• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors

    2022-08-31 09:58:12JiananWei魏佳男YangLi李洋WenlongLiao廖文龍FangLiu劉方YonghongLi李永宏JianchengLiu劉建成ChaohuiHe賀朝會andGangGuo郭剛
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李洋文龍

    Jianan Wei(魏佳男) Yang Li(李洋) Wenlong Liao(廖文龍) Fang Liu(劉方)Yonghong Li(李永宏) Jiancheng Liu(劉建成) Chaohui He(賀朝會) and Gang Guo(郭剛)

    1Science and Technology on Analog Integrated Circuit Laboratory,Chongqing 400060,China

    2School of Nuclear Science and technology,Xi’an Jiaotong University,Xi’an 710049,China

    3National Innovation Center of Radiation Application,China Institute of Atomic Energy,Beijing 102413,China

    Keywords: heterojunction bipolar transistor,proton irradiation,single event transient,angular effect

    1. Introduction

    Silicon-germanium heterojunction bipolar transistors(SiGe HBTs)are favored for space applications due to the superior low-temperature performance and the better tolerance to total ionizing dose and displacement damage than traditional silicon bipolar junction transistors(Si BJTs).[1–6]The siliconbased bandgap engineering provides a way to combine III–V performance with the yield and cost advantages of bulk silicon into an ideal platform.[7,8]However,SiGe HBTs are confirmed to be very sensitive to single event effect (SEE).[9–11]Integrated circuits (ICs) based on SiGe HBT and SiGe BiCMOS technologies usually suffer from low SEE thresholds and large SEE cross sections.[12–14]Therefore, the detailed characteristics of single event transient (SET) in SiGe HBTs are important for a full understanding of behavior of SiGe ICs in particular radiation environments.

    Heavy ions and protons are the two dominant causes for SEE in spaceborne electronics. Some previous publications have investigated the current transients induced by heavy ions in SiGe HBTs via experiments and technology computer aided design (TCAD) simulations.[11,15–18]The results indicate that the large-area collector–substrate junction and the lightly doped substrate are the two dominant factors for the collection of excess carriers generated by incident ions. However, the SET induced by protons in SiGe HBTs is rarely investigated from a transistor level of view. In submicron semiconductor devices, protons cause SEE mainly via the secondary particles created by interactions with target materials. This is quite different from heavy ions which cause SEE mainly via direct ionizing processes. The randomness of the location of proton/material interactions and the characteristics of secondary particles makes the analysis of proton-induced SET in SiGe HBTs rather complicated.[19]In our previous study,[20]we presented primary results of proton-induced SET in SiGe HBTs. The temporal information of the current transients induced by protons with energy ranging from 30 MeV to 90 MeV was measured via experiment for the first time. However, the incident angle of protons was fixed at 0?(normal to the device surface),so that the impact of incident angle of protons was not discussed at that time. Note that protons from the radiation belts can penetrate low altitude orbiting spacecrafts from all directions,it is still essential to make further supplements.

    In this work,we present the first investigation into the angular dependence of proton-induced SET in SiGe HBTs. The collector transient currents induced by 60 MeV protons at different incident angles are measured. Then the angular effect on the current transient duration and integral charge collection are discussed. Furthermore,the ionizing energy deposition in the sensitive volume and the angular distribution of protoninduced secondary particles are simulated by using GEANT4 Monte Carlo toolkits in order to gain deeper insights into the underlying mechanisms.

    2. Experimental setup

    2.1. Device description

    The devices under test(DUTs)are vertical double polysilicon NPN SiGe HBTs fabricated by a system purchased from a HUAJIE company and achieve a peakhFEof 150,a peakfTof 25 GHz and a maximum collector current(IC)of 30 mA.Figure 1 shows the schematic device structure. Figure 2 shows a localized SEM picture of the emitter-base-collector stack. The width of the emitter window is about 0.4 μm and the thickness of EB spacer is about 16 nm. The intrinsic base is formed by an epitaxially grown SiGe layer with thickness of about 100 nm. The isolation layer between collector and base is formed by local oxidation of silicon (LOCOS) with a thickness of about 675 nm. More detailed information about the DUTs can be found in Refs.[21–23].

