• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-dependent variational approach to solve multi-dimensional time-dependent Schr¨odinger equation

    2023-12-15 11:48:02MingruiHe何明睿ZheWang王哲LufengYao姚陸鋒andYangLi李洋
    Chinese Physics B 2023年12期
    關(guān)鍵詞:李洋

    Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陸鋒), and Yang Li(李洋),

    1Department of Basic Courses,Naval University of Engineering,Wuhan 430033,China

    2Key Laboratory for Laser Plasmas(Ministry of Education)and School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: time-dependent variational approach,above-threshold ionization,high harmonic generation

    1.Introduction

    The rapid development of laser technology brings powerful ultrashort intense light sources into laboratories.[1-3]The frequency domain of the modern laser covers a broad range from mid-infrared to the x-ray regime, while the intensity of the laser pulses is routinely achieved over 1016W/cm2.Atoms, molecules, and condensed matter interacting with the intense light sources exhibit various nonlinear phenomena, including above-threshold ionization (ATI),[4-6]highorder harmonic generation (HHG),[7-11]and nonsequential double ionization.[12,13]All these phenomena are not accessible through perturbation theory.

    In the non-relativistic regime, numerically solving the time-dependent Schr¨odinger equation(TDSE)is the most rigorous nonperturbative method to simulate the intense laseratom interactions, which in principle gives the most faithful reproduction of the concerned physical scenarios.However, as the computational resources required by solving TDSE grow exponentially with respect to the number of degrees of freedom, most discussions of full-dimensional systems are restricted to the single-active-electron (SAE)approximations.[14-16]Even within SAE, accurate solutions under extreme conditions are still challenging.They demand enormous computer resources for two-and three-dimensional models of atoms and molecules.Nowadays,efficient methods to solve TDSE are still under active development using different bases under different given physical conditions.[17-19]

    The curse of dimensionality is more severe when SAE fails, if, for example, doubly excited states are important.A formal consistent way is to treat all electrons as active indistinguishable particles.Directly solving TDSE beyond simple multielectron species, such as He and H2, is extremely difficult, due to exponential increase in computational cost.For example,when simulating full dimensional He onL2(R6)using a basis{e1,e2,...,en}?L2(R), one needs to discretize,store,and apply the Hamiltonian H in this basisHi1...id j1...jd=〈ei1?...eid|H|ej1?...ejd〉.The tensor productsHi1...id j1...jdconsists ofn12complex numbers, thus applying it requiresn12complex mutiplecations.However, to represent a physical situation to a satisfying accuracy, the discretization must be chosen high enough, i.e.,nmust be chosen to be large enough, which is limited by the available computational resources, especially for high-dimensional problems.To subjugate this difficulty, various theoretical methods, including the time-dependent density-functional theory (TDDFT) and the multiconfiguration time-dependent Hartree-Fock (MCTDHF)method have been proposed,which provide efficient resorts for quantum mechanics to treat multi-electron systems asab initioas possible.[20-22]In the MCTDHF method, the total wavefunction of the multi-electron system is expressed as a superposition of the chosen number of time-dependent spin-orbitals prepared for each electron.It provides a compact and computationally less demanding description of the multi-electron atoms and molecules interacting with the intense light sources.The mathematical idea is to discretize a state in the configuration space of each electron.The electronelectron correlation,i.e.,the interaction between each configuration space is approximated by low-rank approximation.An improved description of the electron correlation is achieved by adding more configurations in the singular value decompositions.

    In this paper, inspired by the methodology of MCTDHF method for multielectron problems and math behind, we formulate an efficient method to solve multi-dimensional TDSE within single-electron approximation.Using two-dimensional(2D) TDSE as an example, we treat each spatial degree of freedom as a distinguishable quasi-particle.Then the 2D total electronic wavefunction is expressed as a linear combination of a direct product of one-dimensional (1D) wavefunctions with different expansion coefficients.Both the expansion coefficients and the 1D wavefunctions are simultaneously propagated in time based on the time-dependent variational principle,[21,23,24]which provides an adequate representation of the temporal evolution of the total wavefunction with appreciably less computational demand.We implement this approach to numerically simulate the strong-field ionization of the argon atoms induced by the linearly polarized laser pulse and circularly polarized laser pulse.With the increasing number of decomposing 1D wavefunctions, the obtained photoelectron momentum distributions(PEMDs)show increasingly better agreement with these simulated by numerically solving the TDSE directly.Moreover, we investigate the high harmonic generation (HHG) from a 1D non-Born-Oppenheimer hydrogen molecular ion.The obtained spectrum is in good agreement with the TDSE calculation.This provides an accurate and efficient method to simulate the laser-atom interaction within extreme electromagnetic conditions, which generally demands large computer power.

