摘要 以TiC與過渡族金屬Nb為原料,在機械合金化(mechanical alloying,MA)下制備多種非化學(xué)計量比的(Ti,Nb)Cx聚晶金剛石(polycrystalline diamond,PCD)刀具結(jié)合劑。通過X射線衍射儀對復(fù)合材料燒結(jié)體的物相組成等進行分析,再通過掃描電子顯微鏡對復(fù)合材料的斷口形貌進行觀察,并用維氏硬度計測量復(fù)合材料的硬度和斷裂韌性。結(jié)果表明:在1 300~1 700℃的范圍內(nèi),溫度越高TiC和Nb的固溶程度越好;在同一燒結(jié)溫度下,(Ti,Nb)Cx復(fù)合材料的硬度隨著金屬Nb占比變大而逐漸升高;在同一金屬Nb占比下,溫度越高Nb與TiC的固溶程度越好。同時,(Ti,Nb)C0.5復(fù)合材料的力學(xué)性能最優(yōu),在1 600℃時達到硬度最大值23.0 GPa,且其斷裂韌性最高為7.20 MPa·m1/2。
關(guān)鍵詞 TiC;Nb;(Ti,Nb)Cx;非化學(xué)計量比;性能
中圖分類號 TG71;TB332文獻標志碼 A
文章編號1006-852X(2024)05-0575-06
DOI碼10.13394/j.cnki.jgszz.2023.0164
收稿日期2023-08-18 修回日期 2023-11-15
TiC基復(fù)合材料因具有較好的力學(xué)性能、化學(xué)特性以及與金屬優(yōu)異的相容性而廣泛應(yīng)用于多種增強材料中[1-2]。同時,TiC基復(fù)合材料重量輕、強度高、耐腐蝕性能好、生物相容性好[3-4]。且TiC與Al2O3、WC、TiN等原料可以制成具有高熔點、高硬度及優(yōu)良化學(xué)穩(wěn)定性的復(fù)相陶瓷材料,是聚晶金剛石(polycrystalline dia-mond,PCD)切削工具及耐磨部件的優(yōu)選材料[5]。
但總的來說,TiC基復(fù)合材料的燒結(jié)性能不佳,往往需要很高的溫度才能和金剛石燒結(jié)。其中的(Ti,Nb)C固溶體粉末直接燒結(jié)后的復(fù)合材料具有獨特的弱“核?環(huán)”結(jié)構(gòu),使“核?環(huán)”界面的應(yīng)力集中現(xiàn)象顯著減少,因而有利于復(fù)合材料綜合性能提高[6-9]。此外,PCD刀具切削工件時有大量的熱量產(chǎn)生,PCD結(jié)合劑的熱膨脹系數(shù)應(yīng)與金剛石接近,以避免金剛石晶粒內(nèi)部和邊界出現(xiàn)大量的微裂紋和缺陷[10-11]。
而非化學(xué)計量比的PCD結(jié)合劑可以和金剛石良好結(jié)合,使PCD刀具材料的力學(xué)性能保持相對一致,且其硬度和斷裂韌性分布均勻。與傳統(tǒng)結(jié)合劑相比,TiC基金屬陶瓷結(jié)合劑可以與金剛石在高溫高壓燒結(jié)過程中反應(yīng)形成非化學(xué)計量比碳化物,并提供大量的C空位。這些C空位能提供擴散路徑,加速各化合物之間的物質(zhì)交換,降低燒結(jié)溫度,從而使PCD的綜合性能得到進一步提升[12-17]。
制備PCD刀具用(Ti,Nb)Cx結(jié)合劑,探討不同摩爾比的TiC和過渡族金屬Nb機械合金化(mechanical alloying,MA)后的燒結(jié)行為。同時,對(Ti,Nb)Cx復(fù)合材料燒結(jié)體的微觀斷口組織形貌進行觀察,并對其力學(xué)性能進行測試與分析,以期制備出性能優(yōu)良的(Ti,Nb)Cx結(jié)合劑。
1試驗部分