    Fig.1. Schematic cross section of the SiGe HBT(not to scale).

    Fig.2. SEM picture of the emitter-base-collector stack.

    3. Proton irradiation

    The proton irradiation experiment was carried out at the SEE testing facility of the proton cyclotron in China Institute of Atomic Energy (CIAE), Beijing, China. Figure 3 shows the components of the facility. The energy of protons is adjusted by aluminum degraders with variable thickness, while the beam spot size is adjusted by the collimator. The dosimetry measurements use a secondary-electron emission monitor calibrated against a Faraday cup. In this work,the proton energy was adjusted to 60 MeV and the spot size of proton beam was fixed at 5×5 cm2. The flux varied from 1×107cm?2·s?1to 2×107cm?2·s?1, depending on the beam intensity. The incident angle of protons was controlled by the sample rack which can rotate around its central axis,as shown in Fig.3(b),

    where 0?corresponds to the proton beam being incident normal to the device surface. The maximum available incident angle of the facility is 70?. Three irradiations were carried out with proton incident angles set at 0?,30?and 60?.

    Fig.3. Schematic of the proton SEE testing facility at CIAE.

    Fig.4. Configuration of the SET testing circuit.

    The external circuit components and lumped elements for SET testing are shown in Fig. 4. The proton-induced current transients on collector, which is the main cause for SEE in most SiGe circuits,[24]is recorded through a Mini-Circuits(company)wide-band bias tee by a Tektronix DPO71604 16-GHz (50 GS/s) real time digital phosphor oscilloscope. The DUTs were biased withVE=VB=VS=0 V andVC=5 V during irradiation. Under this condition, the collector–substrate junction is reverse-biased so that excess carriers generated by charged particles in the lightly doped substrate can be collected rapidly.This has been confirmed to be the worst case for SET.The trigger threshold was set to|IC|=0.08 mA.Three independent DUTs were tested at each proton incident angle and the total accumulated proton fluence at each angle exceeded 1.5×1011cm?2,which resulted in no less than 35 SET events.

    4. Experimental results

    Figure 5 shows the SET cross section(σSET)as a function of incident angle. The cross section is calculated by

    whereNSETis the number SET events recorded by the oscilloscope,ΦPis the proton fluence. The error bars represent the standard deviation of data from three independent DUTs.The error bar is not given for the data at 60?because function failure of the testing circuit was found for one of the three DUTs during irradiation. It can be found that the SET cross section exhibits no clear trend with incident angle,indicating a negligible angular effect. Figure 6 plots typical waveforms of recorded collector current transients at different incident angles. Each panel in the figure shows the experimental results obtained from a single DUT in a single run of proton irradiation. The accumulated fluence of a single run is no less than 5×1010cm?2. Most current transients exhibit similar characteristics,namely a very short rise time and a relatively longer falling time.This is consistent with the previous results. However,with the increase of proton incident angle,the falling tail of some current transients turns to be much longer,thereby increasing the duration significantly. As seen in Fig. 6, all the current transients restore to the background level in about 1 ns when the incident angle is 0?, whereas the current transients may last for more than 3 ns when the incident angle increases to 60?. Figure 7 shows the proportion of current transients with different durations. A broadening of the distribution of histograms can be found at large incident angles. Moreover,the proportion of SET events with short duration decreases with increasing incident angle,whereas the proportion of SET events with long duration increases,thereby leading to a rightward shift of the histograms. A SET event with longer duration can span a greater number of clock periods and affect more data bits if the SiGe circuit works at high frequencies.[25]On the other hand,the increase of transient duration will consequently result in a greater integral charge collection which is the time integral of transient current. Evidently, as shown in Fig. 8, the distribution of SET events with certain integral charge collection values shows similar trends to that in Fig.7.The increasing proportion of SET events with high charge collection values has more significant impact on the circuit with a high SEE critical charge(QC). Figure 9 shows the cross section of SET events with collector charge collection exceeding certain values ofQC,which is calculated byσQ=NQ/(ΦP·cosθ),(2)

    whereNQis the number of SET events with collector charge collection exceedingQC. The proton incident angle appears to have no clear impact onσQwhenQCis set to 0.05 pC and 0.1 pC, whereas a rapid increase ofσQwith incident angle occurs whenQCis increased to 0.15 pC.

