摘" 要" 大腦通過(guò)視覺(jué)、聽(tīng)覺(jué)、嗅覺(jué)、味覺(jué)和觸覺(jué)等感官通道接收來(lái)自外界的信息。不同感覺(jué)功能受損涉及抑郁發(fā)生的中樞機(jī)制, 而基于不同感官通道進(jìn)行適當(dāng)刺激以及多感官聯(lián)合干預(yù)也可能發(fā)揮顯著的抑郁治療作用。筆者以癥狀?腦區(qū)?機(jī)制?治療為邏輯主線(xiàn), 首次系統(tǒng)梳理了五種主要感覺(jué)障礙人群的抑郁臨床癥狀、抑郁神經(jīng)機(jī)制以及基于感覺(jué)刺激的抗抑郁治療。結(jié)果表明, 不同感覺(jué)功能障礙對(duì)抑郁相關(guān)神經(jīng)機(jī)制的影響可能表征了不同的抑郁病理, 涉及神經(jīng)元電活動(dòng)(某些神經(jīng)元放電和神經(jīng)環(huán)路激活等)和神經(jīng)生化改變(神經(jīng)可塑性和神經(jīng)發(fā)生、炎癥免疫和HPA軸、神經(jīng)激素和神經(jīng)遞質(zhì)等), 且主要發(fā)生在邊緣系統(tǒng)及其附近腦區(qū), 涉及島葉、顳葉、額葉等。因此, 未來(lái)研究可聚焦于機(jī)體對(duì)不同感覺(jué)信息的提取, 這將為人類(lèi)抑郁的病因和治療提供新的研究視角。
關(guān)鍵詞" 視覺(jué), 聽(tīng)覺(jué), 嗅覺(jué), 味覺(jué), 觸覺(jué), 抑郁
分類(lèi)號(hào)" B845
感覺(jué)這一古老的名詞是心理學(xué)中最重要的話(huà)題之一, 因?yàn)闄C(jī)體只有通過(guò)視覺(jué)、聽(tīng)覺(jué)、嗅覺(jué)、味覺(jué)和觸覺(jué)等感覺(jué), 才可以更好地感知周?chē)氖澜?。不同感官通過(guò)將現(xiàn)實(shí)世界的信息轉(zhuǎn)換為大腦可以處理的電信號(hào), 從而形成人類(lèi)對(duì)事物的認(rèn)知和體驗(yàn)。隨著年齡的增長(zhǎng), 感官功能往往會(huì)表現(xiàn)出明顯衰退, 尤其是老年人群, 經(jīng)常存在幾種感官障礙的組合(Pinto et al., 2021)。這反映出機(jī)體感覺(jué)器官和中樞神經(jīng)系統(tǒng)對(duì)感覺(jué)信息的處理能力與年齡改變息息相關(guān), 然而這些感官障礙和可能由此引發(fā)的精神問(wèn)題卻沒(méi)有引起人們足夠的重視, 更未被進(jìn)行特定的識(shí)別和治療。感官衰退會(huì)導(dǎo)致社會(huì)孤立, 甚至誘發(fā)抑郁。抑郁癥是老齡化社會(huì)所面臨的一個(gè)巨大挑戰(zhàn), 預(yù)計(jì)在未來(lái)十年將成為全球疾病負(fù)擔(dān)首位。抑郁患者的主要表現(xiàn)之一就是會(huì)將機(jī)體的感覺(jué)信息通過(guò)神經(jīng)中樞做出過(guò)多的負(fù)面解讀。研究人員們一直致力于探究抑郁癥的中心起源和潛在療法, 他們發(fā)現(xiàn)邊緣系統(tǒng)聚焦于感覺(jué)功能、神經(jīng)回路和情緒調(diào)節(jié)之間的連接, 感覺(jué)功能可以通過(guò)視覺(jué)、聽(tīng)覺(jué)、嗅覺(jué)、味覺(jué)和觸覺(jué)系統(tǒng)與抑郁等情緒變化產(chǎn)生聯(lián)系(Canbeyli, 2022)。
感覺(jué)功能與抑郁之間也存在著雙向關(guān)系, 感官的低激活或過(guò)度激活會(huì)通過(guò)影響視覺(jué)、聽(tīng)覺(jué)、嗅覺(jué)、味覺(jué)或觸覺(jué)信號(hào)輸入, 對(duì)情緒和抑郁癥狀產(chǎn)生調(diào)節(jié)作用(Canbeyli, 2010)。抑郁也會(huì)反過(guò)來(lái)影響不同感覺(jué)信息的接收, 這可能又會(huì)進(jìn)一步加劇抑郁癥狀。老年人的抑郁癥狀與其合并視覺(jué)和聽(tīng)覺(jué)障礙有關(guān), 聽(tīng)覺(jué)障礙對(duì)抑郁癥狀的影響更明顯(Marmamula et al., 2021); 高密度嗅覺(jué)信號(hào)是社會(huì)應(yīng)激產(chǎn)生的主要信號(hào)通路(赫晨 等, 2021); 味覺(jué)喪失患者往往會(huì)表現(xiàn)出更高程度的抑郁(Han" et al., 2018); 觸覺(jué)刺激豐富對(duì)于小鼠的情緒和認(rèn)知具有改善作用(李琨, 2018)。一般來(lái)說(shuō), 單一感官刺激可使情緒障礙加重, 但多感官刺激或可對(duì)情緒調(diào)節(jié)發(fā)揮積極作用, 從而作為抑郁癥的輔助治療方式(Canbeyli, 2022)。多感官刺激訓(xùn)練(使用VR軟件全景視頻、α波音樂(lè)、精油芳香療法、甜食攝入、指腹梳頭等對(duì)患者進(jìn)行刺激)可以顯著改善認(rèn)知障礙患者的焦慮和抑郁等情緒狀態(tài), 提高其生活質(zhì)量(馬志輝, 2021)。本文將從癥狀、腦區(qū)、機(jī)制、治療四個(gè)維度, 系統(tǒng)梳理五種感覺(jué)與抑郁之間的關(guān)系, 深入揭示單一感官障礙導(dǎo)致抑郁的神經(jīng)機(jī)制, 辨析多感官聯(lián)合刺激與抑郁癥之間的交互作用, 從而為慢性應(yīng)激所致抑郁的有關(guān)學(xué)說(shuō)提供新的思考。
1" 視覺(jué)功能對(duì)抑郁的影響及神經(jīng)機(jī)制
在人類(lèi)認(rèn)識(shí)和感知世界的過(guò)程中, 約有80%的信息來(lái)源于視覺(jué)感知。在這一過(guò)程中, 大腦首先從它的“前衛(wèi)哨兵”——視網(wǎng)膜上的感光細(xì)胞處, 獲得視覺(jué)神經(jīng)沖動(dòng), 接著中樞神經(jīng)系統(tǒng)對(duì)傳入的電信號(hào)進(jìn)行加工處理。視覺(jué)信息的傳入為神經(jīng)中樞提供了大量有效的情緒信號(hào), 正因如此, 研究人員們開(kāi)始使用眼動(dòng)追蹤技術(shù)進(jìn)行情緒的相關(guān)研究(Rantanen et al., 2021)。視覺(jué)障礙會(huì)對(duì)患者的心理變化產(chǎn)生很大程度的影響, 甚至使其出現(xiàn)情緒低落、焦慮和抑郁等, 因此有必要深入探究其內(nèi)在神經(jīng)機(jī)制。
1.1" 視覺(jué)障礙人群的抑郁癥狀
對(duì)中國(guó)(Dong amp; Ng, 2021)、韓國(guó)(Rim et al., 2015)、馬來(lái)西亞(Noran et al., 2009)、亞美尼亞(Giloyan et al., 2015)、拉丁美洲(Paz et al., 2003)等國(guó)家和地區(qū)的調(diào)查數(shù)據(jù)顯示, 眼科疾病患者更有可能并發(fā)抑郁癥, 視力障礙與抑郁癥之間存在顯著相關(guān)性。一項(xiàng)薈萃分析表明, 眼病患者的抑郁患病率明顯增加, 其中干眼癥(dry eye disease, DED)的抑郁患病率為29%, 其次是青光眼患者為25%, 年齡相關(guān)的黃斑變性(age-related macular degeneration, AMD)患者為24%, 白內(nèi)障患者為23% (Zheng et al., 2017)。研究表明, 慢性眼痛引起的DED或癥狀?lèi)夯ㄈ缫曈X(jué)模糊頻率增加)與抑郁狀態(tài)有關(guān)(Vieira et al., 2021); DED引起的光學(xué)像差與淚液不穩(wěn)定有關(guān), 這也會(huì)增加眼疾患者的抑郁傾向(Liyue et al., 2016)。研究人員發(fā)現(xiàn), 即使長(zhǎng)期保持另一只眼睛的正常視覺(jué)功能, 青光眼相關(guān)的單眼失明患者可能仍需定期的心理支持(Holló et al., 2021)。另外, 精神疾病和眼科疾病的關(guān)系是雙向的, 對(duì)抑郁型AMD患者進(jìn)行心理治療干預(yù), 也將進(jìn)一步改善眼科疾病的癥狀(Brody et al., 2001)。縱向數(shù)據(jù)證實(shí), 白內(nèi)障患者出現(xiàn)抑郁癥狀的風(fēng)險(xiǎn)會(huì)更高, 應(yīng)實(shí)施有效的相關(guān)干預(yù)措施(Grant et al., 2021)。研究人員在大量重性抑郁障礙(major depressive disorder, MDD)患者樣本中觀察到一種高度特異性的視覺(jué)周?chē)\(yùn)動(dòng)抑制缺陷, 且這與抑郁癥狀的嚴(yán)重程度相關(guān)(Song et al., 2021)。上述發(fā)現(xiàn)均表明, 失明或有視覺(jué)障礙的患者往往會(huì)表現(xiàn)出抑郁情緒的高度傾向。
1.2" 抑郁的視覺(jué)神經(jīng)機(jī)制
1.2.1" 相關(guān)腦區(qū)和神經(jīng)環(huán)路
MDD患者在視覺(jué)信息處理方面發(fā)生的改變, 主要與視網(wǎng)膜和皮層的加工過(guò)程有關(guān)。視網(wǎng)膜是中樞神經(jīng)系統(tǒng)的一部分, 與大腦有共同的胚胎起源, 視網(wǎng)膜疾病與精神障礙有關(guān)(Vidal et al., 2021)。研究發(fā)現(xiàn), “視網(wǎng)膜(retina)?腹側(cè)膝狀核和膝狀間小葉(ventral lateral geniculate nucleus and intergeniculate leaflet, vLGN/IGL)?外側(cè)韁核(lateral habenula, LHb)”這一神經(jīng)環(huán)路的激活或抑制, 可以緩解小鼠長(zhǎng)期暴露于厭惡刺激或慢性社會(huì)挫敗應(yīng)激(chronic social defeat stress, CSDS)所誘發(fā)的抑郁樣行為, 這為光治療抑郁癥提供了潛在機(jī)制(Huang et al., 2019)。連續(xù)3周的夜間藍(lán)光照射會(huì)誘導(dǎo)小鼠產(chǎn)生抑郁樣行為, 這可能與大腦特定的神經(jīng)環(huán)路“光敏視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(intrinsically photosensitive retinal ganglion cells, ipRGCs)→LHb的核團(tuán)背側(cè)→伏隔核(nucleus accumbens septi, NAs)”有關(guān)(An et al., 2020)。LHb常被稱(chēng)為大腦的“反獎(jiǎng)勵(lì)中樞”, 而NAs則與“快感”有關(guān), 這兩個(gè)處于邊緣系統(tǒng)連接處的腦區(qū)都與抑郁癥狀關(guān)系密切。組織學(xué)分析表明, 無(wú)眼小鼠的杏仁核體積較大, 上丘、初級(jí)視覺(jué)皮層和內(nèi)側(cè)次級(jí)視覺(jué)皮層體積較?。═ouj et al., 2021)。上丘(superior colliculus, SC)小清蛋白陽(yáng)性神經(jīng)元向二疊體旁核(parabigeminal nucleus, PBGN)投射形成的SC-PBGN通路被激活后, 會(huì)觸發(fā)小鼠的恐懼反應(yīng), 并引起抑郁樣行為(Shang et al., 2015)。綜上, 視覺(jué)皮層對(duì)抑郁的影響可能主要發(fā)生在邊緣系統(tǒng)及獎(jiǎng)賞環(huán)路相關(guān)腦區(qū), 某些特定的神經(jīng)環(huán)路在視覺(jué)對(duì)抑郁等情緒障礙的影響中是非常關(guān)鍵的。
1.2.2" 神經(jīng)激素和神經(jīng)遞質(zhì)
