• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-dependent variational approach to solve multi-dimensional time-dependent Schr¨odinger equation

    2023-12-15 11:48:02MingruiHe何明睿ZheWang王哲LufengYao姚陸鋒andYangLi李洋
    Chinese Physics B 2023年12期
    關(guān)鍵詞:李洋

    Mingrui He(何明睿), Zhe Wang(王哲), Lufeng Yao(姚陸鋒), and Yang Li(李洋),

    1Department of Basic Courses,Naval University of Engineering,Wuhan 430033,China

    2Key Laboratory for Laser Plasmas(Ministry of Education)and School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China

    Keywords: time-dependent variational approach,above-threshold ionization,high harmonic generation

    1.Introduction

    The rapid development of laser technology brings powerful ultrashort intense light sources into laboratories.[1-3]The frequency domain of the modern laser covers a broad range from mid-infrared to the x-ray regime, while the intensity of the laser pulses is routinely achieved over 1016W/cm2.Atoms, molecules, and condensed matter interacting with the intense light sources exhibit various nonlinear phenomena, including above-threshold ionization (ATI),[4-6]highorder harmonic generation (HHG),[7-11]and nonsequential double ionization.[12,13]All these phenomena are not accessible through perturbation theory.

    In the non-relativistic regime, numerically solving the time-dependent Schr¨odinger equation(TDSE)is the most rigorous nonperturbative method to simulate the intense laseratom interactions, which in principle gives the most faithful reproduction of the concerned physical scenarios.However, as the computational resources required by solving TDSE grow exponentially with respect to the number of degrees of freedom, most discussions of full-dimensional systems are restricted to the single-active-electron (SAE)approximations.[14-16]Even within SAE, accurate solutions under extreme conditions are still challenging.They demand enormous computer resources for two-and three-dimensional models of atoms and molecules.Nowadays,efficient methods to solve TDSE are still under active development using different bases under different given physical conditions.[17-19]

    The curse of dimensionality is more severe when SAE fails, if, for example, doubly excited states are important.A formal consistent way is to treat all electrons as active indistinguishable particles.Directly solving TDSE beyond simple multielectron species, such as He and H2, is extremely difficult, due to exponential increase in computational cost.For example,when simulating full dimensional He onL2(R6)using a basis{e1,e2,...,en}?L2(R), one needs to discretize,store,and apply the Hamiltonian H in this basisHi1...id j1...jd=〈ei1?...eid|H|ej1?...ejd〉.The tensor productsHi1...id j1...jdconsists ofn12complex numbers, thus applying it requiresn12complex mutiplecations.However, to represent a physical situation to a satisfying accuracy, the discretization must be chosen high enough, i.e.,nmust be chosen to be large enough, which is limited by the available computational resources, especially for high-dimensional problems.To subjugate this difficulty, various theoretical methods, including the time-dependent density-functional theory (TDDFT) and the multiconfiguration time-dependent Hartree-Fock (MCTDHF)method have been proposed,which provide efficient resorts for quantum mechanics to treat multi-electron systems asab initioas possible.[20-22]In the MCTDHF method, the total wavefunction of the multi-electron system is expressed as a superposition of the chosen number of time-dependent spin-orbitals prepared for each electron.It provides a compact and computationally less demanding description of the multi-electron atoms and molecules interacting with the intense light sources.The mathematical idea is to discretize a state in the configuration space of each electron.The electronelectron correlation,i.e.,the interaction between each configuration space is approximated by low-rank approximation.An improved description of the electron correlation is achieved by adding more configurations in the singular value decompositions.

    In this paper, inspired by the methodology of MCTDHF method for multielectron problems and math behind, we formulate an efficient method to solve multi-dimensional TDSE within single-electron approximation.Using two-dimensional(2D) TDSE as an example, we treat each spatial degree of freedom as a distinguishable quasi-particle.Then the 2D total electronic wavefunction is expressed as a linear combination of a direct product of one-dimensional (1D) wavefunctions with different expansion coefficients.Both the expansion coefficients and the 1D wavefunctions are simultaneously propagated in time based on the time-dependent variational principle,[21,23,24]which provides an adequate representation of the temporal evolution of the total wavefunction with appreciably less computational demand.We implement this approach to numerically simulate the strong-field ionization of the argon atoms induced by the linearly polarized laser pulse and circularly polarized laser pulse.With the increasing number of decomposing 1D wavefunctions, the obtained photoelectron momentum distributions(PEMDs)show increasingly better agreement with these simulated by numerically solving the TDSE directly.Moreover, we investigate the high harmonic generation (HHG) from a 1D non-Born-Oppenheimer hydrogen molecular ion.The obtained spectrum is in good agreement with the TDSE calculation.This provides an accurate and efficient method to simulate the laser-atom interaction within extreme electromagnetic conditions, which generally demands large computer power.

