• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Event-Triggered Control of Continuous-Time Systems With Random Impulses

    2023-12-22 11:06:36MengYaoandGuoliangWei
    IEEE/CAA Journal of Automatica Sinica 2023年12期
    關(guān)鍵詞:目數(shù)篩孔篩網(wǎng)

    Meng Yao and Guoliang Wei

    Abstract—In this paper, the networked control problem under event-triggered schemes is considered for a class of continuoustime linear systems with random impulses.In order to save communication costs and lighten communication burden, a dynamic event-triggered scheme whose threshold parameter is dynamically adjusted by a given evolutionary rule, is employed to manage the transmission of data packets.Moreover, the evolution of the threshold parameter only depends on the sampled measurement output, and hence eliminates the influence of impulsive signals on the event-triggered mechanism.Then, with the help of a stochastic analysis method and Lyapunov theory, the existence conditions of desired controller gains are received to guarantee the corresponding input-to-state stability of the addressed system.Furthermore, according to the semi-definite programming property, the desired controller gains are calculated by resorting to the solution of three linear matrix inequalities.In the end, the feasibility and validity of the developed control strategy are verified by a simulation example.

    I.INTRODUCTION

    OVER the past few years, impulsive systems have received increasing attention, mainly because they have the capability of characterizing dynamical behavior, which could be interrupted by instantaneous state jumps.Such systems have a wide range of applications in chaotic secure communication[1], robotics [2], automatic braking [3], aerospace [4], etc.Generally, they consist of three parts: the continuous-time evolution between the impulsive instants, the discrete-time impulsive dynamics, and the sequence set of strictly increasing impulsive instants [5], [6].Up until now, plenty of results have been reported on such systems (see [7]–[12] and references therein).For example, sufficient conditions have been developed in [7] to ensure the exponential stability of nonlinear impulsive systems.Meanwhile, the corresponding filtering problem has been investigated in [8]–[12] for discretetime linear systems with impulsive effects.

    The concept of input-to-state stability (ISS) is originally introduced by Sontag [13] to describe the influence of external inputs on practical engineering systems.The ISS property implies that the system is exponentially stable for the disturbance-free case and bounded stable under bounded inputs.Moreover, such a property is also helpful in the robustness analysis and controller design [14], [15].It is worth mentioning that integral input-to-state stability (iISS) is a weaker concept and can be regarded as a natural extension of ISS.

    In recent years, the ISS property is one of the hottest topics in the control community due to its powerful capabilities and wide applications in characterizing the effects of exogenous disturbances on systems.As a result, a large number of meaningful results have been reported to cope with the problems of ISS for engineering systems under external noises, e.g.,[16]–[19].Among them, ISS problems of impulsive systems have also derived considerable results.For instance, the ISS property of impulsive systems was first investigated in [20]with the help of the average impulsive interval approach.By resorting to the comparison principle, sufficient conditions have been developed in [21] to ensure the ISS of impulsive stochastic systems.Recently, the corresponding results on ISS have been applied to nonlinear systems with delayed impulses[22].In this paper, different from the aforementioned results,we focus on the ISS issue of networked control systems with random impulses.

    Another research topic is to study the networked control problem of impulsive systems under the communication protocol.With the digital revolution of communication technologies, a large number of engineering systems employ networks to contact the system components instead of traditional pointto-point connection [23]–[28].Such a special form has led to the merits of easy maintenance, remote control, and high expansibility.However, it also results in unexpected phenomena, such as network-induced time-delays and malicious attacks.Moreover, because of limited network bandwidth, network jamming would occur which, if not well handled, could degrade system performance [29]–[33].Hence, it is necessary to utilize communication protocols to manage data transmission with the purpose of reducing network congestion.

    As we all know, compared with the time-driven scheme, the event-triggered mechanism (ETM) can effectively improve the utilization of network resources in networked systems and guarantees certain system performance.Under the ETM, the sampled data will not be transmitted through the communication network unless the triggered condition is satisfied[34]–[36].According to different triggered conditions, the most existing ETMs will be roughly divided into two categories: the static case and the dynamic case.The triggering rule of the static event-triggered mechanism (SETM) is predefined and fixed.Nevertheless, the dynamic event-triggered mechanism (DETM) adopts a dynamically adjustable parameter for the triggering rule.Moreover, DETM could economize more network resources and improve the efficiency of data transmission.To this day, there are plenty of significant articles that have been reported on systems under ETMs (see[37]–[40] and references therein).However, for the continuous-time systems with random impulses, the networked control issue under DETM has been neglected mainly due to the difficulties in establishing suitable triggering rules for such a kind of system.

