郭銀莉 洪守強 陳渺渺 蘇少硼 崔潤博 趙西林 牛建軍
摘要:艱難梭菌(Clostridium difficile)是一種革蘭陽性厭氧芽孢桿菌,因?qū)е箩t(yī)院內(nèi)腹瀉備受關注。由于C. difficile的分離培養(yǎng)需要在厭氧狀態(tài)下實現(xiàn),這給國內(nèi)外研究者帶來非常大的限制和挑戰(zhàn)。目前臨床治療手段主要采取抗生素和糞便微生物群移植(fecal microbiota transplantation, FMT)。據(jù)統(tǒng)計艱難梭菌感染(C. difficile infection, CDI)經(jīng)萬古霉素治療后復發(fā)率高達30%,死亡率達15%,是臨床上亟待解決的難題。目前,許多國家在大力開發(fā)有效的新型藥物來治療CDI。本文根據(jù)目前的臨床治療現(xiàn)狀和正在開發(fā)中的新藥物進行了簡要總結(jié),更新了目前5種已有臨床實驗的新型抗菌藥物和11種新開發(fā)的不同抗菌劑,前者包括ridinilazole、surotomycin、cadazolid、CRS3123和DS-2969b;后者包括黃芩苷、rhodomyrtone、OPS-2071、rakicidin B、依拉環(huán)素、雙環(huán)胍、CM-A、月桂酸、NCK-10、Raja 42和AJ-024。針對現(xiàn)有臨床前和臨床抗菌數(shù)據(jù),將這些潛在藥物與傳統(tǒng)抗生素進行比較,分析其所具有的藥代動力學和藥效特征優(yōu)勢,以期為CDI的新藥研發(fā)提供新思路。
關鍵詞:艱難梭菌;艱難梭菌感染;臨床治療;新藥
中圖分類號:R978.1文獻標志碼:A
Research progress of clinical treatment strategies and new drugs for
Clostridium difficile infection
Guo Yinli1,2, Hong Shouqiang1, Chen Miaomiao1, Su Shaopeng1, Cui Runbo1, Zhao Xilin1, and Niu Jianjun1,2
(1 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102; 2 Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004)
Abstract Clostridium difficile, a Gram-positive anaerobic bacillus, has attracted much attention for causing nosocomial diarrhea. The isolation and cultivation of C. difficile need to be achieved under anaerobic conditions, which brings great limitations and challenges to researchers. At present, the main clinical treatment methods are antibiotics and fecal microbiota transplantation (FMT). According to the survey analysis, the recurrence rate of
C. difficile infection (CDI) after vancomycin treatment is as high as 30%, and the mortality rate is 15%, which is an urgent clinical problem needs to be solved. At present, many countries are vigorously developing effective new drugs to treat CDI. This article briefly summarizes the current status of clinical treatment and new drugs in development, and updates the current five new antibacterial agents that have been tested in clinical trials and 11 different newly developed antimicrobials. The former category includes ridinilazole, surotomycin, cadazolid, CRS3123, and DS-2969b. The latter includes baicalin, rhodomyrtone, OPS-2071, rakicidin B, eravacycline, bicycloguanidine, CM-A, lauric acid, NCK-10, Raja 42, and AJ-024. Based on the existing pre-clinical and clinical antibacterial data, these potential drugs were compared with traditional antibiotics for their pharmacokinetic and pharmacodynamic characteristics in order to provide new ideas for the development of new drugs for CDI.
Key words Clostridium difficile; Clostridium difficile infection; Clinical treatment; New drugs
多年來,抗菌藥物在治療細菌性感染疾病方面做出了巨大貢獻,但其高頻率使用為C. difficile感染、繁殖和傳播創(chuàng)造了有利條件。經(jīng)研究發(fā)現(xiàn),在抗菌藥物高使用率的急診醫(yī)院中C. difficile發(fā)病率與抗菌藥物使用量之間呈正相關關系[1]。C. difficile是一種厭氧、產(chǎn)芽孢的革蘭陽性桿菌,于1935年由美國學者在健康新生兒糞便中首次分離發(fā)現(xiàn),被認為是新生兒腸道菌群的一部分,具有生長緩慢、分離困難和條件致病的特性[2]。C. difficile主要通過糞口傳播,因其產(chǎn)生的孢子可在有氧的環(huán)境中休眠數(shù)月,條件合適時即萌發(fā)為營養(yǎng)體從而導致CDI感染或復發(fā)。經(jīng)統(tǒng)計,C. difficile的易感人群為65歲以上且存在抗菌藥物暴露的住院或門診醫(yī)療患者,主要危險因素是年長體弱者的腸道穩(wěn)態(tài)容易被抗菌藥物破壞和免疫力降低。其中,女性的發(fā)病率高于男性[3],隨著高毒菌株PCR-核糖體分型027 R20291(NAP1/027)在北美和歐洲出現(xiàn)并快速傳播[4],C. difficile的感染人群逐漸擴大到近期未接觸抗菌藥物的兒童或成年人,目前該毒株已被證實與CDI復發(fā)、治愈率降低和死亡率上升有關[5]。臨床上,約有25%~33%的抗生素相關性腹瀉(antibiotic associated diarrhea, AAD)和90%的偽膜性結(jié)腸炎是由CDI引起[6],疾病可由輕度腹瀉發(fā)展為中毒性巨結(jié)腸,嚴重時造成死亡。
