gòu)。
由表3可知:隨著砂輪基體直徑的增大,葉序系數(shù)逐漸減小,生長(zhǎng)角逐漸減小,葉序模式均呈葉分異模式。
當(dāng)砂輪基體直徑恒定為30 mm,磨料球顆粒直徑分別為4.5、5.5、6.5和7.0 mm時(shí),柱面展開圖、圓柱排布圖及葉序參數(shù)計(jì)算表如圖5、表4所示。由表4計(jì)算結(jié)果可知:當(dāng)砂輪基體直徑恒定時(shí),隨著磨料球直徑的增大,葉序系數(shù)逐漸增大,生長(zhǎng)角具有減小的趨勢(shì),葉序模式均呈葉分異模式。
根據(jù)葉序排布理論[20],葉序類型主要分為3大類:輪生、旋生、對(duì)生。在旋生葉序中,每個(gè)節(jié)點(diǎn)僅有1個(gè)原基生長(zhǎng),且連續(xù)生長(zhǎng)的原基之間的夾角是恒定的,稱為生長(zhǎng)角,較著名的旋生生長(zhǎng)角為黃金分割角137.508°,此類葉序左螺旋線及右螺旋線的個(gè)數(shù)屬于斐波那契數(shù)列中的2個(gè)連續(xù)項(xiàng)。由于植物結(jié)構(gòu)與生長(zhǎng)環(huán)境的不同,每種植物原基的生長(zhǎng)模式都是特定的,當(dāng)植物的左螺旋線和右螺旋線條數(shù)不屬于斐波那契數(shù)列中連續(xù)的2項(xiàng)時(shí),此類葉序?yàn)榉钦H~序,稱為葉分異模式,該類型葉序連續(xù)原基的生長(zhǎng)角≠137.508°
以圖4b為例,當(dāng)磨料球直徑為5.0 mm、砂輪基體直徑為35 mm時(shí),經(jīng)過底邊的左斜列線和右斜列線條數(shù)分別為16、12條,因此葉序模式為(16,12),其中16和12均可被4整除,因此葉序模式可視為4(4,3),但數(shù)字4并不屬于斐波那契數(shù)列中的一項(xiàng),故該葉序模式為葉分異模式,經(jīng)計(jì)算生長(zhǎng)角為154.547 0°。
根據(jù)葉序排布理論可知[20],當(dāng)排布結(jié)構(gòu)為葉序排布時(shí),任意2個(gè)顆粒的幾何中心點(diǎn)在水平或垂直方向的延長(zhǎng)線均不相交。且當(dāng)砂輪軸向高度不變時(shí),葉序系數(shù)與磨料球的大小決定了磨料球在砂輪表面的排布數(shù)量。葉序系數(shù)越小,相同軸向高度內(nèi)磨料球數(shù)量越多。
綜上,當(dāng)砂輪軸向高度不變時(shí),葉序系數(shù)越小,在磨削過程中參與磨削的磨料球數(shù)量越多,且任意2顆磨料球的磨削痕跡均不相交。根據(jù)磨粒葉序排布砂輪的相關(guān)研究可知[17,24],在滿足一定的磨削運(yùn)動(dòng)條件下,可將各砂輪表面的磨料球葉序排布結(jié)構(gòu)拓?fù)涞焦ぜ纬山Y(jié)構(gòu)化表面。
3自組裝實(shí)驗(yàn)
磨料球自組裝要求約束桶與砂輪基體間的相對(duì)運(yùn)動(dòng)使約束桶內(nèi)磨料球的堆積排布結(jié)構(gòu)逐漸穩(wěn)定,但由于實(shí)驗(yàn)設(shè)備的限制,無(wú)法實(shí)現(xiàn)約束桶的周期性運(yùn)動(dòng)。所以,本次實(shí)驗(yàn)轉(zhuǎn)變?yōu)樯拜喕w進(jìn)行旋轉(zhuǎn)運(yùn)動(dòng),使裝置內(nèi)磨料球堆積排布結(jié)構(gòu)穩(wěn)定。本次自組裝實(shí)驗(yàn)選用CAK50立式加工中心進(jìn)行實(shí)驗(yàn)。為了驗(yàn)證不同參數(shù)尺寸對(duì)磨料球排布結(jié)構(gòu)的影響,本次實(shí)驗(yàn)選用磨料球直徑為5.0 mm,砂輪基體直徑分別為30、35、40和45 mm。
自組裝實(shí)驗(yàn)裝置如圖6所示,本次實(shí)驗(yàn)砂輪基體通過彈簧夾緊裝置固定,約束桶由三爪卡盤固定,砂輪基體與約束桶同軸心放置。
實(shí)驗(yàn)過程中砂輪基體以300 r/min進(jìn)行旋轉(zhuǎn)運(yùn)動(dòng),待約束桶內(nèi)磨料球堆積結(jié)構(gòu)穩(wěn)定后,倒入黏結(jié)劑,待黏結(jié)劑固化后進(jìn)行脫模。采用Supereyes數(shù)碼顯微鏡對(duì)砂輪基體表面磨料球排布結(jié)構(gòu)進(jìn)行測(cè)量,并對(duì)結(jié)構(gòu)參數(shù)進(jìn)行計(jì)算。磨料球自組裝實(shí)驗(yàn)結(jié)果與坐標(biāo)展開圖如圖7所示。
