摘要:目的 闡明肝X受體(liver X receptor,LXR)及其靶基因環(huán)氧化酶-2(cyclooxygenase-2,COX-2)、膽固醇酯轉(zhuǎn)移蛋白(cholesteryl ester transfer protein,CETP)的高表達(dá)是肥胖幼鼠阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)發(fā)病過程中的保護(hù)性因素,為肥胖兒童OSAHS的發(fā)病機(jī)制提供基礎(chǔ)研究資料。方法 24只3~4周齡雄性Wistar幼鼠分為正常對(duì)照組(control組)、單純肥胖組(obesity組)、單純OSAHS組(OSAHS組)、肥胖+OSAHS組(obesity+OSAHS組)。HE染色觀察幼鼠肝組織病理變化;蛋白免疫印跡法(Western blotting)檢測(cè)幼鼠肝組織中LXRα、COX-2、CETP的表達(dá)水平;運(yùn)用免疫組化方法檢測(cè)幼鼠肝組織中LXRα、COX-2、CETP的表達(dá)水平及分布情況。結(jié)果 單純肥胖組和肥胖+OSAHS組幼鼠體質(zhì)量、總膽固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)含量與正常對(duì)照組相比均明顯增加(Plt;0.05),單純OSAHS組和肥胖+OSAHS組幼鼠血氧飽和度與正常對(duì)照組相比均明顯降低(Plt;0.05)。單純肥胖組、單純OSAHS組及肥胖+OSAHS組肝組織與正常對(duì)照組肝組織相比均有明顯損傷,肥胖+OSAHS組肝組織損傷較單純肥胖組、單純OSAHS組肝組織損傷程度明顯升高。單純OSAHS組和單純肥胖組幼鼠肝組織中LXRα、COX-2、CETP表達(dá)水平較正常對(duì)照組均明顯升高(Plt;0.05)。肥胖+OSAHS組幼鼠肝組織中LXRα、COX-2、CETP表達(dá)水平較其余各組均明顯升高(Plt;0.05)。結(jié)論 LXR及其靶基因COX-2、CETP在肥胖OSAHS幼鼠肝臟中高表達(dá),是發(fā)病過程中的可能保護(hù)性因素。
關(guān)鍵詞:肝X受體(LXR);阻塞性睡眠呼吸暫停綜合征(OSAHS);肥胖;幼鼠;保護(hù)作用
中圖分類號(hào):R56 文獻(xiàn)標(biāo)志碼:A
DOI:10.7652/jdyxb202406003
收稿日期:2024-03-09 修回日期:2024-08-20
基金項(xiàng)目:甘肅省自然科學(xué)基金資助項(xiàng)目(No. 20JR10RA695)
Supported by the Natural Science Foundation of Gansu Province (No. 20JR10RA695)
通信作者:葉新華,主任醫(yī)師. E-mail:ye_xinhua@126.com
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1399.R.20240919.0903.004.html (2024-09-19)
The protective effects of LXR and its target genes COX-2 and CETP on liver tissues of young obese OSAHS rats
LAI Mingyu1, YE Xinhua2
(1. The First Clinical Medicine College of Lanzhou University, Lanzhou 730000; 2. Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou 730000, China)
ABSTRACT: Objective To illuminate that the high expressions of liver X receptor (LXR), cyclooxygenase-2 (COX-2), and cholesteryl ester transfer protein (CETP) are protective factors in the pathogenesis of obesity and obstructive sleep apnea-hypopnea syndrome (OSAHS), in order to provide basic information for the prevention and treatment of obesity in children with OSAHS. Methods A total of 24 young rats aged 3-4 weeks were randomly divided into normal control group, obesity group, OSAHS group, and obesity and OSAHS group. We used hematoxylin-eosin (HE) staining to observe the histopathological changes in the liver of the young rats, Western blotting and immunohistochemistry to test the expression levels and distribution of LXRα, COX-2, and CETP in liver tissues of the rats. Results The body weight, total cholesterol (TC), and triglyceride (TG) content of the rats in obesity group and obesity+OSAHS group were significantly increased compared with that in the control group (Plt;0.05), and the oxygen saturation of the rats in OSAHS group and obesity+OSAHS group was significantly decreased compared with that in the control group (Plt;0.05). The liver tissue had significant damage in obesity group, OSAHS group and obesity+OSAHS group compared with that in the normal control group, and obesity+OSAHS group had the most severe liver tissue damage. The expression levels of LXRα, COX-2, and CETP were significantly higher in the liver tissues of young rats in OSAHS group and obesity group compared with those in the normal control group (Plt;0.05). The expression levels of LXRα, COX-2, and CETP were significantly higher in the liver tissues of young rats in obesity+OSAHS group compared with those in the other groups (Plt;0.05). Conclusion LXR and its target genes COX-2 and CETP are highly expressed in the liver tissues of obese OSAHS rats and are possible protective factors in the pathogenesis of obesity and OSAHS.