    Fig.5. SET cross section at different proton incident angles.

    Fig.6. Typical current transients at different proton incident angles.

    Fig.7. Proportion of current transients with different durations.

    Fig. 8. Proportion of current transients with different integral charge collections.

    Fig.9. Cross section of SET events with integral charge collection exceeding certain critical values.

    These results suggest that the impact of proton incident angle should not be simply ignored when performing ground SET testings and the results at normal incidence may underestimate the SET susceptibility of this SiGe technology.

    5. Monte Carlo simulation and discussion

    In this section, the GEANT4 Monte Carlo simulation toolkits are used to better understand the mechanisms for angular dependence of proton-induced SET. In our previous work,[20]the sensitive volume geometry of this SiGe HBT has been determined based on heavy-ion microbeam irradiation and TCAD simulation results. The right rectangular parallelepiped sensitive volume has a topside area of 140×140μm2and a depth of 20μm. We use the same model configurations in this work to investigate the ionizing energy deposition in the sensitive volume and the characteristics of secondary particles at varying proton incident angles.

    5.1. Ionizing energy deposition in sensitive volume

    The amount of collected charge of a SET event is directly related to the ionizing energy loss in the sensitive volume.Figure 10 shows the simulated integral cross section of proton incident events that deposit a certain amount of ionizing energy or greater in the sensitive volume. It can be found that the integral cross section does not exhibit significant dependence on incident angle when the deposited ionizing energy is less than 10 MeV.

    Fig. 10. Simulated integral cross section as a function of ionizing energy deposition in the sensitive volume for 60 MeV protons.

    However, for the deposited energy greater than 10 MeV,the integral cross section increases significantly with the increasing incident angle,which indicates that the probability of proton incident events with large ionizing energy deposition turns to be higher at larger incident angles. This is consistent with the experimental results in Fig.8.

    5.2. Angular distribution of proton-induced secondary particles

    Figure 11 shows the simulated angular distributions of proton-induced secondary particle energy,linear energy transfer(LET)and range in silicon. Information of secondary particles created through both spallation reaction and elastic nuclear scattering is collected. The launching angle is defined as the angle between the momentum directions of the secondary particles and the primary incident protons. Evidently,the secondary particles with the highest energy(highest LET,longest range)tend to have smaller launching angles,which indicates that they are forward directed. On the contrary,the secondary particles with lower energies are more isotropic, thus leading to the broader angular distributions that cover 0?to approximately 140?.

    As mentioned above, the sensitive volume of the SiGe HBT is 140μm×140μm×20μm,which results in an aspect ratio of 7.Under this condition,the particles that are parallel to the device surface would have longer paths than those normal to the device surface. Therefore, the forward-directed highenergy secondary particles can leave a longer ionizing track in the sensitive volume at larger proton incident angles,as shown in Fig.12. As a consequence, the ionizing energy deposition increases since it is proportional to the track length. On the contrary,for the low-energy secondary particles that are more isotropic,the impact of incident angle becomes much smaller,as shown in Fig.13. Therefore,the angular dependence of the proton-induced SET can be associated with the angular distribution of the secondary particles.

    However, it should be emphasized that the SiGe HBTs investigated in this work were fabricated via bulk silicon technology, and the deep trench isolation (DTI) is not employed.For SiGe HBTs fabricated via silicon-on-isolator (SOI) technology, the depth of the sensitive volume is confined by the buried oxide layer,[25–27]so that a more aggressive aspect ratio can be expected,which leads to more significant angular effects. On the other hand,for the SiGe HBTs with DTI around the intrinsic device(i.e. the emitter-base-collector stack), the sensitive volume is determined by the deep trench,[11,16,28,29]which leads to an aspect ratio much smaller.Therefore,the impact of proton incident angle may vary among different SiGe technologies and should be carefully considered in the SET ground testings.

