• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subspace Identification for Closed-Loop Systems With Unknown Deterministic Disturbances

    2023-12-22 11:06:48KuanLiHaoLuoSeniorYuchenJiangDejiaTangandHongyanYang
    IEEE/CAA Journal of Automatica Sinica 2023年12期

    Kuan Li,,, Hao Luo, Senior,, Yuchen Jiang,,,Dejia Tang, and Hongyan Yang,,

    Abstract—This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances, two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification, CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition, a proper Bernstein polynomial order can be determined using the Akaike information criterion (AIC) or the Bayesian information criterion (BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.

    I.INTRODUCTION

    SYSTEM identification has been widely investigated over the past several decades, which serves as an important tool for monitoring and control purpose [1]–[6].In particular, subspace identification methods (SIMs) can be advantageous over the identification of the state-space model using the process data available, which has been demonstrated to be quite useful for the identification of multivariate systems.Recently,many achievements have been made regarding complex systems and conditions on the subspace identification.In [7],subspace identification for structured state-space models is proposed with the user-defined linear or polynomial parameterization structure.In [8], a unified subspace identification framework for linear parameter-varying (LPV) systems is established in innovation form, which gives an in-depth view on the LPV subspace identification problem.In [9], subspace identification for large-scale interconnected systems with heterogeneous network is investigated with no constrains on the sparse interconnection.

    In practice, most industrial processes are required to be operated in practice under closed-loop conditions due to the concern for system safety and product quality.In some cases,the process cannot be separated for open-loop identification tests, for instance, the process needs to be stabilized for bounded outputs or requires online identification.This motivates the subspace identification work for closed-loop systems using the available process data.The main challenge is to deal with the inherited correlation between the control inputs and noise under the feedback control in order to get unbiased estimation results [10].Until now, many various methods have been developed for closed-loop subspace identification, such as innovation estimation method (IEM) [11],predictor-based subspace identification (PBSID) [12], closedloop subspace identification method via principal component analysis (CSIMPCA) [13] and nuclear norm subspace identification method (N2SID) [14].In addition, a novel closed-loop identification method called CCF-N4SID was recently proposed in [15] to integrate the prior knowledge of the controller into the subspace identification framework, based on which the closed-loop identification framework will be used in this work.

    On the other hand, practical industrial processes may suffer from various unknown deterministic disturbances, for instance, the flatness of the strip can be greatly influenced due to the roll eccentricities as a typical external unknown disturbance during the rolling process [16] and wind turbines can be prone to unknown periodic disturbances due to the air turbulence [17], [18].These unknown deterministic disturbances can lead to the biased or even totally incorrect identification results if they cannot be well handled.However, less attention has been paid to the in-depth investigation of subspace identification with unknown deterministic disturbances.A subspace identification method with deterministic disturbances is proposed in [19] based on the multiple-input-multiple-output error state-space model identification (MOESP) algorithm and it is derived under the assumption that disturbances can be parametrisable.The base space of the disturbances is not explicitly constructed though it is mentioned that a proper base space can be helpful to the subspace identification under the strong periodic disturbances.A biased-eliminated subspace identification method with constant load or periodic load is proposed in [20], [21] for the consistent estimation where the output responses are decomposed into the disturbed part and the undisturbed part.In addition, the above results have also been extended to the identification of the Hammerstein nonlinear system with periodic or slowly varying disturbances [22], [23].However, few studies have been dedicated to the subspace identification with aperiodic deterministic disturbances.

    In this paper, a closed-loop subspace identification method is proposed to deal with the unknown deterministic disturbances under standard feedback control.The influence of unknown deterministic disturbances can be alleviated via the projection onto the constructed row space, which can easily adapt to aperiodic deterministic disturbances with unknown frequencies using the row space constructed by Bernstein polynomials.The main contributions can be summarized as:

    1) The row space that can be used to approximately represent the unknown deterministic disturbances is respectively designed using the trigonometric functions and Bernstein polynomials.

    2) CCF-N4SID is extended to the closed-loop subspace identification with unknown deterministic disturbances using the oblique projection.

    3) A proper Bernstein polynomial order is determined to approximate the unknown deterministic disturbances via the Akaike information criterion (AIC) or Bayesian information criterion (BIC).

