• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Subspace Identification for Closed-Loop Systems With Unknown Deterministic Disturbances

    2023-12-22 11:06:48KuanLiHaoLuoSeniorYuchenJiangDejiaTangandHongyanYang
    IEEE/CAA Journal of Automatica Sinica 2023年12期

    Kuan Li,,, Hao Luo, Senior,, Yuchen Jiang,,,Dejia Tang, and Hongyan Yang,,

    Abstract—This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances, two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification, CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition, a proper Bernstein polynomial order can be determined using the Akaike information criterion (AIC) or the Bayesian information criterion (BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.

    I.INTRODUCTION

    SYSTEM identification has been widely investigated over the past several decades, which serves as an important tool for monitoring and control purpose [1]–[6].In particular, subspace identification methods (SIMs) can be advantageous over the identification of the state-space model using the process data available, which has been demonstrated to be quite useful for the identification of multivariate systems.Recently,many achievements have been made regarding complex systems and conditions on the subspace identification.In [7],subspace identification for structured state-space models is proposed with the user-defined linear or polynomial parameterization structure.In [8], a unified subspace identification framework for linear parameter-varying (LPV) systems is established in innovation form, which gives an in-depth view on the LPV subspace identification problem.In [9], subspace identification for large-scale interconnected systems with heterogeneous network is investigated with no constrains on the sparse interconnection.

    In practice, most industrial processes are required to be operated in practice under closed-loop conditions due to the concern for system safety and product quality.In some cases,the process cannot be separated for open-loop identification tests, for instance, the process needs to be stabilized for bounded outputs or requires online identification.This motivates the subspace identification work for closed-loop systems using the available process data.The main challenge is to deal with the inherited correlation between the control inputs and noise under the feedback control in order to get unbiased estimation results [10].Until now, many various methods have been developed for closed-loop subspace identification, such as innovation estimation method (IEM) [11],predictor-based subspace identification (PBSID) [12], closedloop subspace identification method via principal component analysis (CSIMPCA) [13] and nuclear norm subspace identification method (N2SID) [14].In addition, a novel closed-loop identification method called CCF-N4SID was recently proposed in [15] to integrate the prior knowledge of the controller into the subspace identification framework, based on which the closed-loop identification framework will be used in this work.

    On the other hand, practical industrial processes may suffer from various unknown deterministic disturbances, for instance, the flatness of the strip can be greatly influenced due to the roll eccentricities as a typical external unknown disturbance during the rolling process [16] and wind turbines can be prone to unknown periodic disturbances due to the air turbulence [17], [18].These unknown deterministic disturbances can lead to the biased or even totally incorrect identification results if they cannot be well handled.However, less attention has been paid to the in-depth investigation of subspace identification with unknown deterministic disturbances.A subspace identification method with deterministic disturbances is proposed in [19] based on the multiple-input-multiple-output error state-space model identification (MOESP) algorithm and it is derived under the assumption that disturbances can be parametrisable.The base space of the disturbances is not explicitly constructed though it is mentioned that a proper base space can be helpful to the subspace identification under the strong periodic disturbances.A biased-eliminated subspace identification method with constant load or periodic load is proposed in [20], [21] for the consistent estimation where the output responses are decomposed into the disturbed part and the undisturbed part.In addition, the above results have also been extended to the identification of the Hammerstein nonlinear system with periodic or slowly varying disturbances [22], [23].However, few studies have been dedicated to the subspace identification with aperiodic deterministic disturbances.

    In this paper, a closed-loop subspace identification method is proposed to deal with the unknown deterministic disturbances under standard feedback control.The influence of unknown deterministic disturbances can be alleviated via the projection onto the constructed row space, which can easily adapt to aperiodic deterministic disturbances with unknown frequencies using the row space constructed by Bernstein polynomials.The main contributions can be summarized as:

    1) The row space that can be used to approximately represent the unknown deterministic disturbances is respectively designed using the trigonometric functions and Bernstein polynomials.

    2) CCF-N4SID is extended to the closed-loop subspace identification with unknown deterministic disturbances using the oblique projection.

    3) A proper Bernstein polynomial order is determined to approximate the unknown deterministic disturbances via the Akaike information criterion (AIC) or Bayesian information criterion (BIC).

    The rest of the paper is organized as follows.Section II briefly introduces the preliminaries and formulates the problem.Section III presents the proposed closed-loop subspace identification algorithm with unknown deterministic disturbances.Section IV discusses the choice of the Bernstein polynomial order.Section V verifies the effectiveness of the proposed algorithm via the simulation study.Section VI concludes this work.

