• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors

    2022-08-31 09:58:12JiananWei魏佳男YangLi李洋WenlongLiao廖文龍FangLiu劉方YonghongLi李永宏JianchengLiu劉建成ChaohuiHe賀朝會andGangGuo郭剛
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李洋文龍

    Jianan Wei(魏佳男) Yang Li(李洋) Wenlong Liao(廖文龍) Fang Liu(劉方)Yonghong Li(李永宏) Jiancheng Liu(劉建成) Chaohui He(賀朝會) and Gang Guo(郭剛)

    1Science and Technology on Analog Integrated Circuit Laboratory,Chongqing 400060,China

    2School of Nuclear Science and technology,Xi’an Jiaotong University,Xi’an 710049,China

    3National Innovation Center of Radiation Application,China Institute of Atomic Energy,Beijing 102413,China

    Keywords: heterojunction bipolar transistor,proton irradiation,single event transient,angular effect

    1. Introduction

    Silicon-germanium heterojunction bipolar transistors(SiGe HBTs)are favored for space applications due to the superior low-temperature performance and the better tolerance to total ionizing dose and displacement damage than traditional silicon bipolar junction transistors(Si BJTs).[1–6]The siliconbased bandgap engineering provides a way to combine III–V performance with the yield and cost advantages of bulk silicon into an ideal platform.[7,8]However,SiGe HBTs are confirmed to be very sensitive to single event effect (SEE).[9–11]Integrated circuits (ICs) based on SiGe HBT and SiGe BiCMOS technologies usually suffer from low SEE thresholds and large SEE cross sections.[12–14]Therefore, the detailed characteristics of single event transient (SET) in SiGe HBTs are important for a full understanding of behavior of SiGe ICs in particular radiation environments.

    Heavy ions and protons are the two dominant causes for SEE in spaceborne electronics. Some previous publications have investigated the current transients induced by heavy ions in SiGe HBTs via experiments and technology computer aided design (TCAD) simulations.[11,15–18]The results indicate that the large-area collector–substrate junction and the lightly doped substrate are the two dominant factors for the collection of excess carriers generated by incident ions. However, the SET induced by protons in SiGe HBTs is rarely investigated from a transistor level of view. In submicron semiconductor devices, protons cause SEE mainly via the secondary particles created by interactions with target materials. This is quite different from heavy ions which cause SEE mainly via direct ionizing processes. The randomness of the location of proton/material interactions and the characteristics of secondary particles makes the analysis of proton-induced SET in SiGe HBTs rather complicated.[19]In our previous study,[20]we presented primary results of proton-induced SET in SiGe HBTs. The temporal information of the current transients induced by protons with energy ranging from 30 MeV to 90 MeV was measured via experiment for the first time. However, the incident angle of protons was fixed at 0?(normal to the device surface),so that the impact of incident angle of protons was not discussed at that time. Note that protons from the radiation belts can penetrate low altitude orbiting spacecrafts from all directions,it is still essential to make further supplements.

    In this work,we present the first investigation into the angular dependence of proton-induced SET in SiGe HBTs. The collector transient currents induced by 60 MeV protons at different incident angles are measured. Then the angular effect on the current transient duration and integral charge collection are discussed. Furthermore,the ionizing energy deposition in the sensitive volume and the angular distribution of protoninduced secondary particles are simulated by using GEANT4 Monte Carlo toolkits in order to gain deeper insights into the underlying mechanisms.

    2. Experimental setup

    2.1. Device description

    The devices under test(DUTs)are vertical double polysilicon NPN SiGe HBTs fabricated by a system purchased from a HUAJIE company and achieve a peakhFEof 150,a peakfTof 25 GHz and a maximum collector current(IC)of 30 mA.Figure 1 shows the schematic device structure. Figure 2 shows a localized SEM picture of the emitter-base-collector stack. The width of the emitter window is about 0.4 μm and the thickness of EB spacer is about 16 nm. The intrinsic base is formed by an epitaxially grown SiGe layer with thickness of about 100 nm. The isolation layer between collector and base is formed by local oxidation of silicon (LOCOS) with a thickness of about 675 nm. More detailed information about the DUTs can be found in Refs.[21–23].

