• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      含磷霉素的聯(lián)合抗菌方案治療耐碳青霉烯革蘭陰性桿菌感染療效:系統(tǒng)評(píng)價(jià)與薈萃分析

      2024-01-01 00:00:00鄭慧敏劉彩玉梁煒杰黃美佳王凌阮君山
      中國抗生素雜志 2024年6期
      關(guān)鍵詞:磷霉素聯(lián)合治療

      摘要:目的 評(píng)價(jià)含磷霉素聯(lián)合治療碳青霉烯耐藥革蘭陰性菌(carbapenem-resistant Gram-negative organism,CRO )感染的療效。探討含磷霉素聯(lián)合治療CRO感染的最佳方案。方法 系統(tǒng)檢索中國知網(wǎng)、PubMed、Embase、Web of Science、Cochrane Library數(shù)據(jù)庫,收集建庫至2023年7月6日公開發(fā)表的關(guān)于磷霉素治療CRO感染的相關(guān)文獻(xiàn),按照納入排除標(biāo)準(zhǔn)進(jìn)行篩選,使用RevMan 5.4.1軟件進(jìn)行薈萃分析。主要結(jié)局指標(biāo)包括臨床死亡率。使用R軟件對(duì)含磷霉素的聯(lián)合治療方案進(jìn)行網(wǎng)狀Meta分析。使用Cochrane偏差風(fēng)險(xiǎn)評(píng)估工具和Newcastle-Ottawa scale量表評(píng)估文獻(xiàn)質(zhì)量。本研究已在PROSPERO注冊(cè),CRD42022344659。結(jié)果 最初檢索到11806篇文獻(xiàn),其中有16篇、6篇分別納入死亡率的Meta分析和網(wǎng)狀Meta分析。含磷霉素的聯(lián)合抗菌治療方案和其他方案治療CRO感染的總死亡率分別為25%(76/304)和42.63%(350/821),差異有統(tǒng)計(jì)學(xué)意義[優(yōu)勢(shì)比(odds ratio, OR)=0.44; 95%CI=0.32-0.62 P<0.0001, I2=48%]。在亞組分析中,含磷霉素的聯(lián)合抗菌治療方案和其他方案治療耐碳青霉烯腸桿菌科細(xì)菌(carbapenem-resistant Enterobacteriaceae, CRE)感染的總死亡率分別為22.06%(45/204)和35.96%(228/634),差異有統(tǒng)計(jì)學(xué)意義(OR=0.62, 95%CI=0.41~0.95, P =0.03<0.05, I2=0% )。含磷霉素的聯(lián)合抗菌治療方案和其他方案治療耐碳青霉烯鮑曼不動(dòng)桿菌(carbapenem-resistant Acinetobacter baumannii, CRAB)感染的總死亡率分別為31.87%(29/91)和66.12%(121/183),差異無統(tǒng)計(jì)學(xué)意義(OR=0.24, 95%CI=0.03~1.76, P=0.16>0.05, I2=91% )。在網(wǎng)絡(luò)薈萃分析中,多利培南+磷霉素治療CRO感染的死亡率最低。結(jié)論 含磷霉素的聯(lián)合治療方案可顯著降低CRO感染患者的死亡率。此外,多利培南加磷霉素可能是最佳的組合方案。

      關(guān)鍵詞:磷霉素;碳青霉烯耐藥革蘭陰性菌;聯(lián)合治療;CRO;臨床結(jié)局

      中圖分類號(hào):R978.1 文獻(xiàn)標(biāo)志碼:A

      Effectiveness of fosfomycin-containing combination therapy in the treatment of carbapenem-resistant Gram-negative organism infections: A systematic review and Meta-analysis

      Zheng Huimin1,2, Liu Caiyu1,2, Liang Weijie1,2, Huang Meijia1,2, Wang Ling1,2 and "Ruan Junshan1,2

      (1 Fujian Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001;

      2 School of Pharmacy, Fujian Medical University, Fuzhou 350004)

      Abstract Objective This study evaluated the efficacy of fosfomycin-containing combination therapy for patients with carbapenem-resistant Gram-negative organism (CRO) infections, and explore the best fosfomycin-containing combination therapy regimen for CRO infections. Methods The databases of CNKI, PubMed, Embase, Web of Science, and Cochrane Library were searched systematically, and the related literature on fosfomycin treatment of CRO infections published publicly until July 6, 2023, was collected. The literature was screened according to the inclusion and exclusion criteria, and the meta-analysis was performed using RevMan 5.4.1. The primary outcomes included the mortality rate. R software was used for a network meta-analysis of fosfomycin-containing combination therapy. The Cochrane bias risk assessment tool and the Newcastle-Ottawa scale were used to assess the quality of the studies included. Results The initial search yielded 11,806 documents, and 16 studies were finally included for meta-analysis, of which 14 and 6 were used for direct meta-analysis and network meta-analysis respectively. The total mortality rate of CRO infections treated with fosfomycin and other regimens was 25% (76/304) and 42.63% (350/821), respectively, with a statistically significant difference [odds ratio (OR)=0.44; 95%CI=0.32~0.62, Plt;0.0001, I2= 48%]. In the subgroup analysis, the total mortality rate of carbapenem-resistant Enterobacteriaceae (CRE) infections treated with fosfomycin and other regimens was 22.06% (45/204) and 35.96% (228/634) respectively, with a statistically significant difference (OR=0.62, 95%CI=0.41~0.95, P=0.03lt;0.05, I2= 0). The total mortality rate of fosphomycin-containing combined antimicrobial therapy and other regimens in the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) infections was 31.87% (29/91) and 66.12% (121/183), respectively, with no statistically significant difference (OR=0.24, 95%CI=0.03~1.76, P=0.16gt;0.05, I2= 91%). The mortality of CRO infections treated with doripenem and fosfomycin was the lowest. Conclusion The fosfomycin included combination therapy can significantly reduce the mortality of patients with CRO infections. Moreover, doripenem plus fosfomycin may be the best combination regimen.