KEY WORDS: liver X receptor (LXR); obstructive sleep apnea-hypopnea syndrome (OSAHS); obesity; young rat; protective effect
隨著社會(huì)的發(fā)展和人們生活水平的逐步提高,肥胖逐漸成為一個(gè)全球性的公共衛(wèi)生問題,尤其是對(duì)兒童和青少年來說,造成了嚴(yán)重的危害[1]。兒童阻塞性睡眠呼吸暫停綜合征(obstructive sleep apnea-hypopnea syndrome,OSAHS)是兒童常見的一種慢性疾病,其特征是兒童在睡眠過程中頻繁發(fā)生間歇性低氧,這不僅僅是OSAHS主要病理生理變化,更是引起眾多合并癥的根源所在[2]。大量國內(nèi)外研究表明,OSAHS與肥胖之間互為因果,肥胖能夠通過上氣道形態(tài)功能的改變、內(nèi)臟脂肪過多聚集、中樞呼吸驅(qū)動(dòng)障礙等機(jī)制導(dǎo)致OSAHS,而OSAHS能夠通過炎癥反應(yīng)、胰島素抵抗、脂代謝紊亂等機(jī)制導(dǎo)致肥胖[3-4]。肝X受體(liver X receptor,LXR)是核受體超家族中的一員,LXR能夠通過調(diào)控其靶基因環(huán)氧化酶-2(cyclooxygenase-2,COX-2)及血漿膽固醇酯轉(zhuǎn)移蛋白(cholesteryl ester transfer protein,CETP)來參與炎癥反應(yīng)及脂代謝,與肥胖、OSAHS等疾病有著密切聯(lián)系[5-6],但關(guān)于其相關(guān)機(jī)制的研究還較少,尤其罕見在兒童中的研究。本研究運(yùn)用幼鼠造模,模擬兒童OSAHS發(fā)病過程,旨在闡明LXR及其靶基因COX-2、CETP在肥胖OSAHS幼鼠肝組織中的保護(hù)作用,為肥胖兒童OSAHS的防治提供基礎(chǔ)研究資料。
1 材料與方法
1.1 材料
1.1.1 主要試劑 BCA蛋白濃度測(cè)定試劑盒、蘇木素伊紅染色試劑盒、RIPA裂解液、PBS、PVDF膜、SDS-PAGE蛋白上樣緩沖液購自碧云天生物技術(shù)有限公司,Anti-LXR alpha(兔單克隆抗體)、Anti-COX-2(兔單克隆抗體)、Anti-CETP(兔單克隆抗體)、GAPDH Antibody(兔單克隆抗體)、山羊抗兔IgG Hamp;L(HRP)購自Abcam公司,封閉山羊血清、過氧化物酶標(biāo)記鏈霉親和素購自Solarbio公司,DAB辣根過氧化物酶顯色試劑盒購自Beyotime公司等。
1.1.2 實(shí)驗(yàn)動(dòng)物
實(shí)驗(yàn)用清潔級(jí)雄性Wistar幼鼠24只,3~4周齡,由北京華阜康生物科技股份有限公司提供。SPF級(jí)環(huán)境,每籠飼養(yǎng)1只小鼠,恒溫(24±1)℃、恒濕(50±5)%,12 h光照與黑暗交替,自由飲水和進(jìn)食。本實(shí)驗(yàn)操作嚴(yán)格依據(jù)中國科學(xué)技術(shù)委員會(huì)提出的《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》進(jìn)行。本研究經(jīng)蘭州大學(xué)第一醫(yī)院倫理委員會(huì)審批,批準(zhǔn)函編號(hào):LDYYLL2021-27。
1.2 方法
1.2.1 動(dòng)物分組及處理