(1)使用細化和退火處理后的TiC粉末(粒徑為1~3μm,純度為99.5%)和金屬Nb粉(粒徑為1~3μm,純度為99.5%)為原料,用QM-3SP4型行星球磨機MA制備(Ti,Nb)Cx混合粉末,TiC和Nb的摩爾比分別為8∶2,7∶3,6∶4和5∶5,即混合粉末的分子式可分別表示為(Ti,Nb)C0.8,(Ti,Nb)C0.7,(Ti,Nb)C0.6,(Ti,Nb)C0.5。(2)球磨時,φ8 mm、φ5 mm、φ2 mm的3種WC硬質(zhì)合金球質(zhì)量比為6∶3∶1。將20 g復(fù)合粉體原料、200 g硬質(zhì)合金球放入WC硬質(zhì)合金罐中,在450 r/min下MA 60 h,得到混合粉末。(3)采用VVSgr-40-2000型真空碳管爐在400℃和真空下對混合粉末退火,保溫30 min后隨爐冷卻至室溫;將混合粉末放入φ10 cm的石墨模具中,在30 MPa下預(yù)壓成型,預(yù)壓保持時間為60 s。(4)使用LABOXTM-110型放電等離子燒結(jié)機在氬氣環(huán)境中燒結(jié)預(yù)壓成型的坯體[18],燒結(jié)時燒結(jié)壓力為50 MPa,燒結(jié)溫度為1 300~1 700℃,升溫速率為50℃/min,達到燒結(jié)溫度后保溫10 min,得到(Ti,Nb)Cx復(fù)合材料燒結(jié)體。(5)采用Rigaku D/max-2500PC型X射線衍射儀對復(fù)合材料燒結(jié)體的物相進行表征[19]。采用S-4800型場發(fā)射電鏡觀察復(fù)合材料燒結(jié)體斷口的顯微組織形貌。使用HVS-1000型維氏硬度計對(Ti,Nb)Cx燒結(jié)體的硬度進行測量,測量時載荷分別為100、200、300、500和1 000 g,載荷保持時間為15 s。燒結(jié)體的斷裂韌性根據(jù)Shetty方程[20]及硬度試驗產(chǎn)生的裂紋長度計算。
2結(jié)果與討論
(Ti,Nb)Cx在1 300~1 700℃時的燒結(jié)體物相組成如圖1所示,圖1的1表示原始混合粉末,2、3、4、5、6分別表示燒結(jié)溫度為1 300、1 400、1 500、1 600和1 700℃時的燒結(jié)體。由于燒結(jié)溫度為1 700℃時,TiC和Nb的摩爾比為8∶2、5∶5時的原料與石墨模具部分熔融,燒結(jié)體被破壞,因此這2個配比下只進行燒結(jié)溫度為1 300和1 600℃時的燒結(jié)行為研究,而沒有1 700℃時的燒結(jié)體樣品。
由圖1可以看出:不論Nb占比如何,Nb原子均能進入TiC晶體結(jié)構(gòu)中,與TiC生成面心立方結(jié)構(gòu)(fcc)復(fù)合化合物(Ti,Nb)Cx。由于Nb的原子半徑比Ti的大,Nb原子進入TiC基體導(dǎo)致TiC晶格參數(shù)變大,TiC主峰位隨著溫度的升高向小角度偏移。且在1 300~1 700℃的燒結(jié)溫度下,Nb和TiC固溶程度隨燒結(jié)溫度升高而升高。溫度升高,TiC的衍射峰變窄,進而發(fā)生晶粒長大現(xiàn)象。
圖2為(Ti,Nb)C0.8復(fù)合材料燒結(jié)體在不同燒結(jié)溫度下的斷口形貌。如圖2所示:溫度在1 300℃和1 400℃時,燒結(jié)體致密度不高,各顆粒大小形態(tài)不均勻,結(jié)合不緊密;燒結(jié)溫度增至1 500℃時,顆粒大小均勻,斷面大部分為沿晶斷裂,界面反應(yīng)強烈,組織逐漸致密。圖3為不同燒結(jié)溫度下的(Ti,Nb)C0.8粒徑分布。從圖3可以看出:在燒結(jié)溫度為1 600℃時,其晶粒尺寸較1 500℃時的明顯增大,且出現(xiàn)個別晶粒異常長大現(xiàn)象。
圖4為(Ti,Nb)C0.8、(Ti,Nb)C0.7、(Ti,Nb)C0.6在1 600℃時燒結(jié)后的樣品斷口形貌。由圖4可知:當(dāng)溫度一定時,金屬Nb的占比越大,燒結(jié)體的固溶程度越好,燒結(jié)體中空隙越少,復(fù)合材料燒結(jié)體的致密度也越高。其中,(Ti,Nb)C0.6燒結(jié)體的大顆粒與小顆粒相互重疊,界面反應(yīng)劇烈,顆粒間尺寸差異最大。