    II.PRELIMINARIES AND PROBLEM FORMULATION

    A. System Description

    Consider the following state space modelG(z) with periodic disturbances under the standard feedback control:

    Given the controllerK(z) in the form of the state space representation as

    wherexc(k)∈Rncdenotes the state vector of the controller,r(k)∈Rmdenotes the reference signal;Ac∈Rnc×nc,Bc∈Rnc×m,Cc∈Rl×ncandDc∈Rl×mare parameter matrices of the controller with appropriate dimensions.

    B. Definition and Lemma

    Definition 1 and Lemma 1 indicate that the deterministic disturbances in analytic form can be approximated by the Berstein polynomial, which serves as the foundation for the design of the row space that approximately represents the unknown deterministic disturbances in Section III-B.

    C. Problem Formulation

    In this paper, the identification problem is formulated as determining the matricesA,B,CandDfrom the processG(z)with the unmeasurable deterministic disturbances under the feedback control.The main focus is the solution to two key problems: 1) How to approximate the unknown deterministic disturbances in the subspace context.2) How to identify the process model with unknown deterministic disturbances under closed-loop conditions.

    To identify the process model, several assumptions have to be made:

    Assumption 1: The standard feedback control loop is wellposed and internally stabilized by the controller.

    Assumption 2:G(z) is minimal, i.e., the pair (A,C) is observable and the pair (A,B) is reachable.

    Assumption 3: The reference {r(k)} is an ergodic, quasi-stationary random process and can be persistently exciting of any order.

    Assumption 4: {w(k)} and {v(k)} are assumed to be zeromean white noise sequences and independent of the reference{r(k)}with covariance matrix

    and

    where E {·} denotes the expectation operator, σ2wand σ2vdenote the variances of the process noise and measurement noise,respectively;δdenotes the Dirac function.

    III.CLOSED-LOOP SUBSPACE IDENTIFICATION WITH UNkNOwN DETERMINISTIC DISTURBANCES

    A. Data Equation

    Define the stacked vectorsus,kwith lengthsas follows:

    By arranging the stacked vectors at different instants, define

    whereNis a large integer,ys,kandds,khave the same structure asus,k.

    To split the data into past and future horizons, define

    wherespandsfdenote the past horizon and the future horizon, respectively.

    Iterating on (1), it leads to

    where Φfdenotes the noise term, which can refer to [15] for details.Γf,Hu,f, andHd,fare

    Consider the predictor model of (1) as follows:

    whereKis the Kalman filter gain matrix,AK=A-KC,BK=B-KD,EK=Ed-KFd.

    B. Dealing With Unknown Deterministic Disturbances

    1)Dealing With Deterministic Disturbances With Known Frequencies: Assume that the deterministic disturbances that can be approximately described by the superposition of finite number of sine functions as follows:

    wheredi(k) denotes theith scalar consisting of the disturbance vector,miis the number of distinct frequencies,i=1,2,...,nd.ai,0is the bias ofdi(k).aj, ωjand φjdenote the amplitude, frequency and phase forjth sine components,respectively.

    Based on the triangle identity, we have

    where βi,j,1=ai,jcos(φi,j), βi,j,2=ai,jsin(φi,j).

    According to (22), (21) can be reformulated as

    where

    Therefore, we have

    Note that

    it follows that:

    Based on (28), it leads to

    According to (29),ds,kcan be represented in the compact form as follows:

    and

    Remark 1: Note thatDb,triis constructed by the trigonometric functions with distinct frequency components.In some cases, the disturbance frequencies can be estimated using the fast fourier transformation (FFT) or other related signal processing techniques.In addition, the calculation of ωi,jkis needed to constructDb,triand it can observed that the frequency estimation error may lead to the deviation ofDb,triespecially whenNis large.Therefore, an empirical suggestion is that the sampling frequencyfshould satisfy≥1.

    2)Dealing With Deterministic Disturbances With Unknown Frequencies: In practice, the frequency estimation of the deterministic disturbance can be inaccurate, and it is even impossible to estimate the frequency components of the deterministic disturbance in some cases.In the following, the focus will be on how to approximately describe the row space where the deterministic disturbances belong to when disturbances frequencies are unavailable.