經(jīng)視覺(jué)通道傳入的光照, 影響著哺乳動(dòng)物的多種生理功能和情緒。研究表明, 表達(dá)黑視素的ipRGCs可通過(guò)改變褪黑素的分泌以及睡眠/覺(jué)醒周期, 調(diào)節(jié)晝夜節(jié)律, 從而參與抑郁等神經(jīng)退行性疾病的病理機(jī)制(Esquiva amp; Hannibal, 2019)。心理物理?生物化學(xué)聯(lián)合研究表明, 大腦枕部神經(jīng)遞質(zhì)氨基丁酸(γ-aminobutyric acid, GABA)的減少對(duì)MDD患者視覺(jué)感知和精神病理癥狀的改變具有重要作用(Rideaux, 2020)。研究也發(fā)現(xiàn), 囊泡谷氨酸(興奮性神經(jīng)遞質(zhì))轉(zhuǎn)運(yùn)體1(vesicular glutamate transporters 1, VGluT1)缺乏會(huì)損害視覺(jué)注意, 縮小皮質(zhì)丘腦的突觸可塑性動(dòng)態(tài)范圍, 且半合子(VGluT1+/?)小鼠表現(xiàn)出焦慮和抑郁樣行為的增加(Lindstr?m et al., 2020)。研究者還發(fā)現(xiàn), 單次暴露于社會(huì)挫敗應(yīng)激(social defeat stress, SDS)的視頻場(chǎng)景會(huì)提高小鼠的血漿皮質(zhì)酮水平, 且這種生理變化會(huì)通過(guò)阻斷視覺(jué)信息被抑制(Nakatake et al., 2020)。這提示嚙齒類(lèi)動(dòng)物可通過(guò)視覺(jué)信息傳入, 感知同種動(dòng)物的情緒狀態(tài), 也就是說(shuō)視覺(jué)感知在誘導(dǎo)應(yīng)激反應(yīng)中起著至關(guān)重要的作用。
1.3" 基于視覺(jué)的抑郁評(píng)估和治療
目前, 日光照射已被廣泛應(yīng)用于治療季節(jié)性和其他類(lèi)型的抑郁癥, 這對(duì)哺乳動(dòng)物通過(guò)視覺(jué)通道(如ipRGCs等)向大腦輸入情緒信息是重要的(Wirz-Justice et al., 2021)。研究人員可以使用光學(xué)相干層析成像技術(shù)來(lái)分析情緒障礙患者視網(wǎng)膜結(jié)構(gòu)的不同層, 從而區(qū)分抑郁和雙相情感障礙二者之間的差異(Clémence-Fau et al., 2021)。因此, 不同的視覺(jué)參數(shù)或可作為參照標(biāo)記, 用于反映神經(jīng)精神疾病的不同特征。另外, 重復(fù)經(jīng)顱磁刺激(repetitive transcranial magnetic stimulation, rTMS)視覺(jué)皮層治療也可以迅速緩解抑郁, 且副作用小, 其潛在神經(jīng)環(huán)路機(jī)制可能是“內(nèi)嗅皮層→內(nèi)側(cè)次級(jí)視覺(jué)皮層”環(huán)路(Lu et al., 2022)。磁共振成像(magnetic resonance imaging, MRI)結(jié)果顯示, 在個(gè)體化視覺(jué)皮層經(jīng)顱磁刺激治療5天后, MDD患者的抑郁癥狀就得以改善, 并伴隨著視覺(jué)皮層到額葉/扣帶回等腦區(qū)功能連接異常的逆轉(zhuǎn), 因此這有望成為快速抗抑郁的新手段之一(Zhang et al., 2021)。研究人員還發(fā)現(xiàn), 視覺(jué)藝術(shù)療法有利于緩解老年乳腺癌患者的負(fù)性情緒(郝婷 等, 2022)。眼動(dòng)脫敏和再加工治療可能是一種有效的心理健康干預(yù)工具, 用于改善創(chuàng)傷后應(yīng)激障礙、抑郁和焦慮等(Kaptan et al., 2021)。此外, 虛擬現(xiàn)實(shí)(virtual reality, VR)自我管理放松工具(具有沉浸式自然視頻和互動(dòng)元素)能快速明顯地改善消極情緒狀態(tài), 尤其是對(duì)于焦慮和悲傷情緒(Veling et al., 2021)。這可能是一種新穎的心理健康干預(yù)方法, 可有效減壓, 值得未來(lái)進(jìn)一步探索。
2" 聽(tīng)覺(jué)功能對(duì)抑郁的影響及神經(jīng)機(jī)制
據(jù)世界衛(wèi)生組織統(tǒng)計(jì), 到2050年預(yù)計(jì)將有9億人出現(xiàn)聽(tīng)力喪失或減退, 尤其是65歲及以上人群將高達(dá)70%。研究表明, 在抑郁癥和雙相障礙I型患者抑郁發(fā)作期間, 聽(tīng)覺(jué)事件相關(guān)電位P300均存在異常(謝青蓮 等, 2016), 因此研究人員們可以圍繞聽(tīng)覺(jué)事件相關(guān)電位展開(kāi)情緒的相關(guān)研究。在聽(tīng)力喪失或其他聽(tīng)力疾病患者中, 普遍存在心理健康困擾和異常精神癥狀, 但目前針對(duì)這些群體的心理干預(yù)較少, 亟待得到更多關(guān)注。
2.1" 聽(tīng)覺(jué)障礙人群的抑郁癥狀
抑郁癥常見(jiàn)于聾啞和重聽(tīng)(deaf or hard of hearing, DHH)青少年人群中, 其抑郁易感性的增加可能是由于聽(tīng)覺(jué)世界中的交流障礙所致(Dreyzehner amp; Goldberg, 2019)。研究發(fā)現(xiàn), 聽(tīng)障青少年抑郁水平存在顯著的年齡段差異, 初中生的抑郁水平明顯高于高中生, 聽(tīng)障青少年抑郁與疏離感加劇等顯著相關(guān)(張珍珍 等, 2015)。另外, 年齡相關(guān)性聽(tīng)力損失(age-related hearing loss, ARHL)和年齡相關(guān)性耳鳴都會(huì)影響心理健康, 如可能導(dǎo)致焦慮和抑郁的出現(xiàn), 且聽(tīng)覺(jué)放大能夠有效緩解聽(tīng)力障礙和耳鳴、改善認(rèn)知和抑郁、提升社會(huì)交流和生活質(zhì)量(Jafari et al., 2019)。一項(xiàng)橫斷面研究發(fā)現(xiàn), 聽(tīng)力喪失或減退是臨床ARHL老年人群焦慮和抑郁等應(yīng)激癥狀的重要誘因之一(Jayakody et al., 2018)。除年齡外, 聽(tīng)覺(jué)功能對(duì)抑郁的影響也與性別有關(guān)。研究表明, 60歲以上的男性耳鳴患者比女性患者更容易抑郁, 且耳鳴的持續(xù)時(shí)間似乎與抑郁的嚴(yán)重程度有關(guān), 因此耳鳴患者的治療也應(yīng)考慮焦慮和抑郁等情緒障礙(Gomaa et al., 2014)。在COVID-19大流行期間, 防護(hù)口罩更加妨礙了聽(tīng)力喪失或減退患者與外界的交流, 研究表明感音神經(jīng)性聽(tīng)力衰退的程度與焦慮、抑郁以及壓力量表中的癥狀間存在著顯著相關(guān)性(Marinkov et al., 2022)。這意味著在聽(tīng)力喪失人群中, 其焦慮和抑郁癥狀可能會(huì)更加嚴(yán)重。
2.2" 抑郁的聽(tīng)覺(jué)神經(jīng)機(jī)制
2.2.1" 相關(guān)腦區(qū)
聽(tīng)覺(jué)體驗(yàn)(聲音、噪音或沒(méi)有聲音)會(huì)引起中央聽(tīng)覺(jué)系統(tǒng)的結(jié)構(gòu)或功能變化, 尤其是邊緣系統(tǒng)腦區(qū)(杏仁核和海馬體), 其中杏仁核對(duì)聲音的效價(jià)或意義特別敏感, 如發(fā)聲、哭泣或音樂(lè), 杏仁核在聽(tīng)覺(jué)恐懼條件反射、聽(tīng)覺(jué)驚嚇?lè)磻?yīng)和聽(tīng)覺(jué)皮層可塑性調(diào)節(jié)中起著關(guān)鍵作用(Kraus amp; Canlon, 2012)。有研究發(fā)現(xiàn), 暴露于模式聽(tīng)覺(jué)刺激的小鼠, 其聽(tīng)覺(jué)皮層神經(jīng)元激活會(huì)增加, 且在情緒測(cè)試結(jié)果中表現(xiàn)出絕望行為減少(Flores-Gutiérrez et al., 2018)。一項(xiàng)fMRI研究表明, 抑郁患者在聽(tīng)覺(jué)皮層水平上存在感覺(jué)加工缺陷, 主要是在額頂葉和顳葉區(qū)表現(xiàn)出功能障礙(Zweerings et al., 2019)。近年來(lái), 動(dòng)物實(shí)驗(yàn)也證實(shí), 經(jīng)皮耳迷走神經(jīng)刺激(transcutaneous auricular vagus nerve stimulation, taVNS)作為一種相對(duì)無(wú)創(chuàng)的替代治療方法, 能顯著增加杏仁核?背外側(cè)前額葉皮層間的連接, 減輕抑郁癥狀的嚴(yán)重程度(Liu, Yang, et al., 2020)。綜上, 聽(tīng)覺(jué)功能可能主要是通過(guò)邊緣系統(tǒng)實(shí)現(xiàn)對(duì)抑郁等情緒的調(diào)控。
2.2.2" 神經(jīng)可塑性和神經(jīng)發(fā)生
經(jīng)由聽(tīng)覺(jué)通道傳入的噪音刺激以及噪音敏感被認(rèn)為是導(dǎo)致睡眠障礙的關(guān)鍵原因之一, 而睡眠問(wèn)題的出現(xiàn)必然伴隨著焦慮和抑郁等心理健康問(wèn)題的產(chǎn)生(Li et al., 2021)。長(zhǎng)期暴露在低水平噪音下, 不僅會(huì)對(duì)聽(tīng)覺(jué)系統(tǒng)產(chǎn)生直接影響(如暴露在高水平噪音下引起的聽(tīng)覺(jué)喪失和耳鳴), 同樣會(huì)引起精神壓力的增加, 這主要與噪音誘發(fā)的認(rèn)知障礙和睡眠障礙有關(guān)。然而, 也有研究人員對(duì)新生C57BL/6J小鼠(出生后15天)進(jìn)行短暫的高聲級(jí)噪音暴露之后, 發(fā)現(xiàn)噪音暴露和早期發(fā)育中的聽(tīng)力喪失均會(huì)對(duì)成年期的認(rèn)知功能和海馬神經(jīng)發(fā)生產(chǎn)生負(fù)向影響, 這在很大程度上是由于聽(tīng)力敏感性的喪失所導(dǎo)致的(Tao et al., 2015)。研究還發(fā)現(xiàn), 牙科噪聲可作為抑郁發(fā)病的主要應(yīng)激源之一, 小鼠暴露于牙科噪音后會(huì)表現(xiàn)出抑郁樣行為, 并伴有海馬神經(jīng)發(fā)生的抑制, 且口服抗抑郁藥氟西汀可使這些癥狀發(fā)生改善(Dong et al., 2016)。因此, 聽(tīng)覺(jué)功能對(duì)抑郁的影響可能與神經(jīng)可塑性和神經(jīng)發(fā)生有關(guān)。
2.2.3" 炎癥免疫與HPA軸
壓力性噪音刺激會(huì)誘發(fā)杏仁核通過(guò)下丘腦?垂體?腎上腺軸(hypothalamic–pituitary–adrenal axis, HPA axis)釋放應(yīng)激激素, 這可能會(huì)對(duì)中樞神經(jīng)系統(tǒng)產(chǎn)生負(fù)面影響。研究發(fā)現(xiàn), taVNS可能會(huì)通過(guò)膽堿能抗炎通路改善免疫功能, 通過(guò)HPA軸調(diào)節(jié)腦回路, 也因此taVNS成為治療COVID-19并發(fā)抑郁癥狀的重要方法之一(Guo et al., 2021)。研究還發(fā)現(xiàn), 音樂(lè)治療有可能通過(guò)降低杏仁核活動(dòng)、改善海馬和前額葉功能、激活HPA軸, 有效調(diào)節(jié)情緒, 減輕分離癥狀, 降低焦慮和抑郁水平, 并緩解創(chuàng)傷后應(yīng)激障礙癥狀的嚴(yán)重程度(Pant et al., 2022)。有研究人員從分子角度提出, 聽(tīng)覺(jué)功能對(duì)抑郁影響的潛在機(jī)制可能與精神應(yīng)激信號(hào)通路(涉及自主神經(jīng)系統(tǒng)激活及神經(jīng)內(nèi)分泌平衡等)及其對(duì)炎癥免疫和氧化應(yīng)激的影響有關(guān)(Hahad et al., 2019)。這其中, 炎癥免疫與HPA軸發(fā)揮的介導(dǎo)作用已得到大量研究的廣泛實(shí)證。
2.3" 基于聽(tīng)覺(jué)的抑郁治療
