• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Event-Triggered Control of Continuous-Time Systems With Random Impulses

    2023-12-22 11:06:36MengYaoandGuoliangWei
    IEEE/CAA Journal of Automatica Sinica 2023年12期
    關(guān)鍵詞:目數(shù)篩孔篩網(wǎng)

    Meng Yao and Guoliang Wei

    Abstract—In this paper, the networked control problem under event-triggered schemes is considered for a class of continuoustime linear systems with random impulses.In order to save communication costs and lighten communication burden, a dynamic event-triggered scheme whose threshold parameter is dynamically adjusted by a given evolutionary rule, is employed to manage the transmission of data packets.Moreover, the evolution of the threshold parameter only depends on the sampled measurement output, and hence eliminates the influence of impulsive signals on the event-triggered mechanism.Then, with the help of a stochastic analysis method and Lyapunov theory, the existence conditions of desired controller gains are received to guarantee the corresponding input-to-state stability of the addressed system.Furthermore, according to the semi-definite programming property, the desired controller gains are calculated by resorting to the solution of three linear matrix inequalities.In the end, the feasibility and validity of the developed control strategy are verified by a simulation example.

    I.INTRODUCTION

    OVER the past few years, impulsive systems have received increasing attention, mainly because they have the capability of characterizing dynamical behavior, which could be interrupted by instantaneous state jumps.Such systems have a wide range of applications in chaotic secure communication[1], robotics [2], automatic braking [3], aerospace [4], etc.Generally, they consist of three parts: the continuous-time evolution between the impulsive instants, the discrete-time impulsive dynamics, and the sequence set of strictly increasing impulsive instants [5], [6].Up until now, plenty of results have been reported on such systems (see [7]–[12] and references therein).For example, sufficient conditions have been developed in [7] to ensure the exponential stability of nonlinear impulsive systems.Meanwhile, the corresponding filtering problem has been investigated in [8]–[12] for discretetime linear systems with impulsive effects.

    The concept of input-to-state stability (ISS) is originally introduced by Sontag [13] to describe the influence of external inputs on practical engineering systems.The ISS property implies that the system is exponentially stable for the disturbance-free case and bounded stable under bounded inputs.Moreover, such a property is also helpful in the robustness analysis and controller design [14], [15].It is worth mentioning that integral input-to-state stability (iISS) is a weaker concept and can be regarded as a natural extension of ISS.

    In recent years, the ISS property is one of the hottest topics in the control community due to its powerful capabilities and wide applications in characterizing the effects of exogenous disturbances on systems.As a result, a large number of meaningful results have been reported to cope with the problems of ISS for engineering systems under external noises, e.g.,[16]–[19].Among them, ISS problems of impulsive systems have also derived considerable results.For instance, the ISS property of impulsive systems was first investigated in [20]with the help of the average impulsive interval approach.By resorting to the comparison principle, sufficient conditions have been developed in [21] to ensure the ISS of impulsive stochastic systems.Recently, the corresponding results on ISS have been applied to nonlinear systems with delayed impulses[22].In this paper, different from the aforementioned results,we focus on the ISS issue of networked control systems with random impulses.

    Another research topic is to study the networked control problem of impulsive systems under the communication protocol.With the digital revolution of communication technologies, a large number of engineering systems employ networks to contact the system components instead of traditional pointto-point connection [23]–[28].Such a special form has led to the merits of easy maintenance, remote control, and high expansibility.However, it also results in unexpected phenomena, such as network-induced time-delays and malicious attacks.Moreover, because of limited network bandwidth, network jamming would occur which, if not well handled, could degrade system performance [29]–[33].Hence, it is necessary to utilize communication protocols to manage data transmission with the purpose of reducing network congestion.

    As we all know, compared with the time-driven scheme, the event-triggered mechanism (ETM) can effectively improve the utilization of network resources in networked systems and guarantees certain system performance.Under the ETM, the sampled data will not be transmitted through the communication network unless the triggered condition is satisfied[34]–[36].According to different triggered conditions, the most existing ETMs will be roughly divided into two categories: the static case and the dynamic case.The triggering rule of the static event-triggered mechanism (SETM) is predefined and fixed.Nevertheless, the dynamic event-triggered mechanism (DETM) adopts a dynamically adjustable parameter for the triggering rule.Moreover, DETM could economize more network resources and improve the efficiency of data transmission.To this day, there are plenty of significant articles that have been reported on systems under ETMs (see[37]–[40] and references therein).However, for the continuous-time systems with random impulses, the networked control issue under DETM has been neglected mainly due to the difficulties in establishing suitable triggering rules for such a kind of system.