CDI的治愈有兩大難點:第一,有效治療藥物有限,在細菌耐藥問題非常嚴峻的背景下,一旦發(fā)生耐藥菌的傳播不僅會提高治療難度,還會帶來用藥成本增加、延長住院時間和影響患者愈后等一系列問題;第二,約30%的復發(fā)率給醫(yī)療系統(tǒng)造成很大的經(jīng)濟負擔。因此,研究人員需要不斷嘗試研發(fā)新的抗菌藥物和治療方法來緩解C. difficile難治愈的問題。除發(fā)現(xiàn)新的抗菌藥物之外,一些替代療法也在不斷開發(fā),如噬菌體介導的CRISPR-Cas系統(tǒng)靶向細菌基因組療法[7]、口服微生物組治療劑SER-109[8]和單克隆抗體bezlotoxumab[9]等。雖然這些手段在一定程度上具有潛在預防和治療CDI的能力,但是新療法的作用范圍、是否安全有效和不良反應程度還需要進一步證實。近年來,抗生素治療失敗和高復發(fā)率使得抗CDI的潛在藥物備受關注,已進入臨床評估階段的新型抗菌藥物和正處于研發(fā)中的潛在藥物都將為輔助臨床用藥、治療CDI和復發(fā)防治提供新的思路和策略。
1 C. difficile的致病與治療現(xiàn)狀
1.1 致病及復發(fā)機制
C. difficile屬于人類正常腸道菌群的一部分,約5%的健康成年人無癥狀攜帶C. difficile孢子。在沒有抗菌藥物暴露和免疫力正常的情況下,健康者的腸道菌群可以抵抗C. difficile孢子的萌發(fā)與定殖。一旦患者接受抗菌藥物治療引起正常腸道菌群紊亂,將會降低腸道微生物的多樣性和產(chǎn)生抑制性代謝物,導致腸道對C. difficile孢子萌發(fā)的抵抗力降低,給孢子萌發(fā)與C. difficile菌株定殖提供有利條件。C. difficile有很多種致病因子:產(chǎn)生毒素、黏膜粘附、生成莢膜和分泌組織降解酶等,其中與致病相關且最重要的是C. difficile毒素[10]。C. difficile產(chǎn)生3種蛋白毒素,分別是C. difficile毒素A (C. difficile toxin A, TcdA)、C. difficile毒素B (C. difficile toxin B, TcdB)和C.difficile轉(zhuǎn)移酶毒素(Clostridium difficile transferase toxin, CDT)。其中外毒素TcdA和TcdB通過滅活Rho家族的Rho GTP酶引起結(jié)腸細胞死亡、腸屏障功能缺失以及嗜中性細胞浸潤進而導致結(jié)腸炎,是介導C. difficile感染性腹瀉發(fā)展過程中最重要的兩大毒素。CDT是一種二元肌動蛋白-ADP-核糖基化毒素,可導致肌動蛋白解聚,從而誘導形成基于微管的突起[11-12]。除此之外,C. difficile能夠產(chǎn)生孢子抵抗極端環(huán)境從而造成疾病復發(fā)和二次傳播。孢子在人體分泌的膽汁酸中的?;悄懰猁}(taurocholate, TCA)促進下啟動萌發(fā)為營養(yǎng)體菌株,同時產(chǎn)生TcdA和TcdB[11]并且可以在24 h內(nèi)誘導膽汁酸快速流入腸道,以便繼續(xù)利于營養(yǎng)體的生長和繁殖[13]。當C. difficile在結(jié)腸定植后,其代謝物和毒素不斷破壞腸上皮細胞、損傷細胞骨架、釋放黏液和炎癥產(chǎn)物,隨后產(chǎn)生炎癥反應伴隨腹瀉、腹痛癥狀,嚴重時發(fā)展為中毒性巨結(jié)腸、腸穿孔、休克甚至危及患者生命[11]。在感染過程中,致病菌株的毒素和表達程度與CDI的疾病嚴重程度相關,研究發(fā)現(xiàn)C. difficile可以利用毒素介導的炎癥反應來抑制腸道菌群中抵抗C. difficile定植的微生物生存以獲得利己生存的條件[14],這些特點對CDI的治療造成了挑戰(zhàn)。
對初次CDI的患者進行抗生素治療后常常出現(xiàn)復發(fā)型CDI (recurrent C. difficile infection, rCDI),復發(fā)率高達30%[15],并且復發(fā)風險會隨著藥物治療的頻率增加而提高[16]。引起rCDI的因素有很多種,主要包括致病菌株的產(chǎn)毒能力、耐藥菌株出現(xiàn)、感染過程中腸道菌群的持續(xù)改變和未能對C. difficile毒素產(chǎn)生有效的抗體反應。耐藥菌株的出現(xiàn)通常是復發(fā)的主要原因,除此之外有研究表明抗菌劑的使用可以誘導生物膜的產(chǎn)生導致C. difficile躲避抗菌藥物的殺傷[17],這提示我們C. difficile形成生物膜并留存在宿主細胞中可能是導致治療失敗與復發(fā)的重要機制。
1.2 臨床治療現(xiàn)狀
甲硝唑(metronidazole, Mtr)和萬古霉素(vancomycin, Van)是幾十年來治療CDI的一線藥物,由于耐Mtr菌株的出現(xiàn)導致治療失敗,并且Mtr對腸道菌群的廣譜殺滅也不利于CDI治療,Mtr現(xiàn)已逐漸退出C. difficile抗生素藥物的第一選擇行列。Mtr是一種硝基咪唑類藥物,其作用方式是通過被動擴散作為前藥進入細菌,隨后在胞質(zhì)內(nèi)被還原成為亞硝基自由基與DNA分子非特異性結(jié)合(包括氧化抑制DNA合成和DNA損傷,導致單鏈和雙鏈斷裂),破壞DNA雙鏈使細菌死亡但不裂解。對于需氧細菌來說,由于自身缺乏負氧化還原電位的電子轉(zhuǎn)運蛋白,Mtr的活性遠不如對厭氧細菌有效。Mtr的耐藥機制比較復雜且因菌類不同而異,厭氧菌對Mtr產(chǎn)生耐藥主要是硝基還原酶活性降低導致前藥還原活化速率變低以及外排泵系統(tǒng)減少胞內(nèi)對藥物的攝取使得菌體內(nèi)藥物濃度降低兩種機制共同作用,其他機制包括藥物失活和DNA損傷修復增加等[18]。Van是一種通過抑制細菌細胞壁合成發(fā)揮作用的糖肽類抗菌藥物,是臨床治療革蘭陽性菌引起重度感染的重要藥物。該藥主要通過與未交聯(lián)脂質(zhì)II(十一碳烯基-二磷酸-N-乙酰胞壁酰[N-乙酰葡糖胺]-L-丙氨酰-γ-D-谷氨酰-L-賴氨酰-D-丙氨酰-D-丙氨酸)的末端D-丙氨酰-D-丙氨酸(D-alanyl-D-alanine, D-Ala-D-Ala)結(jié)合靶向革蘭陽性菌細胞壁合成,阻礙青霉素結(jié)合蛋白(penicillin binding protein, PBP)將脂質(zhì)II交聯(lián)到肽聚糖上,從而抑制細胞壁合成導致在不利的滲透壓環(huán)境下細胞破裂而死亡[19]。經(jīng)過研究發(fā)現(xiàn),C. difficile中Van耐藥性的相關機制主要包括由van基因介導的靶點改變、外排泵、RNA聚合酶突變和生物膜形成[20]。在2021年,研究人員分離到對Van敏感性降低的C. difficile臨床菌株[21],這使得CDI治療面臨新的挑戰(zhàn)。