在老年人群中, 聽(tīng)力障礙可能更多的是通過(guò)降低社會(huì)參與度導(dǎo)致的隔離孤獨(dú)感進(jìn)而誘發(fā)抑郁, 在佩戴助聽(tīng)器之后, 老年人群的聽(tīng)力水平顯著提高, 孤獨(dú)感和抑郁程度明顯減輕(江帆, 2021)。研究表明, 聽(tīng)力喪失患者雙側(cè)植入人工耳蝸后, 除雙耳聽(tīng)力恢復(fù)外, 患者心理健康水平得以提升, 主要表現(xiàn)為焦慮和抑郁程度的極大改善(Ketterer et al., 2020)。職業(yè)性噪聲聾患者的抑郁發(fā)病與耳鳴程度及睡眠障礙密切相關(guān), 電針療法可改善職業(yè)性噪聲聾患者伴發(fā)的抑郁癥狀, 其作用機(jī)制可能涉及其對(duì)炎癥細(xì)胞因子的調(diào)節(jié)(鄧小峰, 2018)。研究人員也發(fā)現(xiàn), 邊緣系統(tǒng)可能在耳鳴的產(chǎn)生和抑制中發(fā)揮作用, 其相關(guān)機(jī)制可能涉及耳鳴或噪音所導(dǎo)致的心理創(chuàng)傷(Kraus amp; Canlon, 2012)。此外, 經(jīng)由聽(tīng)覺(jué)通道進(jìn)行的變頻音樂(lè)療法可以非常明顯地緩解冠心病共病高血壓老年住院患者的焦慮和抑郁情緒(馬瀟斌, 2020); 基于互聯(lián)網(wǎng)進(jìn)行的認(rèn)知行為療法對(duì)有聽(tīng)力問(wèn)題且伴隨心理困擾的患者也具有一定的治療效果(Molander et al., 2015)。這些基于聽(tīng)覺(jué)通道進(jìn)行的治療, 將有助于提高機(jī)體中樞神經(jīng)系統(tǒng)應(yīng)對(duì)壓力相關(guān)障礙, 如焦慮和抑郁等。
3" 嗅覺(jué)功能對(duì)抑郁的影響及神經(jīng)機(jī)制
嗅覺(jué)在我們的生活中起著至關(guān)重要的作用, 嗅覺(jué)功能的衰退也會(huì)隨著年齡的增長(zhǎng)而加劇, 嗅覺(jué)功能的下降會(huì)伴隨出現(xiàn)抑郁癥狀增加的可能性, 將極大影響人們的生活質(zhì)量。大量研究表明, 擾亂嗅覺(jué)功能會(huì)引發(fā)情緒狀態(tài)紊亂, 研究人員也基于此構(gòu)造出一個(gè)抑郁癥的經(jīng)典動(dòng)物模型(Athanassi et al., 2021)。由于涉及嗅覺(jué)和抑郁的大腦結(jié)構(gòu)部分重疊, 因此對(duì)嗅覺(jué)功能的研究可能會(huì)是尋找抑郁特定標(biāo)記的重要方向。
3.1" 嗅覺(jué)障礙人群的抑郁癥狀
臨床報(bào)告顯示, MDD患者表現(xiàn)出明顯的嗅覺(jué)缺陷, 且嗅覺(jué)功能障礙患者的抑郁癥狀會(huì)隨著嗅覺(jué)喪失的嚴(yán)重程度而加重(Kohli et al., 2016)。然而, 這些多是橫斷面研究, 仍無(wú)法確定嗅覺(jué)功能障礙與抑郁癥狀哪一個(gè)是最先發(fā)展的??v向研究結(jié)果表明, 嗅覺(jué)障礙可以預(yù)測(cè)美國(guó)老年人群抑郁的后續(xù)發(fā)展, 有嗅覺(jué)功能障礙的老年人群會(huì)頻繁并發(fā)抑郁癥狀; 在健康成年人中, 有嗅覺(jué)功能障礙的個(gè)體更有可能在5~10年后出現(xiàn)抑郁癥狀(Eliyan et al., 2021)。對(duì)于嗅覺(jué)障礙患者來(lái)說(shuō), 氣味在主嗅覺(jué)上皮與氣味受體結(jié)合后, 電信號(hào)會(huì)沿著軸突傳遞到大腦邊緣系統(tǒng)的嗅球(Olfactory bulbus, OB), 進(jìn)而引發(fā)機(jī)體對(duì)氣味的感知以及對(duì)情緒行為的反應(yīng)(Glezer amp; Malnic, 2019)。OB主要負(fù)責(zé)嗅覺(jué)信息的輸入, 雙側(cè)OB切除會(huì)導(dǎo)致行為、內(nèi)分泌、免疫和神經(jīng)遞質(zhì)系統(tǒng)的變化, 這與MDD患者的許多變化相似(Song amp; Leonard, 2005)。此外, 抑郁癥也是慢性鼻竇炎(chronic rhinosinusitis, CRS)患者較為常見(jiàn)的并發(fā)疾病, 藥物和手術(shù)治療可同時(shí)改善CRS和抑郁的癥狀(Smith amp; Alt, 2020)。反之, 抑郁也會(huì)影響嗅覺(jué), MDD患者在抑郁發(fā)病期間的“快感缺失”也會(huì)影響到“嗅覺(jué)快感”。抑郁患者長(zhǎng)期受到各種來(lái)自外界的應(yīng)激刺激后, 也可能會(huì)出現(xiàn)鼻腔通氣不暢, 分泌物過(guò)多等鼻炎癥狀(Clepce et al., 2010)。因此, 在后續(xù)研究中, 可以重點(diǎn)關(guān)注嗅覺(jué)和抑郁障礙對(duì)于個(gè)體快樂(lè)感的負(fù)面影響。
3.2" 抑郁的嗅覺(jué)神經(jīng)機(jī)制
3.2.1" 相關(guān)腦區(qū)
幾十年來(lái), 嗅球切除(olfactory bulbectomy, OBX)動(dòng)物模型一直被應(yīng)用于抑郁的相關(guān)研究當(dāng)中, 嚙齒類(lèi)動(dòng)物的嗅球被切除后, 其額葉皮質(zhì)(前額葉、眶額葉和前扣帶回皮質(zhì))會(huì)發(fā)生功能紊亂, 進(jìn)而誘發(fā)抑郁(Rajkumar amp; Dawe, 2018)。MRI的結(jié)果顯示, MDD患者嗅覺(jué)溝(olfactory sulcus, OS)的右側(cè)溝深度與抑郁發(fā)作次數(shù)呈負(fù)相關(guān), MDD緩解患者的右側(cè)溝深度與抑郁癥狀殘留呈負(fù)相關(guān)(Takahashi et al., 2016)。OB容積減小和OS深度降低與嗅覺(jué)喪失或衰退有關(guān), 焦慮和抑郁障礙患者的OB體積和OS深度均變?。ˋsal et al., 2018)。此外, 基于嗅覺(jué)的腦深部刺激也可作為抑郁的潛在治療方法, 其相關(guān)機(jī)制可能是由于緩解了OB體積減小所致的神經(jīng)嗅覺(jué)信息輸入減少以及島葉和顳上回體積縮小(Rottst?dt et al., 2018)。綜上, 嗅覺(jué)和情緒的高級(jí)處理通路有著共同的神經(jīng)解剖學(xué)基礎(chǔ), 邊緣系統(tǒng)將二者聯(lián)系起來(lái), 這也解釋了嗅覺(jué)功能障礙與抑郁之間的相互影響。
3.2.2" 神經(jīng)可塑性和神經(jīng)發(fā)生
既往研究發(fā)現(xiàn), 抑郁患者的海馬區(qū)神經(jīng)元活動(dòng)異常, OBX抑郁動(dòng)物模型的海馬齒狀回神經(jīng)發(fā)生減少、CA1和CA3區(qū)長(zhǎng)時(shí)程增強(qiáng)破壞, 且CA1區(qū)神經(jīng)元發(fā)生萎縮(Morales-Medina et al., 2017)。另外, OBX動(dòng)物模型還可用于抗抑郁藥物的研發(fā), 如美金剛給藥通過(guò)抑制Kir6.1通道來(lái)增加海馬神經(jīng)發(fā)生, 進(jìn)而改善OBX誘導(dǎo)的抑郁樣行為(Moriguchi et al., 2020); 慢性氟西汀治療未能逆轉(zhuǎn)5-HT4受體敲除小鼠中OBX誘導(dǎo)的綜合征, 這一結(jié)果與海馬神經(jīng)可塑性生物標(biāo)志物的差異效應(yīng)有關(guān)(Amigó et al., 2016); 胃饑餓素可以通過(guò)調(diào)節(jié)神經(jīng)可塑性相關(guān)分子機(jī)制, 從而逆轉(zhuǎn)OBX誘導(dǎo)的焦慮和抑郁樣行為(Bianconi et al., 2021)。綜上, 嗅覺(jué)通路的相關(guān)神經(jīng)損傷會(huì)引發(fā)抑郁行為的變化, 改善神經(jīng)可塑性和神經(jīng)發(fā)生可能是基于嗅覺(jué)通道進(jìn)行的潛在抗抑郁機(jī)制。
3.2.3" 神經(jīng)遞質(zhì)系統(tǒng)
OBX抑郁動(dòng)物模型表現(xiàn)為運(yùn)動(dòng)亢進(jìn)和體重下降, 且在膽堿能基底前腦系統(tǒng)靶區(qū)中的腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor, BDNF)蛋白水平升高, 因此其也可作為血清素能低下的躁動(dòng)抑郁癥模型, 這些均與抑郁狀態(tài)相關(guān)(Hellweg et al., 2007)。研究也證實(shí), 內(nèi)源性ω-3多不飽和脂肪酸(omega-3 polyunsaturated fatty acids, n-3 PUFAs) 可能會(huì)通過(guò)調(diào)節(jié)血清素能和免疫功能, 減輕OBX誘導(dǎo)的抑郁樣行為(Gu et al., 2021)。如果在抑郁發(fā)病機(jī)制中HPA軸受損, 也可能會(huì)導(dǎo)致嗅覺(jué)缺陷, 而選擇性5-羥色胺再攝取抑制劑(selective serotonin reuptake inhibitor, SSRIs)類(lèi)抗抑郁藥的神經(jīng)源性作用有助于恢復(fù)某些嗅覺(jué)功能(Siopi et al., 2016)。此外, 跑步運(yùn)動(dòng)可通過(guò)促進(jìn)嗅覺(jué)神經(jīng)發(fā)生和改善多巴胺能神經(jīng)功能, 減輕慢性不可預(yù)見(jiàn)性溫和應(yīng)激(chronic unpredictable mild stress, CUMS)誘導(dǎo)的嗅覺(jué)缺陷(Tian et al., 2020)。小鼠鼻內(nèi)灌注硫酸鋅(ZnSO4)和嗅主上皮中特異性敲除3型腺苷酸環(huán)化酶(adenylate cyclase Ⅲ, AC3)所引起的抑郁樣行為改變可能與多巴胺能系統(tǒng)表達(dá)的顯著下調(diào)有關(guān)(Liu, Zhou, et al., 2020)。以上研究提示, 血清素能和多巴胺能神經(jīng)遞質(zhì)系統(tǒng)在嗅覺(jué)功能對(duì)抑郁的影響中發(fā)揮了重要的介導(dǎo)作用。
3.3" 基于嗅覺(jué)的抑郁評(píng)估和治療
嗅覺(jué)障礙可作為MDD發(fā)病的狀態(tài)或特征標(biāo)記, 高情緒氣味的快樂(lè)度分?jǐn)?shù)下降會(huì)表現(xiàn)為嗅覺(jué)快感缺乏, 因此不同氣味也可構(gòu)成疾病的潛在評(píng)估維度(Naudin et al., 2012)。嗅覺(jué)評(píng)估也可能用于篩查抑郁癥和雙相障礙, 其相關(guān)參數(shù)也可被考慮作為未來(lái)情緒障礙的感官標(biāo)記(Kazour et al., 2020)。研究表明, 間斷地暴露于氣味中可能會(huì)改善機(jī)體嗅覺(jué)功能, 這種嗅覺(jué)訓(xùn)練會(huì)對(duì)主觀幸福感和認(rèn)知功能產(chǎn)生積極影響(Birte-Antina et al., 2018)。近年來(lái), 鼻腔給藥方式為神經(jīng)精神疾病患者提供了一種非侵入式的給藥選擇, 尤其對(duì)于需要長(zhǎng)期或重復(fù)治療給藥的情況。美國(guó)食品藥品監(jiān)督管理局(FDA)已批準(zhǔn)了氯胺酮鼻噴劑的上市, 聯(lián)合使用艾氯胺酮鼻噴霧劑與口服抗抑郁藥也可改善嗅覺(jué)功能和鼻耐受性, 并對(duì)難治性抑郁患者發(fā)揮作用(Doty et al., 2021)。此外, 鼻內(nèi)注射胰高糖素樣肽-1 (glucagon-like peptide-1, GLP-1)類(lèi)似物利昔那肽(lixisenatide, LXT)作為一種潛在的抗抑郁藥物, 能夠改善嗅覺(jué)功能和情緒行為(Ren et al., 2021)。這些結(jié)果可以解釋為通過(guò)嗅覺(jué)通道進(jìn)行抑郁治療(多為抗抑郁藥物鼻內(nèi)給藥治療)所產(chǎn)生的影響。
4" 味覺(jué)功能對(duì)抑郁的影響及神經(jīng)機(jī)制