    Fig.1. Schematic cross section of the SiGe HBT(not to scale).

    Fig.2. SEM picture of the emitter-base-collector stack.

    3. Proton irradiation

    The proton irradiation experiment was carried out at the SEE testing facility of the proton cyclotron in China Institute of Atomic Energy (CIAE), Beijing, China. Figure 3 shows the components of the facility. The energy of protons is adjusted by aluminum degraders with variable thickness, while the beam spot size is adjusted by the collimator. The dosimetry measurements use a secondary-electron emission monitor calibrated against a Faraday cup. In this work,the proton energy was adjusted to 60 MeV and the spot size of proton beam was fixed at 5×5 cm2. The flux varied from 1×107cm?2·s?1to 2×107cm?2·s?1, depending on the beam intensity. The incident angle of protons was controlled by the sample rack which can rotate around its central axis,as shown in Fig.3(b),

    where 0?corresponds to the proton beam being incident normal to the device surface. The maximum available incident angle of the facility is 70?. Three irradiations were carried out with proton incident angles set at 0?,30?and 60?.

    Fig.3. Schematic of the proton SEE testing facility at CIAE.

    Fig.4. Configuration of the SET testing circuit.

    The external circuit components and lumped elements for SET testing are shown in Fig. 4. The proton-induced current transients on collector, which is the main cause for SEE in most SiGe circuits,[24]is recorded through a Mini-Circuits(company)wide-band bias tee by a Tektronix DPO71604 16-GHz (50 GS/s) real time digital phosphor oscilloscope. The DUTs were biased withVE=VB=VS=0 V andVC=5 V during irradiation. Under this condition, the collector–substrate junction is reverse-biased so that excess carriers generated by charged particles in the lightly doped substrate can be collected rapidly.This has been confirmed to be the worst case for SET.The trigger threshold was set to|IC|=0.08 mA.Three independent DUTs were tested at each proton incident angle and the total accumulated proton fluence at each angle exceeded 1.5×1011cm?2,which resulted in no less than 35 SET events.

    4. Experimental results

    Figure 5 shows the SET cross section(σSET)as a function of incident angle. The cross section is calculated by

    whereNSETis the number SET events recorded by the oscilloscope,ΦPis the proton fluence. The error bars represent the standard deviation of data from three independent DUTs.The error bar is not given for the data at 60?because function failure of the testing circuit was found for one of the three DUTs during irradiation. It can be found that the SET cross section exhibits no clear trend with incident angle,indicating a negligible angular effect. Figure 6 plots typical waveforms of recorded collector current transients at different incident angles. Each panel in the figure shows the experimental results obtained from a single DUT in a single run of proton irradiation. The accumulated fluence of a single run is no less than 5×1010cm?2. Most current transients exhibit similar characteristics,namely a very short rise time and a relatively longer falling time.This is consistent with the previous results. However,with the increase of proton incident angle,the falling tail of some current transients turns to be much longer,thereby increasing the duration significantly. As seen in Fig. 6, all the current transients restore to the background level in about 1 ns when the incident angle is 0?, whereas the current transients may last for more than 3 ns when the incident angle increases to 60?. Figure 7 shows the proportion of current transients with different durations. A broadening of the distribution of histograms can be found at large incident angles. Moreover,the proportion of SET events with short duration decreases with increasing incident angle,whereas the proportion of SET events with long duration increases,thereby leading to a rightward shift of the histograms. A SET event with longer duration can span a greater number of clock periods and affect more data bits if the SiGe circuit works at high frequencies.[25]On the other hand,the increase of transient duration will consequently result in a greater integral charge collection which is the time integral of transient current. Evidently, as shown in Fig. 8, the distribution of SET events with certain integral charge collection values shows similar trends to that in Fig.7.The increasing proportion of SET events with high charge collection values has more significant impact on the circuit with a high SEE critical charge(QC). Figure 9 shows the cross section of SET events with collector charge collection exceeding certain values ofQC,which is calculated byσQ=NQ/(ΦP·cosθ),(2)

    whereNQis the number of SET events with collector charge collection exceedingQC. The proton incident angle appears to have no clear impact onσQwhenQCis set to 0.05 pC and 0.1 pC, whereas a rapid increase ofσQwith incident angle occurs whenQCis increased to 0.15 pC.

