• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reconfigurable Mott electronics for homogeneous neuromorphic platform

    2023-12-15 11:48:26ZhenYang楊振YingMingLu路英明andYuChaoYang楊玉超
    Chinese Physics B 2023年12期
    關鍵詞:英明

    Zhen Yang(楊振), Ying-Ming Lu(路英明), and Yu-Chao Yang(楊玉超),2,3,4,?

    1Beijing Advanced Innovation Center for Integrated Circuit,School of Integrated Circuits,Peking University,Beijing 100871,China

    2School of Electronic and Computer Engineering,Peking University,Shenzhen 518055,China

    3Center for Brain Inspired Chips,Institute for Artificial Intelligence,Frontiers Science Center for Nano-optoelectronics,Peking University,Beijing 100871,China

    4Center for Brain Inspired Intelligence,Chinese Institute for Brain Research(CIBR),Beijing 102206,China

    Keywords: Mott electronics,reconfigurable,neuromorphic computing,VO2

    1.Introduction

    With the rapid developments of deep learning (DL),[1-3]the conventional hardware systems based on the CMOS circuits and von Neumann architecture suffered from severe delay and huge energy costs, especially when processing more huge volume of data.[4-7]To solve the problems, researchers start to learn from the human brain, which is better at processing complex cognitive issues with tiny energy costs.[8-10]These new computing paradigms are referred to as neuromorphic computing.[11,12]For instance, one important feature of computing in the brain is the integration of storage and processing, and lots of research has been devoted to constructing crossbar arrays based on emerging nonvolatile memories,which aim to accelerate multiplyaccumulate operations that dominated mostly in DL.[13-16]

    The mostly studied artificial neural network (ANN) is a high level of abstraction of real neural networks in the human brain.To fully tap the potential of the brain, an SNN model was proposed,which has more similar structures to the brain than that of ANN.[17-20]Recently, there was some related hardware-accelertation of SNN or ANN.[21-27]The most obvious advantage of SNN is the ultra-low energy cost for the event-triggered characteristic.In the hardware implementation of SNN,the main components,synapses and neurons,are usually based on different materials and structures.The differenthardware based units will constrain the extension of network structures and functions.[28]Recently, there were some studies about reconfigurable neuromorphic devices for adaptive computing.[29-32]Through the same material system,the fabrication process of the neuromorphic systems can also be simplified.However,research on developing reconfigurable neuromorphic units for SNN is still scarce, and most of the existing approaches to reconfiguring still rely on extra electronic operations.[29,30]

    Based on the above background and challenge, we designed a novel reconfigurable Mott device,which mainly consists of a VO2channel and LiPON electrolyte.The mechanism of channel resistance switching was clarified by material characterization and DFT calculations.Under the different operation modes,the EC-VO2device could be configured as synapses and tunable LIF neurons, the reconfiguration between different roles does not require any extra operations.At last,image classification was successfully implemented on the reconfigurable-EC-VO2-based platform.

    2.Experimental detail

    The studied EC-VO2device was fabricated on the Al2O3substrates.Firstly,40 nm VO2films were epitaxially grown by pulsed-laser deposition (PLD) technique; after that, 5 nm Ti and 25 nm Au were deposited on VO2films through electronbeam evaporation, in which electron-beam lithography was used for patterning.Then, the second electron-beam lithography process was carried out to pattern the active region,180 nm LiPON and 20 nm SiOxwere sequentially deposited by magnetron sputtering.After the lift-off process, 10 nm Ti and 220 nm Au were deposited using electron-beam evaporation to form testing pads.Finally, the three-terminal ECVO2device was completed after the last lift-off process.All the electrical measurements were performed using an Agilent B1500A semiconductor parameter analyzer.