    Fig.11. Simulated angular distribution of proton-induced secondary particles: (a)energy,(b)LET,(c)range.

    Fig.12. Schematic of angular effect on the ionizing track length of forward-directed high-energy secondary particles in the sensitive volume:(a)proton incidence at 0?,(b)proton incidence at 60?.

    Fig.13. Schematic of angular effect on the ionizing track length of isotropic low-energy secondary particles in the sensitive volume: (a)proton incidence at 0?,(b)proton incidence at 60?.

    6. Conclusions

    In summary,the angular effect of proton-induced current transient in SiGe HBT is investigated. Collector current transients caused by 60 MeV protons were measured at incident angles of 0?, 30?and 60?. The overall cross section of SET events exhibits no clear angular dependence. However, the proportion of SET events with long duration and high integral charge collection grows significantly with increasing incident angle. Monte Carlo simulation demonstrates that the integral cross section of proton incident events depositing more than 10 MeV ionizing energy in the sensitive volume grows with increasing incident angle. This can be associated with the forward-directed nature of the most energetic (highest LET,longest range) secondary particles. Given a sensitive volume with an aspect ratio of 7,the forward-directed high-energy secondary particles can leave longer ionizing tracks, thus more ionizing energy deposition and excess carriers,in the sensitive volume at larger proton incident angles.

    The results of this study indicate that ground testings on SiGe devices which ignore the proton incident angle may lead to misestimations of SET susceptibility. Furthermore,the geometry of sensitive volume, which varies significantly among different SiGe technologies, must be carefully considered when assessing the angular effects of proton-induced SET.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11775167 and 12105252) and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-bsh0246).