    The rest of the paper is organized as follows.Section II briefly introduces the preliminaries and formulates the problem.Section III presents the proposed closed-loop subspace identification algorithm with unknown deterministic disturbances.Section IV discusses the choice of the Bernstein polynomial order.Section V verifies the effectiveness of the proposed algorithm via the simulation study.Section VI concludes this work.

    II.PRELIMINARIES AND PROBLEM FORMULATION

    A. System Description

    Consider the following state space modelG(z) with periodic disturbances under the standard feedback control:

    Given the controllerK(z) in the form of the state space representation as

    wherexc(k)∈Rncdenotes the state vector of the controller,r(k)∈Rmdenotes the reference signal;Ac∈Rnc×nc,Bc∈Rnc×m,Cc∈Rl×ncandDc∈Rl×mare parameter matrices of the controller with appropriate dimensions.

    B. Definition and Lemma

    Definition 1 and Lemma 1 indicate that the deterministic disturbances in analytic form can be approximated by the Berstein polynomial, which serves as the foundation for the design of the row space that approximately represents the unknown deterministic disturbances in Section III-B.

    C. Problem Formulation

    In this paper, the identification problem is formulated as determining the matricesA,B,CandDfrom the processG(z)with the unmeasurable deterministic disturbances under the feedback control.The main focus is the solution to two key problems: 1) How to approximate the unknown deterministic disturbances in the subspace context.2) How to identify the process model with unknown deterministic disturbances under closed-loop conditions.

    To identify the process model, several assumptions have to be made:

    Assumption 1: The standard feedback control loop is wellposed and internally stabilized by the controller.

    Assumption 2:G(z) is minimal, i.e., the pair (A,C) is observable and the pair (A,B) is reachable.

    Assumption 3: The reference {r(k)} is an ergodic, quasi-stationary random process and can be persistently exciting of any order.

    Assumption 4: {w(k)} and {v(k)} are assumed to be zeromean white noise sequences and independent of the reference{r(k)}with covariance matrix

    and

    where E {·} denotes the expectation operator, σ2wand σ2vdenote the variances of the process noise and measurement noise,respectively;δdenotes the Dirac function.

    III.CLOSED-LOOP SUBSPACE IDENTIFICATION WITH UNkNOwN DETERMINISTIC DISTURBANCES

    A. Data Equation

    Define the stacked vectorsus,kwith lengthsas follows:

    By arranging the stacked vectors at different instants, define

    whereNis a large integer,ys,kandds,khave the same structure asus,k.

    To split the data into past and future horizons, define

    wherespandsfdenote the past horizon and the future horizon, respectively.

    Iterating on (1), it leads to

    where Φfdenotes the noise term, which can refer to [15] for details.Γf,Hu,f, andHd,fare

    Consider the predictor model of (1) as follows:

    whereKis the Kalman filter gain matrix,AK=A-KC,BK=B-KD,EK=Ed-KFd.

    B. Dealing With Unknown Deterministic Disturbances

    1)Dealing With Deterministic Disturbances With Known Frequencies: Assume that the deterministic disturbances that can be approximately described by the superposition of finite number of sine functions as follows:

    wheredi(k) denotes theith scalar consisting of the disturbance vector,miis the number of distinct frequencies,i=1,2,...,nd.ai,0is the bias ofdi(k).aj, ωjand φjdenote the amplitude, frequency and phase forjth sine components,respectively.

    Based on the triangle identity, we have

    where βi,j,1=ai,jcos(φi,j), βi,j,2=ai,jsin(φi,j).

    According to (22), (21) can be reformulated as

    where

    Therefore, we have

    Note that

    it follows that:

    Based on (28), it leads to

    According to (29),ds,kcan be represented in the compact form as follows:

    and

    Remark 1: Note thatDb,triis constructed by the trigonometric functions with distinct frequency components.In some cases, the disturbance frequencies can be estimated using the fast fourier transformation (FFT) or other related signal processing techniques.In addition, the calculation of ωi,jkis needed to constructDb,triand it can observed that the frequency estimation error may lead to the deviation ofDb,triespecially whenNis large.Therefore, an empirical suggestion is that the sampling frequencyfshould satisfy≥1.

    2)Dealing With Deterministic Disturbances With Unknown Frequencies: In practice, the frequency estimation of the deterministic disturbance can be inaccurate, and it is even impossible to estimate the frequency components of the deterministic disturbance in some cases.In the following, the focus will be on how to approximately describe the row space where the deterministic disturbances belong to when disturbances frequencies are unavailable.