    2.Numerical methods

    2.1.Argon atom

    We first consider the strong-field ionization of 2D model argon atom exposed to a strong laser field.The 2D-TDSE reads [atomic units (a.u.) are used throughout unless stated otherwise]The soft-core parameterεis set to be 0.39 to correctly reproduce the ground-state energy of the argon atom.Equation(2)is separable except for the soft Coulomb potential.In our timedependent variational treatment, each spatial degree of freedom is regarded as a quasi-particle.It represents that we treat the two dimensions as independent degrees of freedom,while these two dimensions are not really independent because of the potential function.Therefrom,we separate the total Hamiltonian according to their spatial components as

    together with the soft Coulomb potential(3)being the particleparticle interaction term.

    Analogy to the MCTDHF method,we rewrite the total 2D wavefunction as a superposition of 1D wavefunction products

    We callχ(x,t) andφ(y,t) the 1D orbitals ofx-particle andy-particle,respectively,andcij(t)being the expansion coefficients.We would like to mention that,similar to performing eigenvalue decomposition on the square matrix,only whennequals the grid number ofψ(x,y,t), the sum of the products of 1D wavefunction can produce exact 2D wavefunctionψ(x,y,t).Hereχ(x,t)andφ(y,t)are simulated by imaginarytime propagation,and orthonormalization is imposed on these 1D orbitals

    With these assumptions at hand, we can derive the equations of motion for the 1D orbitalsχ(x,t)andφ(y,t)as well as the expansion coefficientscij(t)based on the time-dependent variational principle.[21,23]The results read

    where the operators ?Q(x)= 1-∑p|χp〉〈χp| and ?Q(y)= 1-∑μ|ψμ〉〈ψμ| are projectors onto the orthogonal complement of the occupied orbital space, which guarantee the orthonormality of orbitals during time propagation;ρx,ρy,andρxyare the one-body and two-body reduced density matrices,respectively;(?Wxy)μνand(?Wyx)pqare mean-field potentials,given by

    The fourth-order Runge-Kutta method is employed to numerically propagate the equations of motion.The initial wavefunction is prepared by imaginary-time propagation.[25]To obtain the PEMD,the total 2D wavefunction is split into two parts at the end of every time step by an absorbing function,[26,27]and the “ionized part” is first transformed into momentum space and then propagated under the Volkov Hamiltonian analytically to the end of the pulse.[26]

    2.2.Hydrogen molecular ion

    The second example is HHG from H+2molecular ion subject to a linearly polarized laser field.The motions of the nuclei and electron are restricted in the polarization direction of the laser field.Then the HamiltonianH(z,R,t)can be modeled by

    wherezandRare the electronic coordinate as measured from the nuclear center of mass and the internuclear distance, respectively.The soft-core parameterεnnandεneare set to be 1.0 and 0.03, respectively.The electronic reduced mass is given byμe=2M/(2M+1) withMbeing the proton mass.The effective charge isqeff= (2M+2)/(2M+1).Similar to Eq.(2), we can decompose Eq.(14) into a set of singleparticle Hamiltonians and the particle interaction term.The total wavefunctionψ(z,R,t) is expanded accordingly.Then the equations of motion can be derived.Details are omitted here.HHG spectra are computed as the squared modulus of the Fourier-transformed electric dipole acceleration.In order to reduce the background level of the HHG spectra,the dipole acceleration is multiplied by a Hanning window function before the Fourier transform.

    3.Results and discussion

    We first consider the strong-field ionization of the argon atom subject to a linearly polarized few-cycle laser pulse with the wavelength of 1200 nm, the peak intensity of 2×1014W/cm2and the pulse duration of 8TwithTbeing the optical cycle period of the laser pulse.The electric fieldE(t)of the laser pulse is defined as

    Hereω=2π/Tis the angular frequency.N0=8 is the total number of the laser optical cycles.E0=0.0755 is the amplitude of the electric field corresponding to the peak laser intensity of 2×1014W/cm2.With this intensity, the Keldysh parameter[28]γ<1, i.e., in the tunneling regime.Hereγ=[Ip/(2Up)]1/2, withUp=E20/(4ω2) being the ponderomotive potential.

    We employ two treatments to solve the 2D-TDSE: (1)The approximation method with the 2D electron wavefunctionΨ(x,y,t)given by Eq.(6),usingn1D wavefunctions for bothxandydirections.Figures 1(a)-1(e)present the obtained PEMD for different numbersn.(2) Numerically exact solution of the TDSE with split-operator spectral method[29]by discretizing 2D electron wavefunction in Cartesian grid ranges from-819 a.u.to 819 a.u.for both directions with the grid size of ?x=?y=0.4 a.u.The obtained PEMD is shown in Fig.1(f),which works as a reference.

