摘要 為解決Co基金剛石工具成本高,F(xiàn)e基金剛石工具燒結溫度高、把持力弱、胎體易燒死等問題,通過化學法將Cu、Sn、Bi等金屬分別包覆于FeCuNi合金粉末表面,制備成金屬包覆FeCuNi合金粉末。結果表明:配方中添加金屬包覆FeCuNi合金粉末后,三點抗彎強度提高近20%;金屬包覆FeCuNi合金粉末燒結過程中,F(xiàn)eCuNi顆粒表面的Sn、Bi率先熔化,與Cu反應形成的Cu-Sn、Cu-Bi等液相能夠形成連續(xù)的網絡狀結構,將FeCuNi、Fe、Ni等顆粒包裹和黏結,使得金剛石工具胎體的成分和組織結構分布更加均勻、更加致密,避免了成分偏析的發(fā)生。通過以上試驗得到初步結論,金屬包覆FeCuNi合金粉末可等效替代貴重金屬Co,極大地降低金剛石工具生產成本,具有顯著的經濟效益。
關鍵詞 金剛石工具;金屬包覆FeCuNi合金粉末;胎體
中圖分類號 TG74文獻標志碼 A
文章編號1006-852X(2024)05-0581-07
DOI碼10.13394/j.cnki.jgszz.2022.0174
收稿日期2022-10-23 修回日期 2023-10-08
金剛石工具因具有耐磨、耐高溫、抗氧化、抗腐蝕等優(yōu)異性能,已廣泛運用于石油鉆井、地質勘探、石材加工、建筑裝潢等領域,并取得了良好的經濟效益和社會效益[1-4]。
燒結式金屬基金剛石工具由于適用性廣、耐用性強,已成為最具代表性的金剛石工具。金剛石工具的金屬胎體包含耐磨相、骨架相、黏結相及添加相,其中耐磨相主要是指金剛石、立方氮化硼(cBN)、碳化鎢(WC)等,骨架相主要是指Fe、Co、Ni等,黏結相主要是指Sn、Zn等低熔點金屬,添加相主要是指微量活性元素。黏結相中的Sn、Zn等在燒結過程中較早熔化形成液相,在較低的溫度下發(fā)生位移、擴散、致密化、合金化等反應,從而得到性能良好的燒結體;添加相改善了金剛石與胎體界面的結合狀態(tài),提高了金剛石與胎體的結合強度[5,6]。
Co因具有優(yōu)良的物理性能,成為制備金剛石工具的首選材料,但其價格較為昂貴。楊棟等[7]在分析國內金剛石工具用預合金粉末的發(fā)展趨勢時提出低Co或無Co將是未來預合金粉末的主要研究方向。隨著市場競爭的逐漸加劇,Co的應用范圍越來越小,F(xiàn)e與Co同族,且價格低廉,因此以鐵代鈷成為金剛石工具研究的熱點。孫雙雙[8]研究了在金剛石繩鋸中用Fe基預合金粉末代替Co,實現(xiàn)了預合金粉末的“以鐵代鈷”,降低了生產成本,具有很高的應用價值。經過不斷的發(fā)展,F(xiàn)e基金剛石工具已在石材鋸片、混凝土串珠鋸等多個領域完全取代Co基金剛石工具[9-10]。然而,F(xiàn)e基金剛石工具在生產過程中存在著燒結溫度高、可控工藝范圍窄、易侵蝕金剛石、把持力弱、胎體易燒死等問題[11-14]。在Fe基金剛石工具燒結過程中,若燒結溫度偏低,則易導致胎體的致密度不夠,工具使用壽命大幅下降;若燒結溫度過高,則易存在胎體燒死的情況,工具鋒利度大幅下降。
李鵬旭[15]研究了FeCuNiSn合金粉末,該合金粉末具有高燒結致密性、高強度、高硬度,能很好地滿足金剛石工具在降低燒結溫度的條件下保持較高胎體機械性能的要求,但在爐中長時間燒結過程中,Sn元素易偏析和流失,造成金剛石工具性能不穩(wěn)定。因此,本研究先將Cu、Sn、Bi等金屬分別包覆于FeCuNi合金粉末表面,制備成FeCuNi-Cu/Sn/Bi合金粉末,以提高金剛石胎體燒結過程中的致密化程度,減小成分偏析。
1試驗材料及方法
試驗原材料包括Co粉、Cu粉、Fe粉、Sn粉、Ni粉以及FeCuNi合金粉末,F(xiàn)eCuNi合金粉末基本性能見表1。通過化學法分別將Cu、Sn、Bi鍍覆于FeCuNi合金粉末表面,并在表面形成均勻的鍍層。采用鄭州機械研究所三維混料機將金屬粉末及金剛石進行混合,混料時間為2 h,混合均勻后稱取所需質量的粉末,用金海威熱壓燒結機制備尺寸為4 mm×8 mm×40 mm樣塊,模具材質為石墨,每組制備4個樣塊,重復2次試驗。然后用華銀洛氏硬度計檢測洛氏硬度,MTS萬能力學試驗機檢測三點抗彎強度,飛納電子顯微鏡分析顯微組織和能譜。