    Motivated by the above discussions, in this paper, we aim to design the DETM-based controller such that the continuoustime systems subject to random impulses and bounded noises can achieve ISS.The investigated topic presents significant challenges, including but not limited to: 1) How to set up a suitable mathematical model to describe the dynamic behavior of the impulsive system under DETM? 2) How to establish appropriate mathematical methods to analyze ISS of such impulsive systems? 3) How to design the expected controller gain to efficiently handle the bounded noises and random impulsive signals?

    In this paper, our objective is to conquer the above challenges, where the primary contributions can be seen in the next three aspects: 1) A DETM-based control algorithm is provided for impulsive systems subject to random impulsive signals.By resorting to the artificial time-delayed approach,the addressed system can be viewed as an impulsive timedelayed one; 2) With the help of stochastic analysis approaches and the developed Lyapunov-Krasovskii functional, sufficient conditions are obtained to ensure the ISS property; and 3) According to the acquired sufficient conditions, the expected controller gain is calculated by employing the semidefinite programming approach.

    The rest of this paper is constructed as follows.Section II formulates the DETM-based networked control problem of continuous-time systems under random impulses.The ISS problem of the impulsive system under random impulses and DETM are detailed in Section III.The case study is presented in Section IV to verify the feasibility and validity of the proposed control strategy, followed by the conclusion in Section V.

    Notations: Throughout this paper, E{·} denotes the mathematical expectation.N represents the positive integer set.The diag{···} represents a block-diagonal matrix.Let K be a class of continuous strictly increasing functionsf:R+→R+withf(0)=0.Moreover,fis said to be a K∞-function if it belongs to K-function and satisfiesf(s)→∞ ass→∞.A functiong:R+×R+→R+isaKL-function if,foreachfixedt∈R+,g(·,t) is a K-function,andforeachfixeds∈R+,g(s,·)is decreasing andg(s,t)→0 ast→∞.

    II.PROBLEM FORMULATION

    A. System Description

    In this paper, the considered impulsive system is presented as follows:

    Assumption 1: There are several different kinds of stochastic impulsive sequences, whose strength takes values from the set Γ ={μi,i=1,2,...,δ} with m axi∈Γ{E{μi}}<∞.

    In this paper, the system states are sampled at instants{sh,h∈N} , and the sampling instants satisfysh+1-sh=TwithT>0is the constant sampling period.

    B. DETM

    In the following, we shall introduce the DETM.Before further proceeding, denoteskn=tk+nT(n=1,2,...,tk+1-1),wheretkis the triggered instant.Then, the dynamic event-triggered scheme is shown as follows:

    with the initial condition η (t)=η0>0 and β >0.

    Note that the above mentioned triggered condition (2) can be translated into

    Whenθgoes to +∞, we can obtain 1 /θ=0, which implies that SETM is a special form of the DETM.

    In what follows, according to the artificial time-delayed approach, the event-triggered impulsive system will be reformulated as an impulsive system with time-delay.Under this setting, we can directly analyze its networked control problem under the DETM.

    For the convenience of narration, we denote H =[tk,tk+1] as the interval between two triggered instants.Then, it could be divided as

    From the above discussions, the actual input of the addressed system is

    According to (6), a dynamic of networked system under both the DETM and random impulses is derived as follows:

    For the system (7), the initial value ofx(t) is supplemented asx(t)=?(t),t∈[-T,0], where ?(t) is the initial condition ofx(t).

    For further discussions, the definitions of ISS and average impulsive interval are given as follows.

    Definition 1: The closed-loop system (7) is said to be stabilized to

    1) ISS by controller (6), if there exist functions κ ∈KL and χ ∈K∞such that

    2) iISS by controller (6), if there exist functions κ ∈KL and χ ∈K∞such that

    Definition 2[41]: LetNi(t,s) be the number of thei-th impulsive signals.If

    where Ti>0 andN0≥0, then TiandN0are respectively named the average impulsive interval and the elasticity number.

    Our main objective is to develop a DETM-based controller for the closed-loop system (7) with the triggering rule (2) such that the addressed system subject tow(t) is ISS and iISS.

    Remark 1: The parameter η(t) in the DETM is positive under the condition θ ≥(eβh-1).The explicit solution of (3)is shown as

    Considering the DETM (2) derives

    Then, we get that, for allt∈[skn,skn+1),

    Remark 2: Compared with the widely adopted SETM, the DETM is capable of further reducing the communication cost and lowering the update frequency of controllers.The main difference lies in the triggering rule.Specifically, compared with SETM with the fixed parameters, there is a dynamical parameter in the DETM, which plays an important role in excluding the Zeno behavior.Under this kind of communication protocol, the challenges are summarized as follows: 1)How to analyze the effect of the DETM on impulsive systems? 2) How to establish a unified design framework taking both the control scheme and the DETM into consideration? 3)How to develop a suitable DETM to adapt to the evolution of addressed systems?