圖7右側(cè)為磨料球自組裝有序化砂輪的成果圖,左側(cè)為通過電子顯微鏡測(cè)量砂輪基體表面磨料球間距離確定的磨料球柱面展開圖。由圖7可知,當(dāng)砂輪基體直徑分別為30、35、40和45 mm時(shí),磨料球排布結(jié)構(gòu)有明顯的多條平行的左斜列線與右斜列線,對(duì)其排布結(jié)構(gòu)進(jìn)行計(jì)算,磨料球結(jié)構(gòu)參數(shù)表如表5所示。
由表5可知:砂輪基體直徑為30、35、40和45 mm時(shí),砂輪基體表面磨料球排布均葉序排布。磨料球直徑恒定時(shí),隨著砂輪基體直徑的增大,葉序系數(shù)逐漸減小。與自組裝仿真結(jié)果對(duì)比,當(dāng)砂輪基體直徑分別為30、35、40和45 mm時(shí),葉序系數(shù)的誤差值分別為0.014 2、0.011 9、0.018 2、0.000 9,生長(zhǎng)角度的誤差值分別為3.559 7°、0.224 4°、4.680 2°、4.675 9°。
進(jìn)行自組裝實(shí)驗(yàn)時(shí)磨料球直徑尺寸與約束桶尺寸的誤差,導(dǎo)致實(shí)驗(yàn)制備的磨料球排布結(jié)構(gòu)與仿真排布結(jié)構(gòu)存在誤差。
4結(jié)論
(1)基于有界空間中球體最密堆積結(jié)構(gòu)的研究與外圓柱葉序排布理論提出自組裝方法,并通過設(shè)計(jì)約束桶的周期性運(yùn)動(dòng),實(shí)現(xiàn)磨料球顆粒在裝置內(nèi)的葉序排布。
(2)磨料球在裝置內(nèi)形成的葉序結(jié)構(gòu)形態(tài)受約束桶、砂輪基體、磨料球三者尺寸的影響。
(3)當(dāng)球形顆粒尺寸不變時(shí),葉序系數(shù)隨著砂輪基體直徑的增大而減??;當(dāng)砂輪基體直徑恒定時(shí),葉序系數(shù)隨著顆粒直徑的增大而增大。
參考文獻(xiàn):
[1]DING W F,ZHU Y J,ZHANG L C,et al.Stress characteristics and fracture wear of brazed CBN grains in monolayer grinding wheels[J].Wear,2015(332/333):800-809.
[2]BUTLER-SMITH P W,AXINTE D A,DAINE M.Preferentially oriented diamond micro-arrays:A laser patterning technique and preliminary evaluation of their cutting forces and wear characteristics[J].International Journal of Machine Tools and Manufacture,2009,49(15):1175-1184.
[3]謝國(guó)治,左敦穩(wěn),王珉.單層釬焊砂盤磨粒分布有序性研究[J].南京航空航天大學(xué)學(xué)報(bào),2000(3):282-287.
XIE Guozhi,ZUO Dunwen,WANG Min.Study on order distribution of monolayer brazing grindingplate’s grind grain[J].Journal of Nanjing University of Aeronauticsamp;Astronautics,2000(3):282-287.
[4]郭兵,金錢余,趙清亮,等.表面結(jié)構(gòu)化砂輪磨削加工技術(shù)研究進(jìn)展[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2016,48(7):1-13.
GUO Bing,JIN Qianyu,ZHAO Qingliang,et al.Research progress of grinding technology with surface structured wheels[J].Journal of Harbin Institute of Technology,2016,48(7):1-13.
[5]STEPIéN P,SZAFARCZYK M.Generation of regular patterns on ground surfaces[J].CIRP Annals,1989,38(1):561-566.
[6]陳冰,郭燁,鄧朝暉.超硬磨??煽嘏挪忌拜喲芯窟M(jìn)展[J].中國(guó)機(jī)械工程,2023,34(9):1019-1034.