在近幾年的研究中新發(fā)現(xiàn)了非達霉素(fidaxomicin, Fid),是一種窄譜大環(huán)內(nèi)酯類抗生素,比Mtr和Van抗菌效果更特異、持久,不僅能夠提高整體治愈率(Fid 73%, Van 62.9%),還能降低復發(fā)風險(Fid 3.3%, Van 4%)[22]。研究表明Fid對革蘭陰性菌沒有影響,主要作用機制是通過抑制RNA聚合酶阻止轉(zhuǎn)錄[23]。Fid于2011年首次獲得美國食品藥品監(jiān)督管理局(Food and Drug Administration, FDA)批準用于治療成人CDI相關性腹瀉,但由于該藥成本昂貴暫未被我國引入臨床使用。目前有實驗室通過誘導耐藥研究發(fā)現(xiàn)RNA聚合酶β-亞基rpoB的單核苷酸變異(single-nucleotide polymorphisms, SNP)將導致該藥的敏感性降低[24]。Ⅲ期臨床試驗表明,該藥口服給藥的療效不劣于Van。2021年,歐洲和美國傳染病學會發(fā)布了有關C. difficile結(jié)腸炎治療的新指南,建議將Fid作為一線治療,Van作為第二選擇,Mtr僅在沒有其他治療方法的情況下才被推薦使用,因其在輕型CDI且復發(fā)概率低的患者中仍然具有很好的療效[25]。
以上3種抗生素都具有較強的殺菌效果,是控制C. difficile感染和傳播公認的有效方法,但是在高頻率使用下可能會誘導C. difficile生物膜形成、降低具有定殖抗性的微生物水平從而加重感染甚至引起復發(fā)。
近些年各國研究者都非常關注糞菌移植(fecal microbiota transplantation, FMT)療法,該療法通過將健康供體糞便的微生物組轉(zhuǎn)移到患者體內(nèi),理論上可以達到恢復腸道菌群的平衡來抵抗C. difficile的生長繁殖[26]。有研究證實,F(xiàn)MT誘導腸道菌群重建和代謝物恢復能促進小鼠定植抵抗的恢復,從而為預防CDI復發(fā)提供新的方法[27]。最近發(fā)表的一項II期研究表明,使用一次性活體微生物治療藥物,可治愈近80%的rCDI患者[28]。FMT的發(fā)現(xiàn)給臨床治療提供了一種新思路,但其實際治療的副作用及對患者未來生存質(zhì)量的影響處于未知階段,并且存在傳播新病原體的潛在風險。
2 新型CDI治療藥物研究進展
2.1 進入臨床評估階段的CDI治療藥物
在過去的幾十年里,真正應用到臨床治療CDI的新型抗菌藥物很少,這不僅與C. difficile自身的抵抗特性及產(chǎn)孢子易復發(fā)有關,還與實現(xiàn)對該菌的穩(wěn)定研究比較困難有關。相對于大腸埃希菌來說,C. difficile的研究進程是困難緩慢的。下面對近些年來進入臨床評估階段的5種抗C. difficile藥物的最新結(jié)果進行總結(jié)。藥物的結(jié)構(gòu)與臨床評估結(jié)果分別見圖1及表1。
2.1.1 Ridinilazole
Ridinilazole (Rdz, 原稱為SMT19969),是一種窄譜、不可吸收的新型抗生素,對C. difficile具有高選擇抗菌活性和低耐藥率[47]。由于其表現(xiàn)出降低CDI復發(fā)的優(yōu)勢,因此在各類新型藥物中脫穎而出。目前Rdz的抗菌機制尚不清楚,但是作為雙苯并咪唑(bis-benzimidazoles, BBZ)的衍生物,其作用機制可能與BBZ類似,而研究表明BBZ抗腫瘤和抗菌活性的作用機制是抑制DNA合成[48-49]。研究發(fā)現(xiàn)暴露于Rdz后細菌細胞分裂停止,這表明其可能通過改變C. difficile細胞分裂增殖影響細菌生長。該藥物對英國和亞洲北部的一系列臨床分離株、超百種有耐藥表型的分離株均有抑制活性[50-52]。在倉鼠腸道模型中,對其他正常腸道菌群(不包括梭菌屬)沒有抗菌活性[53]。Rdz表現(xiàn)出的窄譜活性對腸道中維持C. difficile定植抗性的微生物影響較小,尤其是對脆弱擬桿菌[54]。動物實驗表明,給藥期間Rdz與Van均有100%存活率,停止給藥后Van處理組第8天死亡率高達100%,Rdz處理組在第13天開始出現(xiàn)死亡,并且維持80%的生存率直到研究結(jié)束[55]。這表明,Rdz不僅可以應用在急性和重癥CDI的治療,同時能夠預防復發(fā)。
目前Rdz的最新臨床階段是Ⅱ期研究,Ⅲ期臨床試驗正在進行中。Ⅰ期結(jié)果顯示,健康志愿者單次和多次口服后對Rdz具有良好的耐受性。給藥后全身暴露量低,且出現(xiàn)的所有不良反應都是輕度的[29]。Ⅱ期實驗發(fā)現(xiàn)該藥物導致的不良反應癥狀及發(fā)生率與Van幾乎一致,進一步證實了其安全性和有效性[30]。目前口服Rdz療法已有的Ⅰ期、Ⅱ期臨床評估結(jié)果良好,也讓我們期待更大規(guī)模的Ⅲ期臨床試驗結(jié)果來支持Rdz應用于臨床。
2.1.2 Surotomycin
Surotomycin (Sur, 原稱為CB-183, 315)是一種口服給藥、吸收少、具選擇性的新型環(huán)狀脂肽類膜活性抗生素,可以引起膜去極化而不增加膜的通透性從而導致細胞死亡[56]。Sur對革蘭陰性厭氧菌和兼性厭氧菌沒有活性[57]。與Van相比,Sur對指數(shù)生長期的細菌殺傷速率遠高于Van,高濃度時能夠快速殺死平臺期細菌,這表明Sur對生長和非生長狀態(tài)的C. difficile均表現(xiàn)出殺菌活性[58-59]。由于平臺期細菌可以形成孢子并產(chǎn)生毒素,也就是說,Sur通過直接殺傷作用能夠降低結(jié)腸和糞便中的孢子滴度和毒素水平[60]。在體外腸道模型中,滴注Sur后對脆弱擬桿菌沒有影響[61]。另外,采用Sur治療CDI可以降低萬古霉素耐藥腸球菌(vancomycin-resistant Enterococcus, VRE)水平[62]。
在臨床高劑量Ⅰ期研究中,Sur對革蘭陰性厭氧菌沒有影響[33]。所有不良反應為輕度至中度,證明了其安全性與耐受性。在多中心的Ⅱ期臨床試驗中,Sur受試組與Van對照組治愈率接近,Sur的復發(fā)率較低且4周內(nèi)的持續(xù)臨床緩解率更高[34]。另一項Ⅱ期臨床試驗研究中也證實了Sur對微生物群的影響更小[35]。在2項更大規(guī)模、隨訪30~50 d內(nèi)的國際多中心Ⅲ期臨床實驗中,Sur的持續(xù)臨床反應率(治愈且隨訪未復發(fā))低于Van[36-37]。這表明,Sur的持續(xù)治療效果劣于Van。因此,Sur的Ⅲ期臨床實驗沒有達到預期目標療效。