    Motivated by the above discussions, in this paper, we aim to design the DETM-based controller such that the continuoustime systems subject to random impulses and bounded noises can achieve ISS.The investigated topic presents significant challenges, including but not limited to: 1) How to set up a suitable mathematical model to describe the dynamic behavior of the impulsive system under DETM? 2) How to establish appropriate mathematical methods to analyze ISS of such impulsive systems? 3) How to design the expected controller gain to efficiently handle the bounded noises and random impulsive signals?

    In this paper, our objective is to conquer the above challenges, where the primary contributions can be seen in the next three aspects: 1) A DETM-based control algorithm is provided for impulsive systems subject to random impulsive signals.By resorting to the artificial time-delayed approach,the addressed system can be viewed as an impulsive timedelayed one; 2) With the help of stochastic analysis approaches and the developed Lyapunov-Krasovskii functional, sufficient conditions are obtained to ensure the ISS property; and 3) According to the acquired sufficient conditions, the expected controller gain is calculated by employing the semidefinite programming approach.

    The rest of this paper is constructed as follows.Section II formulates the DETM-based networked control problem of continuous-time systems under random impulses.The ISS problem of the impulsive system under random impulses and DETM are detailed in Section III.The case study is presented in Section IV to verify the feasibility and validity of the proposed control strategy, followed by the conclusion in Section V.

    Notations: Throughout this paper, E{·} denotes the mathematical expectation.N represents the positive integer set.The diag{···} represents a block-diagonal matrix.Let K be a class of continuous strictly increasing functionsf:R+→R+withf(0)=0.Moreover,fis said to be a K∞-function if it belongs to K-function and satisfiesf(s)→∞ ass→∞.A functiong:R+×R+→R+isaKL-function if,foreachfixedt∈R+,g(·,t) is a K-function,andforeachfixeds∈R+,g(s,·)is decreasing andg(s,t)→0 ast→∞.

    II.PROBLEM FORMULATION

    A. System Description

    In this paper, the considered impulsive system is presented as follows:

    Assumption 1: There are several different kinds of stochastic impulsive sequences, whose strength takes values from the set Γ ={μi,i=1,2,...,δ} with m axi∈Γ{E{μi}}<∞.

    In this paper, the system states are sampled at instants{sh,h∈N} , and the sampling instants satisfysh+1-sh=TwithT>0is the constant sampling period.

    B. DETM

    In the following, we shall introduce the DETM.Before further proceeding, denoteskn=tk+nT(n=1,2,...,tk+1-1),wheretkis the triggered instant.Then, the dynamic event-triggered scheme is shown as follows:

    with the initial condition η (t)=η0>0 and β >0.

    Note that the above mentioned triggered condition (2) can be translated into

    Whenθgoes to +∞, we can obtain 1 /θ=0, which implies that SETM is a special form of the DETM.

    In what follows, according to the artificial time-delayed approach, the event-triggered impulsive system will be reformulated as an impulsive system with time-delay.Under this setting, we can directly analyze its networked control problem under the DETM.

    For the convenience of narration, we denote H =[tk,tk+1] as the interval between two triggered instants.Then, it could be divided as

    From the above discussions, the actual input of the addressed system is

    According to (6), a dynamic of networked system under both the DETM and random impulses is derived as follows:

    For the system (7), the initial value ofx(t) is supplemented asx(t)=?(t),t∈[-T,0], where ?(t) is the initial condition ofx(t).

    For further discussions, the definitions of ISS and average impulsive interval are given as follows.

    Definition 1: The closed-loop system (7) is said to be stabilized to

    1) ISS by controller (6), if there exist functions κ ∈KL and χ ∈K∞such that

    2) iISS by controller (6), if there exist functions κ ∈KL and χ ∈K∞such that

    Definition 2[41]: LetNi(t,s) be the number of thei-th impulsive signals.If

    where Ti>0 andN0≥0, then TiandN0are respectively named the average impulsive interval and the elasticity number.

    Our main objective is to develop a DETM-based controller for the closed-loop system (7) with the triggering rule (2) such that the addressed system subject tow(t) is ISS and iISS.

    Remark 1: The parameter η(t) in the DETM is positive under the condition θ ≥(eβh-1).The explicit solution of (3)is shown as

    Considering the DETM (2) derives

    Then, we get that, for allt∈[skn,skn+1),

    Remark 2: Compared with the widely adopted SETM, the DETM is capable of further reducing the communication cost and lowering the update frequency of controllers.The main difference lies in the triggering rule.Specifically, compared with SETM with the fixed parameters, there is a dynamical parameter in the DETM, which plays an important role in excluding the Zeno behavior.Under this kind of communication protocol, the challenges are summarized as follows: 1)How to analyze the effect of the DETM on impulsive systems? 2) How to establish a unified design framework taking both the control scheme and the DETM into consideration? 3)How to develop a suitable DETM to adapt to the evolution of addressed systems?