24只3~4周齡Wistar幼鼠,適應(yīng)性喂養(yǎng)5 d后隨機(jī)分為正常對(duì)照組(control組)、單純肥胖組(obesity組)、單純OSAHS組(OSAHS組)、肥胖+OSAHS組(obesity+OSAHS組)。正常對(duì)照組及單純OSAHS組以普通飼料喂養(yǎng),單純肥胖組及肥胖+OSAHS組以高脂飼料喂養(yǎng)進(jìn)行肥胖造模。每日稱飼料剩余量、按需供給,每周稱量體質(zhì)量。其中普通飼料TP23302:脂肪10.0%、蛋白質(zhì)19.0%、碳水化合物71.0%,熱量3.6 kcal/g;高脂飼料TP23300:脂肪60.0%、蛋白質(zhì)19.4%、碳水化合物20.6%,熱量5.0 kcal/g。單純OSAHS組及肥胖+OSAHS組通過定時(shí)電磁閥將純氮?dú)夂蛪嚎s空氣分配到各個(gè)腔室,使用120 s循環(huán),在前30 s向每個(gè)腔室注入純氮?dú)?,直到最低氧氣濃度達(dá)到5%建立OSAHS氧環(huán)境。各OSAHS組動(dòng)物的暴露實(shí)驗(yàn)時(shí)間為上午9點(diǎn)至下午5點(diǎn),每周7 d,共8周。肥胖建模成功標(biāo)準(zhǔn):幼鼠體質(zhì)量、血清甘油三酯(triglyceride,TG)和總膽固醇(total cholesterol,TC)含量顯著升高的幼鼠被視為肥胖動(dòng)物。OSAHS建模成功標(biāo)準(zhǔn):缺氧最低點(diǎn)時(shí)幼鼠血氧飽和度為31.2%~58.3%,當(dāng)恢復(fù)至正常氧濃度(21%)時(shí)血氧飽和度為92.2%~97.4%,符合人類OSAHS的血氧飽和度診斷標(biāo)準(zhǔn)。8周后,收集各組的血清樣本后動(dòng)物被注射致死劑量的戊巴比妥鈉實(shí)施安樂死,收集Wistar幼鼠的肝組織樣本。
1.2.2 生化檢測(cè)
將保存至-20 ℃冰箱的血清樣本取出,使其溫度恢復(fù)至室溫,待血清融化后,送至蘭州大學(xué)附屬第一醫(yī)院檢驗(yàn)科檢測(cè)血清TC、TG含量。
1.2.3 HE染色
取各組幼鼠肝臟組織,40 g/L多聚甲醛固定,石蠟包埋,制作石蠟切片,烤片脫蠟脫水,HE染色后光學(xué)顯微鏡下觀察肝臟組織病理變化。
1.2.4 Western blotting檢測(cè)
取材后,將幼鼠肝組織用預(yù)冷的PBS洗滌后,剪成小塊置于勻漿管中,加入組織裂解液,離心后取上清液。利用BCA試劑盒對(duì)各標(biāo)本的蛋白濃度進(jìn)行測(cè)定。按照說明書上的流程配制十二烷基硫酸鈉-聚丙烯酰胺(SDS-PAGE)電泳凝膠,加入蛋白樣品進(jìn)行電泳,接著采用濕轉(zhuǎn)法轉(zhuǎn)移到PVDF膜,將PVDF膜放入封閉液中,封閉1 h,漂洗后分別加入對(duì)應(yīng)的抗體,在4 ℃條件下孵育12 h,采用TBST清洗后,分別加入對(duì)應(yīng)的二抗,在37 ℃條件下反應(yīng)1 h,漂洗后加入發(fā)光液,暗室中使用膠片曝光并對(duì)膠片進(jìn)行掃描存檔。最后利用Image J軟件對(duì)各條帶上的灰度值進(jìn)行分析,并以GAPDH為內(nèi)參計(jì)算出肝組織中LXRα、CETP、COX-2相對(duì)表達(dá)水平。
1.2.5 免疫組織化學(xué)檢測(cè)
取各組石蠟切片,經(jīng)烤片、脫蠟、脫水、封閉、抗原修復(fù)、冷卻、沖洗后,山羊血清室溫封閉15 min,一抗孵育(1∶500的稀釋比例稀釋一抗LXRα,1∶500的稀釋比例稀釋一抗COX-2,1∶100的稀釋比例稀釋一抗CETP),4 ℃過夜,二抗室溫孵育15 min,封片并采集圖像,通過Image J軟件分析計(jì)算面積百分比代表目的蛋白的表達(dá)水平。