    2.Numerical methods

    2.1.Argon atom

    We first consider the strong-field ionization of 2D model argon atom exposed to a strong laser field.The 2D-TDSE reads [atomic units (a.u.) are used throughout unless stated otherwise]The soft-core parameterεis set to be 0.39 to correctly reproduce the ground-state energy of the argon atom.Equation(2)is separable except for the soft Coulomb potential.In our timedependent variational treatment, each spatial degree of freedom is regarded as a quasi-particle.It represents that we treat the two dimensions as independent degrees of freedom,while these two dimensions are not really independent because of the potential function.Therefrom,we separate the total Hamiltonian according to their spatial components as

    together with the soft Coulomb potential(3)being the particleparticle interaction term.

    Analogy to the MCTDHF method,we rewrite the total 2D wavefunction as a superposition of 1D wavefunction products

    We callχ(x,t) andφ(y,t) the 1D orbitals ofx-particle andy-particle,respectively,andcij(t)being the expansion coefficients.We would like to mention that,similar to performing eigenvalue decomposition on the square matrix,only whennequals the grid number ofψ(x,y,t), the sum of the products of 1D wavefunction can produce exact 2D wavefunctionψ(x,y,t).Hereχ(x,t)andφ(y,t)are simulated by imaginarytime propagation,and orthonormalization is imposed on these 1D orbitals

    With these assumptions at hand, we can derive the equations of motion for the 1D orbitalsχ(x,t)andφ(y,t)as well as the expansion coefficientscij(t)based on the time-dependent variational principle.[21,23]The results read

    where the operators ?Q(x)= 1-∑p|χp〉〈χp| and ?Q(y)= 1-∑μ|ψμ〉〈ψμ| are projectors onto the orthogonal complement of the occupied orbital space, which guarantee the orthonormality of orbitals during time propagation;ρx,ρy,andρxyare the one-body and two-body reduced density matrices,respectively;(?Wxy)μνand(?Wyx)pqare mean-field potentials,given by

    The fourth-order Runge-Kutta method is employed to numerically propagate the equations of motion.The initial wavefunction is prepared by imaginary-time propagation.[25]To obtain the PEMD,the total 2D wavefunction is split into two parts at the end of every time step by an absorbing function,[26,27]and the “ionized part” is first transformed into momentum space and then propagated under the Volkov Hamiltonian analytically to the end of the pulse.[26]

    2.2.Hydrogen molecular ion

    The second example is HHG from H+2molecular ion subject to a linearly polarized laser field.The motions of the nuclei and electron are restricted in the polarization direction of the laser field.Then the HamiltonianH(z,R,t)can be modeled by

    wherezandRare the electronic coordinate as measured from the nuclear center of mass and the internuclear distance, respectively.The soft-core parameterεnnandεneare set to be 1.0 and 0.03, respectively.The electronic reduced mass is given byμe=2M/(2M+1) withMbeing the proton mass.The effective charge isqeff= (2M+2)/(2M+1).Similar to Eq.(2), we can decompose Eq.(14) into a set of singleparticle Hamiltonians and the particle interaction term.The total wavefunctionψ(z,R,t) is expanded accordingly.Then the equations of motion can be derived.Details are omitted here.HHG spectra are computed as the squared modulus of the Fourier-transformed electric dipole acceleration.In order to reduce the background level of the HHG spectra,the dipole acceleration is multiplied by a Hanning window function before the Fourier transform.

    3.Results and discussion

    We first consider the strong-field ionization of the argon atom subject to a linearly polarized few-cycle laser pulse with the wavelength of 1200 nm, the peak intensity of 2×1014W/cm2and the pulse duration of 8TwithTbeing the optical cycle period of the laser pulse.The electric fieldE(t)of the laser pulse is defined as

    Hereω=2π/Tis the angular frequency.N0=8 is the total number of the laser optical cycles.E0=0.0755 is the amplitude of the electric field corresponding to the peak laser intensity of 2×1014W/cm2.With this intensity, the Keldysh parameter[28]γ<1, i.e., in the tunneling regime.Hereγ=[Ip/(2Up)]1/2, withUp=E20/(4ω2) being the ponderomotive potential.