    III.MAIN RESULTS

    In this section, we consider the ISS and iISS problems of networked impulsive systems under the DETM.The impulses are assumed to have stochastic impulsive strengths.First, sufficient conditions will be presented to ensure the ISS and iISS of the addressed system.Subsequently, the controller gains are obtained based on these developed sufficient conditions as well as semi-definite programming approaches.

    A. ISS and iISS Analysis of Networked Impulsive Systems

    In what follows, we shall introduce two conditions to check that the addressed system (7) can achieve ISS or iISS.

    Theorem 1: Under Assumption 1, for given constantsα>0 andT>0 , if there exist positive constants ?,θ, and β ∈[2α,∞), positive-definite matricesP,SandS1, and matrixGsuch that

    where

    Then, by controller (6), the addressed system (7) is stabilized to ISS.

    Proof: First of all, choose a Lyapunov functionalV(t) with the following form:

    where

    The infinite-dimensional operator L of Lyapunov functionV(t)is represented as

    DifferentiatingV(t) along the system (7), we have

    將自來水+普通石英砂5%(按粒徑分組)混合后放置于圓形漏斗狀水槽中,開泵使固液兩相流循環(huán)流動(dòng)運(yùn)行2~3小時(shí),取出貼片清洗干燥后再次稱重,計(jì)算金屬貼片的沖蝕速率和失重率。根據(jù)石英砂粒徑將試驗(yàn)分為四組,另外一組為對(duì)照試驗(yàn)組。主要試驗(yàn)參數(shù)見表1。表中目數(shù)即篩分粒度,表示顆??梢酝ㄟ^篩網(wǎng)的篩孔尺寸,以寬25.4mm篩網(wǎng)內(nèi)的篩孔數(shù)表示。循環(huán)管路內(nèi)徑為2.5mm。

    In what follows, we will handle the integral term in the above equation, which is difficult to be written in a linear matrix inequality.Employing the representation

    and the Jensen’s inequality, we arrive at

    whereψ=col[x(t)-x(t-τ(t)),x(t-τ(t))-x(t-T)], and Ω given in Theorem 1.Then, settinghˉ=[x(t),x(t-τ(t)),x(t-T),e(skn),w(t)], one has

    It follows from (17) that:

    Subsequently, multiplying both side of (18) withe-2αt, we arrive at

    Integrating both side of (19) from ξktot, one can have that for ?t∈[ξk,ξk+1),

    In what follows, we are ready to consider the impulsive effects.Whent=ξk, in view of (12), one has

    For the convenience, denote the impulsive instants as ξ1, ξ2,..., ξl, and define the symbol Fl=σ(λr(ξ1),...,λr(ξl)),?l∈Z.Note that the {λl}l∈Γare independent of each other.Hence, according to (21), we can derive that

    Then, combining (20) and (22) implies that

    where ?i=E{λr(ξi)}.Recalling Definition 2, one obtains

    Bearing in mind the boundedness of noises (i.e.,//w(t)//[0,+∞)≤?), we obtain that

    On the other hand, noticing that

    for some scalar κ >0, one has

    Substituting (25) and (26) into (24) derives that

    Denote

    and

    It is not difficult to find that the requirement of Definition 1 is satisfied.■

    In what follows, we will investigate the iISS issue for the considered system.

    Theorem 2: Under Assumption 1, for given constantsα>0 andT>0 , if there exist positive constants ? ,θandβ ∈[2α,∞), positive-definite matricesP,SandS1, and matrixGsuch that conditions (8)–(10) are satisfied.Then, by controller (6),the addressed system (7) is stabilized to iISS.

    Proof: We start by recalling (24) that

    Considering the Lyapunov functional, one derives

    Subsequently, it follows from (28) and (29) that:

    According to the initial condition, it is not difficult to find that

    Therefore, we can claim that the addressed system (7) is stabilized to iISS.■

    Remark 3: For ?i∈Γ, if the expectation of the impulsive intensity 0 1,then thei-th kind of stochastic impulse is a destabilizing one.It should be pointed out that the discussed system could not be stable if the number of stochastic impulses that occur with intensity 0

    Remark 4: Compared with the existing results involving ISS problems of impulsive systems, our results exhibit the following distinguishing features: 1) The addressed dynamic eventtriggered-based ISS problem is new and represents one of the first few attempts to deal with impulsive systems subject to bounded noises; 2) The proposed DETM only depends on the sampled output, and hence eliminates the impulsive effects on the triggering rule; and 3) The Lyapunov functional and some properties of stochastic processes are utilized to study the addressed problem.