      Key words Fosfomycin; Carbapenem-resistant Gram-negative organism; Combination therapy; CRO; Clinical outcome

      CRO主要包括CRE、碳青霉烯耐銅綠假單胞菌(carbapenem-resistant Pseudomonas aeruginosa, CRPA)、CRAB[1-4],世界衛(wèi)生組織(World Health Organization, WHO)和美國疾病預(yù)防控制中心(Centers for Disease Control and Prevention, CDC)均把CRO的危險(xiǎn)級(jí)別確定為首要等級(jí)[1]。根據(jù)最新的美國和歐洲治療CRO的指南,治療CRO一線抗菌藥物有黏菌素、多黏菌素B、替加環(huán)素、頭孢地爾和頭孢他啶/阿維巴坦[2-3]。黏菌素耐藥主要是由于mgrB基因突變[5],腸桿菌科細(xì)菌對(duì)多黏菌素B產(chǎn)生獲得性耐藥的最常見機(jī)制是通過染色體編碼的陽離子取代對(duì)脂多糖進(jìn)行修飾[6]。另外,黏菌素和多黏菌素B治療期間急性腎損傷(acute kidney injury, AKI)的發(fā)生率分別高達(dá)50.6%[7]和60%[8]。替加環(huán)素的耐藥機(jī)制中RND型轉(zhuǎn)運(yùn)蛋白(主要是AcrAB外排泵)發(fā)揮著重要作用[9],其在臨床治療CRO感染時(shí)大劑量長(zhǎng)療程使用[10-13],導(dǎo)致纖維蛋白原降低和出血[14-16]等嚴(yán)重的不良反應(yīng)。頭孢地爾耐藥可由兒茶酚酸鐵載體受體CirA突變引起[17],且其相關(guān)的臨床試驗(yàn)較少。產(chǎn)KPC肺炎克雷伯菌通過膜孔蛋白LamB突變等非酶耐藥機(jī)制對(duì)頭孢他啶/阿維巴坦耐藥[18-21],評(píng)估頭孢他啶/阿維巴坦臨床反應(yīng)的真實(shí)世界研究結(jié)果不一致。因此,一線抗菌藥物聯(lián)合治療是治療CRO的重要方式[2-3]。

      磷霉素在聯(lián)合用藥中具有獨(dú)特優(yōu)勢(shì)。大量體外實(shí)驗(yàn)證明磷霉素能夠通過增強(qiáng)其他抗菌藥物的殺菌活性而發(fā)揮協(xié)同殺菌作用,磷霉素與多黏菌素、美羅培南、替加環(huán)素等多種抗菌藥物具有協(xié)同抗CRO作用,可增加其他抗菌藥物的殺菌效果或恢復(fù)對(duì)其他抗菌藥物的敏感性[22-29]。磷霉素抑制UDP-N-乙酰氨基葡萄糖烯醇丙酮基轉(zhuǎn)移酶(或MurA),導(dǎo)致細(xì)菌未形成(peptidoglycan, PG)的前體UDP-N-乙酰胞壁酸,PG層完整性喪失,細(xì)菌細(xì)胞裂解和死亡[30-35],這一特性幫助其他抗菌藥物更好地進(jìn)入細(xì)菌細(xì)胞。此外,磷霉素組織分布良好[22],耐受性良好,自限性不良事件發(fā)生率為1%~10%[36-37]。無論使用低劑量(4 g/d)還是高劑量(16 g/d)的磷霉素,白細(xì)胞減少癥和中性粒細(xì)胞減少癥等嚴(yán)重事件很少見[38-40];磷霉素價(jià)格低廉且可及性高。

      但是,較少有指南共識(shí)推薦磷霉素用于治療CRO感染。美國傳染病學(xué)會(huì)(Infectious Diseases Society of America, IDSA)更新的2022年治療CRE、CRPA的指南中磷霉素單藥不被推薦用于治療其他部位的感染,僅被推薦用于治療由大腸埃希菌引起的不復(fù)雜的CRE膀胱炎[2],但該建議只參考了2篇磷霉素體外研究和藥品說明書中的藥動(dòng)學(xué)數(shù)據(jù),這樣的證據(jù)明顯不足。相反,歐洲臨床微生物與感染性疾病學(xué)會(huì)(European Society for clinical microbiology and infectious diseases, ESCMID)更新的2022年治療耐多藥革蘭陰性桿菌感染的指南中[3]則明確建議磷霉素可聯(lián)合多種體外敏感抗菌藥物治療CRE和CRPA嚴(yán)重感染,但該建議沒有參考相關(guān)研究,只說明了建議的證據(jù)等級(jí)為“具有一定的準(zhǔn)確性”和“證據(jù)確定性非常低”。中國在2021年治療CRE的指南與歐洲的指南建議相同[41],但該建議只參考了2篇薈萃分析且證據(jù)等級(jí)較低。由于美國與中歐對(duì)于磷霉素治療CRO的建議不統(tǒng)一或證據(jù)不充分,因此迫切需要明確磷霉素的療效。

      本系統(tǒng)評(píng)價(jià)和薈萃分析的目的在于比較含磷霉素的聯(lián)合方案相較于其他方案治療CRO是否更有優(yōu)勢(shì),并通過網(wǎng)絡(luò)薈萃分析探索目前治療CRO最佳的基于磷霉素的聯(lián)合抗菌方案,以期為臨床應(yīng)用提供參考。

      1 資料與方法

      1.1 納入與排除標(biāo)準(zhǔn)

      1.1.1 納入標(biāo)準(zhǔn)

      ①研究對(duì)象:臨床診斷為CRO感染的患者。②干預(yù)措施:有明確的抗菌藥物治療方案。③結(jié)局指標(biāo):報(bào)告接受抗菌藥物治療的CRO感染患者的臨床或微生物結(jié)局,至少包含死亡率、治愈率、細(xì)菌清除率中的一項(xiàng)結(jié)局指標(biāo),且可以直接或間接獲得效應(yīng)量的文獻(xiàn)。④研究類型:不限研究類型,包括前瞻性和回溯性隨機(jī)對(duì)照試驗(yàn)(randomized controlled trial, RCT)、隊(duì)列和病例對(duì)照研究以及病例系列和病例報(bào)告。⑤碳青霉烯酶基因的表型檢測(cè)使用濃度梯度法(E-test)或基于2015年臨床和實(shí)驗(yàn)室標(biāo)準(zhǔn)研究所提供的雙紙片協(xié)同試驗(yàn)等方法;碳青霉烯酶基因的檢測(cè)使用了聚合酶鏈?zhǔn)椒磻?yīng)等分子方法。