1.3 統(tǒng)計(jì)學(xué)處理
所有數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(±s)表示。多組間比較采用單因素方差分析,兩兩比較用Tukey檢驗(yàn)。所有統(tǒng)計(jì)分析在GraphPad 7.0軟件上完成,Plt;0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 肥胖OSAHS幼鼠造模成功
2.1.1 體質(zhì)量測(cè)量
與control組相比,obesity組幼鼠體質(zhì)量增加(Plt;0.05),OSAHS組幼鼠體質(zhì)量無統(tǒng)計(jì)學(xué)差異,obesity+OSAHS組幼鼠體質(zhì)量增加(Plt;0.05);與OSAHS組相比,obesity+OSAHS組幼鼠體質(zhì)量增加(Plt;0.05,表1)。
2.1.2 生化檢測(cè)
與control組相比,obesity組幼鼠血清中TC、TG含量升高(Plt;0.05),OSAHS組TC、TG含量無統(tǒng)計(jì)學(xué)差異,obesity+OSAHS組TC、TG含量升高(Plt;0.05);與OSAHS組相比,obesity+OSAHS組幼鼠血清中TC、TG含量升高(Plt;0.05,表2)。
2.1.3 血?dú)夥治鰞x檢測(cè)血氧飽和度
與control組相比,obesity組血氧飽和度(SaO2)無統(tǒng)計(jì)學(xué)差異,OSAHS組、obesity+OSAHS組血氧飽和度(SaO2)減小(Plt;0.05);與obesity組相比,OSAHS組、obesity+OSAHS組血氧飽和度(SaO2)減?。≒lt;0.05,表3)。
2.2 各組幼鼠肝臟的病理變化
control 組幼鼠肝組織中肝臟細(xì)胞形態(tài)大小一致,分界清晰,以中央靜脈為中心向四周呈放射狀整齊排列;obesity組幼鼠肝組織中肝小葉結(jié)構(gòu)明顯紊亂,肝細(xì)胞高度氣球樣變,并出現(xiàn)大氣泡為主的脂肪變性,與obesity組相比,OSAHS組幼鼠肝的損傷程度明顯降低,obesity+OSAHS組幼鼠肝的損傷程度明顯升高(圖1)。
2.3 各組幼鼠肝臟中LXRα、COX-2、CETP表達(dá)水平
與control組相比,其余各組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平均顯著升高(Plt;0.05);與obesity組相比,obesity+OSAHS組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平顯著升高(Plt;0.05);與OSAHS組相比,obesity+OSAHS組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平顯著升高(Plt;0.05,圖2)。
2.4 各組幼鼠肝臟中LXRα、COX-2、CETP的分布情況
與control組相比,其余各組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平均明顯升高(Plt;0.05);與obesity組相比,OSAHS組幼鼠肝中CETP表達(dá)水平降低(Plt;0.05),LXRα、COX-2表達(dá)水平無明顯差異,obesity+OSAHS組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平顯著升高(Plt;0.05);與OSAHS組相比,obesity+OSAHS組幼鼠肝中LXRα、COX-2和CETP表達(dá)水平顯著升高(Plt;0.05,表4、圖3)。