味覺(jué)功能是直接決定攝食行為和評(píng)價(jià)食物質(zhì)量的“看門(mén)人”, 如糖和氨基酸等營(yíng)養(yǎng)有益的物質(zhì)分別是甜味和鮮味, 而有害和有毒物質(zhì)的味道則是苦味和酸味。一般來(lái)說(shuō), 食物與情緒的選擇之間有很大的關(guān)系, 減少味覺(jué)輸入會(huì)加重情緒功能障礙。蔗糖偏好試驗(yàn)(sucrose preference test, SPT)是嚙齒類(lèi)動(dòng)物測(cè)量快感缺乏(抑郁核心癥狀)的經(jīng)典方法(Yin et al., 2021)。因此, 味覺(jué)功能在抑郁等情緒障礙的預(yù)測(cè)和評(píng)估中發(fā)揮著重要作用。
4.1" 味覺(jué)障礙人群的抑郁癥狀
目前, 味覺(jué)障礙已成為神經(jīng)科不容小覷的診治細(xì)節(jié), 味覺(jué)障礙可能是某些神經(jīng)疾病的早期癥狀, 主要包括味覺(jué)減退、味覺(jué)缺失、味覺(jué)倒錯(cuò)和幻味等幾種類(lèi)型。調(diào)查數(shù)據(jù)表明, 味覺(jué)減退可顯著預(yù)測(cè)抑郁癥, 這或?qū)⒆鳛橐环N抑郁的篩查指標(biāo)納入抑郁的診療體系(Hur et al., 2018; Qazi et al., 2020)。研究發(fā)現(xiàn), 在47名抑郁癥患者中, 19人表現(xiàn)出不愉快的味覺(jué)癥狀, 且這種癥狀似乎與以往的藥物治療無(wú)關(guān)(Miller amp; Naylor, 1989)。老年人識(shí)別食物的能力較差, 味覺(jué)敏銳度較低, 抑郁得分較年輕人更高(Bischmann amp; Witte, 1996)。味覺(jué)改變的中風(fēng)患者會(huì)出現(xiàn)營(yíng)養(yǎng)不良的風(fēng)險(xiǎn), 這種缺陷常常誘發(fā)和加劇抑郁癥狀(Dutta et al., 2013)。很多患者和醫(yī)護(hù)人員在感染COVID-19后會(huì)出現(xiàn)一些神經(jīng)方面的后遺癥, 包括味覺(jué)喪失和抑郁等, 甚至在感染恢復(fù)后這些后遺癥仍然存在。味覺(jué)喪失與情緒困擾密切相關(guān), 味覺(jué)功能障礙與焦慮和抑郁呈正相關(guān)(Dudine et al., 2021)。進(jìn)一步研究發(fā)現(xiàn), 積極情緒與增強(qiáng)的甜味和減弱的酸味相關(guān), 而消極情緒與增強(qiáng)的酸味和減少的甜味相關(guān)(Noel amp; Dando, 2015)。這些結(jié)果提示, 味覺(jué)的調(diào)節(jié)作用也可能會(huì)對(duì)情緒性進(jìn)食產(chǎn)生影響。
4.2" 抑郁的味覺(jué)神經(jīng)機(jī)制
4.2.1" 相關(guān)腦區(qū)
人類(lèi)和其他靈長(zhǎng)類(lèi)動(dòng)物的味覺(jué)通路從孤束核直接投射到味覺(jué)丘腦, 位于島葉前部的味覺(jué)皮層在不受饑餓感影響的情況下, 對(duì)口腔中食物的味道、溫度和質(zhì)地進(jìn)行獨(dú)立和綜合的表征, 從而對(duì)獎(jiǎng)賞價(jià)值和愉悅感產(chǎn)生影響, 由此建立起味覺(jué)與抑郁等情緒相互影響的“橋梁” (Rolls, 2019)。同樣, 眼窩額葉皮層也可代表主要強(qiáng)化物的獎(jiǎng)賞或情感價(jià)值, 包括味覺(jué)、觸覺(jué)、質(zhì)地和面部表情。眼窩額葉皮層包含次級(jí)味覺(jué)皮層, 味覺(jué)的獎(jiǎng)勵(lì)價(jià)值在此體現(xiàn), 它將參與進(jìn)食和飲酒等動(dòng)機(jī)、情緒和社會(huì)行為(Rolls, 2004)。研究也發(fā)現(xiàn), 食欲增加的MDD患者, 其獎(jiǎng)賞環(huán)路激活增強(qiáng)(島葉前部、眶額皮層、腹側(cè)紋狀體、腹側(cè)蒼白球、殼核); 而食欲減退的MDD患者, 其島葉中部活動(dòng)下降(Simmons et al., 2016)。因此, 面對(duì)食物刺激時(shí)的腦活動(dòng)成像或可成為辨別抑郁癥亞型的生物標(biāo)記。此外, 在有關(guān)味覺(jué)識(shí)別和味覺(jué)記憶的研究中, 島葉皮質(zhì)和杏仁核的作用也是不容忽視的(Miranda, 2012)。綜上, 味覺(jué)功能將在孤束核、島葉、眼窩額葉皮層和杏仁核等相關(guān)腦區(qū), 通過(guò)影響?yīng)勝p價(jià)值和愉悅感, 實(shí)現(xiàn)對(duì)情緒的調(diào)節(jié)。
4.2.2" 味覺(jué)受體
碳水化合物的攝入增加和對(duì)甜食的渴望被認(rèn)為是冬季抑郁癥的核心特征(Swiecicki et al., 2015)。臨床研究發(fā)現(xiàn), 焦慮特征較高的女性對(duì)蔗糖的識(shí)別閾值會(huì)隨著抑郁的增加而降低, 負(fù)責(zé)厭惡情緒和味覺(jué)處理的大腦區(qū)域在空間上重疊, 且這些易受月經(jīng)周期所致的性腺激素周期性變化的影響(Nagai et al., 2015)。動(dòng)物研究發(fā)現(xiàn), 當(dāng)SDS小鼠表現(xiàn)為甜味偏好即快感缺乏減弱時(shí), 往往伴隨著輪廓乳頭甜味受體表達(dá)的改變(Takahata et al., 2022)。此外, 1型味覺(jué)受體(taste receptor family 1 member, T1R)在小鼠孤束核中對(duì)糖(T1R2+T1R3)和氨基酸(T1R1+T1R3)的味覺(jué)傳導(dǎo)發(fā)揮了重要作用(Kalyanasundar et al., 2020)。也有研究者發(fā)現(xiàn), 輕度CSDS會(huì)下調(diào)雄鼠甜味味覺(jué)受體T1R2和鮮味味覺(jué)受體T1R3的外周表達(dá), 他們認(rèn)為CSDS影響的是外周味覺(jué)感應(yīng)系統(tǒng), 而不是介導(dǎo)蔗糖偏好的中樞獎(jiǎng)勵(lì)系統(tǒng)(Yoshida et al., 2021)。因此, 各類(lèi)味覺(jué)受體尤其是甜味受體在味覺(jué)和情緒之間發(fā)揮了極強(qiáng)的介導(dǎo)作用。
4.2.3" 單胺類(lèi)神經(jīng)遞質(zhì)
眾所周知, 在處于抑郁狀態(tài)人群的大腦中, 血清素(即5-HT)或去甲腎上腺素(norepinephrine, NE)的化學(xué)含量比常人低。或許是由于大腦中某些化學(xué)成分變化的原因, 許多人的味覺(jué)也變得遲鈍。研究表明, 5-HT和NE表達(dá)水平的改變會(huì)誘發(fā)焦慮或抑郁, 且這與味覺(jué)障礙有關(guān), 表明這些單胺類(lèi)神經(jīng)遞質(zhì)在健康和疾病中決定味覺(jué)閾值的重要性(Heath et al., 2006)。基于此, 研究者們認(rèn)為人類(lèi)的味覺(jué)閾值是可塑的, 味覺(jué)感知也會(huì)隨著情感狀態(tài)的變化而變化, 情感障礙個(gè)體往往會(huì)出現(xiàn)味覺(jué)和食欲的明顯下降。對(duì)于超閾值刺激, 血清素水平的急劇降低顯著提高了對(duì)苦味和酸味的感知強(qiáng)度, 即中樞血清素水平的降低可以增強(qiáng)機(jī)體對(duì)厭惡信號(hào)的神經(jīng)行為反應(yīng)(Smith et al., 2021)。此外, 研究還發(fā)現(xiàn), 對(duì)苯硫脲(PTC)和丙硫氧嘧啶(PROP)等苦味化合物的味覺(jué)敏感性可作為抑郁癥易感性增加的遺傳標(biāo)記物(Thomas et al., 2014)。
4.3" 基于味覺(jué)的抑郁評(píng)估和治療
非典型味覺(jué)障礙在MDD中是一種常見(jiàn)的臨床表現(xiàn), 給予患者維生素B12和奧氮平等抗抑郁藥物治療后, 抑郁癥狀改善且甜味嗜好減少(Khalil et al., 2020)。而對(duì)于一過(guò)性的抑郁情緒, 甜食攝入則可以起到快速緩解壓力的作用。甜味實(shí)驗(yàn)檢測(cè)的是對(duì)甜味的享樂(lè)反應(yīng), 主要依賴(lài)的指標(biāo)包括對(duì)蔗糖的敏感性和對(duì)蔗糖的享樂(lè)性反應(yīng), MDD患者接受的抑郁行為激活療法與此相關(guān), 其通過(guò)增加對(duì)獎(jiǎng)勵(lì)刺激的參與, 以減少回避行為的發(fā)生(Dichter et al., 2010)。研究也發(fā)現(xiàn), 味覺(jué)功能障礙, 尤其是甜味閾值的變化, 主要與三環(huán)類(lèi)抗抑郁藥物(tricyclic antidepressants, TCA)和SSRIs相關(guān)(Mikhail et al., 2021)。因此, 在抑郁的臨床診治過(guò)程中, 有必要關(guān)注患者的味覺(jué)變化, 味覺(jué)感知可以提高抑郁患者的生活質(zhì)量, 從而有效避免更頻繁的治療。此外, 抑郁患者單獨(dú)使用rTMS或?qū)⑵湓鎏淼侥壳暗闹委煼桨钢校?對(duì)味覺(jué)障礙和抑郁障礙均有積極療效(Kullak?i amp; Sonkaya, 2021)。
5" 觸覺(jué)功能對(duì)抑郁的影響及神經(jīng)機(jī)制
愉快的情感觸摸可以提升個(gè)人幸福感, 促進(jìn)社會(huì)交往, 因此觸覺(jué)刺激對(duì)社會(huì)性哺乳動(dòng)物的情感行為意義重大。皮膚感覺(jué)在情感維度的社會(huì)信息傳遞和加工過(guò)程中發(fā)揮著重要作用, 除獲取辨識(shí)信息外, 皮膚的觸感覺(jué)還能在人際溝通中獲得情緒信息(Morrison et al., 2010)。積極的社會(huì)接觸會(huì)影響人際關(guān)系的建立和維持, 由于人際關(guān)系困難與抑郁有關(guān), 因此觸覺(jué)功能在抑郁治療中也是值得被關(guān)注的。
5.1" 觸覺(jué)障礙人群的抑郁癥狀
早在上世紀(jì), 研究者們就意識(shí)到身體接觸與心理健康的相關(guān)性, 并提出不滿(mǎn)意的身體接觸體驗(yàn)更容易導(dǎo)致抑郁的假說(shuō)。社會(huì)隔離會(huì)改變?nèi)藗兊那榫w, 導(dǎo)致焦慮或抑郁癥狀的產(chǎn)生。在COVID-19大流行期間, 盡管人們可以通過(guò)其他方式進(jìn)行交流, 但受到居家隔離政策的影響, 社交接觸的減少誘發(fā)了極高的抑郁發(fā)生率(Smith amp; Bilbo, 2021)。臨床研究表明, 較少的身體愛(ài)撫(或更多的身體忽視)會(huì)導(dǎo)致更強(qiáng)的攻擊性, 按摩療法對(duì)有暴力傾向的青少年療效顯著, 會(huì)使其攻擊行為減少, 移情行為增加, 這可能與多巴胺和血清素水平的變化有關(guān)(Field, 2002)。躁狂型和遲鈍型抑郁患者與健康對(duì)照者相比, 在觸覺(jué)反應(yīng)方面均表現(xiàn)出顯著性差異(Lapierre amp; Butter, 1980)。內(nèi)源性抑郁的特征是缺乏身體接觸體驗(yàn), 而躁狂性抑郁則與不滿(mǎn)意的身體接觸體驗(yàn)有關(guān)(Cochrane, 1990)。綜上, 觸摸是影響人類(lèi)生理和心理健康的重要因素, 而缺乏觸摸會(huì)對(duì)心理健康產(chǎn)生不利影響。
5.2" 抑郁的觸覺(jué)神經(jīng)機(jī)制
5.2.1" 相關(guān)腦區(qū)