      1.1.2 排除標(biāo)準(zhǔn)

      ①重復(fù)發(fā)表的文獻(xiàn);②綜述、系統(tǒng)評(píng)價(jià)文獻(xiàn);③無法提取結(jié)局指標(biāo)的文獻(xiàn);④研究類型:會(huì)議記錄、社論、復(fù)制出版物、無對(duì)照的研究、體外研究、動(dòng)物實(shí)驗(yàn);⑤抗菌藥物治療方案:抗菌治療方案中沒有含磷霉素的治療方案的文獻(xiàn)。

      1.2 結(jié)局指標(biāo)

      本文系統(tǒng)評(píng)價(jià)和Meta分析的主要結(jié)果是各種抗菌方案(含磷霉素的聯(lián)合方案vs其他聯(lián)合方案)治療CRO的死亡率。

      1.3 文獻(xiàn)檢索

      本次系統(tǒng)評(píng)價(jià)和薈萃分析嚴(yán)格遵循系統(tǒng)綜述和Meta分析的首選報(bào)告項(xiàng)目(Preferred Reporting Items for Systematic reviews and Meta-Analyses, PRISMA)指南[1]和Cochrane圖書館[2](Cochrane Library)的建議。采用主題詞和關(guān)鍵詞相結(jié)合的方法,關(guān)鍵檢索詞主要包括耐碳青霉烯類細(xì)菌、耐碳青霉烯類腸桿菌科細(xì)菌、耐碳青霉烯類銅綠假單胞菌、耐碳青霉烯類鮑曼不動(dòng)桿菌、肺炎克雷伯菌、產(chǎn)碳青霉烯類、抗生素方案、臨床成功、微生物學(xué)成功、死亡率、臨床結(jié)果、碳青霉烯耐藥、CRO、CRGNB、CRPA、CRAB、KPC、CRE、產(chǎn)VIM、產(chǎn)IMP、產(chǎn)NDM和產(chǎn)OXA等。計(jì)算機(jī)檢索中文數(shù)據(jù)庫:中國知網(wǎng),英文數(shù)據(jù)庫:PubMed的相關(guān)文獻(xiàn),檢索時(shí)間均為建庫至 2022年5月。沒有語言、日期和國家等的限制檢索。以上檢索工作由兩位作者獨(dú)立完成。該研究已在PROSPERO (CRD42022344659)上注冊(cè),相關(guān)信息(protocol)可在線獲得。

      1.4 文獻(xiàn)篩選和數(shù)據(jù)提取

      數(shù)據(jù)提取由2個(gè)作者獨(dú)立完成,在此過程中出現(xiàn)的任何問題由第三個(gè)作者仲裁解決。建立了一個(gè)標(biāo)準(zhǔn)的Microsoft Excel數(shù)據(jù)提取模板,從納入的文獻(xiàn)中依次提取了以下數(shù)據(jù):國家、研究年份、研究設(shè)計(jì)、研究周期、患者人數(shù)、年齡(x±s)、 男性[n(%)]、人群特征[n%]、感染部位[n(%)];接受確定抗感染治療方案的患者[n(%)];病原微生物分離(%); 敏感性實(shí)驗(yàn)方法,耐藥基因[n(%)];抗菌藥物治療方案;聯(lián)合治療方案的治療結(jié)局[n(%)]。最后的數(shù)據(jù)集由第三位作者審查其完整性和準(zhǔn)確性。提取的數(shù)據(jù)總結(jié)于文獻(xiàn)特征表中。

      1.5 文獻(xiàn)質(zhì)量評(píng)價(jià)和質(zhì)量控制

      所有偏倚風(fēng)險(xiǎn)評(píng)估均由2名評(píng)估人員獨(dú)立進(jìn)行。本課題研究分別使用Cochrane偏倚風(fēng)險(xiǎn)評(píng)估工具(RoB2,2022)[42]和紐卡斯?fàn)?渥太華量表(Newcastle-Ottawa scale)評(píng)估2項(xiàng)隨機(jī)對(duì)照試驗(yàn)和隊(duì)列研究和1項(xiàng)病例系列研究的偏倚風(fēng)險(xiǎn)[43]。交叉核對(duì)結(jié)果后,如評(píng)價(jià)有爭(zhēng)議,則通過與第三位評(píng)價(jià)者討論解決。

      1.6 統(tǒng)計(jì)學(xué)方法

      本系統(tǒng)評(píng)價(jià)納入并總結(jié)了16篇文獻(xiàn)的數(shù)據(jù)。匯總的數(shù)據(jù)是一個(gè)二分變量——某種治療方案的死亡人數(shù)(n)/總?cè)藬?shù)(N)(28 d或30 d死亡率或全因住院死亡率)。含磷霉素的聯(lián)合抗菌方案和其他抗菌方案的死亡人數(shù)分別匯總。

      使用RevMan 5.4.1軟件進(jìn)行Meta分析,并使用漏斗圖分析潛在的發(fā)表偏倚。通過匯總優(yōu)勢(shì)比(OR)和95%置信區(qū)間(CI)評(píng)估每項(xiàng)研究的二分變量,其中Plt;0.05被認(rèn)為具有統(tǒng)計(jì)學(xué)意義。采用χ2檢驗(yàn)和I2值判斷異質(zhì)性大小。研究之間的異質(zhì)性結(jié)果I2lt;50%,則使用固定效應(yīng)模型,否則采用隨機(jī)效應(yīng)模型。通過亞組分析和敏感性分析分析異質(zhì)性來源,結(jié)果不合并,僅作描述性分析。

      此次研究還使用R軟件對(duì)含磷霉素的聯(lián)合治療方案進(jìn)行網(wǎng)狀Meta分析。描繪證據(jù)網(wǎng)絡(luò)圖、進(jìn)行不一致性檢測(cè)、網(wǎng)狀Meta分析以及計(jì)算各干預(yù)措施的累積排序概率曲線下面積(surface under the cumulative ranking curve, SUCRA)。Meta分析二分類變量采用比值比(odds ratio, OR)。效應(yīng)量采用95%可信區(qū)間(confidence interval, CI)表示,結(jié)果以表格形式呈現(xiàn)。