    For smalln,liken=1,the calculated PEMD is not credible,and the interference structures cannot be identified in the spectrum.With increasingn,the PEMD simulated by the approximation method shows increasingly better agreement with the reference result in Fig.1(f).Whenn=30, the obtained PEMD(as shown in Fig.1(e))has no obvious difference with the reference result.By performing eigenvalue decomposition on the potential functionV(x,y),we obtain a simple criterion for selecting suitablen.For Ar atom,asnincreases,the diagonal elements of the feature matrix rapidly decrease.Set the threshold 10-10andn=30.

    In order to compare the numerical efficiency of the present method with the commonly used 2D representation of the wave function on grid,we first analyze the required memory size.Denoting the number of grid points along each direction bym, the required memory size for the expansion of Eq.(6)can be expressed as 2mn+n2and that for the the conventional method asm2.Typically, the conditionn ?mis satisfied.Thus the required memory size for the 2D electron wavefunction in the present method is much smaller than that in the conventional method for achieving a good agreement.However,due to the 2D potential functionV(x,y)used in the temporal propagation, the memory size cannot be reduced in a further step.Moreover,thanks to the small size of the wavefunction,one can expect that the computational efficiency can be significantly improved.Numerical propagation of Eqs.(9)-(11)is much faster.The only price to pay is that Eqs.(10)and(11)are nonlinear,time step smaller than that in the common method should be adopted in order to have a stable propagation.Nevertheless, the computation time is 30% of the common method.

    Fig.1.The photoelectron momentum distribution(PEMD)of Ar atoms induced by the linearly polarized laser pulse,simulated by the approximation method[(a)-(e)]and the precise split-operator spectral method(f).The number n of the one-dimensional wavefunctions in the approximation method is(a)1,(b)5,(c)10,(d)20,and(e)30.The wavelength of the laser pulse is 1200 nm and the intensity is 2×1014 W/cm2.The pulse duration is 8 optical cycles.The color scale is logarithmic.

    Fig.2.(a) Left longitudinal coordinate: The transverse momentum distribution of the PEMD at the cut px =Up extracted from Fig.1(e) (orange dashed curve) and Fig.1(f) (blue curve).Right longitudinal coordinate: the relative error of the two curves (red curve).(b)The difference plot with logarithmic color scale.

    Evident interference structures can be identified in Fig.1(e).The nearly horizontal fork-like interference fringes are the strong-field photoelectron holography.[30]In previous studies, both the inherent structural information and the ultrafast electronic dynamical information can be retrieved from the phase of the interference fringes,[5,31,32]which requires our approximation method to provide correct interference fringe locations as carried out with the traditional TDSE solving method (including the split-operator spectral method).To make an intuitive comparison, we cut slices from Figs.1(e)and 1(f) atpx=Up, respectively.The corresponding transverse momentum distributions are shown in Fig.2(a), where the approximate result (orange dashed curve) almost exactly coincides with the reference result (blue curve).The relative error between these two curves,as shown by the red curve in Figs.2(a), is in the order of 10-4and below.Furthermore, a differential approach is used to compare the overall difference between Figs.1(e) and 1(f).The difference plot is defined as DP(px,py) =|Da(Px,Py)-Dref(Px,Py)|, whereDa(Px,Py)andDref(Px,Py)are the photoelectron distribution corresponding to the approximation method withn=30 and the reference result,respectively.As shown in Fig.2(b),the amplitude of DP(px,py) has been as low as 10-4and the interference fringes in the PEMD have barely any location shift.

    Besides the one-dimensional linearly polarized laser pulse, we investigate the tunneling ionization of argon atoms induced by a circularly polarized laser pulse.The laser parameters of this circularly polarized laser pulse,including the wavelength,peak intensity,and pulse duration are the same as the linearly polarized laser pulse.Here,the electric fieldE(t)of this laser pulse is defined as

    Similarly,we employ both the approximation method and the split-operator spectral method to solve the 2D TDSE.For the approximation method, the numbernof the one-dimensional wavefunctions used in Eq.(6) increases from 1 to 30, corresponding to PEMDs presented in Figs.3(a)-3(e).Clearly,with increasingn, the corresponding PEMD shows increasingly better agreement with the reference result in Fig.3(f),which is calculated by the split-operator spectral method.By using the differential approach (as used in Fig.2(b)) to compare these two treatments,we confirm that forn=30,the approximate result is almost identical to the reference result.It demonstrates that the approximation method is accurate and computationally efficient.