    The underlying idea is to approximate the trigonometric function inDb,tribased on the Bernstein polynomial and try to construct the row space that only contains the time sequences,which can be used to address the aperiodic deterministic disturbances as well.

    where the entries in therth row andcth column ofQi,jcan be given as

    Therefore, we have

    Consider the property of the Bernstein basis, i.e.,

    and based on (38), it leads to

    C. Closed-Loop Subspace Identification

    For closed-loop subspace identification, the CCF-N4SID algorithm is extended to the case with unknown deterministic disturbances.

    Note that (20) can be rewritten as

    Given the left coprime factorization ofK(z) as

    Define the instrumental variableMf[15],

    where

    The following Theorem 1 gives a feasible solution to the estimation on the extended observability matrix for closedloop systems with unknown deterministic disturbances.

    Theorem 1: For a sufficiently largeN, under the assumption

    The proposed closed-loop subspace identification method with unknown deterministic disturbances is summarized in Algorithm 1.

    IV.DISCUSSION ON THE BERNSTEIN POLYNOMIAL ORDER

    Based on the information entropy theory, the Akaike information criterion (AIC) is widely used to deal with the tradeoff between the model complexity and the model fitting goodness.The purpose is to determine a model that can well interpret the data with the least parameters.Therefore, the following AIC indicators can be helpful to determine the proper order of the Bernstein polynomial:

    Algorithm 1 Closed-loop subspace identification with unknown deterministic disturbances Input: ,.Output: A, B, C and D.sp sf UpUfYp Yf u(k)y(k)S1: Set , and N, construct Hankel matrices , and according to (12).S2: Construct the row space that approximates the unknown deterministic disturbances as follows,Db a) When frequencies of deterministic disturbances are known, construct as ,Db,tri Db b) When frequencies of deterministic disturbances are unknown,construct as.K(z) ?Vc(z)?Uc(z)Db,bern Db S3: Do left coprime factorization on , obtain and ,construct and according to (45) and (46).Mf =Kc Kcv,f Kcu,f v,f Uf +Kcu,f Yf S4: Construct the instrumental variable.Γf ?Xk,N Hu,f S5: Do LQ factorization as (47), obtain and.S6: Identify the matrices A, B, C and D.

    Therefore, an appropriate order of the Bernstein polynomial should satisfy

    Note that the penalty coefficient of model parameter numbers is set to be 2 for AIC.To avoid the overfitting, the penalty coefficient of model parameter numbers can be properly increased.As a special case, when the penalty coefficient is set to beln(N), it leads to the Bayesian information criterion (BIC), i.e.,

    In terms of performance indicators, it is suggested that AIC and BIC can be both analyzed for performance evaluation to determine a proper Bernstein polynomial order in most cases.

    V.SIMULATION STUDY

    Consider a linear invariant systemG(z), the parameter matrices are given as

    The controllerK(z) can be designed arbitrarily such that the system is stabilized.

    During the simulation, the noise powers of two reference signals are set to bePn=0.2 andPn=0.3, respectively.The noise powers ofw(k) andv(k) are both set to bePn=0.0002.The sampling time is set to bets=0.002 s.The parameter settings areN=5000,sp=30 andsf=8, respectively.

    Assume that there exists a deterministic disturbance in the closed-loop system with five distinct frequencies as follows:

    where the amplitudea1,jand the frequency ω1,jcan be referred to Table I for simulation settings.

    TABLE I PARAMETERS OF DETERMINISTIC DISTURBANCE

    To verify the effectiveness of the proposed algorithm for closed-loop identification with unknown deterministic disturbances, Fig.1 compares the method in [15] while ignoring the deterministic disturbance (i.e., CCF-N4SID), the proposed algorithm usingDb,tri(i.e., CCF-N4SID-D1) and the proposed algorithm usingDb,bern(i.e., CCF-N4SID-D2) withnb=8 andnb=9.

    From Fig.1, it can be observed that CCF-N4SID delivers the wrong pole estimation results due to the fact that it is directly implemented while ignoring the influence of the unknown deterministic disturbances, which implies that the dynamics of the identified model cannot be consistent with the real one.In contrast, the proposed algorithm usingDb,triorDb,berncan both obtain a relatively reliable pole estimation.It should be mentioned that the pole estimation results are less accurate with obviously biased estimation for poles located on the left half of the unit circle whennb=8.However, the pole estimation performance improves a lot whennb=9, which is competitive to the pole estimation results via the proposed algorithm usingDb,tri.Note that the discussion above in fact indicates the importance of the proper choice of the Bernstein polynomial order.