2.1.3 Cadazolid
Cadazolid (Cdz, 原稱為ACT-179811)是一種新型惡唑烷酮抗生素,對多種C. difficile臨床菌株抑制細菌蛋白和毒素合成的能力優(yōu)于Van和Mtr,24 h殺菌率高達99.9%[63-64]。通過大分子標記實驗證實了Cdz的殺菌機制主要是抑制蛋白質(zhì)合成(僅在藥物濃度高時抑制DNA合成)[65]。在腸道模型中,Cdz與Van的治療效果相當[66]。在小鼠CDI模型中,Cdz不會促進VRE的定植[67]。作為醫(yī)院中重要的醫(yī)療保健目標,Cdz在降低VRE定植方面具有突出優(yōu)勢。
在2項Ⅰ期臨床研究中,單次和多次遞增口服劑量后發(fā)現(xiàn)健康受試者對Cdz的耐受性良好,其常見不良反應是頭痛[38]。重癥CDI患者口服給藥后糞便中的藥物濃度維持高水平[39]。一項在4個國家(加拿大、德國、英國和美國)進行的多中心Ⅱ期臨床實驗確認了Cdz對不同菌株感染的CDI患者具有良好療效,患者口服最佳劑量為250 mg[40-41]。因此,在25個國家同時進行的2項Ⅲ期臨床試驗中,重點評估了Cdz每日2次250 mg劑量治療的有效性。結(jié)果顯示,項目一中Cdz的治愈率與Van接近,但項目二中Cdz的治愈率低于Van[42]。因此,與Van相比,不能認為Cdz具有優(yōu)越的臨床治愈能力。
2.1.4 MetRS抑制劑:CRS3123
CRS3123 (原稱REP3123)是一種新型二芳基二胺,其抗菌機制是特異性抑制甲硫酰-tRNA合成酶(methionyl-tRNA synthetase, MetRS)。通過降低帶電與不帶電tRNA的比例來模擬氨基酸饑餓,并誘導嚴謹反應,進而導致RNA合成減少。該藥主要對革蘭陽性細菌的MetRS具有抑制作用,對大多數(shù)革蘭陰性細菌和哺乳動物(包括人類)的MetRS沒有影響[68]。在低至1 ?g/mL的濃度下,CRS3123能夠抑制C. difficile外毒素產(chǎn)生,并減少10倍以上的孢子形成率[69]。在倉鼠CDI模型中,給藥后33 d內(nèi)的總存活率CRS3123高于Van和Mtr[68-69]。因此,該藥物具有抑制C. difficile孢子形成及萌發(fā)的能力,并且在降低復發(fā)方面有一定潛力。
目前CRS3123正處于臨床Ⅰ期研究階段,單次給藥劑量遞增至1200 mg時不良反應為輕度至中度[43]。因此,CRS3123在較寬的劑量范圍內(nèi)具有良好的安全性和耐受性。在另一項Ⅰ期臨床研究中,每日2次持續(xù)給藥10 d沒有報告嚴重不良事件(serious adverse events, SAEs)或嚴重治療緊急不良事件(serious treatment-emergent adverse events, STEAEs),進一步證實了CRS3123的安全性和耐受性。更重要的是,CRS3123對共生厭氧菌沒有活性(包括擬桿菌、雙歧桿菌和共生梭菌),這些結(jié)果支持CRS3123作為窄譜藥物進行下一步的臨床研究[44]。由于CDI患者的腸上皮受損可能會影響藥物的吸收程度,因此在未來的Ⅱ期試驗中需要重點評估該藥的全身暴露水平和持續(xù)臨床治愈率。
2.1.5 GyrB抑制劑:DS-2969b
DS-2969b是一種新型GyrB抑制劑,其作用方式是與DNA旋轉(zhuǎn)酶的ATP結(jié)合位點結(jié)合從而抑制DNA旋轉(zhuǎn)酶的活性。DS-2696b對革蘭陽性菌具有活性,特別是C. difficile和金黃色葡萄球菌(MRSA)[70]。在CDI模型中,皮下和口服給藥同樣有效,靜脈和口服給藥后糞便中排泄水平接近[71]。對大鼠連續(xù)灌胃7 d后,部分腸道微生物(主要包括球狀梭菌和乳酸桿菌)的數(shù)量受到顯著抑制,但是主要腸道菌群能夠快速恢復到用藥前水平,因此該藥對腸道微生物的影響是短暫且可逆的[72]。這些數(shù)據(jù)支持DS-2969b進一步開發(fā)成為CDI口服或靜脈治療藥物。
DS-2969b已進行Ⅰ期臨床研究,結(jié)果支持下一步臨床試驗。在Ⅰ期評估中,不良反應主要與胃腸道有關且癥狀為輕度,因此該藥安全和人體耐受性良好。首次給藥后糞便中DS-2969a水平能夠保持17 d以上[45]。在另一項Ⅰ期臨床實驗中證實了人體對DS-2969a耐受性良好,在劑量≥60 mg給藥24 h內(nèi)達到殺滅C. difficile的目標水平[46]。這些數(shù)據(jù)支持DS-2969b作為新藥物繼續(xù)開發(fā),接下來需要充分了解該藥對腸道微生物群的影響及臨床治療效果。
2.2 處于臨床前開發(fā)階段的抗菌劑
在治療CDI的抗生素數(shù)量有限且復發(fā)率高的背景下,近5年研究人員新開發(fā)出以下11種有潛力的抗菌劑,下面對其化學結(jié)構(gòu)、抗菌活性及主要作用機制進行匯總(見圖2和表2)。
2.2.1 天然抗菌藥物
據(jù)報道,天然存在的植物營養(yǎng)素類黃酮對多種病原體具有抗菌活性。研究發(fā)現(xiàn)黃酮類化合物在炎癥性腸病(inflammatory bowel disease, IBD)中具有抗炎、抗腹瀉的作用[86],其中黃芩苷通過抑制PI3K/AKT信號通路而影響IBD的發(fā)展[87]。近期研究發(fā)現(xiàn),亞抑制濃度(subinhibitory concentration, SIC)的黃芩苷可以使C. difficile高毒株(ATCCBAA 1870和1803菌株)毒素合成降低70%~85%、孢子形成減少1.1~1.3 lgCFU/mL,其主要作用機制是抑制毒素TcdA、TcdB和孢子形成相關基因的轉(zhuǎn)錄[73-74]。月桂酸(lauric acid, LA)是一種脂肪酸(fatty acids, FA),在椰子油中占比高達45%~53%。經(jīng)體外試驗發(fā)現(xiàn)LA可以顯著抑制C. difficile ATCC9689菌株的生長[88]。LA對于多種臨床分離株的最低殺菌濃度(minimum bactericidal concentration, MBC)范圍為0.312~0.625 mg/mL,0.25×MBC LA與20 μg/mL Van抑制生物膜形成的效果一致,且能以劑量依賴性降低孢子的萌發(fā)速率[82]。因此,黃芩苷和LA作為抑制C. difficile生長和毒力的天然成分,均有望開發(fā)為治療CDI的輔助藥物。
2.2.2 人工合成或衍生類抗菌藥物