    We employ two treatments to solve the 2D-TDSE: (1)The approximation method with the 2D electron wavefunctionΨ(x,y,t)given by Eq.(6),usingn1D wavefunctions for bothxandydirections.Figures 1(a)-1(e)present the obtained PEMD for different numbersn.(2) Numerically exact solution of the TDSE with split-operator spectral method[29]by discretizing 2D electron wavefunction in Cartesian grid ranges from-819 a.u.to 819 a.u.for both directions with the grid size of ?x=?y=0.4 a.u.The obtained PEMD is shown in Fig.1(f),which works as a reference.

    For smalln,liken=1,the calculated PEMD is not credible,and the interference structures cannot be identified in the spectrum.With increasingn,the PEMD simulated by the approximation method shows increasingly better agreement with the reference result in Fig.1(f).Whenn=30, the obtained PEMD(as shown in Fig.1(e))has no obvious difference with the reference result.By performing eigenvalue decomposition on the potential functionV(x,y),we obtain a simple criterion for selecting suitablen.For Ar atom,asnincreases,the diagonal elements of the feature matrix rapidly decrease.Set the threshold 10-10andn=30.

    In order to compare the numerical efficiency of the present method with the commonly used 2D representation of the wave function on grid,we first analyze the required memory size.Denoting the number of grid points along each direction bym, the required memory size for the expansion of Eq.(6)can be expressed as 2mn+n2and that for the the conventional method asm2.Typically, the conditionn ?mis satisfied.Thus the required memory size for the 2D electron wavefunction in the present method is much smaller than that in the conventional method for achieving a good agreement.However,due to the 2D potential functionV(x,y)used in the temporal propagation, the memory size cannot be reduced in a further step.Moreover,thanks to the small size of the wavefunction,one can expect that the computational efficiency can be significantly improved.Numerical propagation of Eqs.(9)-(11)is much faster.The only price to pay is that Eqs.(10)and(11)are nonlinear,time step smaller than that in the common method should be adopted in order to have a stable propagation.Nevertheless, the computation time is 30% of the common method.

    Fig.1.The photoelectron momentum distribution(PEMD)of Ar atoms induced by the linearly polarized laser pulse,simulated by the approximation method[(a)-(e)]and the precise split-operator spectral method(f).The number n of the one-dimensional wavefunctions in the approximation method is(a)1,(b)5,(c)10,(d)20,and(e)30.The wavelength of the laser pulse is 1200 nm and the intensity is 2×1014 W/cm2.The pulse duration is 8 optical cycles.The color scale is logarithmic.

    Fig.2.(a) Left longitudinal coordinate: The transverse momentum distribution of the PEMD at the cut px =Up extracted from Fig.1(e) (orange dashed curve) and Fig.1(f) (blue curve).Right longitudinal coordinate: the relative error of the two curves (red curve).(b)The difference plot with logarithmic color scale.

    Evident interference structures can be identified in Fig.1(e).The nearly horizontal fork-like interference fringes are the strong-field photoelectron holography.[30]In previous studies, both the inherent structural information and the ultrafast electronic dynamical information can be retrieved from the phase of the interference fringes,[5,31,32]which requires our approximation method to provide correct interference fringe locations as carried out with the traditional TDSE solving method (including the split-operator spectral method).To make an intuitive comparison, we cut slices from Figs.1(e)and 1(f) atpx=Up, respectively.The corresponding transverse momentum distributions are shown in Fig.2(a), where the approximate result (orange dashed curve) almost exactly coincides with the reference result (blue curve).The relative error between these two curves,as shown by the red curve in Figs.2(a), is in the order of 10-4and below.Furthermore, a differential approach is used to compare the overall difference between Figs.1(e) and 1(f).The difference plot is defined as DP(px,py) =|Da(Px,Py)-Dref(Px,Py)|, whereDa(Px,Py)andDref(Px,Py)are the photoelectron distribution corresponding to the approximation method withn=30 and the reference result,respectively.As shown in Fig.2(b),the amplitude of DP(px,py) has been as low as 10-4and the interference fringes in the PEMD have barely any location shift.