3 討 論
OSAHS是一種常見的呼吸系統(tǒng)睡眠障礙。OSAHS兒童患有反復(fù)發(fā)作的睡眠障礙、夜間低氧血癥和高碳酸血癥,導(dǎo)致心血管損傷、神經(jīng)認(rèn)知功能障礙、生長遲緩和代謝障礙等多種并發(fā)癥[2, 7]。有許多研究者對(duì)OSAHS進(jìn)行了大量臨床研究,但動(dòng)物實(shí)驗(yàn)較少,且既往建立的OSAHS模型均為成年動(dòng)物,模擬成人OSAHS發(fā)病過程[8-9],關(guān)于兒童OSAHS動(dòng)物模型的建立罕見有報(bào)道。本實(shí)驗(yàn)選用剛斷乳的幼鼠,通過間歇性低氧法成功構(gòu)建了OSAHS動(dòng)物模型,來模擬兒童OSAHS發(fā)病過程。
本課題組前期研究已表明,LXRα在肥胖兒童中表達(dá)顯著高于正常體質(zhì)量的兒童,這證明了LXRα與兒童肥胖密切相關(guān)[10-12]。日本研究者發(fā)現(xiàn),LXRα在肥胖、胰島素抵抗、糖脂代謝紊亂的病理生理過程中發(fā)揮一定作用[13]。有研究表明,LXR主要通過控制三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ABC)超家族和CETP參與膽固醇的逆向轉(zhuǎn)運(yùn),通過直接調(diào)節(jié)甾醇調(diào)節(jié)元件結(jié)合蛋白(SREBP-1c)和糖類應(yīng)答元件結(jié)合蛋白(ChREBP)來調(diào)控脂肪代謝,進(jìn)一步參與肥胖的發(fā)生發(fā)展,而肥胖又使患兒咽部狹窄、氣道塌陷加重,進(jìn)一步加重OSAHS病情,形成惡性循環(huán)[14-16]。本動(dòng)物實(shí)驗(yàn)通過對(duì)幼鼠肝組織進(jìn)行HE染色,發(fā)現(xiàn)在OSAHS與肥胖的發(fā)生發(fā)展過程中,肝組織是其重要的反應(yīng)場(chǎng)所,研究結(jié)果表明LXRα表達(dá)量在肥胖及OSAHS幼鼠肝組織中明顯升高,這與上述研究結(jié)果一致,表明無論在幼鼠還是兒童中LXRα都與肥胖及OSAHS發(fā)病過程密切相關(guān)。
環(huán)氧化酶主要來源于巨噬細(xì)胞,是前列腺素E2生產(chǎn)的限速酶,其具有兩種同工酶:COX-1主要存在于血管、胃、腎等組織中,其功能與保護(hù)胃腸黏膜、調(diào)節(jié)血小板聚集、調(diào)節(jié)外周血管的阻力和調(diào)節(jié)腎血流量分布有關(guān);COX-2是一種炎癥反應(yīng)基因,當(dāng)細(xì)胞受到各種炎癥信號(hào)刺激時(shí),COX-2的表達(dá)能夠迅速增加[17-19]。許多研究表明,高脂喂養(yǎng)小鼠COX-2表達(dá)量顯著高于正常喂養(yǎng)小鼠,并且COX-2的高表達(dá)具有抗肥胖的作用,其機(jī)制可能有兩種:一是COX-2表達(dá)量的增加,能夠促進(jìn)白色脂肪組織向棕色脂肪組織分化,從而通過增加產(chǎn)熱,促進(jìn)能量代謝來抗肥胖;二是COX-2表達(dá)量的增加,能夠激發(fā)脂肪炎癥,而脂肪炎癥具有促進(jìn)脂肪分解的作用[20-23]。