    To determine the proper Bernstein polynomial order, AIC and BIC are respectively tested as shown in Fig.2, from which it can be observed that the AIC curve and BIC curve both reach the minimum whennb=9 with the range for the integernb∈[1,12].In addition, the two curves begin to climb up with the increase ofnbdue to the possible overfitting and the BIC curve shows more obvious increasing trend whennb>9due to the larger penalty coefficient of model parameter numbers.The above analysis implies thatnb=9 can be indeed a proper choice for the construction ofDb,bern.

    In addition, Fig.3 compares the estimation error of Markov parametersCAiBunder different Bernstein polynomial ordersnb.The evaluation indicator for the estimation error ofCAiBis

    Fig.1.Comparison of pole estimation with deterministic disturbance ( sp=30, sf =8).

    Fig.2.The determination of the Bernstein polynomial order.

    given as follows:

    where //·//Fdenotes the Frobenius norm.Note that the logarithm function is used to magnify the estimation error for better visualization.

    From Fig.3, it can be observed that the estimation error ofCAiBgradually decreases with the increase ofnbuntil it reaches the minimum whennb=9.Note that the estimation error shows a slight increase whennb=10 compared with the result whennb=9, which again verifies the reasonability of the choice of the Bernstein polynomial order using AIC or BIC.

    Fig.4 shows the structure of the identifiedHu,fwhennb=9.In Fig.4, the light color means that the entries in the identifiedHu,fare close to 0.Therefore, it can be observed that the identifiedHu,fholds the lower triangular Topelitz structure well though no extra structural constraints are applied, which verifies the effectiveness of the proposed algorithm.

    Table II shows the comparison of identification performance in case of different disturbance types including constant, signal in (56), ramp and chirp signals, which involves the periodic and aperiodic signals during the test.The disturbance types in the above four cases are described as

    Fig.3.Comparison of the estimation error ofCAiB under different n b.

    Fig.4.The structural properties of the identified H u,f (n b=9).

    Case 1(Periodic): The deterministic disturbance is a constant signal with

    Case 2(Periodic): The deterministic disturbance is the superposition of five distinct frequencies as in (56), i.e.,

    Case 3(Aperiodic): The deterministic disturbance is a ramp signal with the slope 0.2/s, i.e.,

    Case 4(Aperiodic): The deterministic disturbance is a chirp signal varying from 0.1 Hz to 20 Hz in 100 s with amplitude 1, i.e.,

    wheref(kts)=0.1+0.199kts.

    To quantify the accuracy of estimated poles, the indicatorErrpole,iis defined as the error between the true poles and the average of estimated poles,

    where λiand λidenote theith true pole and the average ofith estimated poles, respectively.

    In addition, the determined Bernstein polynomial order via AIC and BIC is shown in Table II.It should be noted that the constant signal can be described by a row vector with all elements being 1, i.e., the polynomial order is zero, and the ramp signal is linear that can be described by the first-order polynomial.

    From Table II, it can be observed that CCF-N4SID delivers the wrong estimation of the poles and Markov parameterE7with quite large errors for all four disturbance types.However,CCF-N4SID-1 and CCF-N4SID-2 can deliver the correct identification performance with a small estimation error of the poles andE7, which demonstrates the effectiveness of the proposed identification methods for both periodic and aperiodic deterministic disturbances.

    VI.CONCLUSION

    In this paper, a subspace identification method is proposed for closed-loop systems with unknown deterministic disturbances in order to improve the estimation performance.To overcome the influence of the unknown deterministic disturbances, the row space that can be used to approximately represent the unknown deterministic disturbances is constructed using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known,which can be used to address the aperiodic deterministic disturbances.CCF-N4SID is then extended to the subspace identification with unknown deterministic disturbances using the oblique projection under feedback control.Moreover, the Bernstein polynomial order can be properly determined using AIC or BIC.The numerical example demonstrates that the proposed method can effectively alleviate the influence of the deterministic disturbances with reliable identification results.