    The underlying idea is to approximate the trigonometric function inDb,tribased on the Bernstein polynomial and try to construct the row space that only contains the time sequences,which can be used to address the aperiodic deterministic disturbances as well.

    where the entries in therth row andcth column ofQi,jcan be given as

    Therefore, we have

    Consider the property of the Bernstein basis, i.e.,

    and based on (38), it leads to

    C. Closed-Loop Subspace Identification

    For closed-loop subspace identification, the CCF-N4SID algorithm is extended to the case with unknown deterministic disturbances.

    Note that (20) can be rewritten as

    Given the left coprime factorization ofK(z) as

    Define the instrumental variableMf[15],

    where

    The following Theorem 1 gives a feasible solution to the estimation on the extended observability matrix for closedloop systems with unknown deterministic disturbances.

    Theorem 1: For a sufficiently largeN, under the assumption

    The proposed closed-loop subspace identification method with unknown deterministic disturbances is summarized in Algorithm 1.

    IV.DISCUSSION ON THE BERNSTEIN POLYNOMIAL ORDER

    Based on the information entropy theory, the Akaike information criterion (AIC) is widely used to deal with the tradeoff between the model complexity and the model fitting goodness.The purpose is to determine a model that can well interpret the data with the least parameters.Therefore, the following AIC indicators can be helpful to determine the proper order of the Bernstein polynomial:

    Algorithm 1 Closed-loop subspace identification with unknown deterministic disturbances Input: ,.Output: A, B, C and D.sp sf UpUfYp Yf u(k)y(k)S1: Set , and N, construct Hankel matrices , and according to (12).S2: Construct the row space that approximates the unknown deterministic disturbances as follows,Db a) When frequencies of deterministic disturbances are known, construct as ,Db,tri Db b) When frequencies of deterministic disturbances are unknown,construct as.K(z) ?Vc(z)?Uc(z)Db,bern Db S3: Do left coprime factorization on , obtain and ,construct and according to (45) and (46).Mf =Kc Kcv,f Kcu,f v,f Uf +Kcu,f Yf S4: Construct the instrumental variable.Γf ?Xk,N Hu,f S5: Do LQ factorization as (47), obtain and.S6: Identify the matrices A, B, C and D.

    Therefore, an appropriate order of the Bernstein polynomial should satisfy

    Note that the penalty coefficient of model parameter numbers is set to be 2 for AIC.To avoid the overfitting, the penalty coefficient of model parameter numbers can be properly increased.As a special case, when the penalty coefficient is set to beln(N), it leads to the Bayesian information criterion (BIC), i.e.,

    In terms of performance indicators, it is suggested that AIC and BIC can be both analyzed for performance evaluation to determine a proper Bernstein polynomial order in most cases.

    V.SIMULATION STUDY

    Consider a linear invariant systemG(z), the parameter matrices are given as

    The controllerK(z) can be designed arbitrarily such that the system is stabilized.

    During the simulation, the noise powers of two reference signals are set to bePn=0.2 andPn=0.3, respectively.The noise powers ofw(k) andv(k) are both set to bePn=0.0002.The sampling time is set to bets=0.002 s.The parameter settings areN=5000,sp=30 andsf=8, respectively.

    Assume that there exists a deterministic disturbance in the closed-loop system with five distinct frequencies as follows:

    where the amplitudea1,jand the frequency ω1,jcan be referred to Table I for simulation settings.

    TABLE I PARAMETERS OF DETERMINISTIC DISTURBANCE

    To verify the effectiveness of the proposed algorithm for closed-loop identification with unknown deterministic disturbances, Fig.1 compares the method in [15] while ignoring the deterministic disturbance (i.e., CCF-N4SID), the proposed algorithm usingDb,tri(i.e., CCF-N4SID-D1) and the proposed algorithm usingDb,bern(i.e., CCF-N4SID-D2) withnb=8 andnb=9.

    From Fig.1, it can be observed that CCF-N4SID delivers the wrong pole estimation results due to the fact that it is directly implemented while ignoring the influence of the unknown deterministic disturbances, which implies that the dynamics of the identified model cannot be consistent with the real one.In contrast, the proposed algorithm usingDb,triorDb,berncan both obtain a relatively reliable pole estimation.It should be mentioned that the pole estimation results are less accurate with obviously biased estimation for poles located on the left half of the unit circle whennb=8.However, the pole estimation performance improves a lot whennb=9, which is competitive to the pole estimation results via the proposed algorithm usingDb,tri.Note that the discussion above in fact indicates the importance of the proper choice of the Bernstein polynomial order.