哺乳類(lèi)動(dòng)物都會(huì)通過(guò)觸摸來(lái)交換有情感意義的社會(huì)信號(hào), 隨著人們對(duì)情感觸摸越來(lái)越感興趣, 研究人員已經(jīng)描繪出一個(gè)繞過(guò)初級(jí)軀體感覺(jué)皮層S1的神經(jīng)網(wǎng)絡(luò)(Case et al., 2016)。情緒的產(chǎn)生與軀體感覺(jué)皮層和島葉之間的交叉激活有關(guān), 且額葉?邊緣系統(tǒng)的過(guò)度激活又會(huì)引發(fā)更加微妙的情緒, 這可能揭示了觸摸和情感二者之間潛在的互動(dòng)機(jī)制(Ramachandran amp; Brang, 2008)。研究表明, 緩慢移動(dòng)的觸覺(jué)刺激可以明顯激活島葉并引起愉悅感, 同時(shí)還可以激活眶額葉內(nèi)與愉悅嗅覺(jué)激活區(qū)域鄰近的部位(華慶平, 羅非, 2007)。觸覺(jué)情緒成分的編碼主要是在邊緣系統(tǒng)完成的, 如杏仁核中的觸覺(jué)神經(jīng)元通過(guò)接收來(lái)自皮膚機(jī)械感受器信號(hào)的輸入, 從而提取觸摸刺激的健康效價(jià)(Mosher et al., 2016)。此外, 實(shí)驗(yàn)人員的溫柔撫摸在動(dòng)物的獎(jiǎng)勵(lì)偏好中會(huì)發(fā)揮重要作用, 其中絕大部分相關(guān)腦區(qū)均涉及邊緣系統(tǒng)(Cho et al., 2021)。盡管觸摸功能與抑郁之間的關(guān)系已得到關(guān)注, 但其具體機(jī)制仍需進(jìn)一步明晰。
5.2.2" C纖維傳入
在人類(lèi)和嚙齒動(dòng)物模型中, 社會(huì)互動(dòng)的重要性已被廣泛證實(shí)。在親密互動(dòng)中, 觸摸的獎(jiǎng)勵(lì)感是由一種稱(chēng)為C-觸覺(jué)傳入(C-tactile afferents, CTs)的特殊神經(jīng)纖維系統(tǒng)實(shí)現(xiàn)的, 這些無(wú)髓鞘的低閾值機(jī)械感受器既不接受癢感也不接受痛感, 只對(duì)低力度/速度的觸摸(典型的愛(ài)撫)反應(yīng)最佳。當(dāng)以令人愉快的、類(lèi)似于撫摸的速度(約3 cm/s)觸摸皮膚時(shí), CT傳入放電增加, 放電頻率與撫摸的主觀享樂(lè)體驗(yàn)相關(guān)(Morrison et al., 2011)。抑郁與由觸覺(jué)刺激引起的體感誘發(fā)電位具有高度相關(guān)性(Agren et al., 1983)。CT刺激可能在親密的觸覺(jué)互動(dòng)中通過(guò)調(diào)節(jié)催產(chǎn)素釋放, 降低對(duì)壓力源的生理和行為反應(yīng)(Walker et al., 2017)。按摩治療也會(huì)顯著改善老年精神疾病患者的癥狀, 其機(jī)制可能與C纖維耦合的低閾值機(jī)械感受器投射到島葉皮質(zhì)和邊緣系統(tǒng)的特定信號(hào)有關(guān)(Kopf, 2021)。因此, 觸覺(jué)刺激通過(guò)激活C纖維發(fā)揮積極的情感價(jià)值, 可能是情感性觸覺(jué)的神經(jīng)生理基礎(chǔ)(Pawling et al., 2017)。
5.2.3" 神經(jīng)環(huán)路
溫柔的撫摸是一種具有愉悅回報(bào)價(jià)值的情感接觸, 有緩解焦慮和抑郁的作用。手工按摩可以有效地增加催產(chǎn)素的釋放和激活認(rèn)知獎(jiǎng)勵(lì)相關(guān)腦區(qū)(Li et al., 2019)。催產(chǎn)素具有抗焦慮作用, 愉快的感覺(jué)刺激會(huì)激活大鼠下丘腦催產(chǎn)素神經(jīng)元(Okabe et al., 2015)。研究發(fā)現(xiàn), 類(lèi)似社交觸摸的觸覺(jué)刺激可以增強(qiáng)小鼠室旁下丘腦(paraventricular hypothalamic nucleus, PVH)的催產(chǎn)素神經(jīng)元放電, 通過(guò)一條外側(cè)和腹外側(cè)中央導(dǎo)水管周?chē)屹|(zhì)(l/vlPAG)中的速激肽1型(tachykinin 1, Tac1+)神經(jīng)元到PVH后葉催產(chǎn)素神經(jīng)元的雙肽通路, 增強(qiáng)社會(huì)互動(dòng)和情感效價(jià)(Yu et al., 2022)。另外, 研究人員也關(guān)注到在進(jìn)行撫摸刺激時(shí), 神經(jīng)元放電活動(dòng)最為活躍的PROKR2神經(jīng)元, PROK2-PROKR2信號(hào)通路在觸覺(jué)傳導(dǎo)過(guò)程中是十分必要的, 這一通路的缺陷將會(huì)導(dǎo)致小鼠的愉快性觸覺(jué)喪失(Liu et al., 2022)。顯然, 這些傳遞愉悅信息的神經(jīng)元放電和神經(jīng)環(huán)路在抑郁的相關(guān)機(jī)制中扮演著重要角色。
5.3" 基于觸覺(jué)的抑郁治療
按摩和觸摸可以作為輔助療法, 用于調(diào)節(jié)情緒和行為(Hansen et al., 2006)。臨床研究發(fā)現(xiàn), 伴隨音樂(lè)和芳香的觸摸療法可改善抑郁癥狀, 且睡眠不寧、頭痛、晨乏、疲憊、想哭和腸道不適等癥狀也會(huì)減輕(Demirba? amp; Erci, 2012)。愉快的觸摸刺激具有抗炎和抗氧化的作用, 其可通過(guò)催產(chǎn)素機(jī)制減少心理壓力(Proskurnina et al., 2021)。研究證實(shí), 按摩可緩解孕婦的焦慮、抑郁和腿背部疼痛等, 并且在分娩過(guò)程中減弱其對(duì)疼痛的感知(Shetty amp; Fogarty, 2021)。產(chǎn)前抑郁婦女在每周兩次(每次20分鐘)的瑜伽或按摩治療后, 其焦慮、抑郁以及背部、腿部疼痛評(píng)分都有明顯下降(Field et al., 2012)。此外, 靈氣觸摸療法(Reiki)對(duì)緩解疼痛、改善焦慮和抑郁, 以及提高生活質(zhì)量都是非常有效的(Billot et al., 2019)。45~90分鐘的靈氣課程可使積極情緒、消極情緒、疼痛、嗜睡、疲勞、惡心、食欲、氣短、焦慮、抑郁和整體健康狀況等指標(biāo)均發(fā)生顯著改善(Dyer et al., 2019)。綜上, 愉快的情感觸摸能夠帶來(lái)各種健康益處, 尤其是精神狀況的改善, 包括緩解壓力和抑郁。
6" 小結(jié)與展望
6.1" 小結(jié)
本研究首次整合了“視覺(jué)” “聽(tīng)覺(jué)” “嗅覺(jué)” “味覺(jué)” “觸覺(jué)”與抑郁間的相關(guān)研究, 從不同的感覺(jué)功能視角, 梳理了相關(guān)抑郁發(fā)病和治療的臨床現(xiàn)狀及其神經(jīng)機(jī)制。當(dāng)一個(gè)人接收到的感覺(jué)刺激減少或低于正常閾值時(shí), 就會(huì)發(fā)生感覺(jué)剝奪, 這種變化成為誘發(fā)抑郁等神經(jīng)精神疾病的風(fēng)險(xiǎn)因素。而不同的感覺(jué)刺激或基于不同感官功能進(jìn)行給藥及相應(yīng)治療亦可有效改善抑郁等神經(jīng)精神疾病的癥狀。其中具體的作用機(jī)制與神經(jīng)元電活動(dòng)(某些神經(jīng)元放電和神經(jīng)環(huán)路激活等)和神經(jīng)生化改變(神經(jīng)可塑性和神經(jīng)發(fā)生、炎癥免疫和HPA軸、神經(jīng)激素和神經(jīng)遞質(zhì)等)有關(guān), 且主要發(fā)生在邊緣系統(tǒng)(杏仁核、海馬體、下丘腦、伏隔核、扣帶回和嗅球)及其附近腦區(qū)(外側(cè)韁核、孤束核、上丘), 涉及島葉、顳葉、額葉等(圖1)。綜上, 不同的感覺(jué)信息從外界輸入大腦后, 首先在邊緣系統(tǒng)及其附近腦區(qū)完成感覺(jué)信號(hào)向情緒信號(hào)的轉(zhuǎn)化, 隨后神經(jīng)中樞才能對(duì)輸入的信息進(jìn)行加工處理并對(duì)外界感覺(jué)刺激作出適應(yīng)性反應(yīng)。
隨著全球人口老齡化的加劇和COVID-19的大流行, 不同感覺(jué)功能的障礙甚至缺失將更多發(fā)生在衰老、傷疾、隔離等情況下。感覺(jué)信息的缺失和負(fù)面解讀等均會(huì)引起焦慮、抑郁等心理健康障礙(Canbeyli, 2010)。在不同感覺(jué)功能對(duì)心理健康的影響中, 對(duì)抑郁的影響比重較大, 且患者的疾病類(lèi)型、年齡階段、性別差異(尤其是女性妊娠期間和產(chǎn)后期)等因素均會(huì)影響抑郁易感性。然而, 機(jī)體接受的感覺(jué)刺激也并非“多多益善”, 過(guò)度的感覺(jué)刺激同樣會(huì)導(dǎo)致機(jī)體感覺(jué)和情緒功能的失衡, 如藍(lán)光和噪音的過(guò)度刺激反而會(huì)誘發(fā)抑郁。而適當(dāng)?shù)母杏X(jué)刺激則可以作為一種“補(bǔ)償輸入”, 有效改善抑郁的發(fā)病癥狀及嚴(yán)重程度。綜述發(fā)現(xiàn)個(gè)體化視覺(jué)皮層經(jīng)顱磁刺激、視覺(jué)藝術(shù)療法、經(jīng)皮耳迷走神經(jīng)刺激、變頻音樂(lè)療法、嗅覺(jué)的腦深部刺激、鼻腔給藥療法、基于蔗糖攝入的心理行為療法、伴隨音樂(lè)和芳香的按摩療法、靈氣觸摸Reiki療法等對(duì)于抑郁癥狀的緩解療效佳且副作用小, 非常適合向臨床推廣。
6.2" 展望
考慮到感覺(jué)刺激輸入及后續(xù)信息加工與情緒轉(zhuǎn)化之間是密切相關(guān)的, 研究人員們聚焦于不同感官功能, 對(duì)抑郁發(fā)病和治療機(jī)制進(jìn)行深入探討, 有其合理性和必要性。當(dāng)然, 不同感覺(jué)功能對(duì)抑郁等精神疾病的不同影響也應(yīng)引起重視, 如單一或多個(gè)感官的刺激缺失常常誘發(fā)抑郁, 而基于不同感官通道進(jìn)行適當(dāng)刺激以及多感官聯(lián)合刺激又可作為抗抑郁治療手段, 大腦是如何辨別這些不同的感覺(jué)信息, 進(jìn)而“致抑郁”或“抗抑郁”的呢?目前, 感覺(jué)障礙及其治療與神經(jīng)精神疾病之間的研究還很不成熟, 相關(guān)潛在機(jī)制的研究還處于初始階段, 相關(guān)治療手段的開(kāi)發(fā)才剛剛起步, 仍存在許多問(wèn)題亟待明晰和解決。未來(lái), 研究者們應(yīng)將使用磁共振成像初步獲得的人體實(shí)驗(yàn)數(shù)據(jù)在更大的樣本中進(jìn)行實(shí)證, 使用動(dòng)物模型發(fā)現(xiàn)的神經(jīng)傳導(dǎo)環(huán)路和神經(jīng)生化機(jī)制在更完善的多元檢測(cè)中進(jìn)一步確認(rèn), 以期能創(chuàng)造更加全面的感覺(jué)評(píng)估治療方案提升抑郁等神經(jīng)精神疾病診治的準(zhǔn)確性和有效性。
在物理、化學(xué)、心理學(xué)、生物學(xué)和計(jì)算機(jī)等多學(xué)科的交叉融合背景下, 研究人員可以試圖發(fā)展如何根據(jù)某些感官參數(shù)進(jìn)行合理評(píng)估, 輔助抑郁癥的醫(yī)療。如在人工智能(artificial intelligence, AI)的科技助力下, 將視聽(tīng)感官信息“數(shù)字化”, 并發(fā)明創(chuàng)造更多實(shí)用型可穿戴設(shè)備, 加快VR與增強(qiáng)現(xiàn)實(shí)(augmented reality, AR)技術(shù)參與抑郁問(wèn)診。近年來(lái), 科學(xué)家們不斷取得突破性的研究進(jìn)展, 通過(guò)鼻部進(jìn)行抗抑郁給藥治療的有效性增強(qiáng)且逐漸開(kāi)始市場(chǎng)化推廣, 因此以更加便捷的方式治療抑郁的美好愿景或?qū)⒛芨鐚?shí)現(xiàn)??紤]到傳遞“愉悅”信息的觸覺(jué)神經(jīng)環(huán)路與針灸等體表刺激療法效應(yīng)有諸多的“異曲同工”之源, 因此將愉悅感覺(jué)作為針灸?推拿?按摩和穴位研究的一個(gè)載體, 也將有助于促進(jìn)中醫(yī)治療抑郁等心理疾病的臨床轉(zhuǎn)化(Liu et al., 2022)??傊?感覺(jué)信息的提取將助力精神疾病的干預(yù)和康復(fù), 并賦能數(shù)字醫(yī)療、科技醫(yī)療、精準(zhǔn)醫(yī)療, 改寫(xiě)傳統(tǒng)醫(yī)療的模式思路, 從而推動(dòng)人類(lèi)進(jìn)入嶄新的醫(yī)療時(shí)代。
參考文獻(xiàn)
鄧小峰. (2018). 電針治療噪聲聾伴發(fā)抑郁癥狀的療效評(píng)價(jià)及免疫機(jī)制探討 (博士學(xué)位論文). 廣州中醫(yī)藥大學(xué).