    Fig.2.Material characterization and DFT calculations of electrochemical doping.(a)Optical photograph of fabricated EC-VO2 device.(b)The cross-sectional TEM image of the active region in the EC-VO2 device, as indicated within the red box in panel (a).(c) Elemental mapping of different layers within the device through the red arrows in panel(b).(d)The initial conductance DC sweep of the EC-VO2 channel before LiPON deposition and after programming under positive gate voltages.(e)TOF-SIMS results of the EC-VO2 device after programming,in which the Li ions are intercalated into the VO2 layer.DFT calculations of the energy band structure of(f)pure M1 phase VO2 and(g)Li-doping VO2,which verifies the increase of electrical conductivity after ionic doping.

    3.Results and discussion

    The fabricated EC-VO2devices are shown in Fig.2(a),the gate pad is limited within the electrolyte region to avoid interferences with channel areas.The cross-sectional transmission electron microscope image of the device’s active region is presented in Fig.2(b),and the corresponding line scan of elemental mappings(Fig.2(c))verifies the material components.To form an amorphous LiPON fast ion conductor, we introduce nitrogen atoms into the initial lithium phosphate crystals,aiming to increase the reticular crosslinking structure.[32]To clarify the mechanisms of channel conductance modulation,material characterization with DFT calculation is employed to unveil that.As shown in Fig.2(d), the conductance of the programmed device increases 34 times more than the device without electrolyte capped,both active regions of devices are kept at 60 μm×60 μm.Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization (Fig.2(e)) of the programmed EC-VO2device demonstrates the intercalation of Li ions into the VO2lattice.Given the small volume of Li ions,the doping positions are most probably at the interstitial sites.[33]The two material models are constructed in Figs.2(f)and 2(g).In Fig.2(f), the energy band structure of pure M1 phase VO2indicates a 0.6 eV gap, however, after introducing Li ions,the vanish of the band gap illustrated the increase of the electrical conductivity (Fig.2(g)).According to previous related research,[26]the introduction of Li ions can help weaken the binding strength between V ions and O ions,which can increase the concentration of free V3delectrons and overall carriers in the material systems.

    3.1.Multi-tunable states for configuring as synapses

    By utilizing dynamic ionic doping,the reversible channel conductance modulation can be realized,which can be configured as synapses in neural networks to implement in-memory computing.Figure 3(a) shows the typical testing schematics,the modulation signal in the gate terminal can control the doping or dedoping of Li ions in the VO2channel.As demonstrated in Figs.3(b)and 3(c),under the positive(or negative)gate voltage sweep,the channel conductance will get increased(or decreased) with Li ions moved into (or extracted from)the channel.The long-term potentiation and depression under continuous gate pulses are performed in Fig.3(d), the multi states can be employed to accelerate the matrix-vector product through Ohm’s law and Kirchhoff’s law.The retention tests in Fig.3(e)indicate the nonvolatile state changes under ionic doping,which can help hardware systems store the neural network weights even after the blackout.To realize full-analog computing,the linearity of different states under small reading bias is also tested in Fig.3(f),further proving the feasibility of EC-VO2configured as synaptic devices.

    Fig.3.Electrical characteristics of EC-VO2 devices configured as synapses.(a) Typical testing schematics of synaptic properties, in which modulating signal is applied on the gate terminal and monitoring bias is applied on the drain terminal with source terminal grounded.The transfer curves of a(b)positive Vg sweep or(c)negative Vg sweep,with 0.1 V bias monitoring the channel conductance changes.(d)Long-term potentiation and depression under 50 pulses of 8 V and-5 V,whose widths are both set as 10 ms and monitoring read voltage is set at 0.1 V.(e) The retention performances of four distinguished states with a recording time of 600 s.(f) Linear-reading tests of 4-bit states for analog in-memory computation.