抗菌肽(antimicrobial peptides, AMPs)因擁有廣譜抗菌活性、熱穩(wěn)定性和降低細菌耐藥性等優(yōu)點[89],近年來逐漸成為抗生素替代藥物的熱門研究對象。CM-A是由CM肽(天蠶素A和蜂毒肽)在第16位添加丙氨酸后獲得的衍生肽,CM-A對C. difficile的最低抑菌濃度(minimum inhibitory concentration, MIC)低于CM近2倍,且在MIC濃度下對人結(jié)腸腺癌細胞(the human colon adenocarcinomacell lines, Caco-2 細胞)沒有毒性[81]。CM-A主要以細胞膜作為抗菌作用靶點,然而是否可以更徹底地殺滅處于緩慢生長期的細菌和減少細菌耐藥性產(chǎn)生還需進一步驗證。同樣靶向細胞膜的芳基-烷基-賴氨酸是一類小分子擬肽抗菌劑[90]。其中含有癸基鏈的NCK-10化合物對C. difficile的MIC值與Van接近,并且多種Van耐藥型菌株對其敏感,該化合物主要集中于胃腸道不會進入血液,且對人結(jié)腸上皮細胞無毒[83]。
國內(nèi)研究者篩選發(fā)現(xiàn)rakicidin B是一種從海洋小單孢菌的發(fā)酵液中分離得到的縮肽類化合物,其對CDI小鼠有保護作用,被感染小鼠干預后存活率高達80%且復發(fā)率低于Van,其衍生物rakicidin B1具有更強的抗C. difficile活性[77,91]。本實驗室前期研究發(fā)現(xiàn)rakicidin B1在培養(yǎng)基中穩(wěn)定性下降、艱難梭菌誘導耐藥等原因,測定MIC時間較長,藥物降解導致MIC值偏高[92]。為避免復雜性問題及方便后續(xù)研究,我們在極低的藥物濃度下(0.4 ?g/mL)進行殺菌試驗,結(jié)果發(fā)現(xiàn)rakicidin B1作用5 min時即可快速殺菌100倍,與臨床上的使用劑量相比該濃度相對較低殺菌速度較快,具有非常大的治療潛力。Rhodomyrtone是1種三酮-?;g苯三酚,比Van殺菌所需濃度更低且速度更快,0.5×MIC時能夠抑制孢子萌發(fā),還可以減少生物膜形成從而降低CDI復發(fā)率[75]。具有兩親結(jié)構(gòu)的化合物雙環(huán)胍不僅MIC值與Van接近,對CDI小鼠有一定保護作用且糞便中C. difficile水平降低80%,其中化合物13最具選擇性[80]。因此,rakicidin B1、rhodomyrtone和雙環(huán)胍13號化合物均具有較強的抗菌活性,可以作為治療CDI的候選開發(fā)藥物,但是其毒力影響及細胞毒性需進一步探究。
Raja 42是一種靛紅-苯并噻唑類似物(含有γ-內(nèi)酰胺結(jié)構(gòu)),不僅對多種臨床分離菌株有抗菌活性,而且Mtr耐藥菌株也對其敏感。Raja 42的潛在治療指數(shù)(therapeutic index, TI:12.15)優(yōu)于Van(TI:7.45),表明其毒性低于Van,可考慮開發(fā)為臨床二線藥物,在Mtr無效時輔以治療[84]。AJ-024是一種含有硝基咪唑結(jié)構(gòu)的新型硫肽抗生素(26元硫肽的硝基咪唑衍生物),體外試驗發(fā)現(xiàn)在4×MIC時,AJ-024的殺菌活性明顯優(yōu)于Van并且維持長達24 h,0.25 ?g/mL時該衍生物的殺菌程度與2 ?g/mL Van相當,其作用機制是26元硫肽與細菌23S核糖體RNA亞基和蛋白質(zhì)L11之間緊密結(jié)合而干擾蛋白質(zhì)合成。在小鼠IBD合并癥模型中AJ-024與Van均有80%的存活率[85]。OPS-2071是一種新型喹諾酮類抗菌劑,主要作用機制是抑制細菌DNA復制,1×MIC OPS-2071與2×MIC Mtr和Van殺菌程度相當,且48 h后未恢復。在倉鼠CDI模型中,OPS-2071的50%有效劑量(effective dose 50, ED50)比Van低39.0倍,自發(fā)突變率低且抗菌效力持續(xù)時間長于Van,不易產(chǎn)生耐藥性[76]。不難發(fā)現(xiàn),在體內(nèi)和體外抗菌效果上,AJ-024與OPS-2071均擁有比Van更優(yōu)秀的活性,因此非常適于單藥治療CDI。
2.2.3 老藥新用
隨著全球?qū)εR床抗生素使用管理的加強推廣,“老藥新用”在抗感染行業(yè)逐漸展現(xiàn)優(yōu)勢。依拉環(huán)素(eravacyclin, 原稱為TP-434)作為一種新型合成四環(huán)素抗菌劑,由于對需氧和厭氧的革蘭陽性及革蘭陰性病原體具有廣譜活性,已于2018年獲得FDA批準用于成人復雜腹腔感染的治療[79]。研究發(fā)現(xiàn)它能與30S核糖體亞基結(jié)合抑制蛋白質(zhì)合成來發(fā)揮抗C. difficile活性,MBC值低于Van的情況下?lián)碛邢嗨频臅r間殺傷動力學特征[78]。因此,可以嘗試作為老藥新用藥物來治療CDI。
3 展望
C. difficile復雜的發(fā)病機制和高復發(fā)率使得新藥物研發(fā)和臨床試驗道路上遇到多重障礙。此外,其耐藥機制也因遺傳操作等技術瓶頸而難以闡明,造成細菌耐藥問題日趨嚴重。FMT療法的出現(xiàn)將很好地降低細菌耐藥影響,其腸道微生物重建作用在治療rCDI方面非常有潛力。雖然FMT療法在II期臨床實驗中顯示出比較好的安全性和有效性,但由于存在潛在的新病原體傳播以及對受試者長遠健康的風險未知,在未來的臨床研究中需要更仔細且長期的隨訪。Ridinilazole作為脫穎而出的新型抗生素,在臨床Ⅱ期實驗中表現(xiàn)出良好的療效,其Ⅲ期臨床實驗非常值得期待。在對C. difficile的新藥物研究中,化合物的篩選、臨床前研究、臨床評價結(jié)果、試驗失敗的經(jīng)驗都是值得積累的。雖然有失敗的結(jié)果,但是,所發(fā)現(xiàn)的更多有潛力的新藥物和老藥新用藥物將進入下一步研究。通過對16種抗菌化合物的總結(jié),發(fā)現(xiàn)抗C. difficile的新藥研發(fā)趨勢是:窄譜、特異,對腸道菌群影響小、腸道濃度高、作用時間長但系統(tǒng)吸收差;抑制或殺傷孢子、生物膜,停藥后復發(fā)率低。在今后的藥物探索過程中,除了對抗菌機制和耐藥機制的進一步探究,找到針對rCDI的最佳治療方法也是研究重點之一,結(jié)合適當?shù)念A防和抗生素管控對控制CDI感染和傳播具有重要意義。希望通過對C. difficile的感染與治療現(xiàn)狀進行綜述為后續(xù)治療CDI的藥物研發(fā)提供建議與方向。
參 考 文 獻
Kazakova S V, Baggs J, Yi S H, et al. Associations of facility-level antibiotic use and hospital-onset Clostridioides difficile infection in US acute-care hospitals, 2012—2018[J]. Infect Control Hosp Epidemiol, 2022, 43(8): 1067-1069.