    猜你喜歡
    李洋文龍
    Time-dependent variational approach to solve multi-dimensional time-dependent Schr¨odinger equation
    Understanding the changing mechanism of arc characteristics in ultrasound-magnetic field coaxial hybrid gas tungsten arc welding
    郭文龍
    李洋、龔有月、賴姝、程曉春作品
    大觀(2022年12期)2022-02-23 00:44:30
    李洋論
    中華詩詞(2021年1期)2021-12-31 07:51:46
    遠行
    勝利就在明天
    好的設(shè)計應該是有氣氛、有故事感的——專訪天比高空間設(shè)計謝文龍
    仙逝的“文龍”你在天堂還好嗎?
    旅游縱覽(2018年9期)2018-09-18 19:48:40
    New teacher—student Relationship in Junior English Class Teaching
    魅力中國(2018年51期)2018-04-08 09:09:34
    麻豆av在线久日| 久久这里只有精品19| 两人在一起打扑克的视频| 最新美女视频免费是黄的| 在线国产一区二区在线| 国产精品一区二区精品视频观看| 亚洲精品在线美女| 99国产极品粉嫩在线观看| 国产xxxxx性猛交| 久久中文看片网| 日韩欧美免费精品| 精品一区二区三区四区五区乱码| 人人澡人人妻人| 日韩免费高清中文字幕av| 黄色成人免费大全| 亚洲国产精品合色在线| 亚洲精品一区av在线观看| 亚洲少妇的诱惑av| 亚洲熟妇中文字幕五十中出 | 一进一出抽搐动态| 欧美丝袜亚洲另类 | 久久精品亚洲精品国产色婷小说| 悠悠久久av| 人人妻,人人澡人人爽秒播| av欧美777| 午夜免费成人在线视频| 久久精品影院6| 国产精品久久久久久人妻精品电影| 国产精品美女特级片免费视频播放器 | 自线自在国产av| 在线永久观看黄色视频| 久热这里只有精品99| 精品人妻在线不人妻| 亚洲第一青青草原| 免费搜索国产男女视频| 搡老乐熟女国产| 97人妻天天添夜夜摸| 成人三级黄色视频| 人成视频在线观看免费观看| 久久影院123| 黄色成人免费大全| 亚洲熟妇中文字幕五十中出 | 久久人人97超碰香蕉20202| 99国产精品免费福利视频| 桃红色精品国产亚洲av| 久久人人爽av亚洲精品天堂| 水蜜桃什么品种好| 精品国产一区二区三区四区第35| 免费观看人在逋| 中文欧美无线码| av网站在线播放免费| 黄色毛片三级朝国网站| 又黄又粗又硬又大视频| 999久久久精品免费观看国产| 午夜精品国产一区二区电影| 99国产精品免费福利视频| cao死你这个sao货| 欧美中文日本在线观看视频| 久久 成人 亚洲| 一边摸一边做爽爽视频免费| 久久精品亚洲熟妇少妇任你| 精品人妻1区二区| 国产91精品成人一区二区三区| 国产亚洲精品久久久久5区| 69精品国产乱码久久久| 国产在线精品亚洲第一网站| 国产精品亚洲一级av第二区| 精品日产1卡2卡| 久久青草综合色| 欧美国产精品va在线观看不卡| 亚洲全国av大片| 久久中文看片网| 大型av网站在线播放| 精品国产一区二区久久| 久久 成人 亚洲| 激情视频va一区二区三区| 国产不卡一卡二| 国产精品爽爽va在线观看网站 | 黄网站色视频无遮挡免费观看| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 国产精品美女特级片免费视频播放器 | 国产亚洲欧美在线一区二区| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| av网站在线播放免费| 国产伦一二天堂av在线观看| 亚洲精品在线观看二区| 色综合站精品国产| 日本一区二区免费在线视频| 怎么达到女性高潮| 动漫黄色视频在线观看| 村上凉子中文字幕在线| 91av网站免费观看| 国产区一区二久久| 国产1区2区3区精品| 亚洲中文字幕日韩| 欧美老熟妇乱子伦牲交| a级毛片在线看网站| 中文字幕色久视频| 在线十欧美十亚洲十日本专区| 侵犯人妻中文字幕一二三四区| 亚洲国产精品999在线| 亚洲久久久国产精品| 色精品久久人妻99蜜桃| 国产单亲对白刺激| 夜夜躁狠狠躁天天躁| 欧美精品亚洲一区二区| 久久狼人影院| 久久久久久久精品吃奶| www.