CHEN Bing,GUO Ye,DENG Zhaohui.Research progresses of super-hard abrasive grain controllable arrangement grinding wheels[J].China Mechanical Engineering,2023,34(9):1019-1034.
[7]郭兵,張慶賀,郭振飛,等.基于結(jié)構(gòu)化砂輪的結(jié)構(gòu)表面高效精密磨削技術(shù)研究[J].航空制造技術(shù),2022,65(9):50-59.
GUO Bing,ZHANG Qinghe,GUO Zhenfei,et al.Research on high-efficiency precision grinding of structured surfaces based on structured grinding wheels[J].Aeronautical Manufacturing Technology,2022,65(9):50-59.
[8]呂玉山,王軍,趙成義,等.一種磨粒族葉序排布的端面砂輪及其銑磨實(shí)驗(yàn)[J].兵工學(xué)報(bào),2013,34(12):1569-1574.
LYU Yushan,WANG Jun,ZHAO Chengyi,et al.An end-grinding wheel with the phyllotactic pattern of abrasive grain clusters and its mill-grinding experiments[J].Acta Armamentarii,2013,34(12):1569-1574.
[9]RABIEY M,TAWAKOLI T,WEGENER K.The effect of special structured electroplated CBN wheel in dry grinding of 100Cr6[J].Advanced Materials Research,2009(76/77/78):119-124.
[10]TAWAKOLI T,RABIEY M.An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond cbn wheel[J].Machining Science and Technology,2008,12(4):514-528.
[11]MOHAMED A M O,BAUER R,WARKENTIN A.Application of shallow circumferential grooved wheels to creep-feed grinding[J].Journal of Materials Processing Technology,2013,213(5):700-706.
[12]LI H N,AXINTE D.Textured grinding wheels:A review[J].International Journal of Machine Tools and Manufacture,2016,109:8-35.
[13]王俊博,呂玉山,慕麗,等.磨粒有序化砂輪磨削微溝槽減阻表面的研究[J].金剛石與磨料磨具工程,2022,42(6):738-744.
WANG Junbo,LYU Yushan,MU Li,et al.Effect of abrasive pattern on grinding micro-groove drag-reduction surface[J].Diamondamp;Abrasives Engineering,2022,42(6):738-744.
[14]LUO S Y,TU H Y,YU T H,et al.Grinding characteristics of micro-abrasive pellet tools fabricated by a LIGA-like process[J].International Journal of Machine Tools and Manufacture,2009,49(3/4):212-219.
[15]陳逢軍,張磊,尹韶輝,等.基于靜電噴霧的金剛石磨粒微表面均布特性研究[J].表面技術(shù),2018,47(7):15-20.
CHEN Fengjun,ZHANG Lei,YIN Shaohui,et al.Uniform distribution characteristic of fine diamond abrasive particles based on high voltage electrostaticspraying[J].Surface Technology,2018,47(7):15-20.
[16]MAO C,LONG P,TANG W D,et al.Simulation and experiment of electroplated grinding wheel with orderly-micro-grooves[J].Journal of Manufacturing Processes,2022,79:284-295.
[17]劉兆博,呂玉山,王軍,等.磨粒族有序化排布砂輪磨削TC4的磨削力的實(shí)驗(yàn)研究[J].機(jī)械設(shè)計(jì)與制造,2017,2017(2):115-117.
LIU Zhaobo,LYU Yushan,WANG Jun,et al.Experimental investigation on the grinding force of the abrasive cluster engineered grinding wheel in grinding TC4[J].Machinery Designamp;Manufacture,2017,2017(2):115-117.
[18]MORONUKI N,ZHANG W R.Patterned self-assembly of fine particles and its application to polishing tool[J].Journal of Advanced Mechanical Design,Systems,and Manufacturing,2012,6(6):792-799.
[19]龔勝,王永強(qiáng),尹韶輝,等.應(yīng)用環(huán)形磁場(chǎng)控制的微粉砂輪制備及其磨削性能[J].機(jī)械工程學(xué)報(bào),2016,52(17):78-85.
GONG Sheng,WANG Yongqiang,YIN Shaohui,et al.Fabrication of fine grinding wheel controlled by annular magnetic field and its grinding performance[J].Journal of Mechanical Engineering,2016,52(17):78-85.
[20]JEAN R V.Phyllotactic pattern generation:A conceptual model[J].Annals of Botany,1988,61(3):293-303.
[21]MUGHAL A,CHAN H K,WEAIRE D,et al.Dense packings of spheres in cylinders:Simulations[J].Physical Review,E.Statistical,Nonlinear,and Soft Matter Physics,2012,85(5):1-17.