有研究者發(fā)現(xiàn),COX-2抑制能夠通過增加通氣不穩(wěn)定來加劇OSAHS的嚴(yán)重程度,在缺氧大鼠腎上腺髓質(zhì)中COX-2表達(dá)量較正常大鼠顯著增加,表明COX-2介導(dǎo)的炎癥反應(yīng)在缺氧過程中發(fā)揮重要作用[24-26]。本研究發(fā)現(xiàn),肝組織中COX-2表達(dá)量在肥胖及OSAHS幼鼠中明顯升高,這與上述研究結(jié)果一致,并說明COX-2的高表達(dá)是肥胖幼鼠OSAHS發(fā)病過程中的保護(hù)性因素。
CETP 是參與膽固醇代謝的關(guān)鍵酶,LXR可以誘導(dǎo)CETP促進(jìn)高密度脂蛋白膽固醇(HDL-C)與極低密度脂蛋白(VLDL)和低密度脂蛋白(LDL)中的TG進(jìn)行交換,形成極低密度脂蛋白膽固醇(VLDL-C)和低密度脂蛋白膽固醇(LDL-C),其通過與肝細(xì)胞的LDL受體結(jié)合,經(jīng)過胞吞作用使膽固醇進(jìn)入肝臟進(jìn)行分解,與此同時(shí)富含TG的高密度脂蛋白(HDL)也會(huì)被肝脂酶水解[27-29]。有研究發(fā)現(xiàn),肥胖組小鼠CETP活性較正常組增加,CETP高表達(dá)減輕了高甘油三酯血癥小鼠的肥胖,其機(jī)制可能是通過減輕小鼠體內(nèi)脂肪堆積進(jìn)而減輕小鼠肥胖[30-31]。本動(dòng)物實(shí)驗(yàn)結(jié)果表明,CETP表達(dá)量在肥胖及OSAHS幼鼠肝組織中明顯升高,與上述研究結(jié)果一致。另有研究發(fā)現(xiàn),CETP基因不僅與肥胖有保護(hù)性關(guān)聯(lián),而且與瘦體質(zhì)量有顯著正相關(guān),證明CETP基因相關(guān)變異是瘦體質(zhì)量及肥胖保護(hù)標(biāo)志物[32]。
既往研究表明LXR、COX-2、CETP在肥胖及OSAHS發(fā)病過程中發(fā)揮重要作用,但對(duì)三者一起進(jìn)行分析的研究還較少,尤其針對(duì)兒童的研究很少。本研究同時(shí)分析LXR及其靶基因COX-2和CETP在肥胖及OSAHS幼鼠發(fā)病過程中的作用機(jī)制,以表明LXR、COX-2及CETP三者在幼鼠肥胖及OSAHS發(fā)生發(fā)展過程中具有相互作用,其高表達(dá)是肥胖幼鼠OSAHS發(fā)病過程中的可能保護(hù)因素,為肥胖兒童OSAHS的發(fā)病機(jī)制提供基礎(chǔ)研究資料。
ProofRead_Report_Header參考文獻(xiàn):
[1]ZHANG X, DIAO P, YOKOYAMA H, et al. Acidic activated charcoal prevents obesity and insulin resistance in high-fat diet-fed mice[J]. Front Nutr, 2022, 9: 852767.
[2]PRAJSUCHANAI T, TANPHAICHITR A, HOSIRI T, et al. Prevalence of high-risk for obstructive sleep apnea in attention deficit hyperactivity disorder children referred to psychiatry clinic and impact on quality of life[J]. Front Psychiatry, 2022, 13: 926153.