    III.MAIN RESULTS

    In this section, we consider the ISS and iISS problems of networked impulsive systems under the DETM.The impulses are assumed to have stochastic impulsive strengths.First, sufficient conditions will be presented to ensure the ISS and iISS of the addressed system.Subsequently, the controller gains are obtained based on these developed sufficient conditions as well as semi-definite programming approaches.

    A. ISS and iISS Analysis of Networked Impulsive Systems

    In what follows, we shall introduce two conditions to check that the addressed system (7) can achieve ISS or iISS.

    Theorem 1: Under Assumption 1, for given constantsα>0 andT>0 , if there exist positive constants ?,θ, and β ∈[2α,∞), positive-definite matricesP,SandS1, and matrixGsuch that

    where

    Then, by controller (6), the addressed system (7) is stabilized to ISS.

    Proof: First of all, choose a Lyapunov functionalV(t) with the following form:

    where

    The infinite-dimensional operator L of Lyapunov functionV(t)is represented as

    DifferentiatingV(t) along the system (7), we have

    將自來水+普通石英砂5%(按粒徑分組)混合后放置于圓形漏斗狀水槽中,開泵使固液兩相流循環(huán)流動(dòng)運(yùn)行2~3小時(shí),取出貼片清洗干燥后再次稱重,計(jì)算金屬貼片的沖蝕速率和失重率。根據(jù)石英砂粒徑將試驗(yàn)分為四組,另外一組為對(duì)照試驗(yàn)組。主要試驗(yàn)參數(shù)見表1。表中目數(shù)即篩分粒度,表示顆??梢酝ㄟ^篩網(wǎng)的篩孔尺寸,以寬25.4mm篩網(wǎng)內(nèi)的篩孔數(shù)表示。循環(huán)管路內(nèi)徑為2.5mm。

    In what follows, we will handle the integral term in the above equation, which is difficult to be written in a linear matrix inequality.Employing the representation

    and the Jensen’s inequality, we arrive at

    whereψ=col[x(t)-x(t-τ(t)),x(t-τ(t))-x(t-T)], and Ω given in Theorem 1.Then, settinghˉ=[x(t),x(t-τ(t)),x(t-T),e(skn),w(t)], one has

    It follows from (17) that:

    Subsequently, multiplying both side of (18) withe-2αt, we arrive at

    Integrating both side of (19) from ξktot, one can have that for ?t∈[ξk,ξk+1),

    In what follows, we are ready to consider the impulsive effects.Whent=ξk, in view of (12), one has

    For the convenience, denote the impulsive instants as ξ1, ξ2,..., ξl, and define the symbol Fl=σ(λr(ξ1),...,λr(ξl)),?l∈Z.Note that the {λl}l∈Γare independent of each other.Hence, according to (21), we can derive that

    Then, combining (20) and (22) implies that

    where ?i=E{λr(ξi)}.Recalling Definition 2, one obtains

    Bearing in mind the boundedness of noises (i.e.,//w(t)//[0,+∞)≤?), we obtain that

    On the other hand, noticing that

    for some scalar κ >0, one has

    Substituting (25) and (26) into (24) derives that

    Denote

    and

    It is not difficult to find that the requirement of Definition 1 is satisfied.■

    In what follows, we will investigate the iISS issue for the considered system.

    Theorem 2: Under Assumption 1, for given constantsα>0 andT>0 , if there exist positive constants ? ,θandβ ∈[2α,∞), positive-definite matricesP,SandS1, and matrixGsuch that conditions (8)–(10) are satisfied.Then, by controller (6),the addressed system (7) is stabilized to iISS.

    Proof: We start by recalling (24) that

    Considering the Lyapunov functional, one derives

    Subsequently, it follows from (28) and (29) that:

    According to the initial condition, it is not difficult to find that

    Therefore, we can claim that the addressed system (7) is stabilized to iISS.■

    Remark 3: For ?i∈Γ, if the expectation of the impulsive intensity 0 1,then thei-th kind of stochastic impulse is a destabilizing one.It should be pointed out that the discussed system could not be stable if the number of stochastic impulses that occur with intensity 0

    Remark 4: Compared with the existing results involving ISS problems of impulsive systems, our results exhibit the following distinguishing features: 1) The addressed dynamic eventtriggered-based ISS problem is new and represents one of the first few attempts to deal with impulsive systems subject to bounded noises; 2) The proposed DETM only depends on the sampled output, and hence eliminates the impulsive effects on the triggering rule; and 3) The Lyapunov functional and some properties of stochastic processes are utilized to study the addressed problem.