      網(wǎng)狀Meta分析結(jié)果的報(bào)告嚴(yán)格遵循系統(tǒng)評(píng)價(jià)和網(wǎng)狀Meta分析優(yōu)先報(bào)告條目(PRISMA extension for network Meta-analysis)[59]。

      2 結(jié)果

      2.1 文獻(xiàn)檢索結(jié)果及質(zhì)量評(píng)價(jià)

      如圖1所示,確定了11806篇已發(fā)表的原始文獻(xiàn),其中排除了904篇重復(fù)文獻(xiàn);在初篩階段,依據(jù)標(biāo)題和摘要又排除了8098篇文獻(xiàn);在復(fù)篩階段,排除了1104篇綜述、960篇系統(tǒng)評(píng)價(jià)和Meta分析;對(duì)剩下的740篇文獻(xiàn)進(jìn)行全文審閱,依據(jù)排除標(biāo)準(zhǔn)最后又排除了724篇文獻(xiàn)。最終,16篇文獻(xiàn)被納入。

      2.2 納入文獻(xiàn)的基本特征

      如表1所示,展示了部分所納入研究的一般特征。共納入16篇研究,合計(jì)1487例患者。僅4項(xiàng)研究(25%)的研究來自亞洲國家(中國和泰國),有9項(xiàng)研究(56.3%)來自歐洲國家,主要來自意大利,有2項(xiàng)研究(12.5%)來自美國,僅有1項(xiàng)研究(6.3%)來自兩個(gè)以上國家。僅有2項(xiàng)研究(12.5%)的研究為隨機(jī)對(duì)照試驗(yàn)(RCT),有13項(xiàng)研究(81.3%)為隊(duì)列研究,其中5項(xiàng)(31.3%)為前瞻性研究,有1項(xiàng)(6.3%)為病例對(duì)照和病例系列研究。有13項(xiàng)研究(81.3%)同時(shí)報(bào)告了聯(lián)合和單藥治療方案,另外,所有研究均報(bào)告了聯(lián)合抗菌治療方案(表1)。

      2.3 發(fā)表偏倚

      如圖2所示,一項(xiàng)RCT對(duì)于Cochrane評(píng)價(jià)表中大多數(shù)主要標(biāo)準(zhǔn)的偏差風(fēng)險(xiǎn)較低,僅對(duì)1個(gè)標(biāo)準(zhǔn)的偏差風(fēng)險(xiǎn)很高;另一項(xiàng)對(duì)大多數(shù)標(biāo)準(zhǔn)的偏差風(fēng)險(xiǎn)不明確。如表2所示,參照the newcastle-ottawa scale,5項(xiàng)前瞻性隊(duì)列研究的質(zhì)量較高;1項(xiàng)病例系列研究的質(zhì)量最低,主要偏移來源于“選擇”以及“暴露”條目;8項(xiàng)回顧性隊(duì)列研究的質(zhì)量一般,其中5項(xiàng)研究主要偏移來源于“暴露”條目。如圖3所示,繪制漏斗圖,發(fā)現(xiàn)漏斗圖稍微不對(duì)稱,表明其可能存在一定發(fā)表偏倚。

      2.4 死亡率

      如圖4所示,最終納入的16篇研究中有14篇研究可用于進(jìn)行直接Meta分析,總計(jì)1125例患者。結(jié)果顯示,含磷霉素的聯(lián)合抗菌治療方案和其他方案治療CRO感染的總死亡率分別為25%(76/304)和42.63%(580/821),差異有統(tǒng)計(jì)學(xué)意義(OR=0.44,

      95%CI=0.32~0.62,Plt;0.00001,I2=48%),含磷霉素的聯(lián)合抗菌治療方案治療CRO感染的死亡率顯著低于其他方案。按死亡率類型進(jìn)行的亞組分析如圖5~7所示。無論是28 d死亡率(OR=0.72, 95%CI=0.36~1.45,P=0.36>0.05,I2=0%),還是30 d死亡率(OR=0.58, 95%CI=0.25~1.34,P=0.20>0.05,I2=68%),含磷霉素的聯(lián)合方案組與對(duì)照組之間均沒有顯著差異;而對(duì)于全因住院死亡率,含磷霉素的聯(lián)合方案組的死亡率顯著低于對(duì)照組(OR=0.30, 95%CI=0.11~0.78,P=0.01<0.05,I2=0)。如圖8所示,對(duì)CRE感染的患者進(jìn)行亞組分析,結(jié)果顯示含磷霉素的聯(lián)合抗菌治療方案和其他方案治療CRE的總死亡率分別為22.06%(45/204)和35.96%(228/634),差異有統(tǒng)計(jì)學(xué)意義(OR=0.62, 95%CI=0.41~0.95,P =0.03<0.05,I2=0),含磷霉素的聯(lián)合抗菌治療方案治療CRE死亡率顯著低于其他方案。如圖9所示,對(duì)CRAB感染的患者進(jìn)行亞組分析,結(jié)果顯示含磷霉素的聯(lián)合抗菌治療方案和其他方案治療的總死亡率分別為31.87%(29/91)和66.12%(121/183),差異無統(tǒng)計(jì)學(xué)意義(OR=0.24, 95%CI=0.03~1.76, P=0.16>0.05,I2=91%),含磷霉素的聯(lián)合抗菌治療方案治療CRAB死亡率與其他方案差不多。