Hall I C. Intestinal flora in new-born infants[J]. Amer J Dis Childr, 1935, 49(2): 390-402.
Lessa F C, Mu Y, Bamberg W M, et al. Burden of Clostridium difficile infection in the United States[J]. N Engl J Med, 2015, 372(9): 825-834.
Warny M, Pepin J, Fang A, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe[J]. Lancet, 2005, 366(9491): 1079-1084.
Petrella L A, Sambol S P, Cheknis A, et al. Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C. difficile BI strain[J]. Clin Infect Dis, 2012, 55(3): 351-357.
Banawas S S. Clostridium difficile infections: A global overview of drug sensitivity and resistance mechanisms[J]. Biomed Res Int, 2018. doi: 10.1155/2018/8414257.
Selle K, Fletcher J R, Tuson H, et al. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials[J]. mBio, 2020, 11(2): e00019-20.
Feuerstadt P, Louie T J, Lashner B, et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection[J]. N Engl J Med, 2022, 386(3): 220-229.
Hyte M L, Arphai L J, Vaughn C J, et al. The role of bezlotoxumab for the prevention of recurrent Clostridioides difficile infections: A review of the current literature and paradigm shift after 2021[J]. Antibiotics (Basel), 2022, 11(9): 1211.
Borriello S P. 12th C. L. Oakley lecture. Pathogenesis of Clostridium difficile infection of the gut[J]. J Med Microbiol, 1990, 33(4): 207-215.
Aktories K, Schwan C, Jank T. Clostridium difficile toxin biology[J]. Annu Rev Microbiol, 2017, 71: 281-307.
Jank T, Giesemann T, Aktories K. Rho-glucosylating Clostridium difficile toxins A and B: New insights into structure and function[J]. Glycobiology (Oxford), 2007, 17(4): 15R-22R.
Wexler A G, Guiberson E R, Beavers W N, et al. Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host[J]. Cell Rep, 2021, 36(10): 109683.
Fletcher J R, Pike C M, Parsons R J, et al. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota[J]. Nat Commun, 2021, 12(1): 462.
Cornely O A, Crook D W, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: A double-blind, non-inferiority, randomised controlled trial[J]. Lancet Infect Dis, 2012, 12(4): 281-289.
Pepin J, Alary M E, Valiquette L, et al. Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada[J]. Clin Infect Dis, 2005, 40(11): 1591-1597.
Ethapa T, Leuzzi R, Ng Y K, et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile[J]. J Bacteriol, 2013, 195(3): 545-555.
L?fmark S, Edlund C, Nord C E. Metronidazole is still the drug of choice for treatment of anaerobic infections[J]. Clin Infect Dis, 2010, 50(Supplement_1): S16-S23.
Stogios P J, Savchenko A. Molecular mechanisms of vancomycin resistance[J]. Protein Sci, 2020, 29(3): 654-669.
Eubank T A, Gonzales-Luna A J, Hurdle J G, et al. Genetic mechanisms of vancomycin resistance in Clostridioides difficile: A systematic review[J]. Antibiotics (Basel), 2022, 11(2): 258.
Darkoh C, Keita K, Odo C, et al. Emergence of clinical Clostridioides difficile isolates with decreased susceptibility to vancomycin[J]. Clin Infect Dis, 2022, 74(1): 120-126.
Giacobbe D R, Vena A, Falcone M, et al. Fidaxomicin for the treatment of Clostridioides difficile infection in adult patients: An update on results from randomized controlled trials[J]. Antibiotics (Basel), 2022, 11(10): 1365.
Zhanel G G, Walkty A J, Karlowsky J A. Fidaxomicin:? A novel agent for the treatment of Clostridium difficile infection[J]. Can J Infect Dis Med Microbiol, 2015, 26(6): 305-312.
Kuehne S A, Dempster A W, Collery M M, et al. Characterization of the impact of rpoB mutations on the in vitro and in vivo competitive fitness of Clostridium difficile and susceptibility to fidaxomicin[J]. J Antimicrob Chemother, 2018, 73(4): 973-980.
Meuwly M, Chuard C. Clostridioides difficile infection:? Various therapeutic approaches[J]. Rev Med Suisse, 2022, 18(799): 1896-1899.
Stallmach A, Steube A, Stallhofer J, et al. Fecal microbiota transplantation: Indications, risks and opportunities[J]. Inn Med (Heidelb), 2022, 63(10): 1036-1042.
Xu Q, Zhang S, Quan J, et al. The evaluation of fecal microbiota transplantation vs vancomycin in a Clostridioides difficile infection model[J]. Appl Microbiol Biotechnol, 2022, 106(19): 6689-6700.
Orenstein R, Dubberke E R, Khanna S, et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660:? Results from an open-label phase 2 clinical trial[J]. BMC Infect Dis, 2022, 22(1): 245.
Vickers R, Robinson N, Best E, et al. A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections[J]. BMC Infect Dis, 2015, 15: 91.
Vickers R J, Tillotson G S, Nathan R, et al. Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: A phase 2, randomised, double-blind, active-controlled, non-inferiority study[J]. Lancet Infect Dis, 2017, 17(7): 735-744.
Snydman D R, McDermott L A, Thorpe C M, et al. Antimicrobial susceptibility and ribotypes of Clostridium difficile isolates from a phase 2 clinical trial of ridinilazole (SMT19969) and vancomycin[J]. J Antimicrob Chemother, 2018, 73(8): 2078-2084.