郝婷, 李紅梅, 張俊, 楊啟慧, 楊佳. (2022). 視覺(jué)藝術(shù)療法對(duì)老年乳腺癌患者認(rèn)知障礙和負(fù)性情緒的影響. 中國(guó)護(hù)理管理, 22(2), 201–206.
赫晨, 黃淑麗, 劉景, 宋怡然, 魯偉, 張知彬. (2021). 視覺(jué)和嗅覺(jué)密度信號(hào)對(duì)布氏田鼠社會(huì)應(yīng)激的影響. 獸類(lèi)學(xué)報(bào), 41(4), 416–430.
華慶平, 羅非. (2007). 第二觸覺(jué)系統(tǒng):編碼觸覺(jué)情緒成分的C纖維. 生理科學(xué)進(jìn)展, 38(4), 323–326.
江帆. (2021). 山東省冠縣聽(tīng)障老年人抑郁現(xiàn)狀調(diào)查與基于助聽(tīng)器的干預(yù)效果評(píng)價(jià)研究 (博士學(xué)位論文). 山東大學(xué), 濟(jì)南.
李琨. (2018). 成年觸覺(jué)豐富對(duì)小鼠焦慮樣行為和記憶功能的影響與機(jī)制 (碩士學(xué)位論文). 浙江大學(xué), 杭州.
馬瀟斌. (2020). Soundsory變頻音樂(lè)療法對(duì)冠心病共病高血壓患者認(rèn)知障礙和焦慮抑郁的干預(yù)效果 (碩士學(xué)位論文). 華北理工大學(xué), 唐山.
馬志輝. (2021). 多感官刺激對(duì)腦卒中后認(rèn)知功能障礙和焦慮抑郁的干預(yù)效果(碩士學(xué)位論文). 華北理工大學(xué), 唐山.
謝青蓮, 李喆, 鄧偉, 王強(qiáng), 李名立, 李寅飛, ... 鄭重. (2016). 雙相障礙抑郁發(fā)作與單相抑郁癥患者聽(tīng)覺(jué)事件相關(guān)電位P300的對(duì)照研究. 臨床精神醫(yī)學(xué)雜志, 26(5), 302–305.
張珍珍, 陳佩佩, 路立紅, 徐夫真. (2015). 聽(tīng)障青少年疏離感與抑郁的關(guān)系: 自我概念的中介效應(yīng). 中國(guó)特殊教育, 180(6), 35–38.
Agren, H., Osterberg, B., amp; Franzen, O. (1983). Depression and somatosensory evoked potentials: II. Correlations between SEP and depressive phenomenology. Biological Psychiatry, 18(6), 651–659.
Amigó, J., Díaz, A., Pilar-Cuéllar, F., Vidal, R., Martín, A., Compan, V., .... Castro, E. (2016). The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology, 111(12), 47–58.
An, K., Zhao, H., Miao, Y., Xu, Q., Li, Y. F., Ma, Y. Q., .... Xue, T. (2020). A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice. Nature Neuroscience, 23(7), 869–880.
Asal, N., Bayar, M. N., Inal, M., Sahan, M. H., Dogan, A., amp; Buturak, S. V. (2018). Olfactory bulbus volume and olfactory sulcus depth in psychotic patients and patients with anxiety disorder/depression. European Archives of Oto-Rhino-Laryngology, 275(12), 3017–3024.
Athanassi, A., Doncel, R. D., Bath, K. G., amp; Mandairon, N. (2021). Relationship between depression and olfactory sensory function: A review. Chemical Senses, 46(1), 1–12.
Bianconi, S., Poretti, M. B., Rodríguez, P., Maestri, G., Rodríguez, P. E., de Barioglio, S. R., .... Carlini, V. P. (2021). Ghrelin restores memory impairment following olfactory bulbectomy in mice by activating hippocampal NMDA1 and MAPK1 gene expression. Behavioural Brain Research, 410(7), 113341–113351.
Billot, M., Daycard, M., Wood, C., amp; Tchalla, A. (2019). Reiki therapy for pain, anxiety and quality of life. BMJ Supportive and Palliative Care, 9(4), 434–438.
Birte-Antina, W., Ilona, C., Antje, H., amp; Thomas, H. (2018). Olfactory training with older people. International Journal of Geriatric Psychiatry, 33(1), 212–220.
Bischmann, D. A., amp; Witte, K. L. (1996). Food identification, taste complaints, and depression in younger and older adults. Experimental Aging Research, 22(1), 23–32.
Brody, B. L., Gamst, A. C., Williams, R. A., Smith, A. R., Lau, P. W., Dolnak, D., .... Brown, S. I. (2001). Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration. Ophthalmology, 108(10), 1893–1901.
Canbeyli, R. (2010). Sensorimotor modulation of mood and depression: an integrative review. Behavioural Brain Research, 207(2), 249–264.
Canbeyli, R. (2022). Sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate mood and depression. The European Journal of Neuroscience, 55(1), 244–263.
Case, L. K., Laubacher, C. M., Olausson, H., Wang, B., Spagnolo, P. A., amp; Bushnell, M. C. (2016). Encoding of touch intensity but not pleasantness in human primary somatosensory cortex. The Journal of Neuroscience, 36(21), 5850–5860.
Cho, C., Chan, C., amp; Martin, L. J. (2021). Can male mice develop preference towards gentle stroking by an experimenter? Neuroscience, 464(6), 26–32.
Clémence-Fau, M., Schwan, R., Angioi-Duprez, K., Laprévote, V., amp; Schwitzer, T. (2021). Retinal structural changes in mood disorders: The optical coherence tomography to better understand physiopathology? Progress in Neuro- Psychopharmacology and Biological Psychiatry, 108(6), 110080.
Clepce, M., Gossler, A., Reich, K., Kornhuber, J., amp; Thuerauf, N. (2010). The relation between depression, anhedonia and olfactory hedonic estimates—A pilot study in major depression. Neuroscience Letters, 471(3), 139–143.
Cochrane, N. (1990). Physical contact experience and depression. Acta psychiatrica Scandinavica. Supplementum, 82(357), 1–91.
Demirba?, B., amp; Erci, B. (2012). The effects of sleep and touch therapy on symptoms of fibromyalgia and depression. Iranian Journal of Public Health, 41(11), 44–53.
Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., amp; Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and Anxiety, 27(9), 859–863.
Dong, X., amp; Ng, N. (2021). Contribution of multiple pathways to the relationship between visual impairment and depression: Explaining mental health inequalities among older Chinese adults. Journal of Affective Disorders, 278(1), 350–356.
Dong, Y., Zhou, Y., Chu, X., Chen, S., Chen, L., Yang, B., .... Li, W. (2016). Dental noise exposed mice display depressive-like phenotypes. Molecular Brain, 9(1), 50.
Doty, R. L., Popova, V., Wylie, C., Fedgchin, M., Daly, E., Janik, A., .... Drevets, W. C. (2021). Effect of esketamine nasal spray on olfactory function and nasal tolerability in patients with treatment-resistant depression: Results from four multicenter, randomized, double-Blind, placebo-controlled, phase III studies. CNS Drugs, 35(7), 781–794.
Dreyzehner, J., amp; Goldberg, K. A. (2019). Depression in deaf and hard of hearing youth. Child and Adolescent Psychiatric Clinics of North America, 28(3), 411–419.