據(jù)外推函數(shù)Nelson-Riley的關(guān)系可得,TiC的晶胞參數(shù)為0.432 7 nm[21]。圖5為(Ti,Nb)C0.5、(Ti,Nb)C0.8的晶胞參數(shù)。如圖5所示:(Ti,Nb)C0.8復(fù)合材料的晶胞參數(shù)隨著燒結(jié)溫度的升高逐漸變小,其最小值為0.434 7 nm。說明在1 300~1 600℃范圍內(nèi),(Ti,Nb)C0.8復(fù)合材料的晶胞參數(shù)均大于 TiC 的,且 Nb 原子代替部 分 Ti 原子占據(jù) TiC 的晶體結(jié)構(gòu)。同時,在同一燒結(jié)溫 度條件下,(Ti, Nb) C0.5 復(fù)合材料的晶胞參數(shù)均大于 (Ti, Nb) C0.8 的,說明 Nb 含量越高,TiC 對 Nb 的固溶程度越 大,引起的晶胞參數(shù)也變大,這與圖 1 的 XRD 結(jié)果相 一致。
圖 6 為 (Ti, Nb) Cx 復(fù)合材料在 1 300~1 700 ℃ 燒 結(jié)溫度下的維氏硬度和斷裂韌性。從圖 6 可以看出:在燒結(jié)溫度相同的情況下,Nb的占比越大,(Ti,Nb)Cx復(fù)合材料的硬度越高,且復(fù)合材料的硬度隨燒結(jié)溫度增加而升高;同時,(Ti,Nb)C0.5的硬度值最大,為23.0 GPa,且其斷裂韌性達到最大值7.20 MPa·m1/2。綜合來看,(Ti,Nb)C0.5復(fù)合材料的力學(xué)性能最佳。
3討論
由于PCD結(jié)合劑性能直接關(guān)系到PCD的整體性能,所以要求PCD結(jié)合劑的熱膨脹系數(shù)與金剛石的接近,且具有高硬度、高韌性[22-24]。同時,當(dāng)結(jié)合劑和金剛石結(jié)合良好時,可以確保刀具在切削工件時不會變形[25]。
隨著科技的進步,PCD用金剛石的顆粒尺寸越來越小,如何使粒度更小的金剛石與結(jié)合劑更好地結(jié)合,成為當(dāng)下迫切需要解決的問題[25-26]。非化學(xué)計量比的(Ti,Nb)Cx復(fù)合材料由于存在大量C空位,所以Ti?C共價鍵的濃度也會降低,從而減少燒結(jié)時所需的能量[27]。不僅如此,由于C原子的減少,增加了Ti?C鍵的金屬性,導(dǎo)致復(fù)合材料的斷裂韌性增大[1,28]。且由于非化學(xué)計量比的(Ti,Nb)Cx提供了大量的C空位,為原子擴散提供了通道,可以大幅度地降低復(fù)合材料的燒結(jié)溫度[28]。因此,(Ti,Nb)Cx在兼顧TiC基陶瓷的高硬度和高溫穩(wěn)定性的同時,也能降低TiC基陶瓷較高的燒結(jié)溫度,且在一定程度上提高TiC基陶瓷的斷裂韌性[29-30]。此外,由于Ti原子半徑與Nb原子半徑接近,二者在固溶過程中發(fā)生的晶格畸變,也促使PCD結(jié)合劑的綜合性能提升[31]。
4結(jié)論
TiC與Nb單質(zhì)可以按不同比例,MA制備非化學(xué)計量比共價化合物(Ti,Nb)C0.5、(Ti,Nb)C0.6、(Ti,Nb)C0.7、(Ti,Nb)C0.8。其中,在同一燒結(jié)溫度下,TiC與Nb單質(zhì)摩爾比為5∶5時的固溶程度最好,硬度最高,且在同一摩爾比下,溫度越高,TiC與Nb單質(zhì)固溶程度越好。同時,非化學(xué)計量比共價鍵化合物(Ti,Nb)C0.5綜合機械性能最優(yōu),其最大硬度為23.0 GPa,最高斷裂韌性為7.20 MPa·m1/2。
參考文獻:
[1]MA F,SHI Z,LIU P,et al.Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working[J].Materials Characterization,2016,120:304-310.
[2]MA F,ZHOU J,LIU P,et al.Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites[J].Materials Characterization,2017,127:27-34.