      2.5 網(wǎng)狀Meta分析

      5種不同含磷霉素的聯(lián)合治療方案治療CRO的網(wǎng)狀關(guān)系圖見圖10。如圖11所示,不一致性檢驗(yàn)結(jié)果本次研究采用節(jié)點(diǎn)分析法,結(jié)果顯示5種不同含磷霉素的聯(lián)合治療方案治療CRO死亡率的直接比較和間接比較結(jié)果之間的差異均無統(tǒng)計(jì)學(xué)意義(Pgt;0.05),直接證據(jù)和間接證據(jù)不存在明顯的不一致性。如圖12所示,納入6個(gè)研究[18,45,49,51,53,55],包括115例患者。相對(duì)于黏菌素+磷霉素,替加環(huán)素+磷霉素(OR=2.9×104, 95%CI=4.9~1.5×1012)、慶大霉素+磷霉素(OR=1.7×104, 95%CI=1.3~7.2×1011)、頭孢吡肟+阿莫西林/克拉維酸+磷霉素(OR=1.0×105, 95%CI=4.7~7.8×1012)治療CRO的死亡率更高,黏菌素+磷霉素與多利培南+磷霉素(OR=0.92, 95%CI=0.065~13)之間無統(tǒng)計(jì)學(xué)差異(圖12a)。相對(duì)于替加環(huán)素+磷霉素,多利培南+磷霉素(OR=3.1×10-5, 95%CI=5.1×10-13~0.31)治療CRO的死亡率更低,替加環(huán)素+磷霉素與慶大霉素+磷霉素(OR=0.53, 95%CI=0.025~9.1)之間、替加環(huán)素+磷霉素與頭孢吡肟+阿莫西林/克拉維酸+磷霉素(OR=3.3, 95%CI=0.039~3.1×102)之間無統(tǒng)計(jì)學(xué)差異(圖12b)。慶大霉素+磷霉素與頭孢吡肟+阿莫西林/克拉維酸+磷霉素(OR=6.3, 95%CI=0.033~1.6×103)、慶大霉素+磷霉素與多利培南+磷霉素(OR=5.2×10-5, 95%CI=1.1×10-12~1.1)之間無統(tǒng)計(jì)學(xué)差異(圖12c)。相對(duì)于頭孢吡肟+阿莫西林/克拉維酸+磷霉素,doripenem+fosfomycina(OR=8.7×10-6, 95%CI=1.0×10-13~0.29)的死亡率更低(圖12d)。相對(duì)于多利培南+磷霉素,替加環(huán)素+磷霉素(OR=3.2×104, 95%CI=3.3~1.9×1012)、慶大霉素+磷霉素(OR=1.9×104, 95%CI=0.89~9.3×1011)、頭孢吡肟+阿莫西林/克拉維酸+磷霉素(OR=1.1×105, 95%CI=3.5~9.9×1012)治療CRO的死亡率更高,多利培南+磷霉素與黏菌素+磷霉素(OR=1.1, 95%CI=0.076~15)之間無統(tǒng)計(jì)學(xué)差異(圖12e)。

      如圖13和表3所示,等級(jí)概率排序圖和排序表顯示,關(guān)于5種抗菌方案治療CRO的死亡率,黏菌素+磷霉素、替加環(huán)素+磷霉素、慶大霉素+磷霉素、頭孢吡肟+阿莫西林/克拉維酸+磷霉素、多利培南+磷霉素排名第5的概率分別為45.8%、0.06%、1.4%、0.7%和52.1%,因此,在本研究中多利培南+磷霉素為治療CRO的最佳方案。

      3 討論

      本研究首次對(duì)含磷霉素的聯(lián)合抗菌方案治療CRO的有效性進(jìn)行系統(tǒng)評(píng)價(jià)和Meta分析,證據(jù)表明含磷霉素的聯(lián)合抗菌方案治療CRO的死亡率顯著低于其他方案,多利培南聯(lián)合磷霉素可能是治療CRO的最佳方案。

      本研究發(fā)現(xiàn)聯(lián)合磷霉素治療CRE的死亡率更低。體外研究也論證這一結(jié)論,磷霉素具有突出的體外協(xié)同作用,Xu等[29]的聯(lián)合藥敏試驗(yàn)采用棋盤稀釋法揭示了亞胺培南/瑞來巴坦與磷霉素聯(lián)合使用的協(xié)同(60%, 6/10)和相加(40%, 4/10)作用,發(fā)現(xiàn)了針對(duì)所有測(cè)試的耐碳青霉烯類肺炎克雷伯菌協(xié)同活性。Samonis等[60]的體外研究發(fā)現(xiàn)磷霉素與亞胺培南、美羅培南的雙藥組合對(duì)CRKP臨床分離株的體外高協(xié)同作用。

      與CRE不同,聯(lián)合磷霉素治療CRAB的死亡率與其他方案相似(OR=0.24, 95%CI=0.03~1.76, P=0.16>0.05。但許多體外研究表明聯(lián)合磷霉素治療CRAB是有前途的選擇。Zhu等[61]使用棋盤法評(píng)估各種抗生素組合對(duì)耐亞胺培南鮑曼不動(dòng)桿菌的體外有效性,發(fā)現(xiàn)亞胺培南和磷霉素的組合對(duì)12個(gè)分離株顯示出協(xié)同作用。Sazlyna等[62]的體外靜態(tài)濃度研究表明,基于磷霉素和舒巴坦的組合可能對(duì)耐碳青霉烯類鮑曼不動(dòng)桿菌有效。由于本次亞組分析中僅納入了兩篇相關(guān)研究,患者數(shù)量?jī)H150個(gè)患者,研究結(jié)果可能會(huì)隨著納入研究數(shù)量增多而變化。

      由于文獻(xiàn)數(shù)量的限制,未對(duì)聯(lián)合磷霉素治療CRPA的死亡率進(jìn)行亞組分析,但磷霉素治療CRPA的研究已被全部納入。本研究納入的2例CRPA患者均被磷霉素聯(lián)合方案治愈[55]。另外,Apisarnthanarak等[49]的回顧性對(duì)照研究比較多利培南+磷霉素與黏菌素+磷霉素治療CRPA的臨床療效,結(jié)果顯示2種方案的總死亡率僅為24.4%,2種方案均可行、有效且耐受性良好。體外研究似乎也驗(yàn)證了這一結(jié)論。James等[63]的體外研究發(fā)現(xiàn)美羅培南與磷霉素對(duì)產(chǎn)金屬-β-內(nèi)酰胺酶的銅綠假單胞菌的協(xié)同作用。

      在本次網(wǎng)狀Meta分析研究中,多利培南+磷霉素治療CRO的死亡率最低。由于納入研究數(shù)量有限,無法分別進(jìn)行含磷霉素的聯(lián)合方案治療CRE、CRAB和CRPA的網(wǎng)狀Meta分析,因此僅針對(duì)治療CRO進(jìn)行分析。Samonis等[60]的體外研究發(fā)現(xiàn)磷霉素+多尼培南在74%的CRKP臨床分離株中表現(xiàn)出體外協(xié)同作用,體外協(xié)同作用分別強(qiáng)于磷霉素+美羅培南(70%)、磷霉素+奈替米星(42%)、磷霉素+黏菌素(36%)、磷霉素+替加環(huán)素(30%)。Lingscheid等[64]評(píng)估了多尼培南加磷霉素對(duì)耐藥臨床血液分離株的體外活性,發(fā)現(xiàn)對(duì)100%分離株表現(xiàn)出協(xié)同作用。由于數(shù)據(jù)的局限性,多利培南+磷霉素成為治療CRO的最佳方案值得商榷,未來需要納入更多的高質(zhì)量數(shù)據(jù)才能得到更可靠的結(jié)論。