    Besides the one-dimensional linearly polarized laser pulse, we investigate the tunneling ionization of argon atoms induced by a circularly polarized laser pulse.The laser parameters of this circularly polarized laser pulse,including the wavelength,peak intensity,and pulse duration are the same as the linearly polarized laser pulse.Here,the electric fieldE(t)of this laser pulse is defined as

    Similarly,we employ both the approximation method and the split-operator spectral method to solve the 2D TDSE.For the approximation method, the numbernof the one-dimensional wavefunctions used in Eq.(6) increases from 1 to 30, corresponding to PEMDs presented in Figs.3(a)-3(e).Clearly,with increasingn, the corresponding PEMD shows increasingly better agreement with the reference result in Fig.3(f),which is calculated by the split-operator spectral method.By using the differential approach (as used in Fig.2(b)) to compare these two treatments,we confirm that forn=30,the approximate result is almost identical to the reference result.It demonstrates that the approximation method is accurate and computationally efficient.

    Fig.3.PEMDs of Ar atoms induced by the circularly polarized laser pulse.(a)Simulated by the approximation method with the onedimensional wavefunctions number n=1, (b)n=5,(c)n=10,(d)n=20,(e)n=30.(f)Calculated result with the split-operator spectral method.The color scale is logarithmic.

    Fig.4.(a)The high-order harmonic spectrum from H+2 molecular ion,using the approximation method with n=1 (the red solid curve) and n=10(the yellow dashed curve),and the direct solution of the TDSE(the blue solid curve).(b)Relative error between the direct solution and the approximation method with n=1 (the red curve) and n=10 (the yellow curve).

    In the above discussion, we calculate the PEMD of the tunneling ionization of the Ar atom.Both the split-operator spectral method and the approximation method are used to numerically solve the 2D TDSE and to obtain the real-time propagation of the electron wavefunction.The“ionized part”of the electron wavefunction is separated from the total timedependent electron wavefunction and transformed into momentum space at the end of each time step to simulate the PEMD,and thus sizable computational demanding is required.In the subsequent discussion, we investigate the HHG of 1D non-Born-Oppenheimer hydrogen molecular ion subject to the linearly polarized laser pulse given by Eq.(15).Here,we treat both the 1D electron and the 1D nuclear motion as two distinguishable quasi-particles.Similarly to calculating the PEMD, we numerically solve this 2D-TDSE and trace the temporal evolution of the electron wavefunction, where our approximation method can efficiently reduce the computational cost.Then the HHG spectrum is calculated as the modulus squared of the Fourier transform of the dipole accelerationa(t)= d2〈ψ(t)|z|ψ(t)〉/dt2, which is computational less demanding compared to simulating PEMD.

    Figure 4(a)presents the HHG spectra from the H+2molecular ion simulated by the approximated method and the direct method (solving TDSE directly), and Fig.4(b) presents the relative error between these two methods.For the approximation method, the result shows an improvement with increasing numbernof the one-dimensional wavefunctions.Whenn=10,the spectrum displays remarkable agreement with the direct solution.Note that Figs.1(c)and 3(c)demonstrate that,forn=10,the approximation method is not accurate enough.This indicates that calculating PEMD requires more 1D wavefunctions to simulate the temporal evoluting electron wavefunction in Eq.(6).

    4.Conclusion

    In summary, we have demonstrated an approximation method to solve the 2D TDSE and utilize this method for exactly solvable systems.In this approach, the 2D electron wavefunction is expanded in terms of the multiplication of two serials of 1D wavefunctions.The equation of motion for the expansion coefficients and 1D wavefunctions are derived.Employing this approximation method to the investigation of the atom and molecule irradiated by the intense laser field,the PEMD and high-harmonic spectrum can be accurately and computationally simulated efficiently.Moreover, this framework is highly flexible,and thus it would enable more efficient simulations of the laser-matter interaction.For example,it can be straightforwardly extended to solve real three-dimensional TDSE for atoms and molecules in intense laser fields.By writing the three-dimensional wavefunction in Cartesian coordinates asψ(x,y,z), analogously to Eq.(6), we can write the wavefunction as a linear combination of lower-dimensional wave function productsψ(x,y,z)=∑ni j ci j(t)χi(x,y,t)φj(z,t).The derived equations of motion can be directly applied.Note that in this case, separation of the wavefunction into three quasi-particles according to three directions is not recommend,because in this case the coulomb potential would be a threeparticle interaction term and will highly complicate the equations of motion.Moreover,our approximation method can use OpenMP with shared memory for parallel computing,and it is more difficult to imply MPI computing with distributed memory than directly solve the time-dependent Schr¨odinger equation.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12204545 and 12274294)and the Program for NUE independent research and development.