    3.2.Tunable threshold-switching (TS) properties for configuring as neurons

    There was plenty of research about utilizing VO2as LIF neurons,[34-36]so we can also change the role of EC-VO2from synapses to neurons.As shown in Fig.4(a),when testing ECVO2as neurons, the gate terminal and source terminal are both grounded, and the signals or connections with load resistors are placed at the drain terminal.Different from most of the previous two-terminal VO2devices, the third terminal can be used to modulate the channel resistances and further tune the TS behaviors.As demonstrated in Figs.4(b) and 4(c),the threshold voltage(Vth)will get reduced along with the lowering of initial channel resistances,while the hold voltage(Vhold)keeps still regardless of the initial states.Based on the previous research explaining the threshold-switching mechanisms, the insulator-metal transition (IMT) after the internal temperature reaches a critical point dominates.Ionic doping can only change the high-resistance states(HRS)before IMT while the low-resistance states(LRS)all keep almost the same at the conductive rutile phase.As the HRS decreases,to keep the heating power at the same level, the applied voltage will also be lower,which corresponds to the decrease ofVth;under the same LRS,theVholdwill keep almost unchanged when the heating power is below a certain level.The tunableVthprovides a more degree of freedom in designing the LIF neurons in neural networks.

    Fig.4.Electrical characteristics of EC-VO2 devices configured as neurons.(a) Typical measurement schematics of testing neuronic properties, for which multi stimuli are applied at drain terminal with gate and source grounded.(b)Different I-V curves for different initial channel resistances,each state was tested 25 cycles and exhibited stable TS behaviors.(c) Average Vth and Vhold in panel (b) for corresponding initial resistance, which shows different relationships.The LIF neuron functions of different Vth at(d)3.6 V,(e)2.8 V and(f)1.9 V,with load resistance fixed at 4 k?.

    The LIF neuron function tests of differentVthat 3.6 V,2.8 V and 1.9 V are shown in Figs.4(d),4(e)and 4(f),respectively.The following equation can describe the LIF neuron circuits:

    whereCmis the capacitance in parallel to the VO2device or can be parasitic capacitance,Voutis the output voltage in Fig.4(a) or membrane voltage,Vinis the input voltage in Fig.4(a).RVO2represents the channel resistance of ECVO2andRLdenotes the load resistance of the LIF neuron circuits.When theVoutreaches beyondVth, theRVO2will change from HRS to LRS sharply, along with a sudden increase of current flowing from VO2, which is also termed as firing.From Figs.4(d)-4(f), the different firing frequencies and leaky-integrate behaviors result from differentVthand initial HRS,which can be adaptive to different realistic environments.

    3.3.Large-scale SNN based on the reconfigurable Mott electronics

    Based on the above discussions, we construct an SNN model based on the reconfigurable Mott electronics(Figs.1(b)and 5(a)), whose structure is set as a 748-10 fully connected network.The Poisson encoder is employed to encode the image intensities of Modified National Institute of Standards and Technology (MNIST) datasets to a set of spike trains, which follow the Poisson distribution.The subthreshold dynamics of output LIF neurons are defined as

    whereVmdenotes the membrane voltage of the LIF neurons,Vrestrepresents the resting potential,τis the membrane time constant,andI(t)is the input to neurons at timet.When the membrane voltageVmexceeds the threshold voltageVth, the neuron will elicit a spike.Compared with the dynamic equation of the LIF neuron circuits based on VO2, the similarity enables direct hardware realization.To update the connected weights,the backpropagation through time(BPTT)and surrogate function are used to calculate the gradients.

    When using the ECVO2as weights, the realistic state number needs to be considered (Figs.3(d) and 3(f)), so we adopt the symmetrically uniform quantized methods and differential cell structure, the Gaussian noises of 0.01 standard variation are also added into the quantized weights while keeping theVthat 1.0, the final testing accuracies of different weight precision are presented in Fig.5(b).When the weight precision exceeds 2 bits, the performances will reach saturation,and the state of EC-VO2can realize more than 16 distinguished states(4 bits),so it can easily meet the requirement of quantized weight precision.In Fig.5(c), the final testing accuracy of 3-bit precision can reach 91.92%,and the quantized weights also have an apparent boundary.In conventional twoterminal TS devices,the threshold voltage is usually fixed after fabrication, so it is hard to change theVthto realize devicealgorithm co-optimization in different situations.Based on our electrochemical modulation of the VO2parameters, theVthcan be tuned continuously by lowering the initial states(Fig.5(d)).The network performances of different threshold voltages and fixed 3-bit weight precision are demonstrated in Fig.5(e), which indicates the accuracies can be enhanced by setting the proper threshold voltage.Specifically,the threshold voltage value is different from theVthof EC-VO2,in which a linear scaling factor relates them,so in the realistic mapping of model parameters into hardware platforms, the scaling factor is worth carefully considering.