    Fig.3.PEMDs of Ar atoms induced by the circularly polarized laser pulse.(a)Simulated by the approximation method with the onedimensional wavefunctions number n=1, (b)n=5,(c)n=10,(d)n=20,(e)n=30.(f)Calculated result with the split-operator spectral method.The color scale is logarithmic.

    Fig.4.(a)The high-order harmonic spectrum from H+2 molecular ion,using the approximation method with n=1 (the red solid curve) and n=10(the yellow dashed curve),and the direct solution of the TDSE(the blue solid curve).(b)Relative error between the direct solution and the approximation method with n=1 (the red curve) and n=10 (the yellow curve).

    In the above discussion, we calculate the PEMD of the tunneling ionization of the Ar atom.Both the split-operator spectral method and the approximation method are used to numerically solve the 2D TDSE and to obtain the real-time propagation of the electron wavefunction.The“ionized part”of the electron wavefunction is separated from the total timedependent electron wavefunction and transformed into momentum space at the end of each time step to simulate the PEMD,and thus sizable computational demanding is required.In the subsequent discussion, we investigate the HHG of 1D non-Born-Oppenheimer hydrogen molecular ion subject to the linearly polarized laser pulse given by Eq.(15).Here,we treat both the 1D electron and the 1D nuclear motion as two distinguishable quasi-particles.Similarly to calculating the PEMD, we numerically solve this 2D-TDSE and trace the temporal evolution of the electron wavefunction, where our approximation method can efficiently reduce the computational cost.Then the HHG spectrum is calculated as the modulus squared of the Fourier transform of the dipole accelerationa(t)= d2〈ψ(t)|z|ψ(t)〉/dt2, which is computational less demanding compared to simulating PEMD.

    Figure 4(a)presents the HHG spectra from the H+2molecular ion simulated by the approximated method and the direct method (solving TDSE directly), and Fig.4(b) presents the relative error between these two methods.For the approximation method, the result shows an improvement with increasing numbernof the one-dimensional wavefunctions.Whenn=10,the spectrum displays remarkable agreement with the direct solution.Note that Figs.1(c)and 3(c)demonstrate that,forn=10,the approximation method is not accurate enough.This indicates that calculating PEMD requires more 1D wavefunctions to simulate the temporal evoluting electron wavefunction in Eq.(6).

    4.Conclusion

    In summary, we have demonstrated an approximation method to solve the 2D TDSE and utilize this method for exactly solvable systems.In this approach, the 2D electron wavefunction is expanded in terms of the multiplication of two serials of 1D wavefunctions.The equation of motion for the expansion coefficients and 1D wavefunctions are derived.Employing this approximation method to the investigation of the atom and molecule irradiated by the intense laser field,the PEMD and high-harmonic spectrum can be accurately and computationally simulated efficiently.Moreover, this framework is highly flexible,and thus it would enable more efficient simulations of the laser-matter interaction.For example,it can be straightforwardly extended to solve real three-dimensional TDSE for atoms and molecules in intense laser fields.By writing the three-dimensional wavefunction in Cartesian coordinates asψ(x,y,z), analogously to Eq.(6), we can write the wavefunction as a linear combination of lower-dimensional wave function productsψ(x,y,z)=∑ni j ci j(t)χi(x,y,t)φj(z,t).The derived equations of motion can be directly applied.Note that in this case, separation of the wavefunction into three quasi-particles according to three directions is not recommend,because in this case the coulomb potential would be a threeparticle interaction term and will highly complicate the equations of motion.Moreover,our approximation method can use OpenMP with shared memory for parallel computing,and it is more difficult to imply MPI computing with distributed memory than directly solve the time-dependent Schr¨odinger equation.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12204545 and 12274294)and the Program for NUE independent research and development.