精华液| 亚洲自偷自拍图片 自拍| 男人舔女人的私密视频| 午夜福利免费观看在线| 国产单亲对白刺激| 9热在线视频观看99| 天天影视国产精品| 久久中文字幕一级| 精品一区二区三区四区五区乱码| 香蕉久久夜色| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩乱码在线| 久久久国产一区二区| 中文字幕精品免费在线观看视频| 久久狼人影院| 久久天躁狠狠躁夜夜2o2o| 成人三级做爰电影| 99国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 成人免费观看视频高清| 国产麻豆69| 99国产精品99久久久久| 久久欧美精品欧美久久欧美| 99国产综合亚洲精品| 精品无人区乱码1区二区| 国产成人av激情在线播放| 久久久久久免费高清国产稀缺| 国产精品久久久人人做人人爽| 亚洲av熟女| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 国产亚洲精品久久久久久毛片| avwww免费| 满18在线观看网站| 亚洲第一欧美日韩一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲国产毛片av蜜桃av| 夜夜爽天天搞| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 日韩欧美在线二视频| 国产精品乱码一区二三区的特点 | 久久亚洲精品不卡| 99riav亚洲国产免费| 精品第一国产精品| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 精品高清国产在线一区| av天堂在线播放| 日韩欧美三级三区| 一区二区三区精品91| 久久热在线av| 成人特级黄色片久久久久久久| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| 老司机在亚洲福利影院| 一进一出好大好爽视频| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 12—13女人毛片做爰片一| 午夜a级毛片| 久久精品91无色码中文字幕| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜精品| 亚洲成人免费电影在线观看| 18禁国产床啪视频网站| 欧美日韩视频精品一区| 国产精品乱码一区二三区的特点 | 这个男人来自地球电影免费观看| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 久久中文看片网| 色婷婷av一区二区三区视频| 午夜精品在线福利| 美女福利国产在线| 国产欧美日韩一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 黄色视频不卡| 多毛熟女@视频| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 丰满迷人的少妇在线观看| 亚洲精品在线观看二区| 欧美色视频一区免费| 日韩免费高清中文字幕av| 亚洲,欧美精品.| av片东京热男人的天堂| 中文亚洲av片在线观看爽| av在线天堂中文字幕 | 亚洲欧美日韩无卡精品| 国产欧美日韩综合在线一区二区| 欧美不卡视频在线免费观看 | 丝袜美足系列| 欧美黄色片欧美黄色片| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 亚洲片人在线观看| 亚洲免费av在线视频| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 亚洲国产看品久久| 老司机午夜十八禁免费视频| 12—13女人毛片做爰片一| 男女下面插进去视频免费观看| 看免费av毛片| 欧美老熟妇乱子伦牲交| 亚洲男人的天堂狠狠| 亚洲成人久久性| 免费人成视频x8x8入口观看| 日日爽夜夜爽网站| 亚洲第一青青草原| 日韩欧美在线二视频| 神马国产精品三级电影在线观看 | 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 亚洲国产精品合色在线| 90打野战视频偷拍视频| 亚洲在线自拍视频| 欧美在线黄色| 国产欧美日韩综合在线一区二区| 999久久久精品免费观看国产| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多| av视频免费观看在线观看| 久久这里只有精品19| 亚洲熟女毛片儿| 成在线人永久免费视频| 黄色a级毛片大全视频| 欧美av亚洲av综合av国产av| 热99re8久久精品国产| 一级a爱视频在线免费观看| 嫩草影院精品99| 91老司机精品| 少妇被粗大的猛进出69影院| 99久久综合精品五月天人人| 纯流量卡能插随身wifi吗| 一级片免费观看大全| 在线国产一区二区在线| 99热只有精品国产| 国产亚洲欧美精品永久| 91成人精品电影| 欧美乱妇无乱码| 在线十欧美十亚洲十日本专区| 五月开心婷婷网| 最近最新中文字幕大全电影3 | 手机成人av网站| 久久久久久久午夜电影 | 久久久久久久午夜电影 | 天天添夜夜摸| 国产精品电影一区二区三区| 欧美激情 高清一区二区三区| 老司机午夜福利在线观看视频| 女人被躁到高潮嗷嗷叫费观| 国产精华一区二区三区| 久热爱精品视频在线9| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 丰满迷人的少妇在线观看| 一a级毛片在线观看| 国产成人av教育| 天堂俺去俺来也www色官网| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 国产一区二区激情短视频| 成人18禁高潮啪啪吃奶动态图| 