1.1金屬包覆FeCuNi合金粉末制備
Cu的密度為8.96 g/cm3,熔點為1 083.4℃,1 150℃時對金剛石的潤濕角為145°,對金剛石潤濕性較差,不能單獨作為黏結劑。但是Cu易與多種元素形成合金,改善胎體性能和對金剛石潤濕性,并最終影響胎體的組織性能。在FeCuNi合金粉末表面電鍍一層Cu,制備成Cu包覆FeCuNi合金粉末,如圖1所示,Cu元素均勻包覆于FeCuNi合金粉末顆粒表面。
Sn的密度為7.3 g/cm3,熔點為231.9℃,在金剛石工具的合金體系中主要作為液態(tài)致密相、潤濕性改善相、合金化及機械性能調節(jié)相在燒結過程中發(fā)揮作用,但是單質Sn在燒結過程中極易發(fā)生團聚和偏析。在FeCuNi合金粉末表面電鍍一層Sn,制備成Sn包覆Fe-CuNi合金粉末,如圖2所示,Sn元素均勻包覆于Fe-CuNi合金粉末顆粒表面。
Bi的密度為9.8 g/cm3,熔點為271.3℃,在金剛石工具中添加Bi可以降低燒結溫度,增加胎體脆性,提高工具鋒利度。在FeCuNi合金粉末表面電鍍一層Bi,制備成Bi包覆FeCuNi合金粉末,如圖3所示,Bi元素均勻包覆于FeCuNi合金粉末顆粒表面。
1.2金剛石工具胎體配方設計
設計1種Co質量分數(shù)為30.00%的配方和3種添加金屬包覆FeCuNi合金粉末代替鈷配方,將粉末用三維混料機混合4 h,通過熱壓燒結制備成燒結體,最高溫度為750℃(紅外測溫),最大壓力為20 MPa,具體配方比例見表2。
2結果與討論
根據上述配方燒結4種金剛石工具胎體,并對其進行物理性能測試,每種配方制備了8個樣品,去掉最大值和最小值后計算的數(shù)據平均值如表3所示。由表3可知,添加包覆合金粉末配方胎體硬度由110 HRB下降到106 HRB,但降低幅度<4%,可認為硬度相當。添加包覆合金粉末后,胎體抗彎強度提高幅度均>10%,特別是添加FeCuNi-Bi合金粉末后,胎體抗彎強度由945 MPa上升到1 120 MPa,提高近20%。其原因是合金粉末表面包覆的低熔點元素分布比較均勻,燒結過程中降低了胎體的孔隙率,進而提高了胎體抗彎強度。
為了進一步探明不同配方的燒結作用機理,對4種配方燒結胎體的微觀形貌進行了分析,如圖4和表4所示。配方A將Co、Fe、Cu、Sn粉末混合后燒結,燒結溫度>231℃時胎體中的Sn開始熔化,在壓力和溫度的共同作用下,Sn與胎體中的Cu等金屬元素開始發(fā)生反應,逐漸形成CuSn合金。由表4的能譜分析可知:圖4a中亮色相點1的Sn質量分數(shù)達到32.26%,淺灰色相點2的Sn質量分數(shù)為14.41%,深灰色相點3不含Sn,F(xiàn)e質量分數(shù)為79.31%。由此可知,配方A中的Sn分布不均勻,偏析很嚴重。隨著燒結溫度的進一步升高,部分含Sn量較高的CuSn合金開始熔化,但液相CuSn合金和Co、Fe顆粒間的潤濕性較差且在胎體中分布不連續(xù),絕大部分CuSn液相不能滲透進入Co、Fe骨架相間形成網狀連接,在燒結溫度和壓力的相互作用下無法形成牢固、致密的結合體,造成了胎體組織結構的不均勻性,影響金剛石工具的性能和使用效果[16]。在配方中加入FeCuNi-Cu/Sn/Bi合金粉末后,包覆合金粉末的分布比較均勻,在燒結過程中,F(xiàn)eCuNi合金粉末顆粒表面的Sn、Bi率先熔化,與Cu反應形成Cu-Sn、Cu-Bi等液相,并沿著FeCuNi合金粉末顆粒由外向內擴散,逐漸進入Fe、Ni、FeCuNi等顆粒之間的縫隙。最終,Cu-Sn、Cu-Bi合金能夠形成連續(xù)的網絡狀結構,將FeCuNi、Fe、Ni等顆粒包裹和黏結,使得金剛石工具胎體的成分和組織結構分布更加均勻、更加致密,避免了成分偏析的發(fā)生。
在上述配方中添加80/90金剛石,金剛石體積濃度為30%,混合均勻后制備成金剛石結塊,并對其抗彎強度進行測試,如表5所示,添加金剛石后結塊的抗彎強度均有所下降,配方A下降最多(約24%),添加Cu、Sn、Bi包覆FeCuNi合金粉末胎體強度分別下降18%、17%、17%。添加金屬包覆合金粉末后,胎體燒結得更為致密、金剛石的把持力更高,因此力學性能更好。