    To determine the proper Bernstein polynomial order, AIC and BIC are respectively tested as shown in Fig.2, from which it can be observed that the AIC curve and BIC curve both reach the minimum whennb=9 with the range for the integernb∈[1,12].In addition, the two curves begin to climb up with the increase ofnbdue to the possible overfitting and the BIC curve shows more obvious increasing trend whennb>9due to the larger penalty coefficient of model parameter numbers.The above analysis implies thatnb=9 can be indeed a proper choice for the construction ofDb,bern.

    In addition, Fig.3 compares the estimation error of Markov parametersCAiBunder different Bernstein polynomial ordersnb.The evaluation indicator for the estimation error ofCAiBis

    Fig.1.Comparison of pole estimation with deterministic disturbance ( sp=30, sf =8).

    Fig.2.The determination of the Bernstein polynomial order.

    given as follows:

    where //·//Fdenotes the Frobenius norm.Note that the logarithm function is used to magnify the estimation error for better visualization.

    From Fig.3, it can be observed that the estimation error ofCAiBgradually decreases with the increase ofnbuntil it reaches the minimum whennb=9.Note that the estimation error shows a slight increase whennb=10 compared with the result whennb=9, which again verifies the reasonability of the choice of the Bernstein polynomial order using AIC or BIC.

    Fig.4 shows the structure of the identifiedHu,fwhennb=9.In Fig.4, the light color means that the entries in the identifiedHu,fare close to 0.Therefore, it can be observed that the identifiedHu,fholds the lower triangular Topelitz structure well though no extra structural constraints are applied, which verifies the effectiveness of the proposed algorithm.

    Table II shows the comparison of identification performance in case of different disturbance types including constant, signal in (56), ramp and chirp signals, which involves the periodic and aperiodic signals during the test.The disturbance types in the above four cases are described as

    Fig.3.Comparison of the estimation error ofCAiB under different n b.

    Fig.4.The structural properties of the identified H u,f (n b=9).

    Case 1(Periodic): The deterministic disturbance is a constant signal with

    Case 2(Periodic): The deterministic disturbance is the superposition of five distinct frequencies as in (56), i.e.,

    Case 3(Aperiodic): The deterministic disturbance is a ramp signal with the slope 0.2/s, i.e.,

    Case 4(Aperiodic): The deterministic disturbance is a chirp signal varying from 0.1 Hz to 20 Hz in 100 s with amplitude 1, i.e.,

    wheref(kts)=0.1+0.199kts.

    To quantify the accuracy of estimated poles, the indicatorErrpole,iis defined as the error between the true poles and the average of estimated poles,

    where λiand λidenote theith true pole and the average ofith estimated poles, respectively.

    In addition, the determined Bernstein polynomial order via AIC and BIC is shown in Table II.It should be noted that the constant signal can be described by a row vector with all elements being 1, i.e., the polynomial order is zero, and the ramp signal is linear that can be described by the first-order polynomial.

    From Table II, it can be observed that CCF-N4SID delivers the wrong estimation of the poles and Markov parameterE7with quite large errors for all four disturbance types.However,CCF-N4SID-1 and CCF-N4SID-2 can deliver the correct identification performance with a small estimation error of the poles andE7, which demonstrates the effectiveness of the proposed identification methods for both periodic and aperiodic deterministic disturbances.

    VI.CONCLUSION

    In this paper, a subspace identification method is proposed for closed-loop systems with unknown deterministic disturbances in order to improve the estimation performance.To overcome the influence of the unknown deterministic disturbances, the row space that can be used to approximately represent the unknown deterministic disturbances is constructed using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known,which can be used to address the aperiodic deterministic disturbances.CCF-N4SID is then extended to the subspace identification with unknown deterministic disturbances using the oblique projection under feedback control.Moreover, the Bernstein polynomial order can be properly determined using AIC or BIC.The numerical example demonstrates that the proposed method can effectively alleviate the influence of the deterministic disturbances with reliable identification results.