    Finally, after finishing training the SNN in Fig.5(c), the number 5 is used to test the performances.As shown in Figs.5(f)and 5(g),the frequency of spike firing in neuron 5 is the maximum among all the output neurons,which proved the model realizes the successful classification.

    Fig.5.The network-level performances based on the reconfigurable Mott electronics.(a)The network structure of the designed SNN,in which the Poisson encoder was employed to encode the MNIST images into a sequence of pulses.(b)The final test accuracies of different weight precision from 2 bits to 5 bits,with threshold voltage fixed at 1.0.(c)The evolution of test accuracy with training epochs,where the weight precision was chosen at 3 bits and threshold voltage was set at 1.0,the inset shows the final weight distribution after finishing the network training.(d)The measured multi I-V curves of different Vth,show the capacity of continuously modulating threshold voltages,which provide a more tunable parameter in enhancing the neural network performances.(e) The final testing accuracies of different defined threshold voltage in output neurons.(f) Testing results of classifying the number 5 after training in panel(c),both the evolution of(f)membrane voltages and(g)firing spikes with time steps can verify the successful classification.

    4.Conclusion and perspectives

    We propose and fabricate a kind of novel reconfigurable Mott electronics for constructing a homogeneous neuromorphic platform.By utilizing electrochemical ionic doping, the resistance of VO2can be reversibly modulated.On one hand,the nonvolatile resistance switching can be used as synapses to accelerate matrix-vector multiplication; on the other hand,the TS switching with electrochemical modulation can be configured as tunable LIF neurons.Based on the versatile ECVO2,a low-precision SNN model is developed,and combined with a properly designed threshold voltage, we successfully achieve high accuracy of image classification.Our work paves a new way for designing a homogeneous neuromorphic hardware platform to reduce process costs and enhance the flexibility of reconfiguration.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61925401,92064004,61927901,and 92164302) and the 111 Project (Grant No.B18001).Y.Y.acknowledges support from the Fok Ying-Tong Education Foundation and the Tencent Foundation through the XPLORER PRIZE.The authors acknowledge the support of TOF-SIMS characterization by Dr.Tinglu Song and the firstprincipal computation by Dr.Bing Zheng from Beijing Institute of Technology.