Dudine, L., Canaletti, C., Giudici, F., Lunardelli, A., Abram, G., Santini, I., .... Negro, C. (2021). Investigation on the loss of taste and smell and consequent psychological effects: A cross-sectional study on healthcare workers who contracted the COVID-19 infection. Frontiers in Public Health, 9, 666442.
Dutta, T. M., Josiah, A. F., Cronin, C. A., Wittenberg, G. F., amp; Cole, J. W. (2013). Altered taste and stroke: A case report and literature review. Topics in Stroke Rehabilitation, 20(1), 78–86.
Dyer, N. L., Baldwin, A. L., amp; Rand, W. L. (2019). A large- scale effectiveness trial of reiki for physical and psychological health. The Journal of Alternative and Complementary Medicine, 25(12), 1156–1162.
Eliyan, Y., Wroblewski, K. E., Mcclintock, M. K., amp; Pinto, J. M. (2021). Olfactory dysfunction predicts the development of depression in older US adults. Chemical Senses, 46(1), 1–8.
Esquiva, G., amp; Hannibal, J. (2019). Melanopsin-expressing retinal ganglion cells in aging and disease. Histology and Histopathology, 34(12), 1299–1311.
Field, T. (2002). Violence and touch deprivation in adolescents. Adolescence, 37(148), 735–749.
Field, T., Diego, M., Hernandez-Reif, M., Medina, L., Delgado, J., amp; Hernandez, A. (2012). Yoga and massage therapy reduce prenatal depression and prematurity. Journal of Bodywork and Movement Therapies, 16(2), 204–209.
Flores-Gutiérrez, E., Cabrera-Mu?oz, E. A., Vega-Rivera, N. M., Ortiz-López, L., amp; Ramírez-Rodríguez, G. B. (2018). Exposure to patterned auditory stimuli during acute stress prevents despair-like behavior in adult mice that were previously housed in an enriched environment in combination with auditory stimuli. Journal of Neural Transplantation and Plasticity, 2018, 8205245.
Giloyan, A., Harutyunyan, T., amp; Petrosyan, V. (2015). Visual impairment and depression among socially vulnerable older adults in Armenia. Aging and Mental Health, 19(2), 175–181.
Glezer, I., amp; Malnic, B. (2019). Olfactory receptor function. Handbook of Clinical Neurology, 164, 67–78.
Gomaa, M. A., Elmagd, M. H., Elbadry, M. M., amp; Kader, R. M. (2014). Depression, anxiety and stress scale in patients with tinnitus and hearing loss. European Archives of Oto-Rhino-Laryngology, 271(8), 2177–2184.
Grant, A., Aubin, M. J., Buhrmann, R., Kergoat, M. J., amp; Freeman, E. E. (2021). Visual Impairment, eye disease, and the 3-year incidence of depressive symptoms: The canadian longitudinal study on aging. Ophthalmic Epidemiology, 28(1), 77–85.
Gu, M., Li, X., Yan, L., Zhang, Y., Yang, L., Li, S., amp; Song, C. (2021). Endogenous ω-3 fatty acids in Fat-1 mice attenuated depression-like behaviors, spatial memory impairment and relevant changes induced by olfactory bulbectomy. Prostaglandins, Leukotrienes and Essential Fatty Acids, 171(8), 102313.
Guo, Z. P., S?r?s, P., Zhang, Z. Q., Yang, M. H., Liao, D., amp; Liu, C. H. (2021). Use of transcutaneous auricular vagus nerve stimulation as an adjuvant therapy for the depressive symptoms of COVID-19: A literature review. Frontiers in Psychiatry, 12, 765106.
Hahad, O., Prochaska, J. H., Daiber, A., amp; Muenzel, T. (2019). Environmental noise-induced effects on stress hormones, oxidative stress, and vascular dysfunction: Key factors in the relationship between cerebrocardiovascular and psychological disorders. Oxidative Medicine and Cellular Longevity, 2019, 4623109.
Han, P., Georgi, M., Cuevas, M., Haehner, A., Gudziol, V., amp; Hummel, T. (2018). Decreased electrogustometric taste sensitivity in patients with acquired olfactory dysfunction. Rhinology, 56(2), 158–165.
Hansen, N. V., J?rgensen, T., amp; ?rtenblad, L. (2006). Massage and touch for dementia. Cochrane Database of Systematic Reviews, 2006(4), 1–18.
Heath, T. P., Melichar, J. K., Nutt, D. J., amp; Donaldson, L. F. (2006). Human taste thresholds are modulated by serotonin and noradrenaline. The Journal of Neuroscience, 26(49), 12664–12671.
Hellweg, R., Zueger, M., Fink, K., H?rtnagl, H., amp; Gass, P. (2007). Olfactory bulbectomy in mice leads to increased BDNF levels and decreased serotonin turnover in depression-related brain areas. Neurobiology of Disease, 25(1), 1–7.
Holló, G., Sándor, N. G., Kóthy, P., amp; Géczy, A. (2021). Influence of painless one-eye blindness on depression, anxiety and quality of life in glaucoma patients with a normal fellow eye. BMC Ophthalmology, 21(1), 89.
Huang, L., Xi, Y., Peng, Y., Yang, Y., Huang, X., Fu, Y., .... Ren, C. (2019). A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron, 102(1), 128–142.
Hur, K., Choi, J. S., Zheng, M., Shen, J., amp; Wrobel, B. (2018). Association of alterations in smell and taste with depression in older adults. Laryngoscope Investigative Otolaryngology, 3(2), 94–99.
Jafari, Z., Kolb, B. E., amp; Mohajerani, M. H. (2019). Age-related hearing loss and tinnitus, dementia risk, and auditory amplification outcomes. Ageing Research Reviews, 56, 100963.
Jayakody, D. M. P., Almeida, O. P., Speelman, C. P., Bennett, R. J., Moyle, T. C., Yiannos, J. M., amp; Friedland, P. L. (2018). Association between speech and high-frequency hearing loss and depression, anxiety and stress in older adults. Maturitas, 110(4), 86–91.
Kalyanasundar, B., Blonde, G. D., Spector, A. C., amp; Travers, S. P. (2020). Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. Journal of Neurophysiology, 123(2), 843–859.
Kaptan, S. K., Dursun, B. O., Knowles, M., Husain, N., amp; Varese, F. (2021). Group eye movement desensitization and reprocessing interventions in adults and children: A systematic review of randomized and nonrandomized trials. Clinical Psychology and Psychotherapy, 28(4), 784–806.
Kazour, F., Richa, S., Abi Char, C., Surget, A., Elhage, W., amp; Atanasova, B. (2020). Olfactory markers for depression: Differences between bipolar and unipolar patients. PLoS One, 15(8), e0237565.
Ketterer, M. C., H?ussler, S. M., Hildenbrand, T., Speck, I., Peus, D., Rosner, B., .... Olze, H. (2020). Binaural hearing rehabilitation improves speech perception, quality of Life, tinnitus distress, and psychological comorbidities. Otology and Neurotology, 41(5), 563–574.
Khalil, R. B., Atallah, E., Dirani, E., Kallab, M., Kassab, A., Mourad, M., amp; El Khoury, R. (2020). Can atypical dysgeusia in depression be related to a deafferentation syndrome? Medical Hypotheses, 144, 110047.
Kohli, P., Soler, Z. M., Nguyen, .S A., Muus, J. S., amp; Schlosser, R. J. (2016). The association between olfaction and depression: A systematic review. Chemical Senses, 41(6), 479–486.
Kopf, D. (2021). Massage and touch-based therapy: Clinical evidence, neurobiology and applications in older patients with psychiatric symptoms. Zeitschrift für Gerontologie und Geriatrie, 54(8), 753–758.
Kraus, K. S., amp; Canlon, B. (2012). Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hearing Research, 288(1-2), 34–46.
Kullak?i, H., amp; Sonkaya, A. R. (2021). The investigation of the effects of repetitive transcranialmagnetic stimulation treatment on taste and smell sensations in depressed patients. Noro-Psikiyatri Arsivi, 58(1), 26–33.
Lapierre, Y. D., amp; Butter, H. J. (1980). Agitated and retarded depression. A clinical psychophysiological evaluation. Neuropsychobiology, 6(4), 217–223.
Li, Q., Becker, B., Wernicke, J., Chen, Y., Zhang, Y., Li, R., .... Kendrick, K. M. (2019). Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sulcus. Psychoneuroendocrinology, 101(3), 193–203.
Li, S., Fong, D., Wong, J., Mcpherson, B., Lau, E., Huang, L., amp; Ip, M. (2021). Noise sensitivity associated with nonrestorative sleep in Chinese adults: A cross-sectional study. BMC Public Health, 21(1), 643.
Lindstr?m, S. H., Sundberg, S. C., Larsson, M., Andersson, F. K., Broman, J., amp; Granseth, B. (2020). VGluT1 deficiency impairs visual attention and reduces the dynamic range of short-term plasticity at corticothalamic synapses. Cerebral Cortex, 30(3), 1813–1829.
Liu, B., Qiao, L., Liu, K., Liu, J., Piccinni-Ash, T. J., amp; Chen, Z. F. (2022). Molecular and neural basis of pleasant touch sensation. Science, 376(6592), 483–491.
Liu, C. H., Yang, M. H., Zhang, G. Z., Wang, X. X., Li, B., Li, M., .... Wang, L. (2020). Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. Journal of Neuroinflammation, 17(1), 54.
Liu, X., Zhou, Y., Li, S., Yang, D., Jiao, M., Liu, X., amp; Wang, Z. (2020). Type 3 adenylyl cyclase in the main olfactory epithelium participates in depression-like and anxiety-like behaviours. Journal of Affective Disorders, 268(5), 28–38.
Liyue, H., Chiang, P. P., Sung, S. C. amp; Tong, L. (2016). Dry eye-related visual blurring and irritative symptoms and their association with depression and anxiety in eye clinic patients. Current Eye Research, 41(5), 590–599.
Lu, J., Zhang, Z., Yin, X., Tang, Y., Ji, R., Chen, H., .... Guo, Z. V. (2022). An entorhinal-visual cortical circuit regulates depression-like behaviors. Molecular Psychiatry, Advance online publication. https://doi.org/10.1038/s41380-022-01540-8
Marinkov, E. M. Z., Rancic, N. K., Milisavljevic, D. R., Stankovic, M. D., Milosevic, V. D., Malobabic, M. M., .... Stojanovic, J. D. (2022). Impact of sensorineural hearing loss during the pandemic of COVID-19 on the appearance of depressive symptoms, anxiety and stress. Medicina (Kaunas, Lithuania), 58(2), 233–240.
Marmamula, S., Kumbham, T. R., Modepalli, S. B., Barrenkala, N. R., Yellapragada, R., amp; Shidhaye, R. (2021). Depression, combined visual and hearing impairment (dual sensory impairment): a hidden multi-morbidity among the elderly in Residential Care in India. Scientific Reports, 11(1), 16189.
Mikhail, C., Elgaaly, K., Abd, E. L. A .E., Shaker, O., amp; Ali, S. (2021). Gustatory dysfunction among a sample of depressed egyptian adults under antidepressants therapy: A retrospective cohort study. International Journal of Dentistry, 2021, 5543840.
Miller, S. M., amp; Naylor, G. J. (1989). Unpleasant taste--a neglected symptom in depression. Journal of Affective Disorders, 17(3), 291–293.
Miranda, M. I. (2012). Taste and odor recognition memory: The emotional flavor of life. Reviews in the Neurosciences, 23(5-6), 481–499.
Molander, P., Hesser, H., Weineland, S., Bergwall, K., Buck, S., Hansson-Malmlof, J., .... Andersson, G. (2015). Internet- based acceptance and commitment therapy for psychological distress experienced by people with hearing problems: Study protocol for a randomized controlled trial. American Journal of Audiology, 24(3), 307–310.
Morales-Medina, J. C., Iannitti, T., Freeman, A., amp; Caldwell, H. K. (2017). The olfactory bulbectomized rat as a model of depression: The hippocampal pathway. Behavioural Brain Research, 317(1), 562–575.
Moriguchi, S., Inagaki, R., Shimojo, H., Sugimura, Y., amp; Fukunaga, K. (2020). Memantine improves depressive- like behaviors via Kir6.1 channel inhibition in olfactory bulbectomized mice. Neuroscience, 442(8), 264–273.