    The LQ factorization in (47) can be interpreted by decomposingYfinto the following four parts [25]:

    APPENDIx PROOF OF THEOREM 1

    TABLE IICOMPARISON OF IDENTIFICATION PERFORMANCE IN CASE OF DIFFERENT DISTURBANCE TYPES

    where

    In addition, (60) can be rewritten as

    Recall that

    Comparing (62) with (63), we have

    Substituting (64) into (61), it leads to

    Therefore, whensp→∞, we have

    and

    国产成人精品久久二区二区91| 777久久人妻少妇嫩草av网站| 午夜福利18| 亚洲久久久国产精品| 久久精品成人免费网站| 久久久久精品国产欧美久久久| 一本综合久久免费| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 可以免费在线观看a视频的电影网站| 精品卡一卡二卡四卡免费| 身体一侧抽搐| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 中文字幕高清在线视频| 老司机靠b影院| 欧美黑人欧美精品刺激| 午夜免费激情av| √禁漫天堂资源中文www| 日本熟妇午夜| av在线播放免费不卡| 亚洲精品中文字幕一二三四区| 久久久久久亚洲精品国产蜜桃av| av电影中文网址| 自线自在国产av| www.999成人在线观看| 亚洲五月婷婷丁香| 观看免费一级毛片| 亚洲熟女毛片儿| 婷婷六月久久综合丁香| 日韩高清综合在线| 淫妇啪啪啪对白视频| 久久国产精品影院| 亚洲第一青青草原| 国产成人影院久久av| 国产av一区在线观看免费| 亚洲一区中文字幕在线| 午夜免费观看网址| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 99国产精品一区二区三区| 久久人人精品亚洲av| 淫秽高清视频在线观看| 国产日本99.免费观看| 一级毛片精品| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 狂野欧美激情性xxxx| 日本a在线网址| 久久亚洲精品不卡| 国产一区在线观看成人免费| 99国产精品一区二区三区| 欧美性长视频在线观看| 国产成+人综合+亚洲专区| 亚洲在线自拍视频| 日日夜夜操网爽| 亚洲国产精品久久男人天堂| 色尼玛亚洲综合影院| 欧美中文日本在线观看视频| av福利片在线| 欧美色视频一区免费| av超薄肉色丝袜交足视频| 国产伦人伦偷精品视频| 男人操女人黄网站| 可以免费在线观看a视频的电影网站| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人| 亚洲中文日韩欧美视频| 天天一区二区日本电影三级| 男女下面进入的视频免费午夜 | 正在播放国产对白刺激| 久久婷婷成人综合色麻豆| 久久精品影院6| 中文字幕人妻熟女乱码| 亚洲国产日韩欧美精品在线观看 | 亚洲国产精品成人综合色| a在线观看视频网站| 精品久久蜜臀av无| 亚洲 欧美 日韩 在线 免费| 亚洲av电影在线进入| 夜夜夜夜夜久久久久| 亚洲专区字幕在线| 他把我摸到了高潮在线观看| 男人的好看免费观看在线视频 | 久久精品91蜜桃| 亚洲av美国av| 欧美日韩一级在线毛片| 亚洲专区字幕在线| 国产高清激情床上av| 99riav亚洲国产免费| 亚洲在线自拍视频| 伊人久久大香线蕉亚洲五| 亚洲狠狠婷婷综合久久图片| 两人在一起打扑克的视频| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 中国美女看黄片| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕| 91麻豆av在线| 久久久久久免费高清国产稀缺| 变态另类丝袜制服| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| a级毛片a级免费在线| 国产成人欧美在线观看| 久久香蕉精品热| 日韩欧美三级三区| e午夜精品久久久久久久| 日本熟妇午夜| 国产精品二区激情视频| 久久久久久亚洲精品国产蜜桃av| 午夜两性在线视频| 欧美性猛交黑人性爽| e午夜精品久久久久久久| 老司机深夜福利视频在线观看| 欧美在线黄色| 久久久久九九精品影院| 丁香六月欧美| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 亚洲国产高清在线一区二区三 | www.