    猜你喜歡
    李洋
    Characteristics of laser-induced breakdown spectroscopy of liquid slag
    李洋作品
    大觀(2023年10期)2023-12-27 21:11:22
    High efficiency of broadband transmissive metasurface terahertz polarization converter
    Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
    李洋、龔有月、賴姝、程曉春作品
    大觀(2022年12期)2022-02-23 00:44:30
    李洋論
    十分鐘
    New teacher—student Relationship in Junior English Class Teaching
    幽蘭
    希式男友
    亚洲男人的天堂狠狠| 免费搜索国产男女视频| 国产成人影院久久av| 国产单亲对白刺激| 午夜日韩欧美国产| 99久久久亚洲精品蜜臀av| 99久久精品热视频| 欧美在线一区亚洲| 亚洲精品456在线播放app | 精品免费久久久久久久清纯| 桃色一区二区三区在线观看| 国产激情偷乱视频一区二区| 午夜福利在线观看免费完整高清在 | 欧美另类亚洲清纯唯美| 天堂网av新在线| 国产乱人伦免费视频| av天堂在线播放| 国产成人福利小说| 亚洲四区av| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 欧美+亚洲+日韩+国产| 国产av不卡久久| 99久久精品国产国产毛片| 欧美国产日韩亚洲一区| 黄色一级大片看看| 91av网一区二区| 国产精品女同一区二区软件 | 3wmmmm亚洲av在线观看| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 亚洲欧美日韩高清在线视频| 精品一区二区三区人妻视频| 国产精品日韩av在线免费观看| 在现免费观看毛片| 九色国产91popny在线| 在线a可以看的网站| av国产免费在线观看| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩国产亚洲二区| 人人妻,人人澡人人爽秒播| 国国产精品蜜臀av免费| 简卡轻食公司| 99热精品在线国产| 悠悠久久av| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 亚洲三级黄色毛片| 国内精品美女久久久久久| 精品乱码久久久久久99久播| 亚洲精品久久国产高清桃花| 亚洲在线自拍视频| 国产极品精品免费视频能看的| 国产精品一及| av女优亚洲男人天堂| 亚洲欧美日韩高清在线视频| 久久欧美精品欧美久久欧美| 男女之事视频高清在线观看| 国产69精品久久久久777片| 中国美白少妇内射xxxbb| 亚洲av中文av极速乱 | 欧美不卡视频在线免费观看| 亚洲综合色惰| 99久久精品国产国产毛片| 国产在线精品亚洲第一网站| 黄色配什么色好看| 97碰自拍视频| 欧美日韩乱码在线| 91麻豆av在线| 国产精品国产高清国产av| 久久精品国产自在天天线| av视频在线观看入口| 人妻久久中文字幕网| 亚洲性久久影院| 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 啪啪无遮挡十八禁网站| 成人av在线播放网站| 精品国内亚洲2022精品成人| 91午夜精品亚洲一区二区三区 | 欧美激情久久久久久爽电影| 亚州av有码| 国产淫片久久久久久久久| 免费人成在线观看视频色| 久久久久久九九精品二区国产| 国产精品三级大全| 精品无人区乱码1区二区| 91在线观看av| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 99热精品在线国产| 国产精品久久久久久亚洲av鲁大| 一区二区三区四区激情视频 | 成人鲁丝片一二三区免费| 亚洲va日本ⅴa欧美va伊人久久| 美女免费视频网站| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 欧美最新免费一区二区三区| 国产亚洲91精品色在线| 乱系列少妇在线播放| 午夜日韩欧美国产| 亚洲国产精品sss在线观看| 嫩草影院新地址| 色av中文字幕| 国产极品精品免费视频能看的| 99在线人妻在线中文字幕| 精品欧美国产一区二区三| 免费人成在线观看视频色| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲久久久久久中文字幕| 在线a可以看的网站| 深夜精品福利| 99热6这里只有精品| 日日摸夜夜添夜夜添av毛片 | 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 九九热线精品视视频播放| 两人在一起打扑克的视频| 国产精品乱码一区二三区的特点| 88av欧美| 99热这里只有是精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产清高在天天线| x7x7x7水蜜桃| .