    猜你喜歡
    李洋
    Characteristics of laser-induced breakdown spectroscopy of liquid slag
    李洋作品
    大觀(2023年10期)2023-12-27 21:11:22
    High efficiency of broadband transmissive metasurface terahertz polarization converter
    Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
    李洋、龔有月、賴姝、程曉春作品
    大觀(2022年12期)2022-02-23 00:44:30
    李洋論
    十分鐘
    New teacher—student Relationship in Junior English Class Teaching
    幽蘭
    希式男友
    黄色成人免费大全| 成年版毛片免费区| 精品第一国产精品| 99精品久久久久人妻精品| 动漫黄色视频在线观看| 久99久视频精品免费| 国产又爽黄色视频| av天堂久久9| av超薄肉色丝袜交足视频| 亚洲欧美色中文字幕在线| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 欧美 日韩 精品 国产| 色尼玛亚洲综合影院| 亚洲av日韩精品久久久久久密| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人一区二区三| 久久精品91无色码中文字幕| 人人妻,人人澡人人爽秒播| 夜夜躁狠狠躁天天躁| 两性夫妻黄色片| 欧美老熟妇乱子伦牲交| 又紧又爽又黄一区二区| 18禁黄网站禁片午夜丰满| 丰满的人妻完整版| 精品国产国语对白av| 在线观看午夜福利视频| 在线免费观看的www视频| 亚洲熟女毛片儿| 大片电影免费在线观看免费| 午夜福利在线免费观看网站| 妹子高潮喷水视频| 人人妻人人添人人爽欧美一区卜| 久久性视频一级片| 男女床上黄色一级片免费看| 一二三四在线观看免费中文在| 777米奇影视久久| 欧美日韩乱码在线| avwww免费| 99国产精品一区二区三区| 国产成人一区二区三区免费视频网站| 午夜福利,免费看| 亚洲欧美日韩另类电影网站| 亚洲欧美日韩高清在线视频| 99riav亚洲国产免费| 亚洲第一欧美日韩一区二区三区| 99热只有精品国产| 亚洲专区国产一区二区| 精品久久久久久久久久免费视频 | 亚洲午夜精品一区,二区,三区| 极品人妻少妇av视频| 成年动漫av网址| 久久午夜综合久久蜜桃| 91av网站免费观看| 午夜福利乱码中文字幕| 亚洲五月色婷婷综合| 久久草成人影院| 国产三级黄色录像| 成人av一区二区三区在线看| 99久久99久久久精品蜜桃| 欧美国产精品一级二级三级| 久久99一区二区三区| 欧美精品人与动牲交sv欧美| 日本黄色日本黄色录像| 日韩免费av在线播放| 免费av中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 久久久久精品人妻al黑| 亚洲少妇的诱惑av| 精品国产国语对白av| 夜夜夜夜夜久久久久| 高清视频免费观看一区二区| 国产在线一区二区三区精| 亚洲一区中文字幕在线| 国产精品久久电影中文字幕 | 精品国产国语对白av| 亚洲国产精品合色在线| 在线观看66精品国产| 看片在线看免费视频| 在线观看免费高清a一片| 精品国内亚洲2022精品成人 | 亚洲午夜精品一区,二区,三区| 精品福利观看| 国产亚洲精品久久久久久毛片 | 亚洲国产精品一区二区三区在线| 满18在线观看网站| 亚洲精华国产精华精| 久久精品人人爽人人爽视色| 亚洲熟妇中文字幕五十中出 | 国产精品免费一区二区三区在线 | 女性生殖器流出的白浆| 亚洲av美国av| 乱人伦中国视频| 欧美日韩亚洲高清精品| 侵犯人妻中文字幕一二三四区| 王馨瑶露胸无遮挡在线观看| www.熟女人妻精品国产| 国产成人一区二区三区免费视频网站| 香蕉国产在线看| 男女免费视频国产| 国产欧美亚洲国产| avwww免费| 51午夜福利影视在线观看| 大型黄色视频在线免费观看| 亚洲精品中文字幕在线视频| 老熟女久久久| 精品国产一区二区三区四区第35| 99精品欧美一区二区三区四区| 国产又色又爽无遮挡免费看| 日本精品一区二区三区蜜桃| 19禁男女啪啪无遮挡网站| 色94色欧美一区二区| 交换朋友夫妻互换小说| 久久香蕉激情| 亚洲人成电影免费在线| a级毛片在线看网站| 久久性视频一级片| 又大又爽又粗| 又大又爽又粗| 最新的欧美精品一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 51午夜福利影视在线观看| 亚洲精品一二三| 亚洲欧美日韩高清在线视频| 视频在线观看一区二区三区| 