[3]RODRIGUES G D, FIORELLI E M, FURLAN L, et al. Obesity and sleep disturbances: the “chicken or the egg” question[J]. Eur J Intern Med, 2021, 92: 11-16.
[4]PUGLIESE G, BARREA L, LAUDISIO D, et al. Sleep apnea, obesity, and disturbed glucose homeostasis: epidemiologic evidence, biologic insights, and therapeutic strategies[J]. Curr Obes Rep, 2020, 9(1): 30-38.
[5]ENDO-UMEDA K, MAKISHIMA M. Liver X receptors regulate cholesterol metabolism and immunity in hepatic nonparenchymal cells[J]. Int J Mol Sci, 2019, 20(20): 5045.
[6]JALIL A, BOURGEOIS T, MéNéGAUT L, et al. Revisiting the role of LXRs in PUFA metabolism and phospholipid homeostasis[J]. Int J Mol Sci, 2019, 20(15): 3787.
[7]YU L C, ZHAO X, LIU L J, et al. Changing effects of minimally invasive surgical intervention on ALT, AST, and UA in patients with obstructive sleep apnea-hypopnea syndrome[J]. Int J Clin Pract, 2022, 2022: 3622896.
[8]PHILIP P, GROSS C E, TAILLARD J, et al. An animal model of a spontaneously reversible obstructive sleep apnea syndrome in the monkey[J]. Neurobiol Dis, 2005, 20(2): 428-431.
[9]趙婷婷, 賀紅, 陳雄. 顱頜面發(fā)育相關(guān)的阻塞性睡眠呼吸暫停低通氣綜合征動(dòng)物模型研究進(jìn)展[J]. 武漢大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2020, 41(2): 341-344.
ZHAO T T, HE H, CHEN X. Advances in animal models of craniomaxillofacial development-related obstructive sleep apnea hypoventilation syndrome[J]. Med J Wuhan Univ, 2020, 41(2): 341-344.
[10]YE X H, CHEN H, YU Q, et al. Liver X receptor gene expression is enhanced in children with obstructive sleep apnea-hyperpnoea syndrome and cyclooxygenase-2 (COX-2) is correlated with severity of obstructive sleep apnea-hypopnea syndrome (OSAHS)[J]. Med Sci Monit, 2017, 23: 3261-3268.
[11]葉新華, 陳寧, 康曦光, 等. 阻塞性睡眠呼吸暫停綜合征對(duì)肥胖兒童健康的早期影響[J]. 蘭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2022, 48(3): 49-53.
YE X H, CHEN N, KANG X G, et al. Early effects of OSAHS in obese children[J]. J Lanzhou Univ(Med Sci), 2022, 48(3): 49-53.
[12]朱慶齡, 葉新華, 楊聲坪, 等. 學(xué)齡期肥胖兒童肝X受體與脂代謝異常的相關(guān)性分析[J]. 臨床兒科雜志, 2014(2): 147-150.
ZHU Q L, YE X H, YANG S P, et al. Correlation of liver X receptor and abnormal lipid metabolism in school-age children with obesity[J]. J Clin Pediatr, 2014(2): 147-150.
[13]OHKI K, WAKUI H, AZUSHIMA K, et al. ATRAP expression in brown adipose tissue does not influence the development of diet-induced metabolic disorders in mice[J]. Int J Mol Sci, 2017, 18(3): 676.
[14]DUMOLT J H, PATEL M S, RIDEOUT T C. Excessive early-life cholesterol exposure may have later-life consequences for nonalcoholic fatty liver disease[J]. J Dev Orig Health Dis, 2021, 12(2): 229-236.
[15]KANG I, PARK M, YANG S J, et al. Lipoprotein lipase inhi-bitor, nordihydroguaiaretic acid, aggravates metabolic phenotypes and alters HDL particle size in the Western diet-fed db/db mice[J]. Int J Mol Sci, 2019, 20(12): 3057.
[16]RAWJI K S, YOUNG A M H, GHOSH T, et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system[J]. Acta Neuropathol, 2020, 139(5): 893-909.