    猜你喜歡
    英明
    詩歌書法作品:偉大英明的黨國家領袖五軍統(tǒng)帥
    當代作家(2024年1期)2024-04-26 22:08:11
    明明家族歷險記
    ——辨析聰明、精明、高明、英明
    特別推薦欄目作者:吳煥唐、南城小圣、陳航、蔡英明
    椰城(2021年5期)2021-04-28 03:53:28
    隨份子的喜與憂
    國慶抒懷
    大江南北(2017年10期)2017-11-13 13:43:01
    “時差”會導致合同無效嗎
    金點子生意(2016年2期)2016-05-30 02:55:46
    梁武帝出家
    我在另一個遙遠的城市等你
    參花(上)(2015年2期)2015-10-28 10:51:23
    修改的傳真合同是否有效
    “時差”會導致合同無效嗎
    欧美少妇被猛烈插入视频| 国产成人精品婷婷| 91精品伊人久久大香线蕉| 人人妻人人添人人爽欧美一区卜| av不卡在线播放| 人妻系列 视频| 久久久久久久大尺度免费视频| 欧美精品高潮呻吟av久久| 国产不卡av网站在线观看| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 99九九在线精品视频| 国产无遮挡羞羞视频在线观看| 熟妇人妻不卡中文字幕| 国产成人精品在线电影| 看非洲黑人一级黄片| 搡老乐熟女国产| 午夜老司机福利剧场| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 永久网站在线| 2018国产大陆天天弄谢| 婷婷色综合www| 内地一区二区视频在线| 久久久久久久久久人人人人人人| 久久久久久伊人网av| 免费观看性生交大片5| 最近2019中文字幕mv第一页| 国产av一区二区精品久久| 最近中文字幕2019免费版| 99香蕉大伊视频| 成人漫画全彩无遮挡| 亚洲国产精品成人久久小说| 一级爰片在线观看| 天堂中文最新版在线下载| 国产成人免费观看mmmm| av国产久精品久网站免费入址| 久热久热在线精品观看| 91精品三级在线观看| 伊人亚洲综合成人网| 高清av免费在线| 久久精品国产综合久久久 | 亚洲精品视频女| 欧美精品国产亚洲| 熟女人妻精品中文字幕| 少妇被粗大的猛进出69影院 | 亚洲高清免费不卡视频| 久久精品国产a三级三级三级| 91精品三级在线观看| 只有这里有精品99| 校园人妻丝袜中文字幕| 国产一级毛片在线| 中国美白少妇内射xxxbb| 精品福利永久在线观看| 丰满乱子伦码专区| 水蜜桃什么品种好| kizo精华| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 精品久久蜜臀av无| 黄色视频在线播放观看不卡| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 我的女老师完整版在线观看| 丰满少妇做爰视频| videos熟女内射| 少妇高潮的动态图| 中国三级夫妇交换| 久久久久精品性色| kizo精华| 国产极品粉嫩免费观看在线| 精品国产国语对白av| 婷婷色av中文字幕| 捣出白浆h1v1| 国产国语露脸激情在线看| 久久99热这里只频精品6学生| 激情视频va一区二区三区| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 在线观看国产h片| 在线免费观看不下载黄p国产| 日韩欧美一区视频在线观看| 日本av免费视频播放| 亚洲国产精品一区三区| 欧美成人午夜免费资源| 满18在线观看网站| 2018国产大陆天天弄谢| 五月天丁香电影| 欧美97在线视频| 精品福利永久在线观看| 青青草视频在线视频观看| 欧美丝袜亚洲另类| 国产成人一区二区在线| 18在线观看网站| 欧美精品av麻豆av| 晚上一个人看的免费电影| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 少妇精品久久久久久久| 高清黄色对白视频在线免费看| 九色成人免费人妻av| 国产精品一区www在线观看| 日韩一区二区视频免费看| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 久久精品夜色国产| 看免费成人av毛片| 色吧在线观看| 国产精品一区www在线观看| 亚洲人成网站在线观看播放| 欧美人与性动交α欧美精品济南到 | freevideosex欧美| 国产成人免费无遮挡视频| 久久久久久久国产电影| 免费观看av网站的网址| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 免费看光身美女| 日韩精品有码人妻一区| 国内精品宾馆在线| 久久精品aⅴ一区二区三区四区 | av福利片在线| av国产久精品久网站免费入址| 精品亚洲成国产av| 日韩av在线免费看完整版不卡| 成人影院久久| 免费看av在线观看网站| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 