[3]WANG R,GU D,HUANG G,et al.Multilayered gradient titanium-matrix composites fabricated by multi-material laser powder bed fusion using metallized ceramic:Forming characteristics,microstructure evolution,and multifunctional properties[J].Additive Manufacturing,2023,62:103407.
[4]XIONG Y,ZHANG F,HUANG Y,et al.Multiple strengthening via high-entropy alloy particle addition in titanium matrix composites fabricated by spark plasma sintering[J].Materials Science and Engineering A,2022,859:144235.
[5]YU H L,ZHANG W,Wang H M,et al.In-situ synthesis of TiC/Ti composite coating by high frequency induction cladding[J].Journal of Alloys and Compounds,2017,701:244-255.
[6]HEYDARI L,LIETOR P F,CORPAS-IGLESIAS F A,et al.Ti(C,N)and WC-based cermets:A review of synthesis,properties and applications in additive manufacturing[J].Materials,2021,14(22):6786.
[7]HAYAT M D,SINGH H,HE Z,et al.Titanium metal matrix composites:An overview[J].Composites Part A:Applied Science and Manufacturing,2019,121:418-438.
[8]HAN C,BABICHEVA R,CHUA J D Q,et al.Microstructure and mechanical properties of(TiB+TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders[J].Additive Manufacturing,2020,36:101466.
[9]JANG J H,LEE C,HEO Y,et al.Stability of(Ti,M)C(M=Nb,V,Mo and W)carbide in steels using first-principles calculations[J].Acta Materialia,2012,60(1):208-217.
[10]劉戰(zhàn)強.先進刀具設(shè)計技術(shù):刀具結(jié)構(gòu),刀具材料與涂層技術(shù)[J].航空制造技術(shù),2006(7):38-42.
LIU Zhanqiang.Advanced tool design technology:Tool structure,tool material and coating technology[J].Aeronautical Manufacturing Technology,2006(7):38-42.
[11]李少峰,劉維良,彭牛生,等.金屬陶瓷刀具材料研究進展[J].陶瓷學(xué)報,2010,31(1):140-144.
LI Shaofeng,LIU Weiliang,PENG Niusheng,et al.Research progress ofcermet tool materials[J].Chinese Journal of Ceramics,2010,31(1):140-144.
[12]張寶國,劉戰(zhàn)強,張麗,等.聚晶金剛石(PCD)刀具在活塞加工中的應(yīng)用[J].工具技術(shù),2007,41(9):75-77.
ZHANG Baoguo,LIU Zhanqiang,ZHANG Li,et al.Apply of PCD cutting tool in machining piston[J].Tool Technology,2007,41(9):75-77.
[13]OH N R,LEE S K,HWANG K C,et al.Characterization of microstructure and tensile fracture behavior in a novel infiltrated TiC–steel composite[J].Scripta Materialia,2016,112:123-127.
[14]李艷國,王明陽,鄒芹.高熵碳/氮/硼化物陶瓷的增韌研究進展[J].燕山大學(xué)學(xué)報,2024,48(5):377-395.
LI Yanguo,WANG Mingyang,ZOU Qin.Progress in toughening of high-entropy non-oxide ceramics[J].Journal of Yanshan University,2024,48(5):377-395.
[15]LI X,XIANG J,HU W.{111 twinning structure and interfacial energy in nonstoichiometric TiCx with ordered carbon vacancies[J].Materials Characterization,2014,90:94-98.
[16]YI D,YU P,HU B,et al.Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites[J].Materialsamp;Design,2013,52:572-579.
[17]薛建新,游順英,虞建明.聚晶金剛石(PCD)刀具的開發(fā)與應(yīng)用[J].工具技術(shù),2003,37(4):45-47.
XUE Jianxin,YOU Shunying,YU Jianming.Development and application of polycrystalline diamond(PCD)tool[J].Tool Technology,2003,37(4):45-47.
[18]馮可桃,呂健,闞高輝,等.燒結(jié)過程氮氣分壓對(Ti,Nb)(C,N)基金屬陶瓷組織和性能的影響[J].稀有金屬與硬質(zhì)合金,2019,49(6):47-54.
FENG Ketao,LV Jian,KAN Gaohui,et al.Effect of nitrogen partialpressure during sintering on microstructure and properties of(Ti,Nb)(C,N)-based cermets[J].Rare Metals and Cemented Carbide,2019,49(6):47-54.
[19]KHAN H,YERRAMILLI A S,D'OLIVEIRA A,et al.Experimentalmethods in chemical engineering:X‐ray diffraction spectroscopy?XRD[J].Canadian Journal of Chemical Engineering,2020,98(6):1255-1266.