Chandorkar G, Zhan Q, Donovan J, et al. Pharmacokinetics of surotomycin from phase 1 single and multiple ascending dose studies in healthy volunteers[J]. BMC Pharmacol Toxicol, 2017, 18(1): 24.
Citron D M, Tyrrell K L, Dale S E, et al. Impact of surotomycin on the gut microbiota of healthy volunteers in a phase 1 clinical trial[J]. Antimicrob Agents Chemother, 2016, 60(4): 2069-2074.
Lee C H, Patino H, Stevens C, et al. Surotomycin versus vancomycin for Clostridium difficile infection:? Phase 2, randomized, controlled, double-blind, non-inferiority, multicentre trial[J]. J Antimicrob Chemother, 2016, 71(10): 2964-2971.
Cannon K, Byrne B, Happe J, et al. Enteric microbiome profiles during a randomized phase 2 clinical trial of surotomycin versus vancomycin for the treatment of Clostridium difficile infection[J]. J Antimicrob Chemother, 2017, 72(12): 3453-3461.
Daley P, Louie T, Lutz J E, et al. Surotomycin versus vancomycin in adults with Clostridium difficile infection:? Primary clinical outcomes from the second pivotal, randomized, double-blind, phase 3 trial[J]. J Antimicrob Chemother, 2017, 72(12): 3462-3470.
Boix V, Fedorak R N, Mullane K M, et al. Primary outcomes from a phase 3, randomized, double-blind, active-controlled trial of surotomycin in subjects with Clostridium difficile infection[J]. Open Forum Infect Dis, 2017, 4(1): ofw275.
Baldoni D, Gutierrez M, Timmer W, et al. Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: Safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses[J]. J Antimicrob Chemother, 2014, 69(3): 706-714.
Gehin M, Desnica B, Dingemanse J. Minimal systemic and high faecal exposure to cadazolid in patients with severe Clostridium difficile infection[J]. Int J Antimicrob Agents, 2015, 46(5): 576-581.
Louie T, Nord C E, Talbot G H, et al. Multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic cadazolid in patients with Clostridium difficile infection[J]. Antimicrob Agents Chemother, 2015, 59(10): 6266-6273.
Gerding D N, Hecht D W, Louie T, et al. Susceptibility of Clostridium difficile isolates from a phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection[J]. J Antimicrob Chemother, 2016, 71(1): 213-219.
Gerding D N, Cornely O A, Grill S, et al. Cadazolid for the treatment of Clostridium difficile infection: Results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials[J]. Lancet Infect Dis, 2019, 19(3): 265-274.
Nayak S U, Griffiss J M, Blumer J, et al. Safety, tolerability, systemic exposure, and metabolism of CRS3123, a Methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile, in a phase 1 study[J]. Antimicrob Agents Chemother, 2017, 61(8). doi: 10.1128/AAC.02760-16.
Lomeli B K, Galbraith H, Schettler J, et al. Multiple-ascending-dose phase 1 clinical study of the safety, tolerability, and pharmacokinetics of CRS3123, a narrow-spectrum agent with minimal disruption of normal gut microbiota[J]. Antimicrob Agents Chemother, 2019, 64(1): e01395-19.
Vandell A G, Inoue S, Dennie J, et al. Phase 1 study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple oral doses of DS-2969b, a novel GyrB inhibitor, in healthy subjects[J]. Antimicrob Agents Chemother, 2018, 62(5): e02537-17.
Dennie J, Vandell A G, Inoue S, et al. A phase I, single-ascending-dose study in healthy subjects to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-2969b, a novel GyrB inhibitor[J]. J Clin Pharmacol, 2018, 58(12): 1557-1565.
Vickers R, Tinsley J, Storer R, et al. SMT19969–a novel antibiotic for C. difficile: Clostridium difficile growth inhibition, spectrum of activity and resistance development[C]. 51st Interscience Conf on Antimicrobial Agents and Chemotherapy (ICAAC), 2011.
Baron A, Sann C L, Mann J. Symmetric bis-benzimidazoles as DNA minor groove-binding agents with anti-tumour and antibacterial activity, and the evolution of the drug ridinilazole for the treatment of Clostridium difficile infections[J]. Bioorg Med Chem, 2022, 58: 116656.
Vickers R J, Tillotson G, Goldstein E J, et al. Ridinilazole:? A novel therapy for Clostridium difficile infection[J]. Int J Antimicrob Agents, 2016, 48(2): 137-143.
Corbett D, Wise A, Birchall S, et al. In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile[J]. J Antimicrob Chemother, 2015, 70(6): 1751-1756.
Collins D A, Wu Y, Tateda K, et al. Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of Clostridioides difficile[J]. J Antimicrob Chemother, 2021, 76(4): 967-972.
Freeman J, Vernon J, Vickers R, et al. Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators[J]. Antimicrob Agents Chemother, 2016, 60(1): 689-692.
Baines S D, Crowther G S, Freeman J, et al. SMT19969 as a treatment for Clostridium difficile infection: An assessment of antimicrobial activity using conventional susceptibility testing and an in vitro gut model[J]. J Antimicrob Chemother, 2015, 70(1): 182-189.
Goldstein E J, Citron D M, Tyrrell K L, et al. Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 Gram-positive and Gram-negative aerobic and anaerobic intestinal flora isolates[J]. Antimicrob Agents Chemother, 2013, 57(10): 4872-4876.
Sattar A, Thommes P, Payne L, et al. SMT19969 for Clostridium difficile infection (CDI): In vivo efficacy compared with fidaxomicin and vancomycin in the hamster model of CDI[J]. J Antimicrob Chemother, 2015, 70(6): 1757-1762.
Mascio C T, Mortin L I, Howland K T, et al. In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile[J]. Antimicrob Agents Chemother, 2012, 56(10): 5023-5030.
Knight-Connoni V, Mascio C, Chesnel L, et al. Discovery and development of surotomycin for the treatment of Clostridium difficile[J]. J Ind Microbiol Biotechnol, 2016, 43(2-3): 195-204.
Bouillaut L, McBride S, Sorg J A, et al. Effects of surotomycin on Clostridium difficile viability and toxin production in vitro[J]. Antimicrob Agents Chemother, 2015, 59(7): 4199-4205.
Alam M Z, Wu X, Mascio C, et al. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile[J]. Antimicrob Agents Chemother, 2015, 59(9): 5165-5170.
Endres B T, Bassères E, Khaleduzzaman M, et al. Evaluating the effects of surotomycin treatment on Clostridium difficile toxin A and B production, immune response, and morphological changes[J]. Antimicrobial agents and chemotherapy, 2016, 60(6): 3519-3523.