国产成人精品无人区| 黑人猛操日本美女一级片| 国产乱来视频区| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 草草在线视频免费看| 欧美人与性动交α欧美软件 | 久久综合国产亚洲精品| 成人二区视频| 成年美女黄网站色视频大全免费| 中国国产av一级| 婷婷成人精品国产| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 啦啦啦啦在线视频资源| 五月开心婷婷网| 久久久久精品久久久久真实原创| 老司机亚洲免费影院| 考比视频在线观看| 日本wwww免费看| 热99国产精品久久久久久7| 日韩电影二区| 精品国产一区二区久久| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 国产黄色免费在线视频| 高清不卡的av网站| 巨乳人妻的诱惑在线观看| 亚洲精品日韩在线中文字幕| 精品少妇内射三级| 老女人水多毛片| 国产一区二区激情短视频 | videosex国产| 亚洲,欧美精品.| 国产男女超爽视频在线观看| 天天影视国产精品| 99re6热这里在线精品视频| 国产av码专区亚洲av| 汤姆久久久久久久影院中文字幕| 日韩中文字幕视频在线看片| 久久国产亚洲av麻豆专区| 啦啦啦啦在线视频资源| 午夜免费男女啪啪视频观看| 国产免费一级a男人的天堂| 我的女老师完整版在线观看| av卡一久久| 国产精品久久久久久久久免| 赤兔流量卡办理| 高清黄色对白视频在线免费看| 一本—道久久a久久精品蜜桃钙片| 日本爱情动作片www.在线观看| 国产深夜福利视频在线观看| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区| 99久久综合免费| 久久婷婷青草| 69精品国产乱码久久久| 久久久久网色| 女人久久www免费人成看片| 亚洲精品色激情综合| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 国产精品欧美亚洲77777| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 国产成人a∨麻豆精品| 欧美97在线视频| 两性夫妻黄色片 | 99re6热这里在线精品视频| 人人妻人人澡人人看| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 国产精品秋霞免费鲁丝片| 久久久久网色| 夫妻性生交免费视频一级片| 两个人看的免费小视频| 天天影视国产精品| 免费在线观看黄色视频的| 日本欧美国产在线视频| 国产成人精品福利久久| 高清av免费在线| 免费看av在线观看网站| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 成年动漫av网址| 午夜av观看不卡| 一区二区三区乱码不卡18| 午夜视频国产福利| 一区二区三区精品91| 国产成人精品婷婷| 青青草视频在线视频观看| 亚洲av免费高清在线观看| 亚洲av综合色区一区| 午夜福利乱码中文字幕| 午夜福利,免费看| 精品国产一区二区三区久久久樱花| 亚洲精品自拍成人| 最近最新中文字幕大全免费视频 | 伊人亚洲综合成人网| 午夜激情久久久久久久| 精品一区二区三区视频在线| 日本欧美视频一区| 男女免费视频国产| 亚洲精品色激情综合| 女性被躁到高潮视频| 男女无遮挡免费网站观看| 亚洲激情五月婷婷啪啪| 亚洲国产精品一区三区| av线在线观看网站| 国产极品天堂在线| 下体分泌物呈黄色| 国产成人精品在线电影| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 中文字幕av电影在线播放| 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 日韩制服丝袜自拍偷拍| 亚洲精品,欧美精品| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| 国产精品欧美亚洲77777| 久久久久久伊人网av| 久久精品夜色国产| 满18在线观看网站| 亚洲婷婷狠狠爱综合网| 捣出白浆h1v1| 伦理电影免费视频| 成人综合一区亚洲| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| a 毛片基地| 日韩视频在线欧美| 男女边摸边吃奶| 中文字幕最新亚洲高清| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 亚洲国产av影院在线观看| 久久国内精品自在自线图片| 久久这里有精品视频免费| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 日本91视频免费播放| 国产永久视频网站| 9色porny在线观看| 亚洲图色成人| 精品熟女少妇av免费看| 毛片一级片免费看久久久久| 国产欧美亚洲国产| 在线观看美女被高潮喷水网站| 天天影视国产精品| 极品人妻少妇av视频| 