    The LQ factorization in (47) can be interpreted by decomposingYfinto the following four parts [25]:

    APPENDIx PROOF OF THEOREM 1

    TABLE IICOMPARISON OF IDENTIFICATION PERFORMANCE IN CASE OF DIFFERENT DISTURBANCE TYPES

    where

    In addition, (60) can be rewritten as

    Recall that

    Comparing (62) with (63), we have

    Substituting (64) into (61), it leads to

    Therefore, whensp→∞, we have

    and

    狠狠精品人妻久久久久久综合| 天堂俺去俺来也www色官网 | 高清日韩中文字幕在线| 亚洲第一区二区三区不卡| 午夜免费观看性视频| 免费看av在线观看网站| 成人无遮挡网站| 国国产精品蜜臀av免费| 日韩伦理黄色片| 欧美精品一区二区大全| 亚洲在久久综合| 国产精品麻豆人妻色哟哟久久 | 全区人妻精品视频| 黄色欧美视频在线观看| a级毛色黄片| 久久国内精品自在自线图片| 久久综合国产亚洲精品| 亚州av有码| 亚洲精品自拍成人| 美女脱内裤让男人舔精品视频| 成人综合一区亚洲| 日本黄色片子视频| 精品久久久精品久久久| 日韩av免费高清视频| 精品国产三级普通话版| 精品国产露脸久久av麻豆 | 国产精品一区二区在线观看99 | 欧美三级亚洲精品| 国产伦一二天堂av在线观看| 国产在线一区二区三区精| 熟妇人妻不卡中文字幕| 国产单亲对白刺激| 中文字幕制服av| 男人和女人高潮做爰伦理| 国产黄片视频在线免费观看| 亚洲av成人av| 黄片wwwwww| 91午夜精品亚洲一区二区三区| 看十八女毛片水多多多| 秋霞伦理黄片| 免费黄频网站在线观看国产| 好男人在线观看高清免费视频| 久久久久久久久久黄片| 久久精品人妻少妇| 国产伦理片在线播放av一区| 精品99又大又爽又粗少妇毛片| 两个人视频免费观看高清| 久久这里只有精品中国| 一个人看的www免费观看视频| 中文在线观看免费www的网站| 中文乱码字字幕精品一区二区三区 | 大陆偷拍与自拍| 久久精品熟女亚洲av麻豆精品 | 国产精品麻豆人妻色哟哟久久 | 国产毛片a区久久久久| 亚洲天堂国产精品一区在线| 男人爽女人下面视频在线观看| 日韩强制内射视频| 婷婷色综合大香蕉| 日韩欧美一区视频在线观看 | 日本欧美国产在线视频| 搡老妇女老女人老熟妇| 综合色丁香网| 校园人妻丝袜中文字幕| 亚洲精品国产成人久久av| 国产国拍精品亚洲av在线观看| 亚洲伊人久久精品综合| 青青草视频在线视频观看| 免费无遮挡裸体视频| 亚洲国产欧美人成| 免费av不卡在线播放| av在线天堂中文字幕| videossex国产| 免费看av在线观看网站| 日韩电影二区| 一级毛片黄色毛片免费观看视频| 亚洲精品成人久久久久久| 淫秽高清视频在线观看| 五月天丁香电影| av黄色大香蕉| av在线蜜桃| 国产伦精品一区二区三区视频9| 亚洲18禁久久av| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 少妇高潮的动态图| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 国产老妇女一区| 男女下面进入的视频免费午夜| a级毛片免费高清观看在线播放| 久久国内精品自在自线图片| 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 久久久久精品久久久久真实原创| 视频中文字幕在线观看| 99热全是精品| 日韩国内少妇激情av| 亚洲熟女精品中文字幕| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 亚洲最大成人中文| 免费观看在线日韩| 亚洲av不卡在线观看| 少妇的逼好多水| 网址你懂的国产日韩在线| 中国国产av一级| 日韩人妻高清精品专区| 久久精品国产亚洲av天美| 久久人人爽人人片av| 精品久久久久久久人妻蜜臀av| av网站免费在线观看视频 | 日韩国内少妇激情av| 免费观看无遮挡的男女| 国产精品一区二区性色av| 国产黄色视频一区二区在线观看| 色综合亚洲欧美另类图片| av在线蜜桃| 内射极品少妇av片p| 黄色欧美视频在线观看| 少妇人妻精品综合一区二区| 男插女下体视频免费在线播放| 最近视频中文字幕2019在线8| 最新中文字幕久久久久| 91午夜精品亚洲一区二区三区| 国产探花极品一区二区| 99久久精品热视频| 五月天丁香电影| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| 一级a做视频免费观看| 午夜爱爱视频在线播放| 日韩成人伦理影院| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| 