熟女人妻精品国产| 亚洲精品在线美女| 午夜福利免费观看在线| 国产精品 欧美亚洲| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| aaaaa片日本免费| 色婷婷久久久亚洲欧美| 在线永久观看黄色视频| 国产精华一区二区三区| 国产激情欧美一区二区| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 97人妻精品一区二区三区麻豆 | 亚洲自偷自拍图片 自拍| 久久狼人影院| 国产精品美女特级片免费视频播放器 | 日韩av在线大香蕉| 看免费av毛片| 国产一区在线观看成人免费| 1024手机看黄色片| 在线观看舔阴道视频| 日本 av在线| 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| avwww免费| 国产亚洲av嫩草精品影院| 一区二区三区国产精品乱码| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 香蕉久久夜色| 波多野结衣高清作品| x7x7x7水蜜桃| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲| 久久伊人香网站| 少妇粗大呻吟视频| 欧美成人性av电影在线观看| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 久9热在线精品视频| 国产伦在线观看视频一区| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 欧美黑人欧美精品刺激| 91麻豆av在线| 18禁观看日本| 国产精品久久视频播放| 亚洲av片天天在线观看| 国产av在哪里看| 国产成人精品久久二区二区91| 日本一本二区三区精品| 国产精品久久久久久亚洲av鲁大| 欧美成人一区二区免费高清观看 | 亚洲国产精品久久男人天堂| 欧美又色又爽又黄视频| 两性夫妻黄色片| 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av香蕉五月| 精品欧美国产一区二区三| 在线观看舔阴道视频| 两个人免费观看高清视频| 国产真实乱freesex| 99久久99久久久精品蜜桃| avwww免费| 男人操女人黄网站| 国产精品国产高清国产av| 草草在线视频免费看| 欧美日韩一级在线毛片| 777久久人妻少妇嫩草av网站| 欧美激情极品国产一区二区三区| www.熟女人妻精品国产| 亚洲自拍偷在线| 日韩大码丰满熟妇| 国产亚洲精品综合一区在线观看 | 母亲3免费完整高清在线观看| 国产精品一区二区免费欧美| 亚洲国产看品久久| 国内精品久久久久久久电影| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 午夜影院日韩av| 国产亚洲av嫩草精品影院| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 天堂√8在线中文| 一卡2卡三卡四卡精品乱码亚洲| 欧美亚洲日本最大视频资源| 亚洲精品久久国产高清桃花| 久久精品亚洲精品国产色婷小说| 欧美日韩中文字幕国产精品一区二区三区| 日本在线视频免费播放| 亚洲第一av免费看| av福利片在线| 妹子高潮喷水视频| 午夜福利在线观看吧| 国产成人精品久久二区二区免费| 久久精品影院6| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 青草久久国产| 日本成人三级电影网站| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人看人人澡| 亚洲精品久久成人aⅴ小说| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 99热只有精品国产| 日韩有码中文字幕| 日韩大尺度精品在线看网址| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 欧美av亚洲av综合av国产av| 国产亚洲欧美在线一区二区| 嫩草影院精品99| 香蕉国产在线看| 天堂影院成人在线观看| 国语自产精品视频在线第100页| 男人舔女人的私密视频| 午夜a级毛片| 亚洲av日韩精品久久久久久密| 香蕉国产在线看| 91大片在线观看| 亚洲精品在线美女| 日韩欧美一区二区三区在线观看| 日本a在线网址| 欧美丝袜亚洲另类 | 欧美日韩黄片免| 国产精品,欧美在线| 成人手机av| 中文字幕av电影在线播放| 亚洲国产看品久久| 国产成人一区二区三区免费视频网站| 欧美成人午夜精品| 69av精品久久久久久| 看黄色毛片网站| 日韩欧美一区二区三区在线观看| 国产v大片淫在线免费观看| 国产精品综合久久久久久久免费| 给我免费播放毛片高清在线观看| 岛国在线观看网站| 女性生殖器流出的白浆| 九色国产91popny在线| 久久国产精品男人的天堂亚洲| 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| 色播亚洲综合网| 国产伦一二天堂av在线观看| 成人免费观看视频高清| 欧美最黄视频在线播放免费| 88av欧美| 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 