国产精品久久| 日本一二三区视频观看| 国产色婷婷99| 日韩欧美精品v在线| 99久久无色码亚洲精品果冻| 国产欧美日韩精品一区二区| 黄片wwwwww| 亚洲va在线va天堂va国产| 免费观看精品视频网站| 欧美又色又爽又黄视频| 日韩av在线大香蕉| 久久人妻av系列| 日韩人妻高清精品专区| 搡老妇女老女人老熟妇| 别揉我奶头 嗯啊视频| 全区人妻精品视频| 久久精品综合一区二区三区| 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| av在线天堂中文字幕| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 久久精品影院6| 夜夜夜夜夜久久久久| 少妇高潮的动态图| 国产精品,欧美在线| 久99久视频精品免费| 欧美+日韩+精品| 在线观看一区二区三区| 亚洲av免费高清在线观看| 色综合婷婷激情| 欧美bdsm另类| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 国产高清视频在线观看网站| 欧美成人免费av一区二区三区| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 国产亚洲91精品色在线| 欧美3d第一页| 亚洲中文字幕日韩| 噜噜噜噜噜久久久久久91| 欧美日韩亚洲国产一区二区在线观看| 日本黄大片高清| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办 | 麻豆精品久久久久久蜜桃| 黄色配什么色好看| 久久人人爽人人爽人人片va| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 久久精品综合一区二区三区| 一本精品99久久精品77| 国产精品久久久久久亚洲av鲁大| 美女cb高潮喷水在线观看| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 国产成人一区二区在线| 99热网站在线观看| 国产成人av教育| 成人高潮视频无遮挡免费网站| 国产精品,欧美在线| 很黄的视频免费| h日本视频在线播放| 99在线人妻在线中文字幕| 中出人妻视频一区二区| 日本黄大片高清| 天美传媒精品一区二区| 精品一区二区三区av网在线观看| 久久精品国产自在天天线| 最近在线观看免费完整版| 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 女的被弄到高潮叫床怎么办 | 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| netflix在线观看网站| 黄色女人牲交| 亚洲精品456在线播放app | 国产69精品久久久久777片| 熟女电影av网| 亚洲欧美日韩卡通动漫| 精品一区二区三区av网在线观看| 亚洲美女视频黄频| 三级毛片av免费| 亚洲经典国产精华液单| 丰满乱子伦码专区| 亚洲国产精品久久男人天堂| 深夜a级毛片| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 国产精品爽爽va在线观看网站| 日韩欧美国产在线观看| 午夜福利18| 99久久精品国产国产毛片| 搞女人的毛片| 男女边吃奶边做爰视频| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| 成人国产综合亚洲| 哪里可以看免费的av片| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 在线观看66精品国产| 91久久精品国产一区二区三区| 在线播放国产精品三级| 日本与韩国留学比较| 国产亚洲精品久久久com| 久久久久久久久久成人| 天堂√8在线中文| 中文字幕免费在线视频6| 亚洲专区中文字幕在线| 亚洲黑人精品在线| 在线国产一区二区在线| 精品乱码久久久久久99久播| 久久久久久久久久久丰满 | 别揉我奶头~嗯~啊~动态视频| 亚洲色图av天堂| 舔av片在线| 亚洲人成网站高清观看| 一a级毛片在线观看| 欧美xxxx性猛交bbbb| 国产精品亚洲一级av第二区| 欧美在线一区亚洲| 日日摸夜夜添夜夜添av毛片 | 特级一级黄色大片| 精品久久久久久久久av| 午夜久久久久精精品| 婷婷精品国产亚洲av在线| 久久久久久久精品吃奶| 日本一本二区三区精品| 国内少妇人妻偷人精品xxx网站| 亚洲av一区综合| 又爽又黄a免费视频| 国产免费一级a男人的天堂| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 美女高潮的动态| h日本视频在线播放| 国产一区二区激情短视频| 人妻少妇偷人精品九色| 尾随美女入室| 3wmmmm亚洲av在线观看| 中国美女看黄片| 99久久成人亚洲精品观看| 欧美日韩黄片免| 国产精品人妻久久久影院| 亚洲欧美日韩高清专用| 国产精品不卡视频一区二区| 日本色播在线视频| 女人十人毛片免费观看3o分钟| 亚洲天堂国产精品一区在线| 国产极品精品免费视频能看的| 久久久久久国产a免费观看| 成年免费大片在线观看| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 