      由于僅一項(xiàng)納入的研究對(duì)磷霉素劑量方案有具體描述,本文無法給出磷霉素明確的劑量方案。根據(jù)磷霉素的藥動(dòng)學(xué)數(shù)據(jù),對(duì)于腎功能正常的患者,每日靜脈注射磷霉素的劑量(肌酐清除率80 mL/min)為12~16 g,分2~4次給藥[53, 65-68],在大多數(shù)情況下,磷霉素以8 g磷霉素二鈉的劑量靜脈給藥,每天2次(每12 h)[69]。對(duì)于患有中樞神經(jīng)系統(tǒng)或其他嚴(yán)重感染的患者,每日給藥劑量更高(最高可達(dá)24 g)[52]。對(duì)于腎功能受損的患者,目前尚不清楚是否需要調(diào)整劑量以達(dá)到估計(jì)的40~80 mL/min的肌酐清除率。對(duì)于估計(jì)肌酐清除率為40、30、20和10 mL/min的患者,建議分別降低至每日推薦劑量的70%、60%、40%和20%[18]。

      雖然本文納入的所有研究沒有磷霉素的安全性數(shù)據(jù),但各項(xiàng)研究均沒有患者發(fā)生與磷霉素治療相關(guān)的不良事件,一般認(rèn)為它是安全的。

      這項(xiàng)研究有一定的局限性。納入文獻(xiàn)絕大多數(shù)是非RCT研究,影響本次研究得到的證據(jù)質(zhì)量。另外,由于納入文獻(xiàn)數(shù)據(jù)的限制,無法提取到更多的數(shù)據(jù),本次研究臨床療效的評(píng)估較為單一。通常,藥物對(duì)病原菌的臨床療效是從治愈率、細(xì)菌清除率和死亡率等方面來綜合評(píng)估的。單一評(píng)估死亡率似乎不足以描述磷霉素組合的臨床療效,但是也有一定的臨床指導(dǎo)意義。此外,如果納入文獻(xiàn)中能夠提取藥物副作用指標(biāo),也可作為評(píng)價(jià)藥物的次要指標(biāo)。綜上,未來需要更多的以磷霉素為主題的精心設(shè)計(jì)的臨床研究,使數(shù)據(jù)更豐富,而我們也將繼續(xù)關(guān)注研究進(jìn)展,不斷完善Meta分析,為臨床帶來高質(zhì)量的證據(jù)。

      參 考 文 獻(xiàn)

      Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and devel-opment of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.

      Tamma P D, Aitken S L, Bonomo R A, et al. Infectious diseases society of America 2022 guidance on the treat of extended-spectrum β-lactamase producing Enterobacterales(ESBL-E), carbapenem-resistant Enterobacterales(CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.

      Paul M, Carrara E, Retamar P, et al. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)[J]. Clin Microbiol Infect, 2022, 28(4): 521-547.

      WHO Guidelines Approved by the Guidelines Review Committee. Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities[EB/OL]. Geneva: World Health Organization 2017. Licence: CC BY-NC-SA 3.0 IGO.

      Pragasam A K, Shankar C, Veeraraghavan B, et al. Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India-A first report[J]. Front Microbiol, 2017, 7: 2135.

      Durante-Mangoni E, Andini R, Signoriello S, et al. Acute kidney injury during colistin therapy: A prospective study in patients with extensively-drug resistant Acinetobacter baumannii infections[J]. Clin Microbiol Infect, 2016, 22(12): 984-989.

      Poirel L, Jayol A, Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes[J]. Clin Microbiol Rev, 2017, 30(2): 557-596.

      Kubin C J, Ellman T M, Phadke V, et al. Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy[J]. J Infect, 2012, 65(1): 80-87.

      Pournaras S, Koumaki V, Spanakis N, et al. Current perspectives on tigecycline resistance in Enterobacteriaceae: Susceptibility testing issues and mechanisms of resistance[J]. Int J Antimicrob Agents, 2016, 48(1): 11-18.

      Han H, Qin W, Zheng Y, et al. High-dose versus standard-dose tigecycline treatment of secondary bloodstream infections caused by extensively drug-resistant Acinetobacter baumannii: An observational cohort study[J]. Infect Drug Resist, 2021, 14: 3837-3848.

      Shi X, Lao D, Xu Q, et al. A case report of drug-induced liver injury after tigecycline administration: Histopathological evidence and a probable causality grading as assessed by the updated RUCAM diagnostic scale[J]. BMC Infect Dis, 2022, 22(1): 368.

      Nulsopapon P, Pongchaidecha M, Nasomsong W, et al. Antimicrobial activity profiles and potential antimicrobial regimens against carbapenem-resistant Enterobacterales isolated from multi-centers in western Thailand[J]. Antibiotics (Basel), 2022, 11(3): 355.

      Bartal C, Rolston K V I, Nesher L. Carbapenem-resistant Acinetobacter baumannii: Colonization, infection and current treatment options[J]. Infect Dis Ther, 2022, 11(2): 683-694.

      Treml B, Rajsic S, Hell T, et al. Progression of fibrinogen decrease during high dose tigecycline therapy in critically ill patients: A retrospective analysis[J]. J Clin Med, 2021, 10(20): 4702.

      Campany-Herrero D, Larrosa-Garcia M, Lalueza-Broto P, et al. Tigecycline-associated hypofibrinogenemia in a real-world setting[J]. Int J Clin Pharm, 2020, 42(4): 1184-1189.

      Liu J, Yan Y, Zhang F. Risk factors for tigecycline-associated hypofibrinogenemia[J]. Ther Clin Risk Manag, 2021, 17: 325-332.