3結論
(1)在FeCuNi合金粉末表面采用化學法分別鍍覆Cu、Sn、Bi,制備成FeCuNi-Cu/Sn/Bi合金粉末,配方中添加金屬包覆合金粉末后胎體組織細化,硬度和強度均有所提高。
(2)FeCuNi-Cu/Sn/Bi合金粉末在燒結過程中,F(xiàn)eCuNi合金粉末顆粒表面的Sn、Bi率先熔化,與Cu反應形成的Cu-Sn、Cu-Bi等液相能夠形成連續(xù)的網絡狀結構,將FeCuNi、Fe、Ni等顆粒包裹和黏結,使得金剛石工具胎體的成分和組織結構分布更加均勻、更加致密,避免了成分偏析的發(fā)生。
(3)Cu、Sn、Bi包覆FeCuNi合金粉末后,胎體燒結得更為致密、金剛石的把持力更高,力學性能更優(yōu)。
參考文獻:
[1]謝北萍,段隆臣,孟大維.金剛石工具胎體材料機械性能的概述[J].超硬材料工程,2008,20(4):21-24.
XIE Beiping,DUAN Longchen,MENG Dawei.Study on the mechanical properties of the matrix for diamond tools[J].Superhard Material Engineering,2008,20(4):21-24.
[2]韓娟,姚炯斌,劉一波,等.磷鐵含量對高鐵基胎體性能的影響[J].金剛石與磨料磨具工程,2010,30(3):49-54.
HAN Juan,YAO Jiongbin,LIU Yibo,et al.Effect of addition of ferrophosphorus on the performances of high iron-based bond[J].Diamondamp;Abrasives Engineering,2010,30(3):49-54.
[3]呂智,鄭超,莫時雄,等.超硬材料工具設計與制造[M].北京:冶金工業(yè)出版社,2010:37-39.
LV Zhi,ZHENG Chao,MO Shixiong,et al.Design and manufacturing of superhard material tools[M].Beijing:Metallurgical Industry Press,2010:37-39.
[4]孫毓超,劉一波,王秦生.金剛石工具與金屬學基礎[M].北京:中國建材工業(yè)出版社,1999.
SUN Yuchao,LIU Yibo,WANG Qinsheng.Fundamentals of diamond tools and metallurgy[M].Beijing:China Building Industry Press,1999.
[5]劉一波,徐強,徐良.金剛石工具用金屬粉末的特性、現(xiàn)狀分析和發(fā)展趨勢[J].粉末冶金工業(yè),2017,27(4):1-6.
LIU Yibo,XU Qiang,XU Liang.Characteristics,status analysis and development trend of metal powders for diamond tools[J].Powder Metallurgy Industry,2017,27(4):1-6.
[6]董曉,許洪祥,陸娜.一種金剛石制品用預合金粉末的制備方法:CN106180744A[P].2016-12-07.
DONG Xiao,XU Hongxiang,LU Na.A preparation method of pre-allo-yed powder for diamond products:CN201610721874.5[P].2016-12-07.
[7]楊棟,武璽旺,張世峰,等.預合金粉在金剛石工具中的應用[J].超硬材料工程,2020,32(3):37-40.
YANG Dong,WU Xiwang,ZHANG Shifeng,et al.Application of pre-alloy powder in diamond tools[J].Superhard Material Engineering,2020,32(3):37-40.