    Remark 5: In order to analyze the effects of communication protocols on system performance, a dynamic parameterη(t)has been added in the Lyapunov functional.However, the parameter η(t) brings difficulties to the derivation of sufficient conditions of ISS performance.In addition, the DETM also brings effects on solving the desired controller gains since the parameters Ψ andβshould be considered.

    B. Controller Gain Design

    In the preceding discussions, a series of sufficient conditions have been got to guarantee the ISS and iISS performance of systems with random impulses.Based on the above sufficient conditions, we are now ready to set up sufficient conditions to calculate the controller gain, which is important for practical application.

    For the convenience of presentation, we define the following matrices:

    withX=P-1.

    Theorem 3: Under Assumption 1, for given positive constantsα,T, ? ,θand β ∈[2α,+∞), if there exist positive-definite matricesX,S? ,S?1and Ψ? , and matrixG? such that,

    where

    Then, by controller (6), the addressed system (7) is stabilized to ISS (iISS).Furthermore, the controller gain matrix is given byK=YX-1.

    Proof: DefineJ=diag{X,X,X,X,I,S-11}.Then, multiplying both sides of (10) byJand its transpose, we derive that

    which guarantees Φ <0.It is noticed that -is a nonlinear term and the above matrix inequality can not be directly solved by the MATLAB linear matrix inequality (LMI) toolbox.As such, we need to transform this nonlinear term into a one that is linear.Consider the following inequality:

    Then, it follows from (36) that:

    It is obvious that nonlinear termcan be replaced by linear termin (34).And, the expected controller gainKcould be obtained by resorting to the solutions of the linear matrix inequalities (32)–(34).■

    IV.CASE STUDY

    In this section, the effectiveness and availability of the established control strategy will be verified by a simulation example.Consider an impulsive dynamic with the following parameters:

    The bounded noise is chosen as

    Let the stochastic strength μ1satisfy the uniform distributionU(-0.4,0.6) and μ2obey the distribution given in Table I.Then, we obtain that ?1=1.21 and ?2=1.047.

    PROBABILITYT DAIBSTLREIB IU TIONS OF μ2

    According to Theorem 1, the impulsive interval satisfies

    In this simulation, we denote T1=0.8, T2=0.8,T=0.1,and α=1.566.Subsequently, by resorting to the solutions of the linear matrix inequalities (33) and (34), the DETM-based controller gainKis obtained as

    For the purpose of simulation, the initial conditions and event-triggered parameters are chosen asx(t0)=[-0.1,0.5,-0.1], ?=0.1, θ=1 and η(t0)=1.Moreover, the simulation results are presented in Figs.1–5.The state trajectories of the open-loop system are depicted in Fig.1, and obviously are apparently unstable.After implementing the proposed control strategy, the state trajectories of the closed-loop system are plotted in Fig.2, which clearly shows the feasibility of the proposed method.The event-triggered instants and the evolution of η (t) can be seen in Fig.3.

    Fig.1.State trajectories of the open-loop system.

    Fig.2.State trajectories of the closed-loop system under DETM.

    In order to examine the advantage of the DETM, we shall provide a simulation comparison between DETM and SETM.Fig.4 plots the evolution of the close-loop system under SETM with controller gain

    Moreover, the initial states are chosen asx(t0)=[-0.1,0.5,-0.1].In Fig.5, we can conclude that the triggering rate of DETM is much lower than one of SETM.In fact, the triggering numbers of DETM and SETM are 98 and 129, respectively.On the other hand, by comparing Fig.2 with Fig.4, we find that the states of SETM can more quickly achieve bounded stability.

    Fig.3.The trajectory of η(t) and event-triggered instants.

    Fig.4.State trajectories of the closed-loop system under SETM.

    Fig.5.Event-triggered instants of DETM and SETM.

    V.CONCLUSIONS

    In this paper, the ISS and iISS analysis problems have been investigated for a class of networked systems subject to random impulses.The DETM has been adopted to relieve communication cost and improve communication resource utilization.By resorting to the sampling mechanism, the effects of impulses on the event-triggered scheme can be overcome.Then, with the help of stochastic analysis, a series of sufficient conditions have been derived to ensure the corresponding ISS and iISS performance.Subsequently, the explicit expression of desired controller gain has been also received by resorting to the solutions of linear matrix inequalities.Finally,the feasibility and validity of the proposed control approach have been verified by a simulation example.One of the future research topics is to extend our results to distributed impulsive systems under event-triggered-based sliding mode control schemes [42]–[45].