      Lan P, Lu Y, Jiang Y, et al. Catecholate siderophore receptor CirA impacts cefiderocol susceptibility in Klebsiella pneumoniae[J]. Int J Antimicrob Agents, 2022, 60(4): 106646.

      Tumbarello M, Trecarichi E M, Corona A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae[J]. Clin Infect Dis, 2019, 68(3): 355-364.

      Shields R K, Potoski B A, Haidar G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections[J]. Clin Infect Dis, 2016, 63(12): 1615-1618.

      King M, Heil E, Kuriakose S, et al. Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections[J]. Antimicrob Agents Chemother, 2017, 61(7): e00449-17.

      Kuang H, Zhong C, Wang Y, et al. Clinical characteristics and outcomes of patients with multidrug-resistant Gram-negative bacterial infections treated with ceftazidime/avibactam[J]. J Glob Antimicrob Resist, 2020, 23: 404-407.

      Candel F J, Matesanz David M, Barberán J. New perspectives for reassessing fosfomycin: Applicability in current clinical practice[J]. Rev Esp Quimioter, 2019, 32(1): 1-7.

      Boncompagni S R, Micieli M, Di Maggio T, et al. Activity of fosfomycin/colistin combinations against planktonic and biofilm Gram-negative pathogens[J]. J Antimicrob Chemother, 2022, 77(8): 2199-2208.

      Mohd Sazlly Lim S, Naicker S, Ayfan A K, et al. Non-polymyxin-based combinations as potential alternatives in treatment against carbapenem-resistant Acinetobacter baumannii infections[J]. Int J Antimicrob Agents, 2020, 56(4): 106115.

      Antonello R M, Principe L, Maraolo A E, et al. Fosfomycin as partner drug for systemic infection management: A systematic review of its synergistic properties from in vitro and in vivo studies[J]. Antibiotics (Basel), 2020, 9(8): 500.

      Scudeller L, Righi E, Chiamenti M, et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli[J]. Int J Antimicrob Agents, 2021, 57(5): 106344.

      Mikhail S, Singh N B, Kebriaei R, et al. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2019, 63(8): e00779-19.

      Avery L M, Sutherland C A, Nicolau D P. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa[J]. J Med Microbiol, 2019, 68(6): 893-897.

      Xu C, Chen T, Zhang S, et al. In vitro activity of imipenem-relebactam alone and in combination with fosfomycin against carbapenem-resistant Gram-negative pathogens[J]. Diagn Microbiol Infect Dis, 2022, 103(3): 115712.

      Falagas M E, Athanasaki F, Voulgaris G L, et al. Resistance to fosfomycin: Mechanisms, frequency and clinical consequences[J]. Int J Antimicrob Agents, 2019, 53(1): 22-28.

      Saiprasad P V, Krishnaprasad K. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections[J]. Indian J Med Microbiol, 2016, 34(4): 416-420.

      Bensen D C, Rodriguez S, Nix J, et al. Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) from vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2012, 68(4): 382-385.

      Eschenburg S, Priestman M, Schonbrunn E. Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release[J]. J Biol Chem, 2005, 280(5): 3757-3763.

      Carlone N A, Borsotto M, Cuffini A M, et al. Effect of fosfomycin trometamol on bacterial adhesion in comparison with other chemotherapeutic agents[J]. Eur Urol, 1987, 13(1): 86-91.

      Yokota S, Okabayashi T, Yoto Y, et al. Fosfomycin suppresses RS-virus-induced streptococcus pneumoniae and haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor[J]. FEMS Microbiol Lett, 2010, 310(1): 84-90.

      Raz R. Fosfomycin: An old–new antibiotic[J]. Clin Microbiol Infect, 2012, 18(1): 4-7.

      Popovic M, Steinort D, Pillai S, et al. Fosfomycin: an old, new friend[J]? Eur J Clin Microbiol Infect Dis, 2010, 29(2): 127-142.

      Perdig?o Neto L V, Oliveira M S, Martins R, et al. Fosfomycin in severe infections due to genetically distinct pan-drug-resistant Gram-negative microorganisms: Synergy with meropenem[J]. J Antimicrob Chemother, 2019, 74(1): 177-181.

      Florent A, Chichmanian R M, Cua E, et al. Adverse events associated with intravenous fosfomycin[J]. Int J Antimicrob Agents, 2011, 37(1): 82-92.

      Grabein B, Graninger W, Rodríguez Ba?o J, et al. Intravenous fosfomycin-back to the future: Systematic review and meta-analysis of the clinical literature[J]. Clin Microbiol Infect, 2017, 23(6): 363-372.

      Hematology Branch of Chinese Medical Association, Hematology Branch of Chinese Physicians Association. Diagnosis, treatment, prevention and control of carbapenem-resistant Enterobacteriaceae (CRE) infection in patients with hematological tumors (2020 edition)[J]. Chin J Hematol, 2020, 41(11): 881-889.

      Sterne J A C, Savovi? J, Page M J, et al. RoB 2: A revised tool for assessing risk of bias in randomised trials[J]. BMJ, 2019, 366: l4898.

      Stang A. Critical evaluation of the newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605.

      Liao Y, Hu G H, Xu Y F, et al. Retrospective analysis of fosfomycin combinational therapy for sepsis caused by carbapenem-resistant Klebsiella pneumoniae[J]. Exp Ther Med, 2017, 13(3): 1003-1010.

      Machuca I, Gutiérrez-Gutiérrez B, Gracia-Ahufinger I, et al. Mortality associated with bacteremia due to colistin-resistant Klebsiella pneumoniae with high-level meropenem resistance: Importance of combination therapy without colistin and carbapenems[J]. Antimicrob Agents Chemother, 2017, 61(8): e00406-e00417.

      Gutiérrez-Gutiérrez B, Salamanca E, de Cueto M, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae(INCREMENT): A retrospective cohort study[J]. Lancet Infect Dis, 2017, 17(7): 726-734.

      Tumbarello M, Trecarichi E M, De Rosa F G, et al. Infections caused by KPC-producing Klebsiella pneumoniae: Differences in therapy and mortality in a multicentre study[J]. J Antimicrob Chemother, 2015, 70(10): 2133-2143.

      Marcelino G, Torre-Cisneros J, Rivera-Espinar F, et al. Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2015, 70(3): 905-913.