    Remark 5: In order to analyze the effects of communication protocols on system performance, a dynamic parameterη(t)has been added in the Lyapunov functional.However, the parameter η(t) brings difficulties to the derivation of sufficient conditions of ISS performance.In addition, the DETM also brings effects on solving the desired controller gains since the parameters Ψ andβshould be considered.

    B. Controller Gain Design

    In the preceding discussions, a series of sufficient conditions have been got to guarantee the ISS and iISS performance of systems with random impulses.Based on the above sufficient conditions, we are now ready to set up sufficient conditions to calculate the controller gain, which is important for practical application.

    For the convenience of presentation, we define the following matrices:

    withX=P-1.

    Theorem 3: Under Assumption 1, for given positive constantsα,T, ? ,θand β ∈[2α,+∞), if there exist positive-definite matricesX,S? ,S?1and Ψ? , and matrixG? such that,

    where

    Then, by controller (6), the addressed system (7) is stabilized to ISS (iISS).Furthermore, the controller gain matrix is given byK=YX-1.

    Proof: DefineJ=diag{X,X,X,X,I,S-11}.Then, multiplying both sides of (10) byJand its transpose, we derive that

    which guarantees Φ <0.It is noticed that -is a nonlinear term and the above matrix inequality can not be directly solved by the MATLAB linear matrix inequality (LMI) toolbox.As such, we need to transform this nonlinear term into a one that is linear.Consider the following inequality:

    Then, it follows from (36) that:

    It is obvious that nonlinear termcan be replaced by linear termin (34).And, the expected controller gainKcould be obtained by resorting to the solutions of the linear matrix inequalities (32)–(34).■

    IV.CASE STUDY

    In this section, the effectiveness and availability of the established control strategy will be verified by a simulation example.Consider an impulsive dynamic with the following parameters:

    The bounded noise is chosen as

    Let the stochastic strength μ1satisfy the uniform distributionU(-0.4,0.6) and μ2obey the distribution given in Table I.Then, we obtain that ?1=1.21 and ?2=1.047.

    PROBABILITYT DAIBSTLREIB IU TIONS OF μ2

    According to Theorem 1, the impulsive interval satisfies

    In this simulation, we denote T1=0.8, T2=0.8,T=0.1,and α=1.566.Subsequently, by resorting to the solutions of the linear matrix inequalities (33) and (34), the DETM-based controller gainKis obtained as

    For the purpose of simulation, the initial conditions and event-triggered parameters are chosen asx(t0)=[-0.1,0.5,-0.1], ?=0.1, θ=1 and η(t0)=1.Moreover, the simulation results are presented in Figs.1–5.The state trajectories of the open-loop system are depicted in Fig.1, and obviously are apparently unstable.After implementing the proposed control strategy, the state trajectories of the closed-loop system are plotted in Fig.2, which clearly shows the feasibility of the proposed method.The event-triggered instants and the evolution of η (t) can be seen in Fig.3.

    Fig.1.State trajectories of the open-loop system.

    Fig.2.State trajectories of the closed-loop system under DETM.

    In order to examine the advantage of the DETM, we shall provide a simulation comparison between DETM and SETM.Fig.4 plots the evolution of the close-loop system under SETM with controller gain

    Moreover, the initial states are chosen asx(t0)=[-0.1,0.5,-0.1].In Fig.5, we can conclude that the triggering rate of DETM is much lower than one of SETM.In fact, the triggering numbers of DETM and SETM are 98 and 129, respectively.On the other hand, by comparing Fig.2 with Fig.4, we find that the states of SETM can more quickly achieve bounded stability.

    Fig.3.The trajectory of η(t) and event-triggered instants.

    Fig.4.State trajectories of the closed-loop system under SETM.

    Fig.5.Event-triggered instants of DETM and SETM.

    V.CONCLUSIONS

    In this paper, the ISS and iISS analysis problems have been investigated for a class of networked systems subject to random impulses.The DETM has been adopted to relieve communication cost and improve communication resource utilization.By resorting to the sampling mechanism, the effects of impulses on the event-triggered scheme can be overcome.Then, with the help of stochastic analysis, a series of sufficient conditions have been derived to ensure the corresponding ISS and iISS performance.Subsequently, the explicit expression of desired controller gain has been also received by resorting to the solutions of linear matrix inequalities.Finally,the feasibility and validity of the proposed control approach have been verified by a simulation example.One of the future research topics is to extend our results to distributed impulsive systems under event-triggered-based sliding mode control schemes [42]–[45].