    猜你喜歡
    目數(shù)篩孔篩網(wǎng)
    潘集選煤廠弧形篩篩孔尺寸的改進(jìn)研究
    基于多元線性回歸法的瀝青路面性能影響因素
    延長(zhǎng)干式球磨機(jī)外篩網(wǎng)使用壽命的方法
    不同孔形下豆類透篩效果對(duì)比及圓筒篩優(yōu)化
    膠粉目數(shù)對(duì)膠粉改性瀝青流變性能的影響研究
    決明子保健袋茶的研制
    不銹鋼拉絲在軌道行業(yè)的應(yīng)用
    河南科技(2016年3期)2016-07-21 08:59:44
    圖拉法篩網(wǎng)自動(dòng)往復(fù)沖洗裝置
    篩孔型房間隔缺損的超聲心動(dòng)圖特征
    水力篩網(wǎng)多重分沙裝置在頭屯河上的應(yīng)用
    国产一区二区三区在线臀色熟女| 国产精品女同一区二区软件 | 国产在线精品亚洲第一网站| 人妻久久中文字幕网| 欧美日韩亚洲国产一区二区在线观看| 最新在线观看一区二区三区| 可以在线观看的亚洲视频| 无限看片的www在线观看| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 亚洲avbb在线观看| 亚洲欧美精品综合久久99| 欧美丝袜亚洲另类 | 最近最新免费中文字幕在线| 欧美成人性av电影在线观看| 国产黄色小视频在线观看| 日本免费a在线| 最近视频中文字幕2019在线8| 波多野结衣高清作品| 国产欧美日韩一区二区三| 久久天堂一区二区三区四区| 宅男免费午夜| 波多野结衣高清作品| 九色成人免费人妻av| 深夜精品福利| 亚洲熟妇中文字幕五十中出| 国产精品一区二区三区四区久久| 亚洲精品粉嫩美女一区| 99在线人妻在线中文字幕| 哪里可以看免费的av片| 亚洲熟妇熟女久久| 老汉色av国产亚洲站长工具| 变态另类丝袜制服| 成年女人永久免费观看视频| 国产成人福利小说| 哪里可以看免费的av片| 床上黄色一级片| 国产精品爽爽va在线观看网站| 免费观看人在逋| 免费观看人在逋| 国模一区二区三区四区视频 | 亚洲va日本ⅴa欧美va伊人久久| 一二三四在线观看免费中文在| 亚洲人成网站在线播放欧美日韩| 国产精品综合久久久久久久免费| 欧美+亚洲+日韩+国产| 亚洲成人中文字幕在线播放| 亚洲 欧美 日韩 在线 免费| 日本免费一区二区三区高清不卡| 国产三级在线视频| 18禁黄网站禁片免费观看直播| 黄色女人牲交| 亚洲熟妇中文字幕五十中出| 舔av片在线| 亚洲五月婷婷丁香| 熟女人妻精品中文字幕| 狂野欧美白嫩少妇大欣赏| 精品午夜福利视频在线观看一区| 亚洲天堂国产精品一区在线| 久久久久久久久免费视频了| 麻豆一二三区av精品| 欧美绝顶高潮抽搐喷水| 757午夜福利合集在线观看| av福利片在线观看| 18禁观看日本| 欧美又色又爽又黄视频| 亚洲欧美日韩无卡精品| 欧美av亚洲av综合av国产av| 国产一区在线观看成人免费| 久久精品夜夜夜夜夜久久蜜豆| 久久婷婷人人爽人人干人人爱| 99精品欧美一区二区三区四区| 欧美黑人欧美精品刺激| 久久久久久国产a免费观看| 国产精品女同一区二区软件 | 久久中文字幕一级| 搡老妇女老女人老熟妇| cao死你这个sao货| 毛片女人毛片| 一级作爱视频免费观看| 久久精品国产99精品国产亚洲性色| 成人18禁在线播放| 国产av一区在线观看免费| 国产精品电影一区二区三区| 色综合婷婷激情| 亚洲色图av天堂| 色哟哟哟哟哟哟| 女人高潮潮喷娇喘18禁视频| 一区福利在线观看| 五月玫瑰六月丁香| 久久中文字幕人妻熟女| 99国产精品一区二区蜜桃av| 久久久久国内视频| 禁无遮挡网站| 在线观看日韩欧美| 成人av在线播放网站| 97超级碰碰碰精品色视频在线观看| 午夜福利成人在线免费观看| 亚洲男人的天堂狠狠| 看免费av毛片| 无限看片的www在线观看| 麻豆成人av在线观看| 99视频精品全部免费 在线 | 日韩高清综合在线| 非洲黑人性xxxx精品又粗又长| 高清在线国产一区| 一本综合久久免费| 免费无遮挡裸体视频| 每晚都被弄得嗷嗷叫到高潮| 国内揄拍国产精品人妻在线| 岛国视频午夜一区免费看| 狠狠狠狠99中文字幕| 亚洲国产色片| 国产v大片淫在线免费观看| 最近最新中文字幕大全电影3| 国产成人av激情在线播放| 国产亚洲精品av在线| 精品不卡国产一区二区三区| av中文乱码字幕在线| 色综合亚洲欧美另类图片| 天堂√8在线中文| 午夜亚洲福利在线播放| 给我免费播放毛片高清在线观看| 久9热在线精品视频| 国产亚洲欧美98| 亚洲男人的天堂狠狠| 免费在线观看日本一区| 又黄又爽又免费观看的视频| 日韩中文字幕欧美一区二区| 久久人人精品亚洲av| 丰满人妻一区二区三区视频av | 男人舔奶头视频| 久久精品国产亚洲av香蕉五月| 国产精品日韩av在线免费观看| 欧美在线一区亚洲| 一级作爱视频免费观看| 国产视频内射| 91老司机精品| 99国产精品一区二区三区| 