    Fig.5. SET cross section at different proton incident angles.

    Fig.6. Typical current transients at different proton incident angles.

    Fig.7. Proportion of current transients with different durations.

    Fig. 8. Proportion of current transients with different integral charge collections.

    Fig.9. Cross section of SET events with integral charge collection exceeding certain critical values.

    These results suggest that the impact of proton incident angle should not be simply ignored when performing ground SET testings and the results at normal incidence may underestimate the SET susceptibility of this SiGe technology.

    5. Monte Carlo simulation and discussion

    In this section, the GEANT4 Monte Carlo simulation toolkits are used to better understand the mechanisms for angular dependence of proton-induced SET. In our previous work,[20]the sensitive volume geometry of this SiGe HBT has been determined based on heavy-ion microbeam irradiation and TCAD simulation results. The right rectangular parallelepiped sensitive volume has a topside area of 140×140μm2and a depth of 20μm. We use the same model configurations in this work to investigate the ionizing energy deposition in the sensitive volume and the characteristics of secondary particles at varying proton incident angles.

    5.1. Ionizing energy deposition in sensitive volume

    The amount of collected charge of a SET event is directly related to the ionizing energy loss in the sensitive volume.Figure 10 shows the simulated integral cross section of proton incident events that deposit a certain amount of ionizing energy or greater in the sensitive volume. It can be found that the integral cross section does not exhibit significant dependence on incident angle when the deposited ionizing energy is less than 10 MeV.

    Fig. 10. Simulated integral cross section as a function of ionizing energy deposition in the sensitive volume for 60 MeV protons.

    However, for the deposited energy greater than 10 MeV,the integral cross section increases significantly with the increasing incident angle,which indicates that the probability of proton incident events with large ionizing energy deposition turns to be higher at larger incident angles. This is consistent with the experimental results in Fig.8.

    5.2. Angular distribution of proton-induced secondary particles

    Figure 11 shows the simulated angular distributions of proton-induced secondary particle energy,linear energy transfer(LET)and range in silicon. Information of secondary particles created through both spallation reaction and elastic nuclear scattering is collected. The launching angle is defined as the angle between the momentum directions of the secondary particles and the primary incident protons. Evidently,the secondary particles with the highest energy(highest LET,longest range)tend to have smaller launching angles,which indicates that they are forward directed. On the contrary,the secondary particles with lower energies are more isotropic, thus leading to the broader angular distributions that cover 0?to approximately 140?.

    As mentioned above, the sensitive volume of the SiGe HBT is 140μm×140μm×20μm,which results in an aspect ratio of 7.Under this condition,the particles that are parallel to the device surface would have longer paths than those normal to the device surface. Therefore, the forward-directed highenergy secondary particles can leave a longer ionizing track in the sensitive volume at larger proton incident angles,as shown in Fig.12. As a consequence, the ionizing energy deposition increases since it is proportional to the track length. On the contrary,for the low-energy secondary particles that are more isotropic,the impact of incident angle becomes much smaller,as shown in Fig.13. Therefore,the angular dependence of the proton-induced SET can be associated with the angular distribution of the secondary particles.

    However, it should be emphasized that the SiGe HBTs investigated in this work were fabricated via bulk silicon technology, and the deep trench isolation (DTI) is not employed.For SiGe HBTs fabricated via silicon-on-isolator (SOI) technology, the depth of the sensitive volume is confined by the buried oxide layer,[25–27]so that a more aggressive aspect ratio can be expected,which leads to more significant angular effects. On the other hand,for the SiGe HBTs with DTI around the intrinsic device(i.e. the emitter-base-collector stack), the sensitive volume is determined by the deep trench,[11,16,28,29]which leads to an aspect ratio much smaller.Therefore,the impact of proton incident angle may vary among different SiGe technologies and should be carefully considered in the SET ground testings.

    Fig.11. Simulated angular distribution of proton-induced secondary particles: (a)energy,(b)LET,(c)range.

    Fig.12. Schematic of angular effect on the ionizing track length of forward-directed high-energy secondary particles in the sensitive volume:(a)proton incidence at 0?,(b)proton incidence at 60?.