午夜福利欧美成人| 国产麻豆69| 999精品在线视频| 久久亚洲真实| www日本在线高清视频| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 国产在线观看jvid| 国产单亲对白刺激| 亚洲欧美日韩无卡精品| 免费在线观看亚洲国产| 自线自在国产av| 久久久久九九精品影院| 一级毛片高清免费大全| 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 欧美精品啪啪一区二区三区| а√天堂www在线а√下载| 美女福利国产在线| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影 | 国产一区二区三区视频了| 久久亚洲真实| 国产精品1区2区在线观看.| 国产亚洲精品久久久久5区| 丝袜美足系列| 天天添夜夜摸| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 9色porny在线观看| 亚洲第一青青草原| xxx96com| 91精品三级在线观看| 国产精品一区二区在线不卡| 久久亚洲精品不卡| 色尼玛亚洲综合影院| av中文乱码字幕在线| 欧美日韩一级在线毛片| 18禁观看日本| 国产极品粉嫩免费观看在线| ponron亚洲| 制服诱惑二区| 欧美日韩黄片免| 嫁个100分男人电影在线观看| 老司机在亚洲福利影院| 亚洲国产欧美一区二区综合| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看 | 久久精品国产综合久久久| 亚洲精品美女久久久久99蜜臀| 正在播放国产对白刺激| 他把我摸到了高潮在线观看| 多毛熟女@视频| av欧美777| 老司机福利观看| 久久人人精品亚洲av| 黄色片一级片一级黄色片| 免费在线观看影片大全网站| 免费在线观看黄色视频的| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 九色亚洲精品在线播放| 我的亚洲天堂| 久久精品国产清高在天天线| 欧美久久黑人一区二区| 国产欧美日韩精品亚洲av| 欧美久久黑人一区二区| 老汉色av国产亚洲站长工具| 窝窝影院91人妻| 亚洲av成人av| 一级毛片高清免费大全| 亚洲性夜色夜夜综合| 91在线观看av| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 少妇 在线观看| 18美女黄网站色大片免费观看| 久热爱精品视频在线9| 1024视频免费在线观看| 激情视频va一区二区三区| 青草久久国产| ponron亚洲| 免费在线观看黄色视频的| ponron亚洲| 视频区图区小说| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 新久久久久国产一级毛片| 老司机午夜十八禁免费视频| 亚洲国产精品999在线| 精品久久蜜臀av无| 国产精品久久久av美女十八| av网站在线播放免费| av在线播放免费不卡| 精品午夜福利视频在线观看一区| 午夜福利欧美成人| 伦理电影免费视频| 日韩欧美三级三区| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| xxxhd国产人妻xxx| 亚洲av电影在线进入| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 日日夜夜操网爽| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 久久99一区二区三区| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站 | 国产成人精品久久二区二区91| 欧美不卡视频在线免费观看 | 亚洲 国产 在线| 视频区图区小说| 日本五十路高清| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧洲精品卡2卡3卡4卡5卡区| 亚洲男人天堂网一区| 精品久久久久久久久久免费视频 | 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 丁香六月欧美| 日韩欧美免费精品| 欧美精品亚洲一区二区| 香蕉国产在线看| 999久久久国产精品视频| 极品人妻少妇av视频| 亚洲国产精品999在线| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| 最近最新中文字幕大全电影3 | 18禁观看日本| 亚洲成国产人片在线观看| 在线观看一区二区三区| 亚洲情色 制服丝袜| 日韩三级视频一区二区三区| 亚洲国产欧美网| 国产精品av久久久久免费| 欧美人与性动交α欧美软件| 久久天躁狠狠躁夜夜2o2o| 日本黄色视频三级网站网址| 黄色片一级片一级黄色片| 久久人人精品亚洲av| 一级片'在线观看视频| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 久久久久久久午夜电影 | 国产精品 国内视频| 亚洲 欧美 日韩 在线 免费| 操出白浆在线播放| 美女大奶头视频| 