Chilton C H, Crowther G S, Todhunter S L, et al. Efficacy of surotomycin in an in vitro gut model of Clostridium difficile infection[J]. J Antimicrob Chemother, 2014, 69(9): 2426-2433.
Deshpande A, Hurless K, Cadnum J L, et al. Effect of surotomycin, a novel cyclic lipopeptide antibiotic, on intestinal colonization with vancomycin-resistant Enterococci and Klebsiella pneumoniae in mice[J]. Antimicrob Agents Chemother, 2016, 60(6): 3333-3339.
Rashid M U, Lozano H M, Weintraub A, et al. In vitro activity of cadazolid against Clostridium difficile strains isolated from primary and recurrent infections in Stockholm, Sweden[J]. Anaerobe, 2013, 20: 32-35.
Locher H H, Seiler P, Chen X, et al. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections[J]. Antimicrob Agents Chemother, 2014, 58(2): 892-900.
Locher H H, Caspers P, Bruyere T, et al. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections[J]. Antimicrob Agents Chemother, 2014, 58(2): 901-908.
Chilton C H, Crowther G S, Baines S D, et al. In vitro activity of cadazolid against clinically relevant Clostridium difficile isolates and in an in vitro gut model of C. difficile infection[J]. J Antimicrob Chemother, 2013, 69(3): 697-705.
Seiler P, Enderlin-Paput M, Pfaff P, et al. Cadazolid does not promote intestinal colonization of vancomycin-resistant Enterococci in mice[J]. Antimicrob Agents Chemother, 2016, 60(1): 628-631.
Critchley I A, Green L S, Young C L, et al. Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections[J]. J Antimicrob Chemother, 2009, 63(5): 954-963.
Ochsner U A, Bell S J, O'Leary A L, et al. Inhibitory effect of REP3123 on toxin and spore formation in Clostridium difficile, and in vivo efficacy in a hamster gastrointestinal infection model[J]. J Antimicrob Chemother, 2009, 63(5): 964-971.
Tyrrell K L, Citron D M, Merriam C V, et al. In vitro activity of DS-2969b and comparator antimicrobial agents against Clostridioides (Clostridium) difficile, methicillin-resistant Staphylococcus aureus, and other anaerobic bacteria[J]. Anaerobe, 2018, 54: 39-41.
Mathur T, Barman T K, Kumar M, et al. In vitro and in vivo activities of DS-2969b, a novel GyrB inhibitor, against Clostridium difficile[J]. Antimicrob Agents Chemother, 2018, 62(4): e02157-17.
Kumar M, Mathur T, Joshi V, et al. Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota[J]. Anaerobe, 2018, 51: 120-123.
Pellissery A J, Vinayamohan P G, Venkitanarayanan K. In vitro antivirulence activity of baicalin against Clostridioides difficile[J]. J Med Microbiol, 2020, 69(4): 631-639.
Pellissery A J, Vinayamohan P G, Kuttappan D A, et al. Protective effect of baicalin against Clostridioides difficile infection in mice[J]. Antibiotics (Basel), 2021, 10(8): 926.
Srisuwan S, Mackin K E, Hocking D, et al. Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro[J]. Int J Antimicrob Agents, 2018, 52(5): 724-729.
Oka D, Yamaya N, Kuno T, et al. In vitro and in vivo antibacterial activities of a novel quinolone compound, OPS-2071, against Clostridioides difficile[J]. Antimicrob Agents Chemother, 2022, 66(3): e0233821.
林風, 陳麗, 趙薇, 等. 縮肽類化合物rakicidins體內(nèi)外抗艱難梭菌活性研究[J]. 中國抗生素雜志, 2017, 42(5): 343-347.
Basseres E, Begum K, Lancaster C, et al. In vitro activity of eravacycline against common ribotypes of Clostridioides difficile[J]. J Antimicrob Chemother, 2020, 75(10): 2879.
Alosaimy S, Abdul-Mutakabbir J C, Kebriaei R, et al. Evaluation of eravacycline: A novel fluorocycline[J]. Pharmacotherapy, 2020, 40(3): 221-238.
Li C, Teng P, Peng Z, et al. Bis-cyclic guanidines as a novel class of compounds potent against Clostridium difficile[J]. ChemMedChem, 2018, 13(14): 1414-1420.
Arthithanyaroj S, Chankhamhaengdecha S, Chaisri U, et al. Effective inhibition of Clostridioides difficile by the novel peptide CM-A[J]. PLoS One, 2021, 16(9): e257431.
Yang H, Chen J, Rathod J, et al. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model[J]. Front Microbiol, 2017, 8: 2635.
Ghosh C, AbdelKhalek A, Mohammad H, et al. Aryl-alkyl-lysines: Novel agents for treatment of C. difficile infection[J]. Sci Rep, 2020, 10(1): 5624.
Fong A, Ross M, Boudreau J, et al. Raja 42, a novel gamma lactam compound, is effective against Clostridioides difficile[J]. PLoS One, 2021, 16(9): e257143.
Kim D, Kim Y R, Hwang H J, et al. Nitro-group-containing thiopeptide derivatives as promising agents to target Clostridioides difficile[J]. Pharmaceuticals (Basel), 2022, 15(5): 623.
Wang L, Gao M, Kang G, et al. The potential role of phytonutrients flavonoids influencing gut microbiota in the prophylaxis and treatment of inflammatory bowel disease[J]. Front Nutr, 2021, 8: 798038.
Zhu L, Shen H, Gu P Q, et al. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation[J]. Exp Ther Med, 2020, 20(1): 581-590.
Shilling M, Matt L, Rubin E, et al. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile[J]. J Med Food, 2013, 16(12): 1079-1085.
肖懷秋, 李玉珍, 林親錄, 等. 抗菌肽多靶點作用抑菌機理研究進展[J]. 食品與生物技術學報, 2022, 41(5): 11-19.
Ghosh C, Manjunath G B, Akkapeddi P, et al. Small molecular antibacterial peptoid mimics: The simpler the better![J]. J Med Chem, 2014, 57(4): 1428-1436.
謝立君, 陳麗, 趙薇, 等. 抗艱難梭菌rakicidin B1新衍生物的設計、合成及生物學活性評價(英文)[J]. 中國抗生素雜志, 2019, 44(12): 1334-1340.
郭超勤.天然產(chǎn)物抗厭氧菌活性評價及抗艱難梭菌聯(lián)合用藥研究[D]. 廈門: 廈門大學, 2019.
收稿日期:2022-12-26
基金項目:國家自然科學基金(No. 82172316)
作者簡介:郭銀莉,女,生于1998年,在讀碩士研究生,主要研究方向為病原微生物抗感染及耐藥機制,E-mail: gyl_guo@163.com
*通信作者,趙西林,E-mail: zhaox5@xmu.edu.cn;牛建軍, E-mail: Niujianjun211@xmu.edu.cn