    Fig.13. Schematic of angular effect on the ionizing track length of isotropic low-energy secondary particles in the sensitive volume: (a)proton incidence at 0?,(b)proton incidence at 60?.

    6. Conclusions

    In summary,the angular effect of proton-induced current transient in SiGe HBT is investigated. Collector current transients caused by 60 MeV protons were measured at incident angles of 0?, 30?and 60?. The overall cross section of SET events exhibits no clear angular dependence. However, the proportion of SET events with long duration and high integral charge collection grows significantly with increasing incident angle. Monte Carlo simulation demonstrates that the integral cross section of proton incident events depositing more than 10 MeV ionizing energy in the sensitive volume grows with increasing incident angle. This can be associated with the forward-directed nature of the most energetic (highest LET,longest range) secondary particles. Given a sensitive volume with an aspect ratio of 7,the forward-directed high-energy secondary particles can leave longer ionizing tracks, thus more ionizing energy deposition and excess carriers,in the sensitive volume at larger proton incident angles.

    The results of this study indicate that ground testings on SiGe devices which ignore the proton incident angle may lead to misestimations of SET susceptibility. Furthermore,the geometry of sensitive volume, which varies significantly among different SiGe technologies, must be carefully considered when assessing the angular effects of proton-induced SET.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11775167 and 12105252) and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-bsh0246).