午夜久久久久精精品| 欧美三级亚洲精品| 舔av片在线| 91精品国产九色| 人人妻人人澡人人爽人人夜夜 | 最近手机中文字幕大全| 狂野欧美激情性xxxx在线观看| h日本视频在线播放| 全区人妻精品视频| 国产精品国产三级专区第一集| 精品国产一区二区三区久久久樱花 | 亚洲精品日本国产第一区| 在线 av 中文字幕| 午夜精品国产一区二区电影 | 久久精品久久久久久久性| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 美女被艹到高潮喷水动态| 国产精品99久久久久久久久| 少妇的逼水好多| 国产久久久一区二区三区| 乱码一卡2卡4卡精品| 日韩在线高清观看一区二区三区| 久久久久国产网址| 肉色欧美久久久久久久蜜桃 | 国产69精品久久久久777片| 亚洲高清免费不卡视频| 久久久精品欧美日韩精品| 男女边吃奶边做爰视频| 久久久午夜欧美精品| 精品久久久久久久人妻蜜臀av| 亚洲人成网站在线播| 久久久久精品性色| 日日摸夜夜添夜夜爱| av一本久久久久| 国产高清国产精品国产三级 | 久久久精品免费免费高清| 欧美97在线视频| 国产欧美日韩精品一区二区| 夜夜爽夜夜爽视频| 夜夜爽夜夜爽视频| av播播在线观看一区| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 欧美日韩精品成人综合77777| 一区二区三区乱码不卡18| 国产一区有黄有色的免费视频 | 日本一二三区视频观看| 精品少妇黑人巨大在线播放| 国产成人精品婷婷| 熟妇人妻不卡中文字幕| 国产乱人视频| 18禁在线无遮挡免费观看视频| 一级爰片在线观看| 91av网一区二区| 亚洲精品国产av成人精品| 日韩一区二区视频免费看| 久久国产乱子免费精品| 成年人午夜在线观看视频 | 日韩av免费高清视频| 国产精品一二三区在线看| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 国产视频内射| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 亚洲国产精品专区欧美| 国产亚洲一区二区精品| 午夜福利在线观看免费完整高清在| 狂野欧美激情性xxxx在线观看| 亚洲久久久久久中文字幕| 国产老妇女一区| 两个人的视频大全免费| 少妇高潮的动态图| 伦精品一区二区三区| 午夜视频国产福利| 女的被弄到高潮叫床怎么办| 大片免费播放器 马上看| 成人特级av手机在线观看| 搡女人真爽免费视频火全软件| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 亚洲最大成人av| 禁无遮挡网站| 好男人在线观看高清免费视频| 欧美日韩国产mv在线观看视频 | 能在线免费看毛片的网站| 搡老乐熟女国产| 最近中文字幕高清免费大全6| 午夜福利视频1000在线观看| 午夜激情福利司机影院| 国产精品蜜桃在线观看| 黄色欧美视频在线观看| 国产精品一区二区三区四区免费观看| 国产高潮美女av| 精品国产三级普通话版| 听说在线观看完整版免费高清| 韩国av在线不卡| av在线亚洲专区| 日本与韩国留学比较| 一夜夜www| 黄色欧美视频在线观看| 一级毛片 在线播放| 人妻少妇偷人精品九色| 免费看不卡的av| freevideosex欧美| 亚洲自偷自拍三级| 精品久久久久久久末码| 精品久久久久久成人av| 在线a可以看的网站| 爱豆传媒免费全集在线观看| 国产在视频线精品| 国产免费又黄又爽又色| 国产精品综合久久久久久久免费| 国产亚洲午夜精品一区二区久久 | 久热久热在线精品观看| 免费无遮挡裸体视频| 久久久久久久久久黄片| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 国产黄色免费在线视频| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 日韩成人伦理影院| 床上黄色一级片| 国产在线一区二区三区精| 亚洲精品自拍成人| 日韩亚洲欧美综合| 熟女电影av网| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 精品亚洲乱码少妇综合久久| 3wmmmm亚洲av在线观看| 国产乱来视频区| 成人毛片60女人毛片免费| 亚洲国产精品成人综合色| kizo精华| 欧美精品国产亚洲| 亚洲在线观看片| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 2022亚洲国产成人精品| 久99久视频精品免费| 特级一级黄色大片| 99久久精品热视频| 成人av在线播放网站| 欧美成人精品欧美一级黄| 久久精品国产亚洲av天美| 身体一侧抽搐| 成人漫画全彩无遮挡| 国产在视频线在精品| 婷婷色麻豆天堂久久| 18禁裸乳无遮挡免费网站照片| 赤兔流量卡办理| 免费播放大片免费观看视频在线观看| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 丰满乱子伦码专区| 