免费在线观看完整版高清| 伊人久久大香线蕉亚洲五| 黄网站色视频无遮挡免费观看| xxx96com| 99久久精品国产亚洲精品| 99riav亚洲国产免费| 岛国毛片在线播放| 在线观看免费视频日本深夜| 国产亚洲欧美精品永久| 欧美日韩亚洲综合一区二区三区_| 中文字幕制服av| 天天躁日日躁夜夜躁夜夜| 多毛熟女@视频| 香蕉国产在线看| 一区二区日韩欧美中文字幕| 777久久人妻少妇嫩草av网站| 亚洲在线自拍视频| 久久午夜亚洲精品久久| 又大又爽又粗| 女警被强在线播放| 国产单亲对白刺激| 搡老乐熟女国产| 黄色毛片三级朝国网站| 91九色精品人成在线观看| 久热爱精品视频在线9| 每晚都被弄得嗷嗷叫到高潮| 天天躁狠狠躁夜夜躁狠狠躁| 人妻一区二区av| 黄网站色视频无遮挡免费观看| 国产亚洲精品久久久久久毛片 | 一区二区日韩欧美中文字幕| 悠悠久久av| 国产成+人综合+亚洲专区| 亚洲精品av麻豆狂野| 国产片内射在线| 波多野结衣一区麻豆| 在线看a的网站| 视频区欧美日本亚洲| 久久久精品免费免费高清| 大型黄色视频在线免费观看| 国产亚洲一区二区精品| 香蕉久久夜色| 国产精品一区二区在线不卡| 婷婷丁香在线五月| 精品久久久久久电影网| 国产精品 国内视频| 露出奶头的视频| 90打野战视频偷拍视频| 一区二区日韩欧美中文字幕| 久久精品aⅴ一区二区三区四区| 日韩视频一区二区在线观看| 99riav亚洲国产免费| 欧美成人免费av一区二区三区 | 精品午夜福利视频在线观看一区| 交换朋友夫妻互换小说| 日韩欧美免费精品| 99精品欧美一区二区三区四区| 国产一区有黄有色的免费视频| 大型黄色视频在线免费观看| 不卡一级毛片| 亚洲一区中文字幕在线| 一级毛片高清免费大全| 窝窝影院91人妻| 国产男女内射视频| 国产成人免费观看mmmm| 极品人妻少妇av视频| 成人手机av| 天天操日日干夜夜撸| 性色av乱码一区二区三区2| 国产欧美日韩精品亚洲av| 国产91精品成人一区二区三区| 男女午夜视频在线观看| 12—13女人毛片做爰片一| 王馨瑶露胸无遮挡在线观看| xxxhd国产人妻xxx| 啦啦啦视频在线资源免费观看| svipshipincom国产片| 久久久国产成人精品二区 | 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 欧美大码av| 欧美日韩亚洲国产一区二区在线观看 | 女性生殖器流出的白浆| 另类亚洲欧美激情| 亚洲男人天堂网一区| 无遮挡黄片免费观看| 嫩草影视91久久| 午夜影院日韩av| 亚洲男人天堂网一区| 最近最新免费中文字幕在线| 国产精品av久久久久免费| 19禁男女啪啪无遮挡网站| 90打野战视频偷拍视频| 亚洲久久久国产精品| 欧美黑人精品巨大| 人妻一区二区av| 国产精品久久久人人做人人爽| 精品久久久久久,| 国产高清激情床上av| 在线视频色国产色| 十八禁高潮呻吟视频| av线在线观看网站| 欧美日韩亚洲高清精品| 日韩欧美国产一区二区入口| 国产高清视频在线播放一区| 建设人人有责人人尽责人人享有的| 成人国产一区最新在线观看| 身体一侧抽搐| 黄色 视频免费看| 男人舔女人的私密视频| 999精品在线视频| 丝瓜视频免费看黄片| 精品一区二区三区视频在线观看免费 | 久久精品91无色码中文字幕| 麻豆国产av国片精品| 十分钟在线观看高清视频www| 久久人妻av系列| 不卡av一区二区三区| 国产欧美日韩一区二区三区在线| 国产av一区二区精品久久| 香蕉丝袜av| 久9热在线精品视频| 一级片'在线观看视频| 丝袜美足系列| 欧美 日韩 精品 国产| 亚洲男人天堂网一区| 国产成人精品无人区| 免费观看a级毛片全部| 成人三级做爰电影| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 777久久人妻少妇嫩草av网站| 国产成人欧美| 老司机在亚洲福利影院| 91在线观看av| 人妻丰满熟妇av一区二区三区 | 777米奇影视久久| 老司机福利观看| 男女高潮啪啪啪动态图| 精品久久久久久电影网| 大香蕉久久成人网| 精品国产乱码久久久久久男人| 国产高清激情床上av| 新久久久久国产一级毛片| 亚洲精品国产区一区二| 又黄又爽又免费观看的视频| 午夜日韩欧美国产| 久久热在线av| 真人做人爱边吃奶动态| 一级黄色大片毛片| 亚洲欧美色中文字幕在线| 视频区欧美日本亚洲| 免费看十八禁软件| 麻豆av在线久日| 亚洲精品国产一区二区精华液| 啦啦啦在线免费观看视频4| 国产在视频线精品| 国产精品久久久久久精品古装| 久久婷婷成人综合色麻豆| 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 成人亚洲精品一区在线观看| 成人黄色视频免费在线看| xxx96com| 欧美亚洲 丝袜 人妻 在线| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品古装| 