[8]孫雙雙.金剛石繩鋸用鐵基水霧化預合金粉末的特性與應用研究[D].長春:吉林大學,2019.
SUN Shuangshuang.Study on characteristics and application of iron-based water atomized prealloyed powder for diamond wire saw[D].Changchun:Jilin University,2019.
[9]肖俊玲,胡國程,丘定輝.金剛石工具鐵基結合劑的應用及展望[J].湖南有色金屬,2002,18(1):29-31.
XIAO Junling,HU Guocheng,QIU Dinghui.The history,current development and divination on iron-based matrix of diamond tool[J].Hunan Nonferrous Metals,2002,18(1):29-31.
[10]鄭日升,宋冬冬,夏學勝,等.添加組分對LFP全預合金粉末性能的影響[J].超硬材料工程,2012,24(5):30-34.
ZHENG Risheng,SONG Dongdong,XIA Xuesheng,et al.Influence of addition component on the properties of LFP pre-alloy powder[J].Superhard Material Engineering,2012,24(5):30-34.
[11]薛弘宇,于新泉,糾永濤,等.P元素加入形式對鐵基金剛石工具胎體組織性能的影響[J].焊接學報,2018,39(11):69-72,107,132.
XUE Hongyu,YU Xinquan,JIU Yongtao,et al.Effects of different kinds of phosphorus-containing prealloyed powder on the microstructures and properties of Fe-based sintered matrix[J].Transactions of the China Welding Institution,2018,39(11):69-72,107,132.
[12]張鳳林,周玉梅,王成勇.金剛石工具中金剛石與金屬結合劑之間的界面[J].工具技術,2007,41(7):20-24.
ZHANG Fenglin,ZHOU Yumei,WANG Chengyong.Interfacial microstructure between diamond and metal bonds in metal matrix diamond tools[J].Tool Engineering,2007,41(7):20-24.
[13]黃希祜.鋼鐵冶金原理[M].北京:冶金工業(yè)出版社,1986:297.
HUANG Xihu.Principles of iron and steel metallurgy[M].Beijing:Metallurgical Industry Press,1986:297.
[14]司衛(wèi)征,袁慧,張鳳林,等.金屬基金剛石工具結合劑中添加合金元素的研究進展[J].超硬材料工程,2007,19(1):31-33.
SI Weizheng,YUAN Hui,ZHANG Fenglin,et al.Research advances of adding alloying elements in the bond of metal matrix diamond tools[J].Superhard Material Engineering,2007,19(1):31-33.
[15]李鵬旭.金剛石工具用鐵基水霧化預合金粉末的性能測試及改性應用[D].長春:吉林大學,2020.
LI Pengxu.Performance test and modification application of iron-based water atomized prealloyed powder for diamond tools[D].Changchun:Jilin University,2020.
[16]張冠星,張雷,劉曉芳,等.低熔包覆合金粉末及其制備方法和鐵基金剛石胎體:CN202010662465.9[P].2020-07-10.
ZHANG Guanxing,ZHANG Lei,LIU Xiaofang,et al.Low-melting clad alloy powder,its preparation method and iron-based diamond carcass:CN202010662465.9[P].2020-07-10.