日本黄色视频三级网站网址| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av | 免费看a级黄色片| 久久这里只有精品中国| 国产精品一区二区三区四区久久| 久久久久久久精品吃奶| 欧美日韩福利视频一区二区| 国产久久久一区二区三区| 一级毛片高清免费大全| 小说图片视频综合网站| 欧美不卡视频在线免费观看| 久久精品91蜜桃| 人人妻人人澡欧美一区二区| 国产精品,欧美在线| 51午夜福利影视在线观看| 好男人在线观看高清免费视频| 成年女人毛片免费观看观看9| 99热精品在线国产| 婷婷精品国产亚洲av| 97碰自拍视频| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av| av女优亚洲男人天堂 | 日本五十路高清| 美女高潮喷水抽搐中文字幕| 搡老妇女老女人老熟妇| 色播亚洲综合网| 99在线视频只有这里精品首页| 亚洲欧美精品综合久久99| 一级毛片精品| 在线十欧美十亚洲十日本专区| 国产精品久久久久久亚洲av鲁大| 国产成年人精品一区二区| 国产高清有码在线观看视频| 国产麻豆成人av免费视频| 观看免费一级毛片| 亚洲国产精品合色在线| 人人妻,人人澡人人爽秒播| 深夜精品福利| 中亚洲国语对白在线视频| 久久草成人影院| 成人欧美大片| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 99精品在免费线老司机午夜| 黄色成人免费大全| 亚洲真实伦在线观看| 亚洲精品美女久久av网站| 99久久无色码亚洲精品果冻| 午夜福利成人在线免费观看| 国产午夜精品论理片| 亚洲美女黄片视频| 麻豆国产97在线/欧美| 成人特级av手机在线观看| 美女cb高潮喷水在线观看 | 日韩精品中文字幕看吧| 日本五十路高清| 国产欧美日韩精品亚洲av| 免费看十八禁软件| 亚洲avbb在线观看| 亚洲国产欧美网| 国产一区二区三区视频了| 男人舔女人下体高潮全视频| 黄色视频,在线免费观看| 这个男人来自地球电影免费观看| 国产精品亚洲av一区麻豆| 亚洲av片天天在线观看| 12—13女人毛片做爰片一| 久久中文看片网| 色精品久久人妻99蜜桃| 99久国产av精品| 亚洲中文日韩欧美视频| 日本黄色视频三级网站网址| 一级a爱片免费观看的视频| 美女高潮喷水抽搐中文字幕| 丝袜人妻中文字幕| 99国产精品99久久久久| 国产精品久久久久久久电影 | 99re在线观看精品视频| 哪里可以看免费的av片| 毛片女人毛片| 在线播放国产精品三级| 天天一区二区日本电影三级| 精品电影一区二区在线| 天堂动漫精品| 午夜福利视频1000在线观看| 国产v大片淫在线免费观看| 亚洲成av人片在线播放无| 午夜福利高清视频| 亚洲国产欧洲综合997久久,| 久久久久国内视频| 亚洲国产中文字幕在线视频| 成人一区二区视频在线观看| 国产亚洲精品久久久久久毛片| 国产精品久久久av美女十八| 中文字幕熟女人妻在线| 精品欧美国产一区二区三| e午夜精品久久久久久久| 99久久精品一区二区三区| av在线蜜桃| 国产精品,欧美在线| 日日干狠狠操夜夜爽| 日本黄色片子视频| 欧美最黄视频在线播放免费| 亚洲熟女毛片儿| 久久99热这里只有精品18| 性色av乱码一区二区三区2| 亚洲成人久久爱视频| 国产又黄又爽又无遮挡在线| 在线a可以看的网站| 久久人人精品亚洲av| 国产三级黄色录像| 欧美日韩一级在线毛片| 亚洲人成网站高清观看| 国产精品亚洲一级av第二区| 这个男人来自地球电影免费观看| 国产精品久久久人人做人人爽| 九九热线精品视视频播放| 午夜精品在线福利| 久久久久精品国产欧美久久久| 亚洲色图av天堂| www日本黄色视频网| av在线天堂中文字幕| 午夜免费激情av| 亚洲第一欧美日韩一区二区三区| 亚洲av中文字字幕乱码综合| 12—13女人毛片做爰片一| 免费电影在线观看免费观看| 成人午夜高清在线视频| 狂野欧美激情性xxxx| 99国产精品一区二区三区| www.自偷自拍.com| 亚洲九九香蕉| 少妇的丰满在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 免费观看人在逋| 成人鲁丝片一二三区免费| 不卡av一区二区三区| 男人舔女人下体高潮全视频| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 曰老女人黄片| 亚洲精品一区av在线观看| 露出奶头的视频| 欧美丝袜亚洲另类 | 99国产精品一区二区三区| 国产成人系列免费观看| 日本免费a在线| 国产日本99.