[22]PATANKAR A N,MANDAL G.The packing of solid particles:Areview[J].Transactions of the Indian Ceramic Society,1980,39(4):109-119.
[23]VAKARELOV I.Method for practical assessment of cylindricallyrepresented spiral phyllotaxis[J].Phytologia Balcanica,2008,14(2):263-268.
[24]李興山,熊偉,陳天宇,等.磨粒簇葉序排布砂輪外圓磨削凹坑結(jié)構(gòu)化減阻表面的仿真[J].機(jī)械設(shè)計(jì)與制造,2021(3):261-265.
LI Xingshan,XIONG Wei,CHEN Tianyu,et al.Simulation study on the grinding of cylindrical structured surface by the grinding wheel with phyllotactic abrasive cluster[J].Machinery Designamp;Manufacture,2021(3):261-265.
作者簡(jiǎn)介
呂玉山,男,1961年生,教授,碩士生導(dǎo)師。主要研究方向:高效精密磨削技術(shù)和葉序仿生技術(shù)等。
E-mail:yushan_lu@aliyun.com
(編輯:王潔)
Principle of self-assembly of abrasive balls on surface ofgrinding wheels into phyllotaxis arrangement
LI Shengze,LYU Yushan,LI Xingshan,NAN Jiehong
(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110159,China)
Abstract Objectives:Compared with traditional abrasive random arrangement grinding wheels,structured grinding wheels offer better chip space and grinding efficiency during the grinding process.At present,the manufacturing meth-ods for structured grinding wheels mainly include metal sintering,electroplating,mechanical dressing,laser etching,and other processing techniques.However,these processing methods generally face several issues,such as low arrangement efficiency,poor positioning accuracy of abrasive particles,and complex manufacturing processes.To address these problems,this paper proposes a method for preparing an abrasive orderly grinding wheel by the orderly accumulation of abrasive balls in a bounded space.Methods:Phyllotactic arrangement refers to the arrangement of biological tissue units in space,such as rotation,opposition,and clustering,to provide an optimal growth environment for plant grains.The spiral arrangement achieves geometric spatial complementarity and maximizes the filling effect,with the left and right spirals formed by the arrangement satisfying the mathematical law of the Fibonacci sequence or its derived series.This paper,based on the theory of phyllotactic arrangement and the study of sphere packing structures in bounded spaces,establishes the basic theory for the self-assembly of abrasive spheres into an orderly arrangement on a grinding wheel.Results:Based on the growth structure characteristics of plant primordia,the constraint barrel in the device is de-signed to with a hemispherical bottom and a cylindrical top.To ensure that the abrasive balls on the surface of the grind-ing wheel are arranged in a single layer,the distance between the cylindrical part of the constraint bucket and the grind-ing wheel matrix is always equal to the diameter of a spherical particle.During the self-assembly process,the motion of the constraint barrel is used to mechanically disturb the absive balls.Due to the effects of gravity,interaction forces,and friction between the grinding balls,the arrangement structure of the grinding balls in the device gradually changes from random disorder to stable order.Once the structure stabilizes,the abrasive balls are fixed to the grinding wheel.Using the evaluation method of cylindrical phyllotaxis structure,multiple parallel oblique lines can be observed,and the dis-tance between continuously growing primordia can be determined,allowing the relevant parameters of the phyllotaxis structure to be calculated.From the cylindrical coordinate expansion diagram and the cylindrical arrangement diagram,it is evident that multiple parallel left and right diagonals resemble the phyllotactic structure.Therefore,the structural parameters were verified and calculated.Conclusions:Abrasive ball-ordered grinding wheels with different grinding wheel matrix sizes were successfully prepared through self-assembly experiments.The abrasive ball arrangement struc-ture was measured using corresponding measuring instruments to verify the accuracy of the self-assembly motionsimu-lation results and the feasibility of the method.The influence of size changes on the structural parameters of the abras-ive ball arrangement was discussed.The results indicate that the phyllotactic arrangement of spherical abrasives on the surface of the grinding wheel matrix can be achieved using the self-assembly method.When the diameter of the spheric-al abrasives is constant,the phyllotaxis coefficient of the arrangement structure formed by spherical abrasives on the surface of the grinding wheel substrate decreases with the increase of the diameter of the grinding wheel substrate.Con-versely,when the diameter of the grinding wheel matrix is constant,the phyllotaxis coefficient of the phyllotaxis ar-rangement structure formed by the spherical abrasives on the surface of the grinding wheel substrate improves with the increase in the diameter of the abrasive balls.
Key words structured grinding wheel;self-assembly;orderly arrangement;phyllotactic pattern;abrasive ball