    猜你喜歡
    李洋文龍
    Time-dependent variational approach to solve multi-dimensional time-dependent Schr¨odinger equation
    Understanding the changing mechanism of arc characteristics in ultrasound-magnetic field coaxial hybrid gas tungsten arc welding
    郭文龍
    李洋、龔有月、賴姝、程曉春作品
    大觀(2022年12期)2022-02-23 00:44:30
    李洋論
    中華詩詞(2021年1期)2021-12-31 07:51:46
    遠行
    勝利就在明天
    好的設(shè)計應該是有氣氛、有故事感的——專訪天比高空間設(shè)計謝文龍
    仙逝的“文龍”你在天堂還好嗎?
    旅游縱覽(2018年9期)2018-09-18 19:48:40
    New teacher—student Relationship in Junior English Class Teaching
    魅力中國(2018年51期)2018-04-08 09:09:34
    国产午夜精品一二区理论片| 在线观看av片永久免费下载| 色5月婷婷丁香| 99久久精品一区二区三区| 成人永久免费在线观看视频| 熟女电影av网| 亚洲欧美精品专区久久| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 国内精品久久久久精免费| 国国产精品蜜臀av免费| 看黄色毛片网站| 亚洲人与动物交配视频| 日韩一区二区三区影片| 国产精品久久久久久久久免| 国产精品久久电影中文字幕| 嘟嘟电影网在线观看| 麻豆成人午夜福利视频| 日韩高清综合在线| 天天躁日日操中文字幕| 18禁在线无遮挡免费观看视频| 免费人成视频x8x8入口观看| 男人的好看免费观看在线视频| 国产黄色视频一区二区在线观看 | 九九久久精品国产亚洲av麻豆| 色哟哟·www| 国产精品久久视频播放| 午夜精品国产一区二区电影 | 99久久人妻综合| 中文字幕久久专区| 美女 人体艺术 gogo| 天堂影院成人在线观看| 一本一本综合久久| 午夜爱爱视频在线播放| 桃色一区二区三区在线观看| 女人被狂操c到高潮| 男女那种视频在线观看| 中文字幕久久专区| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 婷婷色av中文字幕| 久久久久免费精品人妻一区二区| 只有这里有精品99| av在线天堂中文字幕| 最近2019中文字幕mv第一页| 赤兔流量卡办理| 成人毛片60女人毛片免费| 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 成年av动漫网址| 日本熟妇午夜| 最新中文字幕久久久久| 国产国拍精品亚洲av在线观看| eeuss影院久久| 成年av动漫网址| 欧美极品一区二区三区四区| 国产日韩欧美在线精品| 看黄色毛片网站| 国产精品一区二区在线观看99 | 天堂√8在线中文| 久久九九热精品免费| 又黄又爽又刺激的免费视频.| 亚洲成人av在线免费| 成人国产麻豆网| 嫩草影院入口| 亚洲精品乱码久久久v下载方式| www.av在线官网国产| 亚洲成人中文字幕在线播放| 中国美女看黄片| 亚洲第一电影网av| 在线天堂最新版资源| 久久久久久久久大av| 97热精品久久久久久| av黄色大香蕉| 国产精品一区二区性色av| 亚洲国产欧洲综合997久久,| 久99久视频精品免费| 日韩一区二区视频免费看| 日本黄大片高清| 亚洲18禁久久av| 精品欧美国产一区二区三| 亚洲欧美日韩高清在线视频| 在线观看av片永久免费下载| 综合色丁香网| av黄色大香蕉| 国内精品美女久久久久久| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 成人一区二区视频在线观看| 日韩精品青青久久久久久| 国产视频首页在线观看| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 免费av毛片视频| 一本久久中文字幕| 一级毛片aaaaaa免费看小| av.在线天堂| 亚洲国产欧洲综合997久久,| 最近的中文字幕免费完整| 国产久久久一区二区三区| 成年av动漫网址| 精品不卡国产一区二区三区| 国产乱人视频| 亚洲成人中文字幕在线播放| 国产私拍福利视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲欧洲日产国产| 亚洲av成人av| 99九九线精品视频在线观看视频| 国产高清有码在线观看视频| 欧美3d第一页| 免费无遮挡裸体视频| 国产蜜桃级精品一区二区三区| 久久韩国三级中文字幕| 99热这里只有是精品50| 久久99蜜桃精品久久| 听说在线观看完整版免费高清| 色视频www国产| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 亚洲自拍偷在线| 亚洲av熟女| 欧美日韩乱码在线| 欧美极品一区二区三区四区| 不卡一级毛片| 色哟哟·www| 久久99热6这里只有精品| 国产探花极品一区二区| 国产蜜桃级精品一区二区三区| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 午夜福利在线在线| 欧美xxxx黑人xx丫x性爽| 啦啦啦观看免费观看视频高清| 亚洲精品亚洲一区二区| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美精品自产自拍| 国产午夜精品论理片| 日韩在线高清观看一区二区三区| 精品少妇黑人巨大在线播放 | 男的添女的下面高潮视频| 国产三级在线视频| 国产av在哪里看| 尤物成人国产欧美一区二区三区| 久久久精品大字幕| 久久久久免费精品人妻一区二区| 