[17]KULESZA A, PACZEK L, BURDZINSKA A. The role of COX-2 and PGE2 in the regulation of immunomodulation and other functions of mesenchymal stromal cells[J]. Biomedicines, 2023, 11(2): 445.
[18]JU Z, LI M, XU J, et al. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: the past 10 years[J]. Acta Pharm Sin B, 2022, 12(6): 2790-2807.
[19]LI L, SUN R, ZENG A J, et al. Comparison of absolute expression and turnover number of COX-1 and COX-2 in human and rodent cells and tissues[J]. J Inflamm Res, 2022, 15: 4435-4447.
[20]PAN Y, CAO S, TANG J, et al. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice[J]. J Clin Invest, 2022, 132(9): e152391.
[21]WANG C, ZHANG X, LUO L, et al. COX-2 deficiency promotes white adipogenesis via PGE2-mediated paracrine mechanism and exacerbates diet-induced obesity[J]. Cells, 2022, 11(11): 1819.
[22]EL-MALAH A A, GINEINAH M M, DEB P K, et al. Selective COX-2 inhibitors: road from success to controversy and the quest for repurposing[J]. Pharmaceuticals (Basel), 2022, 15(7): 827.
[23]WANG C, ZHANG X, LUO L, et al. Adipocyte-derived PGE2 is required for intermittent fasting-induced Treg proliferation and improvement of insulin sensitivity[J]. JCI Insight, 2022, 7(5): e153755.
[24]LIU Y, TIPOE G L, FUNG M L. Melatonin attenuates intermittent hypoxia-induced lipid peroxidation and local inflammation in rat adrenal medulla[J]. Int J Mol Sci, 2014, 15(10): 18437-18452.
[25]BEAUDIN A E, PUN M, YANG C, et al. Cyclooxygenases 1 and 2 differentially regulate blood pressure and cerebrovascular responses to acute and chronic intermittent hypoxia: implications for sleep apnea[J]. J Am Heart Assoc, 2014, 3(3): e000875.
[26]WANG Y, HAI B, AI L, et al. Tempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress[J]. Iran J Basic Med Sci, 2018, 21(12): 1238-1244.
[27]DORIGHELLO G G, ASSIS L H P, RENTZ T, et al. Novel role of CETP in macrophages: reduction of mitochondrial oxidants production and modulation of cell immune-metabolic profile[J]. Antioxidants, 2022, 11(9): 1734.
[28]MARTIN M, CONDORI A I, DAVICO B, et al. Impaired reverse cholesterol transport is associated with changes in fatty acid profile in children and adolescents with abdominal obesity[J]. J Nutr, 2024, 154(1): 12-25.
[29]張世昭, 馬超群, 孫豐翠, 等. 肝X受體在肝臟脂代謝中的研究進(jìn)展[J]. 浙江醫(yī)學(xué), 2020, 42(15): 1677-1680.
ZHANG S Z, MA C Q, SUN F C, et al. Advances in the study of hepatic X receptors in hepatic lipid metabolism[J]. Zhejiang Med J, 2020, 42(15): 1677-1680.
[30]PEREZ-ROBLES M, CAMPOS-PEREZ W, TORRES-VANEGAS J, et al. Abdominal obesity, excessive adiposity, and the Taq1B CETP variant are positively associated with serum lipid levels in Mexican women[J]. Lifestyle Genom, 2023, 16(1): 83-89.
[31]RAPOSO H F, FORSYTHE P, CHAUSSE B, et al. Novel role of cholesteryl ester transfer protein (CETP): attenuation of adiposity by enhancing lipolysis and brown adipose tissue activity[J]. Metabolism, 2021, 114: 154429.
[32]SAQLAIN M, KHALID M, FIAZ M, et al. Risk variants of obesity associated genes demonstrate BMI raising effect in a large cohort[J]. PLoS One, 2022, 17(9): e0274904.
(編輯 張 敏)