    猜你喜歡
    目數(shù)篩孔篩網(wǎng)
    潘集選煤廠弧形篩篩孔尺寸的改進(jìn)研究
    基于多元線性回歸法的瀝青路面性能影響因素
    延長(zhǎng)干式球磨機(jī)外篩網(wǎng)使用壽命的方法
    不同孔形下豆類透篩效果對(duì)比及圓筒篩優(yōu)化
    膠粉目數(shù)對(duì)膠粉改性瀝青流變性能的影響研究
    決明子保健袋茶的研制
    不銹鋼拉絲在軌道行業(yè)的應(yīng)用
    河南科技(2016年3期)2016-07-21 08:59:44
    圖拉法篩網(wǎng)自動(dòng)往復(fù)沖洗裝置
    篩孔型房間隔缺損的超聲心動(dòng)圖特征
    水力篩網(wǎng)多重分沙裝置在頭屯河上的應(yīng)用
    91精品国产国语对白视频| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 久久这里有精品视频免费| 青春草国产在线视频| 丁香六月天网| 看免费成人av毛片| 日韩人妻精品一区2区三区| 午夜av观看不卡| 亚洲美女视频黄频| www.精华液| 精品少妇久久久久久888优播| 国产精品女同一区二区软件| 亚洲精品中文字幕在线视频| 天天影视国产精品| 老汉色av国产亚洲站长工具| 成人亚洲欧美一区二区av| 欧美精品人与动牲交sv欧美| 亚洲欧美成人综合另类久久久| 亚洲综合色网址| 久久综合国产亚洲精品| 99久国产av精品国产电影| 国产日韩欧美视频二区| 成人二区视频| 精品一区二区三卡| 色94色欧美一区二区| 精品福利永久在线观看| 国产97色在线日韩免费| 久久久精品94久久精品| 午夜福利影视在线免费观看| 欧美成人精品欧美一级黄| 丝袜喷水一区| www.av在线官网国产| 国产成人精品久久久久久| 国产黄频视频在线观看| 成年女人毛片免费观看观看9 | 欧美人与性动交α欧美软件| 久久久久久久大尺度免费视频| 免费黄频网站在线观看国产| 捣出白浆h1v1| a级毛片在线看网站| 一区二区av电影网| 男女国产视频网站| 午夜福利视频精品| 秋霞在线观看毛片| 久久精品国产亚洲av天美| 日韩电影二区| 精品国产一区二区三区久久久樱花| 日韩人妻精品一区2区三区| 亚洲美女视频黄频| 亚洲国产精品一区三区| 亚洲一区中文字幕在线| 久久久久久久国产电影| 日韩欧美一区视频在线观看| 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 精品午夜福利在线看| 日韩成人av中文字幕在线观看| 我要看黄色一级片免费的| 久久精品久久久久久久性| 男女午夜视频在线观看| 日韩一区二区视频免费看| 黄色一级大片看看| 免费高清在线观看视频在线观看| 少妇的丰满在线观看| 91在线精品国自产拍蜜月| www日本在线高清视频| 老汉色∧v一级毛片| 国产精品一二三区在线看| 国产精品久久久av美女十八| 亚洲精品视频女| 亚洲av男天堂| 啦啦啦在线免费观看视频4| 丝袜脚勾引网站| 老汉色∧v一级毛片| 久久国产精品男人的天堂亚洲| 久久国产精品男人的天堂亚洲| 在线天堂中文资源库| 人成视频在线观看免费观看| 亚洲av男天堂| 丝袜美足系列| 久久久久久人人人人人| av线在线观看网站| 人人妻人人爽人人添夜夜欢视频| 国产精品 国内视频| 性少妇av在线| 一二三四中文在线观看免费高清| 婷婷成人精品国产| 18+在线观看网站| 在线天堂最新版资源| 五月伊人婷婷丁香| 欧美另类一区| 色婷婷久久久亚洲欧美| 97在线人人人人妻| 久久久久国产网址| 日韩人妻精品一区2区三区| 成人国产麻豆网| 美女xxoo啪啪120秒动态图| 免费在线观看视频国产中文字幕亚洲 | 伊人亚洲综合成人网| 亚洲美女视频黄频| 91精品国产国语对白视频| 国产日韩欧美视频二区| 少妇被粗大的猛进出69影院| 寂寞人妻少妇视频99o| 国产欧美日韩综合在线一区二区| 久久人人爽av亚洲精品天堂| 美女福利国产在线| 如何舔出高潮| 国产毛片在线视频| 亚洲av国产av综合av卡| 美女国产视频在线观看| 精品卡一卡二卡四卡免费| 激情视频va一区二区三区| 久久狼人影院| 满18在线观看网站| 久久久国产一区二区| 午夜福利视频精品| 亚洲成人一二三区av| 久久久精品免费免费高清| 精品国产露脸久久av麻豆| 成人黄色视频免费在线看| 多毛熟女@视频| 最近手机中文字幕大全| 天天躁夜夜躁狠狠躁躁| 女人久久www免费人成看片| 欧美xxⅹ黑人| 精品久久蜜臀av无| av女优亚洲男人天堂| 欧美在线黄色| 亚洲欧美精品自产自拍| 99热网站在线观看| 人妻人人澡人人爽人人| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 王馨瑶露胸无遮挡在线观看| 99久久人妻综合| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 