免费观看| 成人精品一区二区免费| 日韩欧美国产一区二区入口| 亚洲精品国产精品久久久不卡| 一本一本综合久久| 天堂av国产一区二区熟女人妻| 久久精品91蜜桃| 亚洲av美国av| 无人区码免费观看不卡| 成人欧美大片| 日本五十路高清| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 在线观看66精品国产| 国产91精品成人一区二区三区| 母亲3免费完整高清在线观看| 人妻久久中文字幕网| av天堂中文字幕网| 国产av不卡久久| 香蕉国产在线看| 麻豆一二三区av精品| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 亚洲欧洲精品一区二区精品久久久| 婷婷精品国产亚洲av| 99精品欧美一区二区三区四区| 久久久国产成人免费| 91在线观看av| 午夜影院日韩av| 亚洲七黄色美女视频| 亚洲av电影不卡..在线观看| 欧美日韩精品网址| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 免费观看精品视频网站| 日韩精品青青久久久久久| 免费观看人在逋| 亚洲精品乱码久久久v下载方式 | 老司机在亚洲福利影院| 男女做爰动态图高潮gif福利片| 日本 欧美在线| 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 久久中文字幕一级| 欧美极品一区二区三区四区| 在线a可以看的网站| 日韩三级视频一区二区三区| av片东京热男人的天堂| 国产伦一二天堂av在线观看| 国产99白浆流出| 欧美性猛交黑人性爽| 国产精品亚洲av一区麻豆| 一本综合久久免费| 国产精品久久久人人做人人爽| 午夜福利视频1000在线观看| 亚洲一区二区三区不卡视频| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看| 国产真人三级小视频在线观看| 性色avwww在线观看| 日日夜夜操网爽| 99国产极品粉嫩在线观看| av在线天堂中文字幕| 国产精品久久电影中文字幕| 天天一区二区日本电影三级| 一进一出好大好爽视频| tocl精华| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 中文字幕人成人乱码亚洲影| 欧美黑人巨大hd| 国产激情欧美一区二区| 久久国产乱子伦精品免费另类| 久久精品91无色码中文字幕| 精品一区二区三区av网在线观看| 免费在线观看影片大全网站| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 久99久视频精品免费| 久久久久免费精品人妻一区二区| 美女大奶头视频| a在线观看视频网站| 在线观看舔阴道视频| 欧美午夜高清在线| 久久久久性生活片| 黑人巨大精品欧美一区二区mp4| 老汉色av国产亚洲站长工具| 99久久综合精品五月天人人| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 精品无人区乱码1区二区| 久久精品91蜜桃| 亚洲av熟女| 精品久久久久久久人妻蜜臀av| 一a级毛片在线观看| 精品无人区乱码1区二区| 中文字幕久久专区| 悠悠久久av| 18禁美女被吸乳视频| 色综合婷婷激情| 国产精品,欧美在线| 少妇的丰满在线观看| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 免费观看的影片在线观看| 国产伦在线观看视频一区| 亚洲av美国av| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 国产成人精品无人区| 人妻丰满熟妇av一区二区三区| 97碰自拍视频| 欧美在线一区亚洲| 国产欧美日韩精品一区二区| 久久99热这里只有精品18| 欧美日韩一级在线毛片| av福利片在线观看| 久久香蕉国产精品| 国产69精品久久久久777片 | 成人午夜高清在线视频| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 国产69精品久久久久777片 | tocl精华| 岛国在线观看网站| 国产一区二区激情短视频| www国产在线视频色| 国产三级中文精品| 久久九九热精品免费| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 中文字幕最新亚洲高清| 亚洲成人精品中文字幕电影| 亚洲成av人片免费观看| 99国产精品一区二区三区| 亚洲精品国产精品久久久不卡| 级片在线观看| 国产男靠女视频免费网站| 国产亚洲av嫩草精品影院| 亚洲欧美日韩东京热| 欧美黄色片欧美黄色片| 欧美性猛交黑人性爽| 久久热在线av| 一区福利在线观看| 亚洲成a人片在线一区二区| 身体一侧抽搐| 亚洲精华国产精华精| 亚洲专区字幕在线| 亚洲精品美女久久av网站| 天堂影院成人在线观看| 国产精品香港三级国产av潘金莲| 美女 人体艺术 gogo| 不卡一级毛片| 国模一区二区三区四区视频 | 听说在线观看完整版免费高清| 免费观看精品视频网站| 国产三级在线视频| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 制服丝袜大香蕉在线| 成人精品一区二区免费| 