校园春色视频在线观看| 久久精品国产清高在天天线| 亚洲色图综合在线观看| 国产精品自产拍在线观看55亚洲| 在线十欧美十亚洲十日本专区| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| 性少妇av在线| 国产亚洲精品第一综合不卡| 国产激情久久老熟女| 91麻豆精品激情在线观看国产 | 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点 | 久久影院123| 国产黄a三级三级三级人| 一区二区三区国产精品乱码| 亚洲一码二码三码区别大吗| 天堂俺去俺来也www色官网| bbb黄色大片| 一级a爱片免费观看的视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本中文国产一区发布| 国产熟女xx| 国产成人精品无人区| 亚洲人成网站在线播放欧美日韩| 在线观看日韩欧美| 一级a爱片免费观看的视频| 国产高清videossex| 天堂动漫精品| 成人永久免费在线观看视频| www.www免费av| 12—13女人毛片做爰片一| 国产亚洲欧美98| 国产精品香港三级国产av潘金莲| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 美女国产高潮福利片在线看| 国产欧美日韩一区二区精品| 成人三级黄色视频| xxx96com| 欧美日韩亚洲综合一区二区三区_| 曰老女人黄片| 午夜精品久久久久久毛片777| av天堂在线播放| www.精华液| 久久久水蜜桃国产精品网| 黑人操中国人逼视频| 69av精品久久久久久| 亚洲精品在线美女| 亚洲一区高清亚洲精品| 午夜免费观看网址| 成人精品一区二区免费| 母亲3免费完整高清在线观看| 亚洲国产欧美日韩在线播放| 老司机午夜福利在线观看视频| 黄片小视频在线播放| 丝袜美足系列| 久久天躁狠狠躁夜夜2o2o| 精品电影一区二区在线| 久久久久国产一级毛片高清牌| 免费在线观看完整版高清| 成人精品一区二区免费| a级毛片在线看网站| 三上悠亚av全集在线观看| 可以免费在线观看a视频的电影网站| 宅男免费午夜| 99久久99久久久精品蜜桃| 色精品久久人妻99蜜桃| 韩国精品一区二区三区| 国产激情久久老熟女| 19禁男女啪啪无遮挡网站| 欧美日韩瑟瑟在线播放| 成年人黄色毛片网站| 村上凉子中文字幕在线| 黑人欧美特级aaaaaa片| 香蕉丝袜av| 亚洲精品成人av观看孕妇| 无人区码免费观看不卡| 午夜福利一区二区在线看| 黄色毛片三级朝国网站| 亚洲av熟女| 99久久久亚洲精品蜜臀av| 久久久久国产一级毛片高清牌| 亚洲成av片中文字幕在线观看| 欧美乱色亚洲激情| 久久精品亚洲av国产电影网| 久久久国产欧美日韩av| 精品一区二区三区av网在线观看| 亚洲九九香蕉| 精品一区二区三区视频在线观看免费 | 在线观看免费高清a一片| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡 | 国产精品一区二区精品视频观看| 女警被强在线播放| 午夜a级毛片| 麻豆一二三区av精品| 亚洲五月天丁香| 99久久人妻综合| 国产片内射在线| 大陆偷拍与自拍| 成人特级黄色片久久久久久久| 亚洲一区高清亚洲精品| 亚洲久久久国产精品| 在线十欧美十亚洲十日本专区| 一区在线观看完整版| 在线观看一区二区三区激情| 国产99久久九九免费精品| 亚洲中文日韩欧美视频| 亚洲国产精品一区二区三区在线| 欧美一区二区精品小视频在线| www.精华液| 国产成人精品在线电影| 午夜两性在线视频| 国产成人欧美在线观看| 国产精品二区激情视频| 老司机亚洲免费影院| 欧美日韩一级在线毛片| 两个人免费观看高清视频| 一级毛片高清免费大全| 又大又爽又粗| 亚洲欧美日韩无卡精品| av国产精品久久久久影院| 夜夜爽天天搞| 午夜免费成人在线视频| 精品久久久久久久久久免费视频 | 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 啦啦啦免费观看视频1| 久久 成人 亚洲| 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 国产成人av激情在线播放| 欧美在线一区亚洲| 自线自在国产av| 久久影院123| а√天堂www在线а√下载| 国产欧美日韩一区二区三区在线| 黑人猛操日本美女一级片| 亚洲九九香蕉| 亚洲成人久久性| 成人18禁在线播放| 欧美激情高清一区二区三区| 女人被躁到高潮嗷嗷叫费观| 在线播放国产精品三级| 俄罗斯特黄特色一大片| 黄色 视频免费看| 成人18禁在线播放| 91av网站免费观看| 国产精品综合久久久久久久免费 | 麻豆一二三区av精品| 99riav亚洲国产免费| 一级a爱片免费观看的视频| 美女福利国产在线| 一区二区三区精品91| 国产又色又爽无遮挡免费看| 99国产精品99久久久久| 男人的好看免费观看在线视频 | 看免费av毛片| 久久天躁狠狠躁夜夜2o2o| 久久国产乱子伦精品免费另类| 脱女人内裤的视频| 亚洲一区二区三区欧美精品| 丁香欧美五月| 看黄色毛片网站| 午夜精品在线福利| 日韩欧美一区视频在线观看| 一本综合久久免费|