男女边吃奶边做爰视频| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 久久99一区二区三区| 少妇人妻久久综合中文| 亚洲欧美一区二区三区久久| 丝袜喷水一区| 免费观看av网站的网址| 亚洲精品乱久久久久久| 亚洲国产色片| 亚洲国产毛片av蜜桃av| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 一级a爱视频在线免费观看| 日韩电影二区| 只有这里有精品99| 国产一区二区 视频在线| 下体分泌物呈黄色| 国产精品国产av在线观看| 国产成人精品无人区| 桃花免费在线播放| 高清欧美精品videossex| 精品人妻一区二区三区麻豆| 中文字幕另类日韩欧美亚洲嫩草| 女人精品久久久久毛片| 亚洲综合精品二区| 久久久久久久亚洲中文字幕| 成年美女黄网站色视频大全免费| 在线观看三级黄色| a级毛片黄视频| 高清在线视频一区二区三区| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频| 777久久人妻少妇嫩草av网站| 少妇精品久久久久久久| 亚洲精品aⅴ在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久午夜福利片| 久久久久久免费高清国产稀缺| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区黑人 | 日韩制服丝袜自拍偷拍| 国产探花极品一区二区| 亚洲欧洲国产日韩| 婷婷色综合www| 十八禁高潮呻吟视频| 久久精品国产亚洲av涩爱| 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 妹子高潮喷水视频| 日本黄色日本黄色录像| 欧美日韩一级在线毛片| 亚洲精品久久久久久婷婷小说| 亚洲综合色网址| 中文乱码字字幕精品一区二区三区| 国产野战对白在线观看| 人体艺术视频欧美日本| 久久这里只有精品19| 91精品伊人久久大香线蕉| 久久精品久久久久久久性| 高清视频免费观看一区二区| 中文字幕人妻熟女乱码| 国产精品久久久久久av不卡| 丁香六月天网| 你懂的网址亚洲精品在线观看| 桃花免费在线播放| 欧美日韩精品网址| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 大码成人一级视频| 一级黄片播放器| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 午夜免费观看性视频| 久久久久久久久久久久大奶| 成人漫画全彩无遮挡| 三级国产精品片| 欧美黄色片欧美黄色片| 欧美bdsm另类| 美女福利国产在线| 99久久人妻综合| 亚洲人成77777在线视频| 色婷婷av一区二区三区视频| 曰老女人黄片| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 国产成人a∨麻豆精品| 国产精品蜜桃在线观看| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 婷婷色综合www| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 9热在线视频观看99| 成年动漫av网址| 国产黄色免费在线视频| 国产av国产精品国产| 三上悠亚av全集在线观看| 赤兔流量卡办理| 国产黄频视频在线观看| 99久久综合免费| 日日啪夜夜爽| 成年美女黄网站色视频大全免费| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品成人久久小说| 国产xxxxx性猛交| 国产免费福利视频在线观看| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 久久久国产一区二区| 一二三四在线观看免费中文在| 国产精品不卡视频一区二区| 久久精品国产自在天天线| 精品少妇内射三级| 亚洲三级黄色毛片| 亚洲人成电影观看| 色播在线永久视频| 日韩视频在线欧美| 一级片免费观看大全| 国产高清国产精品国产三级| 久久久久久久国产电影| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 97精品久久久久久久久久精品| 午夜福利,免费看| 五月伊人婷婷丁香| 老司机亚洲免费影院| 在线观看免费视频网站a站| 美女大奶头黄色视频| av免费在线看不卡| 五月天丁香电影| 国产又色又爽无遮挡免| 国产成人91sexporn| 老司机影院成人| 国产又色又爽无遮挡免| 亚洲国产av新网站| 欧美日韩精品网址| 日本黄色日本黄色录像| 精品第一国产精品| 老女人水多毛片| 中文天堂在线官网| 91精品国产国语对白视频| 丝瓜视频免费看黄片| 最近最新中文字幕大全免费视频 | 免费看不卡的av| 中文欧美无线码| 国产免费一区二区三区四区乱码| 考比视频在线观看| 日本午夜av视频| 咕卡用的链子| 精品人妻在线不人妻| 国产精品国产三级专区第一集| 