1024手机看黄色片| 日韩在线高清观看一区二区三区 | 亚洲va在线va天堂va国产| 又黄又爽又免费观看的视频| 校园人妻丝袜中文字幕| 中文资源天堂在线| 丰满乱子伦码专区| 啦啦啦韩国在线观看视频| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 黄片wwwwww| 啦啦啦啦在线视频资源| 欧美又色又爽又黄视频| bbb黄色大片| 不卡一级毛片| www.www免费av| 亚洲最大成人中文| 制服丝袜大香蕉在线| 成人精品一区二区免费| 少妇的逼好多水| 国产大屁股一区二区在线视频| 五月伊人婷婷丁香| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区 | 成人三级黄色视频| 在线看三级毛片| 国产乱人视频| 51国产日韩欧美| av在线蜜桃| 桃红色精品国产亚洲av| 欧美最新免费一区二区三区| videossex国产| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 老司机深夜福利视频在线观看| 综合色av麻豆| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 观看免费一级毛片| 久久久久久伊人网av| 亚洲久久久久久中文字幕| 日本色播在线视频| 男人狂女人下面高潮的视频| 97人妻精品一区二区三区麻豆| 麻豆av噜噜一区二区三区| 嫩草影视91久久| 乱系列少妇在线播放| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 久久精品91蜜桃| 99riav亚洲国产免费| 免费av不卡在线播放| 男女视频在线观看网站免费| 国产乱人伦免费视频| 69av精品久久久久久| 天天一区二区日本电影三级| 女人十人毛片免费观看3o分钟| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 韩国av一区二区三区四区| 亚洲狠狠婷婷综合久久图片| 成人永久免费在线观看视频| 日本爱情动作片www.在线观看 | 精品久久久久久久久亚洲 | 亚洲av免费在线观看| 午夜久久久久精精品| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频| 国产国拍精品亚洲av在线观看| 99热这里只有是精品50| 亚洲18禁久久av| 精品一区二区三区av网在线观看| 国产av不卡久久| 国产精品电影一区二区三区| 亚洲精品国产成人久久av| 波多野结衣巨乳人妻| 波多野结衣高清作品| 精品久久久噜噜| 国产精品人妻久久久影院| 精品久久久久久久久久免费视频| 亚洲内射少妇av| 成人欧美大片| 男女边吃奶边做爰视频| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 免费av观看视频| 国产一区二区三区在线臀色熟女| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看 | 国内揄拍国产精品人妻在线| 日韩欧美国产在线观看| 深夜精品福利| 亚洲av中文字字幕乱码综合| 深爱激情五月婷婷| 特级一级黄色大片| 69av精品久久久久久| 看十八女毛片水多多多| 最后的刺客免费高清国语| 中文亚洲av片在线观看爽| 禁无遮挡网站| ponron亚洲| 欧美xxxx性猛交bbbb| 人人妻,人人澡人人爽秒播| 夜夜夜夜夜久久久久| 国产 一区精品| 一卡2卡三卡四卡精品乱码亚洲| 少妇丰满av| 久久久久久久久久久丰满 | 精品99又大又爽又粗少妇毛片 | a级一级毛片免费在线观看| 色哟哟·www| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 欧美绝顶高潮抽搐喷水| 欧美激情在线99| 亚洲精品一卡2卡三卡4卡5卡| www.www免费av| 亚洲中文字幕一区二区三区有码在线看| 麻豆国产av国片精品| 在线观看av片永久免费下载| 国产日本99.免费观看| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 直男gayav资源| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 免费看美女性在线毛片视频| 国产白丝娇喘喷水9色精品| 性色avwww在线观看| 午夜福利在线观看免费完整高清在 | 亚洲av美国av| 真人做人爱边吃奶动态| 在线观看美女被高潮喷水网站| 欧美激情久久久久久爽电影| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 一进一出抽搐动态| 无遮挡黄片免费观看| 欧美极品一区二区三区四区| 久久精品国产清高在天天线| av专区在线播放| 欧美性感艳星| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 午夜福利在线在线| 午夜福利成人在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 在线播放无遮挡| 嫩草影院新地址| 免费av不卡在线播放| 日本欧美国产在线视频| 日日啪夜夜撸| 99热这里只有精品一区| 