Morrison, I., Bj?rnsdotter, M., amp; Olausson, H. (2011). Vicarious responses to social touch in posterior insular cortex are tuned to pleasant caressing speeds. The Journal of Neuroscience, 31(26), 9554–9562.
Morrison, I., L?ken, L. S., amp; Olausson, H. (2010). The skin as a social organ. Experimental Brain Research, 204(3), 305–314.
Mosher, C. P., Zimmerman, P. E., Fuglevand, A. J., amp; Gothard, K. M. (2016). Tactile stimulation of the face and the production of facial expressions activate neurons in the primate amygdala. eNeuro, 3(5), 1–9.
Nagai, M., Matsumoto, S., Endo, J., Sakamoto, R., amp; Wada, M. (2015). Sweet taste threshold for sucrose inversely correlates with depression symptoms in female college students in the luteal phase. Physiology amp; Behavior, 141, 92–96.
Nakatake, Y., Furuie, H., Ukezono, M., Yamada, M., Yoshizawa, K., amp; Yamada, M. (2020). Indirect exposure to socially defeated conspecifics using recorded video activates the HPA axis and reduces reward sensitivity in mice. Scientific Reports, 10(1), 16881–16890.
Naudin, M., El-Hage, W., Gomes, M., Gaillard, P., Belzung, C., amp; Atanasova, B. (2012). State and trait olfactory markers of major depression. PLoS One, 7(10), e46938.
Noel, C., amp; Dando, R. (2015). The effect of emotional state on taste perception. Appetite, 95, 89–95.
Noran, N. H., Izzuna, M. G., Bulgiba, A. M., Mimiwati, Z., amp; Ayu, S. M. (2009). Severity of visual impairment and depression among elderly Malaysians. Asia-Pacific Journal of Public Health, 21(1), 43–50.
Okabe, S., Yoshida, M., Takayanagi, Y., amp; Onaka, T. (2015). Activation of hypothalamic oxytocin neurons following tactile stimuli in rats. Neuroscience Letters, 600(7), 22–27.
Pant, U., Frishkopf, M., Park, T., Norris, C. M., amp; Papathanassoglou, E. (2022). A neurobiological framework for the therapeutic potential of music and sound interventions for post-traumatic stress symptoms in critical illness survivors. International Journal of Environmental Research and Public Health, 19(5), 3113–3131.
Pawling, R., Cannon, P. R., Mcglone, F. P., amp; Walker, S. C. (2017). C-tactile afferent stimulating touch carries a positive affective value. PLoS One, 12(3), e0173457.
Paz, S. H., Globe, D. R., Wu, J., Azen, S. P., amp; Varma, R. (2003). Relationship between self-reported depression and self-reported visual function in Latinos. Archives of Ophthalmology, 121(7), 1021–1027.
Pinto, J. O., de Vieira, M. B., Dores, A. R., Peixoto, B., Geraldo, A., amp; Barbosa, F. (2021). Narrative review of the multisensory integration tasks used with older adults: inclusion of multisensory integration tasks into neuropsychological assessment. Expert Review of Neurotherapeutics, 21(6), 657–674.
Proskurnina, E. V., Sokolova, S. V., amp; Portnova, G. V. (2021). Touch-induced emotional comfort results in an increase in the salivary antioxidant potential: A correlational study. Psychophysiology, 58(9), e13854.
Qazi, J. J., Wilson, J. H., Payne, S. C. amp; Mattos, J. L. (2020). Association between smell, taste, and depression in nationally representative sample of older adults in the united states. American Journal of Rhinology amp; Allergy, 34(3), 369–374.
Rajkumar, R., amp; Dawe, G. S. (2018). OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. Journal of Chemical Neuroanatomy, 91(9), 63–100.
Ramachandran, V. S., amp; Brang, D. (2008). Tactile-emotion synesthesia. Neurocase, 14(5), 390–399.
Rantanen, M., Hautala, J., Loberg, O., Nuorva, J., Hietanen, J. K., Nummenmaa, L., amp; Astikainen, P. (2021). Attentional bias towards interpersonal aggression in depression - an eye movement study. Scandinavian Journal of Psychology, 62(5), 639–647.
Ren, G., Xue, P., Wu, B., Yang, F., amp; Wu, X. (2021). Intranasal treatment of lixisenatide attenuated emotional and olfactory symptoms via CREB-mediated adult neurogenesis in mouse depression model. Aging (Albany NY), 13(3), 3898–3908.
Rideaux, R. (2020). Temporal dynamics of GABA and Glx in the visual cortex. eNeuro, 7(4), 1–11.
Rim, T. H., Lee, C. S., Lee, S. C., Chung, B., amp; Kim, S. S. (2015). Influence of visual acuity on suicidal ideation, suicide attempts and depression in South Korea. British Journal of Ophthalmology, 99(8), 1112–1119.
Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.
Rolls, E. T. (2019). Taste and smell processing in the brain. Handbook of Clinical Neurology, 164, 97–118.
Rottst?dt, F., Han, P., Weidner, K., Schellong, J., Wolff- Stephan, S., Strau?, T., .... Croy, I. (2018). Reduced olfactory bulb volume in depression-A structural moderator analysis. Human Brain Mapping, 39(6), 2573–2582.
Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., .... Cao, P. (2015). A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 348(6242), 1472–1477.
Shetty, S. L. P., amp; Fogarty, S. (2021). Massage during pregnancy and postpartum. Clinical Obstetrics and Gynecology, 64(3), 648–660.
Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Bodurka, J., Savage, C. R. amp; Drevets, W. C. (2016). Depression-related increases and decreases in appetite reveal dissociable patterns of aberrant activity in reward and interoceptive neurocircuitry. The American Journal of Psychiatry, 173(4), 418–428.
Siopi, E., Denizet, M., Gabellec, M. M., de Chaumont, F., Olivo-Marin, J. C., Guilloux, J. P., .... Lazarini, F. (2016). Anxiety- and depression-like states lead to pronounced olfactory deficits and impaired adult neurogenesis in mice. The Journal of Neuroscience, 36(2), 518–531.
Smith, C. J., amp; Bilbo, S. D. (2021). Sickness and the social brain: Love in the time of COVID. Frontiers in Psychiatry, 12(2), 633664.
Smith, K. A., amp; Alt, J. A. (2020). The relationship of chronic rhinosinusitis and depression. Current Opinion in Otolaryngology and Head and Neck Surgery, 28(1), 1–5.
Smith, S. A., Trotter, P. D., Mcglone, F. P., amp; Walker, S. C. (2021). Effects of acute tryptophan depletion on human taste perception. Chemical Senses, 46, bjaa078.
Song, C., amp; Leonard, B. E. (2005). The olfactory bulbectomised rat as a model of depression. Neuroscience and Biobehavioral Reviews, 29(4-5), 627–647.
Song, X. M., Hu, X. W., Li, Z., Gao, Y., Ju, X., Liu, D. Y., .... Northoff, G. (2021). Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Molecular Psychiatry, 26(11), 6747–6755.
Swiecicki, L., Scinska, A., Bzinkowska, D., Torbinski, J., Sienkiewicz-Jarosz, H., Samochowiec, J., amp; Bienkowski, P. (2015). Intensity and pleasantness of sucrose taste in patients with winter depression. Nutritional Neuroscience, 18(4), 186–191.
Takahashi, T., Nishikawa, Y., Yücel, M., Whittle, S., Lorenzetti, V., Walterfang, M., .... Allen, N. B. (2016). Olfactory sulcus morphology in patients with current and past major depression. Psychiatry Research Neuroimaging, 255, 60–65.
Takahata, Y., Yoshimoto, W., Kuwagaki, E., Yamada, Y., amp; Nagasawa, K. (2022). Alteration of sweet taste receptor expression in circumvallate papillae of mice with decreased sweet taste preference induced by social defeat stress. The Journal of Nutritional Biochemistry, 107, 109055.
Tao, S., Liu, L., Shi, L., Li, X., Shen, P., Xun, Q., .... Wang, J. (2015). Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age. Journal of Otology, 10(1), 21–28.
Thomas, J., Al-Mesaabi, W., Bahusain, E., amp; Mutawa, M. (2014). The relationship between taste sensitivity to phenylthiocarbamide and anhedonia. Psychiatry Research, 215(2), 444–447.
Tian, Y., Dong, J., amp; Shi, D. (2020). Protection of DAergic neurons mediates treadmill running attenuated olfactory deficits and olfactory neurogenesis promotion in depression model. Biochemical and Biophysical Research Communications, 521(3), 725–731.
Touj, S., Gallino, D., Chakravarty, M. M., Bronchti, G., amp; Piché, M. (2021). Structural brain plasticity induced by early blindness. The European Journal of Neuroscience, 53(3), 778–795.
Veling, W., Lestestuiver, B., Jongma, M., Hoenders, H., amp; van Driel, C. (2021). Virtual reality relaxation for patients with a psychiatric disorder: Crossover randomized controlled trial. Journal of Medical Internet Research, 23(1), e17233.
Vidal, K. S., Suemoto, C. K., Moreno, A. B., Viana, M. C., Lotufo, P. A., Bense?or, I. M., amp; Brunoni, A. R. (2021). Association between posterior segment eye diseases, common mental disorders, and depression: Cross-sectional and longitudinal analyses of brazilian longitudinal study of adult health cohort. Journal of the Academy of Consultation-Liaison Psychiatry, 62(1), 70–78.
Vieira, G., Rodrigues, B., da Cunha, C., de Morais, G. B., Ferreira, L., amp; Ribeiro, M. (2021). Depression and dry eye: A narrative review. Revista da Associacao Medica Brasileira, 67(3), 462–467.
Walker, S. C., Trotter, P. D., Swaney, W. T., Marshall, A., amp; Mcglone, F. P. (2017). C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides, 64(8), 27–38.
Wirz-Justice, A., Skene, D. J., amp; Münch, M. (2021). The relevance of daylight for humans. Biochemical Pharmacology, 191, 114304–114307.
Yin, C. Y., Li, L. D., Xu, C., Du Z.-W., Wu, J. M., Chen, X., .... Zhou, Q. G. (2021). A novel method for automatic pharmacological evaluation of sucrose preference change in depression mice. Pharmacological Research, 168(6), 105601.
Yoshida, Y., Miyazaki, M., Yajima, Y., amp; Toyoda, A. (2021). Subchronic and mild social defeat stress downregulates peripheral expression of sweet and umami taste receptors in male mice. Biochemical and Biophysical Research Communications, 579, 116–121.
Yu, H., Miao, W., Ji, E., Huang, S., Jin, S., Zhu, X., .... Yu, X. (2022). Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron, 110(6), 1051–1067.
Zhang, Z., Zhang, H., Xie, C. M., Zhang, M., Shi, Y., Song, R., .... Northoff, G. (2021). Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex. Science China Life Sciences, 64(1), 96–106.
Zheng, Y., Wu, X., Lin, X., amp; Lin, H. (2017). The prevalence of depression and depressive symptoms among eye disease patients: A systematic review and meta-analysis. Scientific Reports, 7(1), 46453–46461.
Zweerings, J., Zvyagintsev, M., Turetsky, B. I., Klasen, M., K?nig, A. A., Roecher, E., .... Mathiak, K. (2019). Fronto- parietal and temporal brain dysfunction in depression: A fMRI investigation of auditory mismatch processing. Human Brain Mapping, 40(12), 3657–3668.
Abstract: The brain receives information from the outside world through the visual, auditory, olfactory, taste, and tactile sensory channels. Different sensory impairments are involved in the central mechanism of depression, and appropriate stimulation based on different sensory channels and multi-sensory combined interventions may also play a significant role in its treatment. Taking “symptoms-brain region-mechanism- treatment” as the logical thread, the author systematically reviewed the clinical symptoms of depression, the neural mechanisms of depression, and the antidepressant treatments based on sensory stimulation for the first time in persons with five major sensory disorders. The results show that different sensory dysfunctions in the neural mechanisms related to depression may represent the different pathologies of depression, involving neuronal electrical activity (firing of certain neurons and activation of neural circuits, etc.) and neural biochemical changes (neuroplasticity and neurogenesis, inflammatory immunity and HPA axis, neurohormones and neurotransmitters, etc.); these mainly occur in the limbic system and its adjacent brain regions, which involve the insular lobe, temporal lobe, frontal lobe, etc. Therefore, future research should focus on the extraction of different sensory information, which will provide a new research perspective for the etiology and treatment of human depression.
Keywords: visual, auditory, olfactory, taste, tactile, depression