[20]CARDINAL S,MALCHERE A,GARNIER V,et al.Microstructure and mechanical properties of TiC-TiN based cermets for tools application[J].International Journal of Refractory Metals and Hard Materials,2009,27(3):521-527.
[21]楊天恩,熊計,李體軍,等.球磨時間對Ti(C0.7,N0.3)晶粒及Ti(C0.7,N0.3)基金屬陶瓷組織和性能的影響[J].工程科學(xué)與技術(shù),2017,49(1):123-131.
YANG Tianen,XIONG Ji,LI Tijun,et al.Effect of milling time on Ti(C0.7,N0.3)and microstructure and properties of Ti(C0.7,N0.3)-based cermets[J].Engineering Science and Technology,2017,49(1):123-131.
[22]單忠德,朱福先.應(yīng)用PCD刀具銑削砂型的刀具磨損機理和預(yù)測模型[J].機械工程學(xué)報,2018,54(17):124-132.
SHAN Zhongde,ZHU Fuxian.Wear mechanism and prediction model ofpolycrystalline diamond tool in milling sand mould[J].Chinese Journal of Mechanical Engineering,2018,54(17):124-132.
[23]葛英飛,邊衛(wèi)亮,傅玉燦,等.PCD刀具高速銑削SiCp/Al復(fù)合材料切削溫度試驗研究[J].工具技術(shù),2011,45(8):31-35.
GE Yingfei,BIAN Weiliang,F(xiàn)U Yucan,et al.Experimental study on temperature during high speed milling of SiCp/Al composites using PCD tool[J].Toolamp;Technology,2011,45(8):31-35.
[24]李來來,金頭男,符寒光,等.激光熔覆原位合成(Ti,Nb)C強化Ni45涂層的微觀組織與耐磨性研究[J].熱加工工藝,2019,50(8):81-85,91.
LI Lailai,JIN Tounan,F(xiàn)U Hanguang,et al.Study on microstructure and wear resistance of Ni45 coatings strengthened by in-situ synthesis(Ti,Nb)C by laser cladding[J].Hot Working Technology,2019,50(8):81-85,91.
[25]鄒芹,王鵬,徐江波,等.金屬基自潤滑復(fù)合材料固體潤滑劑研究進展[J].燕山大學(xué)學(xué)報,2023,47(5):398-410.
ZOU Qin,WANG Peng,XU Jiangbo,et al.Research progress of solid lubricants of metal matrix self-lubricating composites[J].Journal of YanShan University,2023,47(5):398-410.
[26]武美玲,尹育航,丁冬海,等.自蔓延高溫合成法制備金剛石工具材料研究現(xiàn)狀[J].材料熱處理學(xué)報,2023,44(5):1-15.
WU Meiling,YIN Yuhang,DING Donghai,et al.Research status of diamond tool materials prepared by self-propagating high-temperature synthesis[J].Journal of Materials Heat Treatment,2023,44(5):1-15.
[27]鄒芹,李壯,李艷國,等.中熵碳化物陶瓷TiC0.4/VC/NbC結(jié)合的WC基硬質(zhì)合金合成與性能[J].中國有色金屬學(xué)報,2023,33(6):1914-1923.
ZOU Qin,LI Zhuang,LI Yanguo,et al.Synthesis and properties of WC-based cemented carbide combined with TiC0.4/VC/NbC medium entropy carbide ceramics[J].The Chinses Journal of Nonferrous Metals,2023,33(6):1914-1923.
[28]ZHANG Z,GENG C,KE Y,et al.Processing and mechanical properties of nonstoichiometric TiC(0.3≤x≤0.5)[J].Ceramics International,2018,44(15):18996-19001.
[29]鄺宏有,戴炳蔚,吳育藩.WC-11%(Ti,W)(Ta,Nb)C-11%Co合金制取過程中碳量和球磨時間的優(yōu)化[J].硬質(zhì)合金,2012,39(2):111-117.
KUANG Hongyou,DAI Bingwei,WU Yufan.Optimization of carboncontent and ball milling time in Preparation of WC-11%(Ti,W)(Ta,Nb)C-11%Co alloy[J].Journal of Cemented Carbide,2012,39(2):111-117.
[30]項忠楠,李戰(zhàn)江,黃水根,等.燒結(jié)溫度對(Ti,W,Mo,Nb)(C,N)-(Co,Ni)金屬陶瓷組織結(jié)構(gòu)和性能的影響[J].稀有金屬材料與工程,2021,50(4):1179-1186.