国产不卡一卡二| 黄色视频不卡| 成年人黄色毛片网站| 久久久国产成人精品二区 | 91国产中文字幕| 久99久视频精品免费| 精品一区二区三区av网在线观看| 亚洲精品成人av观看孕妇| 久久亚洲精品不卡| 久久亚洲真实| 极品人妻少妇av视频| 欧美大码av| 久久香蕉精品热| 宅男免费午夜| 国产精华一区二区三区| 高清在线国产一区| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 亚洲五月婷婷丁香| 午夜久久久在线观看| 久久午夜亚洲精品久久| 国产精品偷伦视频观看了| 19禁男女啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 最新的欧美精品一区二区| 欧美亚洲 丝袜 人妻 在线| 久久国产精品大桥未久av| 精品国产美女av久久久久小说| 精品一区二区三区视频在线观看免费 | 亚洲av欧美aⅴ国产| 午夜福利免费观看在线| 两个人免费观看高清视频| 纯流量卡能插随身wifi吗| 一级a爱视频在线免费观看| 中文字幕av电影在线播放| 成人精品一区二区免费| 国产精品免费大片| 国产亚洲欧美精品永久| 久9热在线精品视频| 亚洲av日韩在线播放| 一本一本久久a久久精品综合妖精| 黄色女人牲交| 性色av乱码一区二区三区2| 亚洲人成电影观看| 欧美精品av麻豆av| 亚洲av成人一区二区三| 丝袜在线中文字幕| 巨乳人妻的诱惑在线观看| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 欧美日韩视频精品一区| 国产成人免费观看mmmm| 国产精品永久免费网站| 热99国产精品久久久久久7| 欧美日韩黄片免| 亚洲第一青青草原| 99精国产麻豆久久婷婷| 亚洲人成伊人成综合网2020| 国产精品久久电影中文字幕 | 免费观看精品视频网站| 757午夜福利合集在线观看| 一区二区三区激情视频| 久久国产乱子伦精品免费另类| 国产午夜精品久久久久久| 国产精品久久久久久人妻精品电影| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 在线观看www视频免费| 午夜影院日韩av| 亚洲性夜色夜夜综合| 欧美精品一区二区免费开放| 国产精品一区二区在线不卡| 9191精品国产免费久久| 久久婷婷成人综合色麻豆| 精品视频人人做人人爽| 19禁男女啪啪无遮挡网站| 电影成人av| 亚洲成a人片在线一区二区| 91大片在线观看| 老司机亚洲免费影院| 日韩制服丝袜自拍偷拍| 欧美午夜高清在线| 1024视频免费在线观看| 首页视频小说图片口味搜索| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 欧美黄色片欧美黄色片| 满18在线观看网站| 亚洲综合色网址| 午夜91福利影院| 18禁观看日本| 99精品欧美一区二区三区四区| 国产黄色免费在线视频| 91麻豆av在线| 咕卡用的链子| 国产高清视频在线播放一区| 欧美激情 高清一区二区三区| 久久99一区二区三区| 久久草成人影院| 色播在线永久视频| 91字幕亚洲| 深夜精品福利| 久久性视频一级片| 黑人猛操日本美女一级片| 亚洲一区中文字幕在线| 国产午夜精品久久久久久| 在线观看午夜福利视频| 成人18禁在线播放| 亚洲欧美一区二区三区久久| 九色亚洲精品在线播放| 国产精品99久久99久久久不卡| 欧美激情久久久久久爽电影 | 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利视频在线观看免费| 午夜免费成人在线视频| 精品亚洲成a人片在线观看| 波多野结衣av一区二区av| 国产真人三级小视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品香港三级国产av潘金莲| 国产91精品成人一区二区三区| 1024视频免费在线观看| 国产精品欧美亚洲77777| 麻豆成人av在线观看| 国产精品九九99| 国产亚洲欧美98| 麻豆成人av在线观看| 欧美日韩亚洲综合一区二区三区_| 国产高清videossex| 不卡一级毛片| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 免费看a级黄色片| 又大又爽又粗| 高清欧美精品videossex| 99热只有精品国产| 国产成人欧美在线观看 | 久久99一区二区三区| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 中文字幕人妻熟女乱码| 在线国产一区二区在线| 丰满的人妻完整版| 欧美精品一区二区免费开放| 国产免费男女视频| 欧美老熟妇乱子伦牲交| 麻豆国产av国片精品| 久久精品亚洲熟妇少妇任你| 两个人免费观看高清视频| 