作者簡介
曹新民,男,1969年生,本科。主要研究方向:制備金剛石工具用混料、冷壓、熱壓及相關成套設備,金剛石工具用合金粉末。E-mail:zzjxyjs@126.com
通信作者:陳生超,男,1987年生,在讀博士,工程師。主要研究方向:金屬材料及熱處理。
E-mail:csc19871012@163.com
(編輯:趙興昊)
Effect of metal coated FeCuNi powder on properties of diamond tool matrix
CAO Xinmin1,BAO Li1,LI Zhen2,CHENG Chuanwei3,CHEN Peng4,PAN Jianjun1,YU Qi1,YU Xinquan1,CHEN Shengchao5
(1.Zhengzhou Research Institute of Mechanical Engineering Co.,Ltd.,Zhengzhou 450001,China)
(2.Zhengzhou Emerging Industry Technology Research and Promotion Center,Zhengzhou 450001,China)
(3.Zhengzhou Science and Technology Innovation Service Center,Zhengzhou 450001,China)
(4.Henan Xinda Fusion Technology Co.,Ltd.,Zhengzhou 450001,China)
(5.ZRIME Gearing Technology Co.,Ltd.,Zhengzhou 450001,China)
Abstract Objectives:Diamond tools are widely used in fields such as oil drilling,geological exploration,and stone processing,among which sintered metal bond diamond tools have become the most representative due to their wide ap-plicability and strong durability.Cobalt(Co)has become the preferred material for preparing diamond tools due to its excellent physical properties,but its price is relatively expensive.As market competition gradually intensifies,the ap-plication range of Co is becoming limited.It has been found that Fe-based pre-alloy powder has similar properties to Co and can be used as an important way to reduce costs.However,F(xiàn)e-based diamond tools face problems such as highsin-tering temperature,narrow controllable process range,easy erosion of diamond,weak holding force,and the tendency for the matrix to burn during production.Additionally,the Sn element is prone to segregation and loss during long-term sintering in the furnace,resulting in unstable performance of diamond tools.This article describes the preparation of Fe-CuNi-Cu/Sn/Bi alloy powder using a multi-layer coating process to improve the densification of diamond matrix sinter-ing and reduce component segregation.Methods:Co powder,Cu powder,F(xiàn)e powder,Sn powder,Ni powder,and Fe-CuNi alloy powder were selected,and Cu,Sn,and Bi were respectively plated onto the surface of FeCuNi alloy powder by chemical methods,forming a uniform coating on the surface.Metal powder and diamond were mixed using a three-dimensional mixer for 2 hours.After mixing,the required weight of uniform powder was weighed,and sample blocks with dimensions of 4 mm×8 mm×40 mm were prepared using a hot press sintering machine.The mold material was graphite,and 4 sample blocks were prepared for each group.The experiment was repeated twice.For the tested materi-als,Rockwell hardness was measured,as well as the three-point bending strength.The microstructure and energy spec-trum were analyzed using an electron microscope,and the changes in composition,structure,and mechanical properties of the tire body with fewer joints under different processes were compared and analyzed.Four formulations of sintered diamond tool bodies were designed,and their physical properties were tested.Eight samples were prepared for each for-mulation.After removing the maximum and minimum values,the average value of the data was calculated for analysis.Results:The hardness of the coated alloy powder formulation body decreased from 110 HRB to 106 HRB,but the de-crease was less than 4%,indicating that the hardness remained similar.After adding the coated alloy powder,the flexur-al strength of the tire body increased by more than 10%.Specifically,for the formulation containing FeCuNi-Bi powder,the flexural strength increased from 945 MPa to 1,120 MPa,an increase of nearly 20%.The improvement was due to the even distribution of low-melting point elements coated on the surface of the alloy powder,which reduced the porosity of the matrix during the sintering process,thereby improving the bending strength of the matrix.Analysis of the micro-structure of the four sintered tire bodies revealed that Sn in the original formula reacted with metal elements such as Cu in the tire body,gradually forming CuSn alloy.The distribution of Sn was uneven,and segregation was severe.As the sintering temperature increased,some CuSn alloys with higher Sn content began to melt.However,the wettability between the liquid CuSn alloy and Co or Fe particles was poor,and the distribution in the tire body was discontinuous.The vast majority of the CuSn liquid phase could not penetrate the Co and Fe skeleton phases to form a network connec-tion.Under the interaction of sintering temperature and pressure,a strong and dense bond could not be formed,result-ing in an uneven microstructure of the tire body and negatively affecting the performance and application of diamond tools.After adding FeCuNi-Cu/Sn/Bi alloy powder to the formula,the distribution of the coated alloy powder was relat-ively uniform.During sintering,Sn and Bi on the surface of FeCuNi alloy powder particles melted first,reacting with Cu to form liquid phases such as Cu-Sn and Cu-Bi.These phases gradually diffused along the FeCuNi alloy powder particles from the outside to the inside,entering the gaps between Fe,Ni,F(xiàn)eCuNi and other particles.Ultimately,Cu-Sn and Cu-Bi alloys formed a continuous network structure,encapsulating and bonding particles such as FeCuNi,F(xiàn)e,and Ni,making the composition and microstructure distribution of the diamond tool bodies more uniform and dense,thus avoiding component segregation.Conclusions:FeCuNi-Cu/Sn/Bi alloy powder was prepared by chemically plating Cu,Sn,and Bi onto the surface of FeCuNi alloy powder.After adding the metal-coated alloy powder to the formula,the mi-crostructure of the matrix was refined,and both hardness and strength were improved.The FeCuNi-Cu/Sn/Bi alloy powder,using coating technology,was sintered to obtain a denser matrix with higher diamond holding force and better mechanical properties.
Key words diamond tools;metal coated FeCuNi alloy powder;matrix