成人亚洲精品av一区二区| 亚洲欧美精品自产自拍| 青青草视频在线视频观看| 老女人水多毛片| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 少妇的逼水好多| 亚洲一级一片aⅴ在线观看| 久久精品夜色国产| 免费大片黄手机在线观看| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 蜜桃久久精品国产亚洲av| 免费观看av网站的网址| 国精品久久久久久国模美| 国产日韩欧美在线精品| 日韩精品青青久久久久久| 久久久久久久久久久免费av| 我的女老师完整版在线观看| 天堂影院成人在线观看| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 欧美bdsm另类| 女的被弄到高潮叫床怎么办| 久久精品久久久久久噜噜老黄| 色视频www国产| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 全区人妻精品视频| 国内精品宾馆在线| 亚洲第一区二区三区不卡| videossex国产| 亚洲色图av天堂| 久久99热这里只频精品6学生| 少妇的逼水好多| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 国产精品国产三级国产av玫瑰| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 少妇熟女欧美另类| 中文字幕av成人在线电影| 亚洲欧美中文字幕日韩二区| 亚洲精品aⅴ在线观看| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花 | a级毛色黄片| 日韩,欧美,国产一区二区三区| 久久久久久久久久久免费av| 少妇丰满av| 午夜免费激情av| kizo精华| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 免费看不卡的av| 高清日韩中文字幕在线| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜 | 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 国产一区二区亚洲精品在线观看| 中文字幕亚洲精品专区| 麻豆久久精品国产亚洲av| 国产黄片视频在线免费观看| 亚洲在线自拍视频| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区 | 在线观看av片永久免费下载| 亚洲国产最新在线播放| 特级一级黄色大片| 亚洲最大成人av| 夜夜爽夜夜爽视频| 精品久久久久久电影网| 国产精品蜜桃在线观看| 婷婷六月久久综合丁香| 免费黄频网站在线观看国产| 国产一区亚洲一区在线观看| 美女被艹到高潮喷水动态| 国产精品三级大全| 久久久久久久久中文| 久久久精品欧美日韩精品| 日韩成人伦理影院| 两个人视频免费观看高清| 人妻制服诱惑在线中文字幕| 久久午夜福利片| h日本视频在线播放| 国模一区二区三区四区视频| 欧美三级亚洲精品| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 一级毛片 在线播放| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 免费看不卡的av| 欧美一区二区亚洲| 九草在线视频观看| 亚洲va在线va天堂va国产| 国产熟女欧美一区二区| 成人性生交大片免费视频hd| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 日本wwww免费看| 国产综合懂色| 精品久久国产蜜桃| 亚洲,欧美,日韩| av在线播放精品| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| 国产免费福利视频在线观看| 国产成人aa在线观看| av在线观看视频网站免费| 免费看日本二区| 又大又黄又爽视频免费| 国产大屁股一区二区在线视频| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品 | 一级黄片播放器| 国产黄色视频一区二区在线观看| 亚洲精华国产精华液的使用体验| 久久久久久久久久黄片| 亚洲av电影不卡..