久久久成人免费电影| 国产淫片久久久久久久久 | netflix在线观看网站| 久久亚洲精品不卡| 日韩高清综合在线| 看免费av毛片| 亚洲精品在线观看二区| 99国产综合亚洲精品| 淫秽高清视频在线观看| 在线观看免费午夜福利视频| 国产1区2区3区精品| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 国产真实乱freesex| 美女扒开内裤让男人捅视频| 一级毛片精品| 欧美日韩瑟瑟在线播放| 精品不卡国产一区二区三区| 国产亚洲av高清不卡| 一二三四在线观看免费中文在| 国产精品影院久久| 88av欧美| 亚洲国产欧美一区二区综合| 亚洲av片天天在线观看| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| www.999成人在线观看| 欧美大码av| 亚洲激情在线av| 日本在线视频免费播放| 精品久久久久久,| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 亚洲专区国产一区二区| 听说在线观看完整版免费高清| 国产探花在线观看一区二区| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 精华霜和精华液先用哪个| 性欧美人与动物交配| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 国产精品久久久久久久电影 | 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 欧美黑人欧美精品刺激| 中文在线观看免费www的网站| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 国产99白浆流出| 久久久久国内视频| 在线a可以看的网站| 最近最新免费中文字幕在线| 亚洲色图av天堂| 日韩av在线大香蕉| 国产精品99久久久久久久久| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 一本综合久久免费| 99热只有精品国产| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片| 久久久久国产一级毛片高清牌| 在线视频色国产色| 国产成人一区二区三区免费视频网站| 免费在线观看影片大全网站| 欧美色视频一区免费| 身体一侧抽搐| 1024手机看黄色片| 1000部很黄的大片| 国产欧美日韩一区二区精品| 动漫黄色视频在线观看| 这个男人来自地球电影免费观看| 一本综合久久免费| 51午夜福利影视在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲性夜色夜夜综合| 精品久久久久久久人妻蜜臀av| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 亚洲18禁久久av| 99精品在免费线老司机午夜| 99在线人妻在线中文字幕| 成人欧美大片| 欧美性猛交黑人性爽| 9191精品国产免费久久| 国产三级黄色录像| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品av在线| 欧美性猛交╳xxx乱大交人| 一本综合久久免费| 18禁美女被吸乳视频| 色老头精品视频在线观看| 老鸭窝网址在线观看| 久久国产精品影院| www.www免费av| 夜夜看夜夜爽夜夜摸| 亚洲五月婷婷丁香| 欧美日韩黄片免| 久9热在线精品视频| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 少妇人妻一区二区三区视频| 熟女电影av网| 亚洲五月婷婷丁香| 国产高潮美女av| 国内精品久久久久久久电影| 久久人人精品亚洲av| 狂野欧美激情性xxxx| 久久久成人免费电影| 免费观看精品视频网站| or卡值多少钱| 免费看光身美女| 精品久久久久久久末码| 成年女人看的毛片在线观看| 亚洲人成电影免费在线| 2021天堂中文幕一二区在线观| 国产v大片淫在线免费观看| 黄色女人牲交| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 超碰成人久久| 色播亚洲综合网| 欧美日韩黄片免| 午夜激情福利司机影院| 亚洲国产精品999在线| 老司机福利观看| 丰满的人妻完整版| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 真人做人爱边吃奶动态| 嫩草影院精品99| 亚洲欧美日韩东京热| 麻豆av在线久日| 黄色 视频免费看| 国内精品久久久久久久电影| 国产一区二区在线观看日韩 | 美女免费视频网站| 日韩欧美在线二视频| 亚洲av美国av| 精品久久久久久久人妻蜜臀av| 我要搜黄色片| 国产精品99久久99久久久不卡| 一本久久中文字幕| 97碰自拍视频|