成人亚洲欧美一区二区av| 只有这里有精品99| 色吧在线观看| 欧美激情在线99| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 少妇的逼好多水| 国产视频内射| 中文亚洲av片在线观看爽| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 欧美日韩综合久久久久久| 日韩三级伦理在线观看| 久久久久久久久久黄片| 人人妻人人看人人澡| 国产成人影院久久av| 九九爱精品视频在线观看| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| 国产91av在线免费观看| 日韩av不卡免费在线播放| 亚洲av第一区精品v没综合| 国产乱人偷精品视频| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 成人毛片60女人毛片免费| 少妇裸体淫交视频免费看高清| 直男gayav资源| 99久久久亚洲精品蜜臀av| 18禁在线播放成人免费| 天堂网av新在线| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 日韩一区二区视频免费看| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 国产白丝娇喘喷水9色精品| 国产高清视频在线观看网站| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕日韩| 我要搜黄色片| 黄色欧美视频在线观看| 久久精品国产自在天天线| 麻豆国产av国片精品| 欧美日韩国产亚洲二区| 日韩三级伦理在线观看| 精品99又大又爽又粗少妇毛片| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 日韩av不卡免费在线播放| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 成人三级黄色视频| 午夜爱爱视频在线播放| 美女脱内裤让男人舔精品视频 | 最近手机中文字幕大全| 亚洲性久久影院| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 伦理电影大哥的女人| av又黄又爽大尺度在线免费看 | 女的被弄到高潮叫床怎么办| 身体一侧抽搐| 久久韩国三级中文字幕| 看片在线看免费视频| 男人舔女人下体高潮全视频| 秋霞在线观看毛片| 伦理电影大哥的女人| 亚洲国产欧美人成| 亚洲在线观看片| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 色5月婷婷丁香| 免费看a级黄色片| 黄片无遮挡物在线观看| 中文字幕人妻熟人妻熟丝袜美| 熟妇人妻久久中文字幕3abv| 蜜臀久久99精品久久宅男| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片| 国产男人的电影天堂91| 99久久人妻综合| 久久99精品国语久久久| 成人无遮挡网站| kizo精华| 久久国产乱子免费精品| 男女做爰动态图高潮gif福利片| 亚洲国产日韩欧美精品在线观看| 一级毛片aaaaaa免费看小| 国语自产精品视频在线第100页| 亚洲中文字幕一区二区三区有码在线看| 色综合亚洲欧美另类图片| 国产精品国产三级国产av玫瑰| 色综合站精品国产| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品久久男人天堂| 婷婷亚洲欧美| 免费观看在线日韩| 你懂的网址亚洲精品在线观看 | 日韩成人av中文字幕在线观看| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区| 九九在线视频观看精品| 美女xxoo啪啪120秒动态图| 亚洲人成网站高清观看| 久久精品国产亚洲av香蕉五月| 国产美女午夜福利| 你懂的网址亚洲精品在线观看 | 美女高潮的动态| 成人毛片60女人毛片免费| 欧美成人a在线观看| 尾随美女入室| 亚洲最大成人av| 国产 一区 欧美 日韩| av国产免费在线观看| 成人性生交大片免费视频hd| 寂寞人妻少妇视频99o| 欧美激情在线99| 日韩在线高清观看一区二区三区| 精品久久久久久久久av| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 国产熟女欧美一区二区| av卡一久久| 97超碰精品成人国产| av免费在线看不卡| 精品久久久久久成人av| 一级黄色大片毛片| 欧美精品一区二区大全| 高清在线视频一区二区三区 | 欧美性猛交黑人性爽| 亚洲国产精品成人久久小说 | 美女国产视频在线观看| 成人午夜高清在线视频| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 国产成人a区在线观看| 日本与韩国留学比较| 美女cb高潮喷水在线观看| av在线亚洲专区| 亚洲18禁久久av| 亚洲美女搞黄在线观看| 3wmmmm亚洲av在线观看| 99热6这里只有精品| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 国产高清激情床上av| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 在现免费观看毛片| 女同久久另类99精品国产91| 国产高清有码在线观看视频| 特级一级黄色大片| 色哟哟·www| 日韩欧美国产在线观看| 亚洲av男天堂| 高清在线视频一区二区三区 | 亚洲av男天堂| 欧美极品一区二区三区四区| 亚洲av二区三区四区| 国产色婷婷99| 内射极品少妇av片p| 91久久精品电影网| 精品久久久久久久久av| 麻豆乱淫一区二区| 狠狠狠狠99中文字幕| 欧美在线一区亚洲| 亚洲在线观看片| 免费看a级黄色片| 69av精品久久久久久| 真实男女啪啪啪动态图| 日韩中字成人| 男人和女人高潮做爰伦理| 在线播放无遮挡| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 桃色一区二区三区在线观看| 亚洲色图av天堂| www.