在线观看| 成人毛片60女人毛片免费| 一个人观看的视频www高清免费观看| 精品久久久噜噜| 日韩精品有码人妻一区| 国产精品国产三级国产专区5o| 成人毛片60女人毛片免费| 欧美日韩国产mv在线观看视频 | av在线播放精品| 国产伦理片在线播放av一区| xxx大片免费视频| 国产乱人偷精品视频| 国内揄拍国产精品人妻在线| 国产69精品久久久久777片| 日韩人妻高清精品专区| 在线 av 中文字幕| 亚洲电影在线观看av| 六月丁香七月| 亚洲无线观看免费| 国国产精品蜜臀av免费| 国产探花在线观看一区二区| 国产成年人精品一区二区| 丝瓜视频免费看黄片| 91av网一区二区| 亚洲精品一区蜜桃| 国产成人福利小说| 搞女人的毛片| 97热精品久久久久久| 日本黄大片高清| 久久精品国产亚洲网站| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 岛国毛片在线播放| 国产一区二区亚洲精品在线观看| 国产在视频线在精品| 亚洲精品成人久久久久久| 亚洲精品第二区| 成人毛片a级毛片在线播放| 欧美成人一区二区免费高清观看| 久久久久国产网址| 欧美一区二区亚洲| 久久久欧美国产精品| 国产成年人精品一区二区| 高清在线视频一区二区三区| 精品国产三级普通话版| 亚洲成人一二三区av| 2022亚洲国产成人精品| 国产精品美女特级片免费视频播放器| 全区人妻精品视频| 一区二区三区免费毛片| 精品酒店卫生间| 亚洲欧美日韩卡通动漫| 99re6热这里在线精品视频| 欧美另类一区| 亚洲三级黄色毛片| 777米奇影视久久| videos熟女内射| 九九久久精品国产亚洲av麻豆| 中文字幕亚洲精品专区| 五月玫瑰六月丁香| 成人综合一区亚洲| 一夜夜www| 国产有黄有色有爽视频| 人妻系列 视频| 婷婷六月久久综合丁香| 国产激情偷乱视频一区二区| 亚洲欧美日韩卡通动漫| 国产精品一区二区性色av| 日本黄色片子视频| 七月丁香在线播放| 国产精品不卡视频一区二区| 亚洲精品影视一区二区三区av| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 国内揄拍国产精品人妻在线| 亚洲丝袜综合中文字幕| 国精品久久久久久国模美| 国产高清不卡午夜福利| 一级毛片我不卡| 极品少妇高潮喷水抽搐| 欧美+日韩+精品| 国产亚洲午夜精品一区二区久久 | 嘟嘟电影网在线观看| 免费观看a级毛片全部| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 中文天堂在线官网| av女优亚洲男人天堂| 成人毛片a级毛片在线播放| 久久精品夜色国产| 亚洲乱码一区二区免费版| 如何舔出高潮| 日韩不卡一区二区三区视频在线| 久久草成人影院| 亚洲欧美日韩无卡精品| 国产亚洲一区二区精品| 国产精品福利在线免费观看| 国产精品一二三区在线看| 人人妻人人澡欧美一区二区| 成人二区视频| 婷婷色综合大香蕉| 狠狠精品人妻久久久久久综合| 99久久精品热视频| 中文在线观看免费www的网站| 在线免费观看的www视频| 男女那种视频在线观看| 精品午夜福利在线看| 国产成人a区在线观看| 亚洲国产欧美在线一区| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 97超碰精品成人国产| 乱人视频在线观看| 免费看光身美女| 天天躁日日操中文字幕| 大陆偷拍与自拍| 亚洲欧美清纯卡通| 天堂中文最新版在线下载 | 亚洲av电影在线观看一区二区三区 | 青春草国产在线视频| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 日韩不卡一区二区三区视频在线| 中文在线观看免费www的网站| 国产亚洲91精品色在线| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 一个人看的www免费观看视频| 97热精品久久久久久| 天天躁夜夜躁狠狠久久av| 直男gayav资源| 国产视频首页在线观看| 高清午夜精品一区二区三区| 国产精品伦人一区二区| 国产黄a三级三级三级人| 成人亚洲精品一区在线观看 | 青青草视频在线视频观看| 寂寞人妻少妇视频99o| 女的被弄到高潮叫床怎么办| 97在线视频观看| 精品国产一区二区三区久久久樱花 | 又大又黄又爽视频免费| 亚洲人成网站在线观看播放| 一级毛片我不卡| 日韩欧美精品v在线| 免费观看精品视频网站| 性插视频无遮挡在线免费观看| 久久久午夜欧美精品| 真实男女啪啪啪动态图| 久久97久久精品| 亚洲精品乱码久久久久久按摩| 亚洲天堂国产精品一区在线| 搡老妇女老女人老熟妇| 国产永久视频网站| 国产在线一区二区三区精| 免费看美女性在线毛片视频| 我的老师免费观看完整版| 久久久久久久国产电影| 噜噜噜噜噜久久久久久91| 你懂的网址亚洲精品在线观看| 干丝袜人妻中文字幕| 九色成人免费人妻av| 黄色日韩在线| 久久久久性生活片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.av在线官网国产| 国产人妻一区二区三区在| 色综合亚洲欧美另类图片| 欧美+日韩+精品| 能在线免费观看的黄片| 99热网站在线观看| 伊人久久精品亚洲午夜| 久久精品夜色国产| 亚洲精品色激情综合| 看免费成人av毛片| 国产麻豆成人av免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av福利片在线观看| 亚洲成人一二三区av| 久久精品综合一区二区三区| 九九在线视频观看精品| 中文字幕亚洲精品专区| 久久久精品欧美日韩精品| 麻豆久久精品国产亚洲av| 久久精品国产鲁丝片午夜精品| 天美传媒精品一区二区| 男女啪啪激烈高潮av片| 在线观看人妻少妇| 91久久精品国产一区二区成人| 国产极品天堂在线|