国产97色在线日韩免费| 最好的美女福利视频网| 精品一区二区三区四区五区乱码| 日韩免费av在线播放| 大香蕉久久成人网| 麻豆成人av在线观看| 最近最新中文字幕大全免费视频| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 欧美午夜高清在线| svipshipincom国产片| 亚洲自拍偷在线| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| tocl精华| 欧美日韩黄片免| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 丰满的人妻完整版| 久久伊人香网站| 精品国产一区二区三区四区第35| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 久久久久久亚洲精品国产蜜桃av| 久久欧美精品欧美久久欧美| 日韩一卡2卡3卡4卡2021年| 精品电影一区二区在线| 国产成人av教育| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 99在线视频只有这里精品首页| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 妹子高潮喷水视频| 两性夫妻黄色片| 亚洲三区欧美一区| 亚洲成av人片免费观看| 美女大奶头视频| 亚洲成a人片在线一区二区| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 丝袜在线中文字幕| 久99久视频精品免费| 老汉色∧v一级毛片| 给我免费播放毛片高清在线观看| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 亚洲三区欧美一区| 国产av又大| 亚洲中文字幕一区二区三区有码在线看 | 巨乳人妻的诱惑在线观看| 日本撒尿小便嘘嘘汇集6| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 午夜福利在线在线| 国产精品亚洲av一区麻豆| 欧美日本亚洲视频在线播放| 精品久久蜜臀av无| 在线观看一区二区三区| 亚洲男人的天堂狠狠| 啦啦啦免费观看视频1| 国产v大片淫在线免费观看| 日韩成人在线观看一区二区三区| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 熟女少妇亚洲综合色aaa.| 男人舔女人下体高潮全视频| 在线播放国产精品三级| 免费在线观看完整版高清| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久, | 日韩欧美免费精品| 757午夜福利合集在线观看| 亚洲精品中文字幕一二三四区| 天天一区二区日本电影三级| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 18禁裸乳无遮挡免费网站照片 | 99久久无色码亚洲精品果冻| 国产精品99久久99久久久不卡| 欧美黑人巨大hd| 一二三四在线观看免费中文在| 欧美成人一区二区免费高清观看 | 久久久久免费精品人妻一区二区 | 很黄的视频免费| 99国产极品粉嫩在线观看| 俺也久久电影网| 香蕉久久夜色| 69av精品久久久久久| 亚洲色图av天堂| 国产精品久久视频播放| 妹子高潮喷水视频| 一进一出抽搐动态| 91成人精品电影| 可以免费在线观看a视频的电影网站| 一级a爱片免费观看的视频| 成熟少妇高潮喷水视频| 久久天堂一区二区三区四区| 精品国产乱子伦一区二区三区| 在线天堂中文资源库| 成人精品一区二区免费| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| www.www免费av| 在线观看www视频免费| 亚洲成av人片免费观看| 自线自在国产av| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 99久久综合精品五月天人人| 精品国产美女av久久久久小说| 两个人看的免费小视频| 在线天堂中文资源库| 国产成人精品久久二区二区免费| 黄频高清免费视频| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 999久久久国产精品视频| 在线看三级毛片| 国产精品久久久av美女十八| 色尼玛亚洲综合影院| 精品乱码久久久久久99久播| 免费一级毛片在线播放高清视频| 制服丝袜大香蕉在线| 成年版毛片免费区| 久久九九热精品免费| 国内少妇人妻偷人精品xxx网站 | 可以在线观看的亚洲视频| 亚洲精品在线观看二区| 色av中文字幕| 99热只有精品国产| 男男h啪啪无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看 | 老汉色av国产亚洲站长工具| 亚洲国产日韩欧美精品在线观看 | 动漫黄色视频在线观看| 国产国语露脸激情在线看| 村上凉子中文字幕在线| 亚洲第一电影网av| 黄色视频不卡| 99国产精品一区二区三区| 最近最新免费中文字幕在线| or卡值多少钱| 