国产黄色免费在线视频| 91精品国产国语对白视频| 久久精品熟女亚洲av麻豆精品| 午夜精品久久久久久毛片777| 日韩熟女老妇一区二区性免费视频| 中文字幕人妻熟女乱码| 人人妻人人添人人爽欧美一区卜| 久久久久久久国产电影| 国产成人精品久久二区二区91| 免费在线观看日本一区| 色在线成人网| 欧美成狂野欧美在线观看| 色婷婷久久久亚洲欧美| 老汉色av国产亚洲站长工具| 中出人妻视频一区二区| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 日本a在线网址| 精品国产乱子伦一区二区三区| 国产xxxxx性猛交| 国产精品美女特级片免费视频播放器 | tocl精华| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 99久久综合精品五月天人人| 黄色 视频免费看| 18禁美女被吸乳视频| 欧美大码av| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图| 欧美av亚洲av综合av国产av| 亚洲人成电影观看| 超碰成人久久| 成人亚洲精品一区在线观看| 精品第一国产精品| 久久国产精品男人的天堂亚洲| 69精品国产乱码久久久| a级毛片黄视频| 国产精品一区二区在线观看99| av天堂久久9| 亚洲第一av免费看| 黄色片一级片一级黄色片| 成人特级黄色片久久久久久久| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 99re6热这里在线精品视频| 夫妻午夜视频| 搡老岳熟女国产| aaaaa片日本免费| 亚洲 国产 在线| 久久午夜亚洲精品久久| 亚洲欧美日韩另类电影网站| 狠狠狠狠99中文字幕| 丰满迷人的少妇在线观看| 老熟女久久久| 两性夫妻黄色片| 亚洲欧美一区二区三区久久| 80岁老熟妇乱子伦牲交| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 亚洲精品在线美女| 久久中文字幕一级| 久久热在线av| 午夜影院日韩av| 一区二区三区精品91| 中文字幕精品免费在线观看视频| 久久中文看片网| 国产97色在线日韩免费| 身体一侧抽搐| 亚洲国产精品一区二区三区在线| 两个人看的免费小视频| 国产一区有黄有色的免费视频| 91字幕亚洲| 麻豆av在线久日| netflix在线观看网站| 热99久久久久精品小说推荐| 免费不卡黄色视频| 日本黄色视频三级网站网址 | 制服人妻中文乱码| 国产野战对白在线观看| 两性夫妻黄色片| 国产精品乱码一区二三区的特点 | 久久人妻av系列| 精品亚洲成国产av| 天天操日日干夜夜撸| 韩国av一区二区三区四区| 在线免费观看的www视频| 中出人妻视频一区二区| 中文字幕制服av| 一级,二级,三级黄色视频| 成人永久免费在线观看视频| 天堂动漫精品| √禁漫天堂资源中文www| 午夜影院日韩av| 69精品国产乱码久久久| 一二三四在线观看免费中文在| av有码第一页| 久久人妻av系列| 午夜免费观看网址| 久久精品国产99精品国产亚洲性色 | 亚洲欧美一区二区三区久久| 午夜福利,免费看| 国产精品 欧美亚洲| 涩涩av久久男人的天堂| 人人妻人人澡人人看| 精品电影一区二区在线| 视频区图区小说| 精品亚洲成a人片在线观看| 成年人黄色毛片网站| 国产精品一区二区精品视频观看| videosex国产| 两个人看的免费小视频| 午夜免费观看网址| 一级片'在线观看视频| 丝瓜视频免费看黄片| 国产欧美日韩综合在线一区二区| 欧美成人午夜精品| 亚洲av熟女| 成年版毛片免费区| 国产亚洲精品久久久久5区| 看片在线看免费视频| 国产三级黄色录像| 亚洲在线自拍视频| videosex国产| 99国产极品粉嫩在线观看| 男女下面插进去视频免费观看| 少妇猛男粗大的猛烈进出视频| 日韩欧美三级三区| 国产精品免费大片| 亚洲第一av免费看| 亚洲一区高清亚洲精品| www.自偷自拍.com| 一级作爱视频免费观看| 精品国产亚洲在线| 男人的好看免费观看在线视频 | 精品国产美女av久久久久小说| 欧美一级毛片孕妇| 日韩欧美国产一区二区入口| 三级毛片av免费| av中文乱码字幕在线| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 久久人妻av系列| 国产一区二区三区综合在线观看| 国精品久久久久久国模美| 亚洲中文av在线| 香蕉久久夜色| 一夜夜www| 欧美日韩精品网址| 一级,二级,三级黄色视频| 成人特级黄色片久久久久久久| 亚洲熟女精品中文字幕| 日韩免费av在线播放| 美女 人体艺术 gogo| 村上凉子中文字幕在线| 熟女少妇亚洲综合色aaa.| 精品国产美女av久久久久小说| 亚洲在线自拍视频| av有码第一页| 国产成+人综合+亚洲专区| 免费人成视频x8x8入口观看| 亚洲精品成人av观看孕妇|