88av欧美| 韩国av一区二区三区四区| 亚洲av熟女| 国产视频一区二区在线看| 99在线视频只有这里精品首页| 日韩欧美国产一区二区入口| 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 成人欧美大片| 亚洲内射少妇av| 国产高清三级在线| 日韩欧美免费精品| 三级毛片av免费| 午夜福利在线观看免费完整高清在 | 国产色婷婷99| 国产精品,欧美在线| 久久精品国产亚洲av天美| eeuss影院久久| 国产精品伦人一区二区| 日日啪夜夜撸| 51国产日韩欧美| 日本免费一区二区三区高清不卡| 美女cb高潮喷水在线观看| 日本成人三级电影网站| 少妇猛男粗大的猛烈进出视频 | 99九九线精品视频在线观看视频| 天堂av国产一区二区熟女人妻| 亚洲av成人av| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 欧美性猛交黑人性爽| 免费人成在线观看视频色| 精品久久久久久久久av| 国产精品乱码一区二三区的特点| 禁无遮挡网站| 2021天堂中文幕一二区在线观| 九九爱精品视频在线观看| 国产亚洲91精品色在线| 搞女人的毛片| 久久国内精品自在自线图片| 欧美日本亚洲视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 国国产精品蜜臀av免费| 国产毛片a区久久久久| 一本一本综合久久| 欧美日本亚洲视频在线播放| 国产在视频线在精品| 色综合站精品国产| 白带黄色成豆腐渣| 午夜爱爱视频在线播放| 色噜噜av男人的天堂激情| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 国产精品亚洲一级av第二区| 久久精品国产亚洲网站| 久久婷婷人人爽人人干人人爱| 啦啦啦韩国在线观看视频| 国产黄色小视频在线观看| 亚洲中文字幕日韩| 桃色一区二区三区在线观看| 国产精品一及| 尾随美女入室| 桃红色精品国产亚洲av| 国产精品福利在线免费观看| 精品99又大又爽又粗少妇毛片 | 不卡视频在线观看欧美| 毛片女人毛片| 久久国产乱子免费精品| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美| 麻豆一二三区av精品| 露出奶头的视频| 中文字幕av在线有码专区| 国产精品一及| 亚洲av成人精品一区久久| 国产亚洲91精品色在线| 亚洲av中文字字幕乱码综合| 日韩欧美免费精品| 精品福利观看| 美女cb高潮喷水在线观看| 91久久精品电影网| 热99re8久久精品国产| 婷婷精品国产亚洲av在线| aaaaa片日本免费| 国产三级在线视频| 国产日本99.免费观看| 亚洲精品一区av在线观看| 欧美3d第一页| 黄片wwwwww| 国内久久婷婷六月综合欲色啪| 国产精品一及| 久久久精品大字幕| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 欧美性感艳星| 伊人久久精品亚洲午夜| 亚洲aⅴ乱码一区二区在线播放| h日本视频在线播放| 国产成人影院久久av| 免费在线观看影片大全网站| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区 | 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 久久久久久大精品| 欧美日韩国产亚洲二区| 欧美zozozo另类| 变态另类成人亚洲欧美熟女| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 一级黄片播放器| av国产免费在线观看| 国产av一区在线观看免费| 亚洲18禁久久av| 免费人成在线观看视频色| 日本爱情动作片www.在线观看 | 琪琪午夜伦伦电影理论片6080| 黄色日韩在线| 麻豆精品久久久久久蜜桃| 亚洲av美国av| 国产精品国产高清国产av| 无人区码免费观看不卡| 亚洲av.av天堂| 国产伦一二天堂av在线观看| 亚洲欧美日韩高清专用| 日本 av在线| 在线播放无遮挡| 亚洲最大成人手机在线| 色噜噜av男人的天堂激情| 中文字幕高清在线视频| 成人无遮挡网站| 国产一区二区三区av在线 | 真实男女啪啪啪动态图| 校园人妻丝袜中文字幕| 精品人妻偷拍中文字幕| 色在线成人网| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 日韩人妻高清精品专区| 黄色丝袜av网址大全| 我要搜黄色片| 一进一出抽搐gif免费好疼| 高清在线国产一区| 国产精品女同一区二区软件 | 91精品国产九色| 成年女人永久免费观看视频| 在线观看66精品国产| 久久久国产成人精品二区| 少妇的逼好多水| 小说图片视频综合网站| 老司机午夜福利在线观看视频| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 九九热线精品视视频播放| 免费观看在线日韩| 99热这里只有精品一区| 国产精品自产拍在线观看55亚洲| 身体一侧抽搐| 国内久久婷婷六月综合欲色啪| 日本免费a在线| 男女啪啪激烈高潮av片| 真实男女啪啪啪动态图| 亚洲国产精品成人综合色| 免费看a级黄色片| 欧美潮喷喷水|