久久精品成人免费网站| 黑人巨大精品欧美一区二区mp4| 俺也久久电影网| 黄色 视频免费看| 黄色片一级片一级黄色片| 亚洲自拍偷在线| 午夜成年电影在线免费观看| 1024香蕉在线观看| 久久国产亚洲av麻豆专区| 亚洲九九香蕉| 精品福利观看| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 成熟少妇高潮喷水视频| 欧美黄色片欧美黄色片| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲人成电影免费在线| 亚洲第一av免费看| 观看免费一级毛片| 亚洲人成77777在线视频| 亚洲自偷自拍图片 自拍| 中国美女看黄片| 一区二区三区高清视频在线| 可以免费在线观看a视频的电影网站| 黄色女人牲交| 啦啦啦观看免费观看视频高清| 天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图 男人天堂 中文字幕| 午夜免费成人在线视频| 精品久久久久久成人av| 日本精品一区二区三区蜜桃| 亚洲午夜理论影院| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 国产精品亚洲av一区麻豆| 国产精品久久久人人做人人爽| 精品国产乱子伦一区二区三区| 黄色视频,在线免费观看| 色老头精品视频在线观看| 国产亚洲av嫩草精品影院| 国产精品久久久久久亚洲av鲁大| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 日韩高清综合在线| 亚洲精品在线观看二区| 欧美国产日韩亚洲一区| 国产精品日韩av在线免费观看| 少妇熟女aⅴ在线视频| 国产精华一区二区三区| 国产野战对白在线观看| 制服人妻中文乱码| 亚洲性夜色夜夜综合| 国产精品免费视频内射| 热99re8久久精品国产| 亚洲国产看品久久| 怎么达到女性高潮| а√天堂www在线а√下载| 久久精品91蜜桃| 国产视频内射| 少妇被粗大的猛进出69影院| 久久 成人 亚洲| 欧美zozozo另类| 黄色 视频免费看| 久久草成人影院| 国产精品,欧美在线| 中文字幕高清在线视频| 亚洲五月天丁香| 一区二区三区激情视频| 欧美丝袜亚洲另类 | 天天躁夜夜躁狠狠躁躁| 午夜福利成人在线免费观看| 变态另类丝袜制服| 美女国产高潮福利片在线看| 欧美色视频一区免费| 精华霜和精华液先用哪个| xxx96com| 国产黄色小视频在线观看| 动漫黄色视频在线观看| 久久精品国产99精品国产亚洲性色| 久久中文看片网| 国产亚洲精品一区二区www| 18禁裸乳无遮挡免费网站照片 | 最近在线观看免费完整版| 亚洲自拍偷在线| 日本一本二区三区精品| 黄频高清免费视频| 身体一侧抽搐| 欧美日韩亚洲国产一区二区在线观看| 国产黄a三级三级三级人| 亚洲午夜精品一区,二区,三区| 一级作爱视频免费观看| 日韩精品免费视频一区二区三区| 99精品在免费线老司机午夜| 亚洲av熟女| 麻豆久久精品国产亚洲av| 狂野欧美激情性xxxx| 波多野结衣高清作品| 在线十欧美十亚洲十日本专区| 欧美乱妇无乱码| 欧美av亚洲av综合av国产av| 看免费av毛片| 啪啪无遮挡十八禁网站| 此物有八面人人有两片| 91大片在线观看| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 婷婷丁香在线五月| 国产一区二区激情短视频| 婷婷亚洲欧美| 久99久视频精品免费| 两个人免费观看高清视频| 9191精品国产免费久久| 日韩大码丰满熟妇| 亚洲国产毛片av蜜桃av| 欧美最黄视频在线播放免费| 亚洲黑人精品在线| 久久久久久九九精品二区国产 | 久热爱精品视频在线9| 亚洲欧美激情综合另类| 亚洲男人天堂网一区| 亚洲国产日韩欧美精品在线观看 | 亚洲精品国产区一区二| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲欧美在线一区二区| 又紧又爽又黄一区二区| 成人国语在线视频| 99在线人妻在线中文字幕| 国产乱人伦免费视频| 精品无人区乱码1区二区| 亚洲第一青青草原| 在线十欧美十亚洲十日本专区| 操出白浆在线播放| 久久99热这里只有精品18| 国产熟女xx| 成人手机av| 男人舔女人下体高潮全视频| 亚洲国产欧美网| 给我免费播放毛片高清在线观看| 午夜福利欧美成人| 亚洲av片天天在线观看| 两性夫妻黄色片| 一区福利在线观看| 真人做人爱边吃奶动态| 欧美成人一区二区免费高清观看 | 日本免费一区二区三区高清不卡| 亚洲avbb在线观看| 亚洲狠狠婷婷综合久久图片| 国产午夜福利久久久久久| 精品久久久久久成人av| 黄色视频,在线免费观看| 久久婷婷成人综合色麻豆| 亚洲avbb在线观看| 成在线人永久免费视频| 熟女电影av网| 少妇的丰满在线观看| 国产精品一区二区三区四区久久 | 久久人妻福利社区极品人妻图片| 不卡一级毛片| 久久伊人香网站| 国产伦人伦偷精品视频| 精品久久久久久久久久久久久 | 91老司机精品| 成人午夜高清在线视频 | 校园春色视频在线观看| 黑丝袜美女国产一区| 国产一级毛片七仙女欲春2 |