日韩成人av中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品久久久久久| av天堂久久9| 精品99又大又爽又粗少妇毛片| videosex国产| 男女边吃奶边做爰视频| 999久久久国产精品视频| 免费大片黄手机在线观看| 成人国产av品久久久| 日产精品乱码卡一卡2卡三| 午夜免费鲁丝| 国产xxxxx性猛交| a级毛片在线看网站| 亚洲av福利一区| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 国产精品亚洲av一区麻豆 | 天美传媒精品一区二区| 亚洲少妇的诱惑av| 日韩人妻精品一区2区三区| 看免费av毛片| 国产精品久久久av美女十八| 日本av免费视频播放| 免费观看无遮挡的男女| 久久精品aⅴ一区二区三区四区 | 黄色毛片三级朝国网站| 色哟哟·www| 国产成人aa在线观看| 中文字幕人妻丝袜一区二区 | 日本av免费视频播放| 一二三四中文在线观看免费高清| 欧美在线黄色| 国产精品偷伦视频观看了| 在线观看国产h片| 伊人久久大香线蕉亚洲五| 亚洲av日韩在线播放| 精品第一国产精品| 午夜影院在线不卡| av福利片在线| 我要看黄色一级片免费的| 成年女人在线观看亚洲视频| 99香蕉大伊视频| 婷婷色综合www| 午夜免费观看性视频| 欧美bdsm另类| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 国产精品免费大片| 美女视频免费永久观看网站| 国产成人精品无人区| 91在线精品国自产拍蜜月| 国产成人精品一,二区| 美女国产视频在线观看| 超碰97精品在线观看| 2022亚洲国产成人精品| 97精品久久久久久久久久精品| 母亲3免费完整高清在线观看 | 欧美+日韩+精品| av天堂久久9| 少妇的逼水好多| 一级片'在线观看视频| 欧美在线黄色| 午夜av观看不卡| 亚洲欧美清纯卡通| 黄色一级大片看看| 久久影院123| 精品亚洲乱码少妇综合久久| 大香蕉久久成人网| 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 亚洲av福利一区| 香蕉精品网在线| 永久网站在线| 制服人妻中文乱码| 一个人免费看片子| 最新中文字幕久久久久| 久久精品夜色国产| 国产精品一区二区在线观看99| 97在线视频观看| av在线app专区| freevideosex欧美| 99久久精品国产国产毛片| 尾随美女入室| 一本—道久久a久久精品蜜桃钙片| 亚洲精品在线美女| 美女大奶头黄色视频| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 亚洲内射少妇av| 久久精品国产a三级三级三级| 婷婷色麻豆天堂久久| 国产在视频线精品| 国产精品二区激情视频| 亚洲色图 男人天堂 中文字幕| 性色avwww在线观看| 伦精品一区二区三区| 各种免费的搞黄视频| av国产久精品久网站免费入址| 18+在线观看网站| 成人国语在线视频| 晚上一个人看的免费电影| 日韩人妻精品一区2区三区| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 亚洲精品在线美女| 成人毛片60女人毛片免费| 美女福利国产在线| 免费在线观看完整版高清| 亚洲综合色网址| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 99久国产av精品国产电影| 女人久久www免费人成看片| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| 日韩中字成人| 精品少妇一区二区三区视频日本电影 | 97在线视频观看| 国产亚洲精品第一综合不卡| 美女主播在线视频| 性色av一级| 久久久久久久久久久久大奶| 亚洲国产最新在线播放| 国产精品二区激情视频| 国产精品欧美亚洲77777| 99久久人妻综合| 男女啪啪激烈高潮av片| 国产精品久久久久成人av| 精品少妇黑人巨大在线播放| 国产人伦9x9x在线观看 | 男的添女的下面高潮视频| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 精品一区二区免费观看| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区久久久樱花| 人人澡人人妻人| 秋霞伦理黄片| av片东京热男人的天堂| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 亚洲国产精品一区三区| 考比视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 在线 av 中文字幕| 久久人妻熟女aⅴ| 亚洲成人手机| 成年人免费黄色播放视频| av一本久久久久| 精品亚洲成国产av| 精品久久久久久电影网| 国产爽快片一区二区三区| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 亚洲第一区二区三区不卡| 午夜福利视频精品| 十八禁网站网址无遮挡| 亚洲情色 制服丝袜| 两个人免费观看高清视频| 久久久久国产一级毛片高清牌| 免费看av在线观看网站| 国产av码专区亚洲av| 2021少妇久久久久久久久久久| 夫妻性生交免费视频一级片| 日韩成人av中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情久久老熟女| 韩国精品一区二区三区| 国产黄色视频一区二区在线观看| 国产精品.