      Apisarnthanarak A, Mundy L M. Carbapenem-resistant Pseudomonas aeruginosa pneumonia with intermediate minimum inhibitory concentrations to doripenem: Combination therapy with high-dose, 4-h infusion of doripenem plus fosfomycin versus intravenous colistin plus fosfomycin[J]. Int J Antimicrob Agents, 2012, 39(3): 271-2.

      McLaughlin M M, Advincula M R, Malczynski M, et al. Quantifying the clinical virulence of Klebsiella pneumoniae producing carbapenemase Klebsiella pneumoniae with a galleria mellonella model and a pilot study to translate to patient outcomes[J]. BMC Infect Dis, 2014, 14: 31.

      Navarro-San Francisco C, Mora-Rillo M, Romero-Gómez MP, et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: A major clinical challenge[J]. Clin Microbiol Infect, 2013, 19(2): e72-e79.

      Capone A, Giannella M, Fortini D, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality[J]. Clin Microbiol Infect, 2013,19(1): e23-e30.

      Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: A prospective evaluation[J]. Clin Microbiol Infect, 2010, 16(2): 184-186.

      Bavaro D F, Belati A, Diella L, et al. Cefiderocol-based combination therapy for “difficult-to-Treat” Gram-negative severe infections: Real-life case series and future perspectives[J]. Antibiotics (Basel), 2021, 10(6): 652.

      Shujuan J, Lv F, Du X, et al. Cefepime combined with amoxicillin/clavulanic acid: A new choice for the KPC-producing K. pneumoniae infection[J]. Int J Infect Dis, 2015, 38: 108-114.

      Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections[J]. Antimicrob Agents Chemother, 2014, 58(9): 5598-5601.

      Russo A, Bassetti M, Bellelli V, et al. Efficacy of a fosfomycin-containing regimen for treatment of severe pneumonia caused by multidrug-resistant Acinetobacter baumannii: A prospective, observational study[J]. Infect Dis Ther, 2021, 10(1): 187-200.

      Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae infections: A retrospective observational multicenter study[J]. Clin Infect Dis, 2021, 73(9): 1664-1676.

      Page M J, Mc Kenzie J E, Bossuyt P M, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews[J]. J Clin Epidemiol, 2021, 134: 178-189.

      Samonis G, Maraki S, Karageorgopoulos D E, et al. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates[J]. Eur J Clin Microbiol Infect Dis, 2012, 31(5): 695-701.

      Zhu W, Wang Y, Cao W, et al. In vitro evaluation of antimicrobial combinations against imipenem-resistant Acinetobacter baumannii of different MICs[J]. J Infect Public Health, 2018, 11(6): 856-860.

      Mohd Sazlly Lim S, Heffernan A, Naicker S, et al. Evaluation of fosfomycin-sulbactam combination therapy against carbapenem-resistant Acinetobacter baumannii isolates in a hollow-fibre Infection model[J]. Antibiotics (Basel), 2022, 11(11): 1578.

      Albiero J, Mazucheli J, Barros J P D R, et al. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against Pseudomonas aeruginosa producing metallo-β-lactamase[J]. Antimicrob Agents Chemother, 2019, 63(6): e00126-19.

      Lingscheid T, Tobudic S, Poeppl W, et al. In vitro activity of doripenem plus fosfomycin against drug-resistant clinical blood isolates[J]. Pharmacology, 2013, 91(3-4): 214-218.

      Michalopoulos A S, Livaditis I G, Gougoutas V. The revival of fosfomycin[J]. Int J Infect Dis, 2011, 15(11): e732-e739.

      Traunmuller F, Popovic M, Konz K H, et al. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates[J]. Clin Pharmacokinet, 2011, 50(8): 493-503.

      Apisarnthanarak A, Mundy L M. Use of high-dose 4-hour infusion of doripenem, in combination with fosfomycin, for treatment of carbapenem-resistant Pseudomonas aeruginosa pneumonia[J]. Clin Infect Dis, 2010, 51(11): 1352-1354.

      Miro J M, Entenza J M, Del Rio A, et al. High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant Staphylococcus aureus endocarditis[J]. Antimicrob Agents Chemother, 2012, 56(8): 4511-4515.

      Falagas M E, Vouloumanou E K, Samonis G, et al. Fosfomycin[J]. Clin Microbiol Rev, 2016, 29(2): 321-347.

      猜你喜歡
      磷霉素聯(lián)合治療
      磷霉素細(xì)菌耐藥機(jī)制研究進(jìn)展
      磷霉素在多藥耐藥腸桿菌科細(xì)菌感染治療中的研究進(jìn)展
      布地奈德聯(lián)合華法林鈉對(duì)結(jié)腸炎患者的治療價(jià)值評(píng)析
      研究飛秒聯(lián)合準(zhǔn)分子激光治療近視患者的術(shù)后護(hù)理宣教探討
      低鈉透析聯(lián)合血液透析濾過對(duì)尿毒癥合并頑固性高血壓患者血壓晝夜節(jié)律變化的影響
      肺表面活性物質(zhì)聯(lián)合機(jī)械通氣治療胎糞吸入綜合征并發(fā)新生兒肺出血的療效及安全性研究
      微量激素聯(lián)合抗菌藥物治療細(xì)菌性角膜炎的療效觀察
      LEEP刀聯(lián)合臭氧治療慢性宮頸炎的療效研究
      今日健康(2016年12期)2016-11-17 12:27:57
      下尿路感染患者菌群分布及對(duì)磷霉素氨丁三醇散敏感度分析
      高溫強(qiáng)化電化學(xué)法處理磷霉素鈉制藥廢水試驗(yàn)研究
      石林| 乌兰察布市| 海宁市| 镶黄旗| 邢台县| 汶川县| 葫芦岛市| 河间市| 定边县| 兴山县| 丰原市| 鄯善县| 松滋市| 晋中市| 绥德县| 公安县| 西昌市| 郎溪县| 泾阳县| 丰城市| 石泉县| 肇源县| 潼南县| 闵行区| 灌阳县| 海淀区| 宿松县| 眉山市| 涿州市| 华安县| 新乡县| 贵南县| 淮安市| 玉溪市| 三都| 繁峙县| 饶河县| 微山县| 韶山市| 化州市| 新化县|