热re99久久精品国产66热6| 精品福利永久在线观看| 热99国产精品久久久久久7| 看十八女毛片水多多多| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说| 极品人妻少妇av视频| 欧美日韩亚洲高清精品| 日本av免费视频播放| 黄色视频在线播放观看不卡| 亚洲第一区二区三区不卡| 精品国产国语对白av| 不卡视频在线观看欧美| 黑人欧美特级aaaaaa片| 日韩欧美一区视频在线观看| 777米奇影视久久| 黄色 视频免费看| 亚洲av国产av综合av卡| 毛片一级片免费看久久久久| 国产色婷婷99| 日本与韩国留学比较| 美女内射精品一级片tv| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 毛片一级片免费看久久久久| 国产乱人偷精品视频| 久久免费观看电影| 九色成人免费人妻av| 国产乱来视频区| 岛国毛片在线播放| 99久久中文字幕三级久久日本| 9热在线视频观看99| 精品少妇黑人巨大在线播放| av片东京热男人的天堂| 中文字幕精品免费在线观看视频 | 中国三级夫妇交换| a级毛片黄视频| 午夜福利,免费看| 日日撸夜夜添| 欧美成人午夜精品| 久久国产精品大桥未久av| 青春草亚洲视频在线观看| 亚洲三级黄色毛片| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕 | 亚洲av在线观看美女高潮| 国产 一区精品| 国产精品国产三级国产专区5o| 22中文网久久字幕| 老司机影院成人| 肉色欧美久久久久久久蜜桃| 又黄又粗又硬又大视频| 午夜福利在线观看免费完整高清在| 日韩欧美精品免费久久| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 精品人妻熟女毛片av久久网站| 在线观看国产h片| 久热这里只有精品99| 国产亚洲欧美精品永久| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 狠狠精品人妻久久久久久综合| 成人手机av| 欧美成人午夜精品| 一区二区三区精品91| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 激情视频va一区二区三区| freevideosex欧美| 亚洲成人一二三区av| 久久99蜜桃精品久久| 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 性色av一级| av网站免费在线观看视频| 免费av中文字幕在线| 久久久久久人妻| 天天躁夜夜躁狠狠久久av| 亚洲成人手机| 深夜精品福利| 午夜久久久在线观看| 中文字幕亚洲精品专区| 国产爽快片一区二区三区| 国产免费又黄又爽又色| 汤姆久久久久久久影院中文字幕| 最后的刺客免费高清国语| 亚洲性久久影院| 一级a做视频免费观看| 丁香六月天网| 日本午夜av视频| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 日韩制服骚丝袜av| 一边摸一边做爽爽视频免费| 免费观看在线日韩| 男男h啪啪无遮挡| 考比视频在线观看| 久久久久久伊人网av| 女人被躁到高潮嗷嗷叫费观| 久久久久久久久久人人人人人人| 久久综合国产亚洲精品| 亚洲精品久久成人aⅴ小说| 一区二区av电影网| 久久99热6这里只有精品| 中文字幕人妻丝袜制服| 亚洲综合色网址| 亚洲精品456在线播放app| 国产福利在线免费观看视频| 亚洲欧美日韩卡通动漫| 人妻 亚洲 视频| 日韩伦理黄色片| 最近的中文字幕免费完整| 亚洲精品美女久久久久99蜜臀 | 亚洲精品aⅴ在线观看| 精品久久国产蜜桃| av线在线观看网站| 亚洲精品日韩在线中文字幕| 亚洲,一卡二卡三卡| 观看av在线不卡| 亚洲综合精品二区| 少妇高潮的动态图| 亚洲av电影在线观看一区二区三区| 免费少妇av软件| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 春色校园在线视频观看| 国产成人精品福利久久| 亚洲av电影在线观看一区二区三区| 成人综合一区亚洲| 久久久久久伊人网av| 九九爱精品视频在线观看| 超色免费av| 在现免费观看毛片| 欧美最新免费一区二区三区| 看免费av毛片| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 日韩一本色道免费dvd| 在线观看www视频免费| 国产熟女午夜一区二区三区| 十八禁高潮呻吟视频| 在线观看三级黄色| 日韩成人伦理影院| 嫩草影院入口| 天天操日日干夜夜撸| 人妻系列 视频| 最黄视频免费看| 乱码一卡2卡4卡精品| 国产亚洲欧美精品永久| 人人妻人人爽人人添夜夜欢视频| 亚洲高清免费不卡视频| 欧美精品一区二区大全| 国产亚洲一区二区精品| 精品久久久久久电影网| 精品国产一区二区三区四区第35| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区 | 亚洲av欧美aⅴ国产| 一边摸一边做爽爽视频免费| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 制服诱惑二区| 韩国精品一区二区三区 | 日韩成人伦理影院| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 国产日韩欧美视频二区| 欧美bdsm另类| av在线app专区| 少妇的逼好多水| 深夜精品福利| 国语对白做爰xxxⅹ性视频网站| 国产永久视频网站| 在线亚洲精品国产二区图片欧美| 七月丁香在线播放| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 狠狠婷婷综合久久久久久88av| 午夜激情av网站| 哪个播放器可以免费观看大片| 国产在线一区二区三区精| 亚洲av福利一区| 中国美白少妇内射xxxbb| 精品少妇内射三级| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 国产精品人妻久久久影院| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 亚洲国产精品一区二区三区在线| 妹子高潮喷水视频| 亚洲综合色惰| 亚洲人成网站在线观看播放| 在线观看免费高清a一片| 国产免费一级a男人的天堂| 啦啦啦啦在线视频资源| 中国三级夫妇交换| 色5月婷婷丁香| 大片免费播放器 马上看| 伊人亚洲综合成人网| 欧美日韩亚洲高清精品| 国产成人精品婷婷| 亚洲国产日韩一区二区| 2021少妇久久久久久久久久久| 2022亚洲国产成人精品| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| videosex国产| 一二三四在线观看免费中文在 | 性色av一级| 国产成人免费观看mmmm| 日韩在线高清观看一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲av欧美aⅴ国产| 久久久久久人人人人人| 亚洲国产欧美在线一区| 十八禁网站网址无遮挡| 在现免费观看毛片| 69精品国产乱码久久久| 精品一区二区三卡| 国精品久久久久久国模美| 在线看a的网站| 成人二区视频| 亚洲综合色网址| 不卡视频在线观看欧美| 久久久久网色| 观看av在线不卡| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 中文天堂在线官网| 久久人人97超碰香蕉20202| 国产精品免费大片| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| 国产熟女午夜一区二区三区| 男人添女人高潮全过程视频| 免费观看无遮挡的男女| 日韩人妻精品一区2区三区| 久久久久久人人人人人| 久久久国产一区二区| 国产在线免费精品| 9热在线视频观看99| av福利片在线| 两个人免费观看高清视频| 国产免费视频播放在线视频| 亚洲精品乱码久久久久久按摩| 丝瓜视频免费看黄片| 国产亚洲最大av| 美女脱内裤让男人舔精品视频| 国产精品一二三区在线看| 成人国语在线视频| 国产探花极品一区二区| 老司机亚洲免费影院| 99香蕉大伊视频| 日韩一区二区视频免费看| 热re99久久国产66热| 久久免费观看电影| 极品少妇高潮喷水抽搐| 黑人欧美特级aaaaaa片| 亚洲av日韩在线播放| 三上悠亚av全集在线观看| 黑人猛操日本美女一级片| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| av女优亚洲男人天堂| 日本wwww免费看| 欧美老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 亚洲熟女精品中文字幕| 精品一品国产午夜福利视频| 好男人视频免费观看在线| 国产精品偷伦视频观看了| 亚洲第一av免费看| 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| 精品人妻一区二区三区麻豆| 免费大片18禁| 人成视频在线观看免费观看| 免费黄网站久久成人精品| 欧美精品av麻豆av| 天堂中文最新版在线下载| 在线亚洲精品国产二区图片欧美| 国产片内射在线| 在线天堂最新版资源| 欧美成人精品欧美一级黄| 夫妻午夜视频| 国产有黄有色有爽视频| 欧美成人精品欧美一级黄| 男女国产视频网站| 免费观看av网站的网址| 午夜精品国产一区二区电影| 丰满乱子伦码专区| 99视频精品全部免费 在线| 免费看av在线观看网站| 亚洲欧洲日产国产| 香蕉丝袜av| 18禁动态无遮挡网站| 中文字幕最新亚洲高清| 亚洲国产精品一区二区三区在线| 高清毛片免费看| 天堂8中文在线网| 成人毛片a级毛片在线播放| 久久精品国产a三级三级三级| 久久人人爽人人爽人人片va| 中国美白少妇内射xxxbb| 日日摸夜夜添夜夜爱| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 欧美日韩视频精品一区|