XIANG Zhongnan,LI Zhanjiang,HUANG Shuigen,et al.Effect of sintering temperature on microstructure and properties of(Ti,W,Mo,Nb)(C,N)-(Co,Ni)cermet[J].Rare Metal Materials and Engineering,2021,50(4):1179-1186.
[31]許育東,劉寧,石敏,等.(Ti,Mo,W,Ta,V,Nb)(C,N)多元陶瓷相的價電子結(jié)構(gòu)[J].硅酸鹽通報,2005,24(2):8-12.
XU Yudong,LIU Ning,SHI Min,et al.Valence electron structure(VES)of(Ti,Mo,W,Ta,V,Nb)(C,N)ceramic multiphase in cermets[J].Bulletin of Silicate,2005,24(2):8-12.
作者簡介
鄒芹,女,1978,教授。主要研究方向:超硬及特種陶瓷材料。E-mail:zq@ysu.edu.cn
李艷國,男,1978,副研究員。主要研究方向:先進鋼鐵材料。E-mail:lyg@ysu.edu.cn
(編輯:周萬里)
Preparation and performance characterization of(Ti,Nb)Cx composite material
ZOU Qin1,2,REN Yu1,LI Yanguo1,REN Haibo2
(1.State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,Hebei,China)
(2.School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China)
Abstract Objectives:The aim was to prepare a variety of non-stoichiometric(Ti,Nb)Cx PCD tool binder composites using TiC and transition metal Nb by mechanical alloying(MA)technology.The effects of different sintering temperat-ures and Nb contents on the phase compositions,microstructures,and mechanical properties of the composites were in-vestigated to provide a scientific basis for optimizing the properties of PCD tool binders.The specific tasks included preparing(Ti,Nb)Cx composites with varying ratios,analyzing their solid-solution behavior at different temperatures,and evaluating their hardness and fracture toughness.Methods:High purity TiC and Nb powders were selected as raw materials for the experiment,and the MA technology was used to achieve uniform mixing of the two materials.In order to investigate the effect of sintering temperature on the properties of composite materials,various sintering temperatures ranging from 1300 to 1700℃were set.The sintered samples were subjected to phase analysis using an X-ray diffracto-meter,and the data were analyzed using Jade software.Subsequently,the fracture morphology of the sintered body was observed using scanning electron microscopy(SEM),and the hardness and fracture toughness of the composite materi-als were measured using a Vickers hardness tester.Results:Within the sintering temperature range of 1 300 to 1 700℃,the solid-solution degree of TiC and Nb gradually increases with the increase in temperature.At higher temperatures,the diffusion between TiC and Nb accelerates,forming a more stable solid-solution,and the phase composition tends to sta-bilize.At the same sintering temperature,the hardness of the(Ti,Nb)Cx composite increases gradually with the increase in Nb content,indicating that the introduction of Nb enhances the overall hardness of the composite.Especially when the sintering temperature is 1600℃,the(Ti,Nb)C0.50.5 composite exhibits the best mechanical properties with a hard-ness of 23.0 GPa and fracture toughness of 7.20 MPa·m1/2.The results show that under these temperature and ratio con-ditions,the composite achieves the best solid-solution state,has fewer internal defects,moderate grain size,and optimal mechanical properties.Conclusions:The sintering temperature and Nb content have significant impacts on the phase composition and mechanical properties of(Ti,Nb)Cx composite materials.Controlling these two parameters can optim-ize the hardness and toughness of the composite materials,thereby enhancing their application potential in PCD cutting tools.The higher sintering temperature is conducive to the full solid-solution of TiC and Nb,forming a more stable crys-talline phase structure and improving the mechanical properties of the material.Future research could explore the influ-ences of introducing other transition group metals on the properties of composite materials in order to develop higher-performance PCD tool binders.Others:Although the main objective of this study is to optimize the performance of(Ti,Nb)Cx PCD tool binders,the mechanical alloying techniques and analytical methods used in this research have the potential for broader applications.The mechanical alloying technology is not only suitable for the development of PCD tool materials but also for the preparation of other high-performance composite materials.At the same time,the combin-ation of X-ray diffraction analysis and scanning electron microscopy provides valuable data support for the field of ma-terials science,which helps deepen the understanding of the microstructure and phase composition of materials,thereby promoting research progress in the field.
Key words TiC;Nb;(Ti,Nb)Cx;non-stoichiometric ratio;performance