久久久| 制服人妻中文乱码| 久久久精品免费免费高清| 中国三级夫妇交换| av在线app专区| 天天躁夜夜躁狠狠久久av| 在线免费观看不下载黄p国产| 成人黄色视频免费在线看| 99久久人妻综合| 久久精品国产自在天天线| 啦啦啦啦在线视频资源| 日韩av在线免费看完整版不卡| 久久国内精品自在自线图片| 亚洲,欧美精品.| 国产日韩一区二区三区精品不卡| 国产一区有黄有色的免费视频| 日韩精品有码人妻一区| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 天天躁日日躁夜夜躁夜夜| 大香蕉久久网| 啦啦啦在线免费观看视频4| 十八禁网站网址无遮挡| 校园人妻丝袜中文字幕| 精品人妻熟女毛片av久久网站| 青草久久国产| 国产乱来视频区| 99热国产这里只有精品6| 大片免费播放器 马上看| 国产成人精品福利久久| 久久久久网色| 大香蕉久久成人网| 精品人妻一区二区三区麻豆| av一本久久久久| 国产精品.久久久| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 国产爽快片一区二区三区| 大片电影免费在线观看免费| 国产一区二区三区综合在线观看| 最近手机中文字幕大全| 2022亚洲国产成人精品| 国产乱人偷精品视频| 男女国产视频网站| 久久女婷五月综合色啪小说| 97人妻天天添夜夜摸| 五月伊人婷婷丁香| 精品国产一区二区三区四区第35| 看免费av毛片| 国产成人精品久久二区二区91 | 黄网站色视频无遮挡免费观看| 免费播放大片免费观看视频在线观看| 精品一品国产午夜福利视频| 啦啦啦视频在线资源免费观看| 精品国产一区二区三区久久久樱花| 人妻人人澡人人爽人人| 免费观看av网站的网址| 久久国内精品自在自线图片| 最近最新中文字幕大全免费视频 | 国产精品亚洲av一区麻豆 | 久久精品亚洲av国产电影网| 免费黄频网站在线观看国产| 国产综合精华液| 亚洲第一区二区三区不卡| 另类精品久久| 亚洲一级一片aⅴ在线观看| 国产毛片在线视频| 久久国内精品自在自线图片| 波多野结衣一区麻豆| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 大话2 男鬼变身卡| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 欧美日本中文国产一区发布| 超碰成人久久| 99香蕉大伊视频| 成年动漫av网址| 在线观看免费高清a一片| 亚洲精品aⅴ在线观看| 三上悠亚av全集在线观看| √禁漫天堂资源中文www| 久久久国产精品麻豆| 亚洲欧美精品综合一区二区三区 | 久久久久久免费高清国产稀缺| 久久久久视频综合| 亚洲精品美女久久久久99蜜臀 | 少妇猛男粗大的猛烈进出视频| 国产精品 国内视频| 国产在线一区二区三区精| 亚洲欧洲精品一区二区精品久久久 | 亚洲三级黄色毛片| 国产免费视频播放在线视频| 亚洲精品日韩在线中文字幕| 日韩制服丝袜自拍偷拍| 中文字幕最新亚洲高清| av.在线天堂| 飞空精品影院首页| www.精华液| 老司机影院毛片| 亚洲三区欧美一区| 大码成人一级视频| 五月开心婷婷网| 国产黄色视频一区二区在线观看| 搡女人真爽免费视频火全软件| 亚洲人成网站在线观看播放| 午夜福利影视在线免费观看| 亚洲天堂av无毛| 男女无遮挡免费网站观看| 男男h啪啪无遮挡| 最新的欧美精品一区二区| tube8黄色片| 亚洲色图综合在线观看| 边亲边吃奶的免费视频| 久久精品国产a三级三级三级| 丰满迷人的少妇在线观看| 黄频高清免费视频| 亚洲精品国产av蜜桃| 欧美少妇被猛烈插入视频| 亚洲人成77777在线视频| 久久久久久免费高清国产稀缺| 久久久国产一区二区| 亚洲av电影在线进入| 亚洲精品在线美女| 免费久久久久久久精品成人欧美视频| 波野结衣二区三区在线| 久久精品久久久久久久性| 亚洲综合色网址| av有码第一页| 青春草国产在线视频| 又粗又硬又长又爽又黄的视频| 90打野战视频偷拍视频| 一区二区三区激情视频| 国产一区亚洲一区在线观看| 国产一区二区激情短视频 | 99热国产这里只有精品6| 少妇被粗大的猛进出69影院| 国精品久久久久久国模美| 成年美女黄网站色视频大全免费| 侵犯人妻中文字幕一二三四区| 爱豆传媒免费全集在线观看| 18禁国产床啪视频网站| 色播在线永久视频| 国产福利在线免费观看视频| 国产一级毛片在线| 国产亚洲最大av|