色视频.com| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 国产三级中文精品| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 成人无遮挡网站| 亚洲av二区三区四区| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 蜜臀久久99精品久久宅男| 毛片一级片免费看久久久久| 国产av麻豆久久久久久久| 黄片wwwwww| 韩国av在线不卡| 亚洲欧美精品自产自拍| 亚洲aⅴ乱码一区二区在线播放| 免费一级毛片在线播放高清视频| 成人国产麻豆网| 久久99热6这里只有精品| 成人特级黄色片久久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产老妇女一区| 成人漫画全彩无遮挡| 亚洲图色成人| 波多野结衣高清无吗| 亚洲五月天丁香| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 精品人妻熟女av久视频| 波野结衣二区三区在线| 免费大片18禁| a级一级毛片免费在线观看| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 22中文网久久字幕| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 国产精品国产三级国产av玫瑰| 99热这里只有是精品在线观看| 色哟哟哟哟哟哟| 国产高清有码在线观看视频| 国产91av在线免费观看| 九草在线视频观看| 亚洲18禁久久av| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 三级毛片av免费| 伊人久久精品亚洲午夜| 毛片一级片免费看久久久久| 一个人看的www免费观看视频| 色播亚洲综合网| 三级经典国产精品| 久久久久九九精品影院| 免费观看在线日韩| 久久久久网色| 日韩精品青青久久久久久| 久久久久性生活片| 少妇人妻一区二区三区视频| 97超碰精品成人国产| a级毛片a级免费在线| 18+在线观看网站| 嫩草影院精品99| 97超碰精品成人国产| 青春草亚洲视频在线观看| 日韩在线高清观看一区二区三区| 天美传媒精品一区二区| 九草在线视频观看| 18禁裸乳无遮挡免费网站照片| 国产老妇女一区| 国内精品宾馆在线| 日韩欧美 国产精品| 国产精品一区www在线观看| 亚洲精品亚洲一区二区| 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 色综合亚洲欧美另类图片| 国产亚洲av片在线观看秒播厂 | av.在线天堂| 男人和女人高潮做爰伦理| 日韩人妻高清精品专区| 美女高潮的动态| 黄片wwwwww| 久久久久久久久久久丰满| 国产精品一及| 欧美最黄视频在线播放免费| 国产精品爽爽va在线观看网站| 欧美人与善性xxx| 国产高清有码在线观看视频| 美女脱内裤让男人舔精品视频 | 一级黄色大片毛片| 男人和女人高潮做爰伦理| 国产精品综合久久久久久久免费| 日本黄色片子视频| 在线观看一区二区三区| 中文在线观看免费www的网站| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 久久鲁丝午夜福利片| 天天一区二区日本电影三级| 久久久成人免费电影| 午夜爱爱视频在线播放| 国产男人的电影天堂91| 极品教师在线视频| 又粗又爽又猛毛片免费看| 成人无遮挡网站| 国产精品.久久久| 我要搜黄色片| 日日摸夜夜添夜夜添av毛片| 丰满乱子伦码专区| 欧美潮喷喷水| 亚洲一级一片aⅴ在线观看| 成人鲁丝片一二三区免费| 免费观看在线日韩| 国产精品久久久久久av不卡| 免费av观看视频| 99久久中文字幕三级久久日本| 桃色一区二区三区在线观看| 不卡一级毛片| 观看美女的网站| av专区在线播放| 国产一区亚洲一区在线观看| 国产高清三级在线| 久久精品国产清高在天天线| 九九爱精品视频在线观看| 国产一区二区在线观看日韩| 人妻系列 视频| 日本-黄色视频高清免费观看| 可以在线观看毛片的网站| 中文亚洲av片在线观看爽| 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| av在线播放精品| 国产精品电影一区二区三区| 精品久久国产蜜桃| 午夜视频国产福利| 中国国产av一级| 精品久久久久久久人妻蜜臀av| 婷婷六月久久综合丁香| 免费黄网站久久成人精品| 午夜a级毛片| 一级av片app| 免费看a级黄色片| 热99re8久久精品国产| 边亲边吃奶的免费视频| 1024手机看黄色片| 国产免费一级a男人的天堂| 久久久久九九精品影院| 日本成人三级电影网站| 色播亚洲综合网| 久久久久久久久久久免费av| 一个人免费在线观看电影| 国产伦理片在线播放av一区 | 九九热线精品视视频播放| 国产探花在线观看一区二区| 色哟哟·www| 午夜精品一区二区三区免费看| 精品国产三级普通话版| 韩国av在线不卡| 午夜福利高清视频| 国产黄片视频在线免费观看| 国产成人a区在线观看| 欧美日韩在线观看h| 国内精品宾馆在线| 天堂中文最新版在线下载 | 国产精品不卡视频一区二区| av卡一久久| 人妻夜夜爽99麻豆av| 日本黄色片子视频| 美女国产视频在线观看| 亚洲精华国产精华液的使用体验 | 国产女主播在线喷水免费视频网站 | 精品日产1卡2卡| 久久久精品大字幕| 久久精品国产清高在天天线| 亚洲av男天堂| 一卡2卡三卡四卡精品乱码亚洲| 少妇被粗大猛烈的视频| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 在线观看av片永久免费下载| 免费观看的影片在线观看| 欧美+日韩+精品| 我要搜黄色片| 日韩国内少妇激情av| 舔av片在线| 国产伦一二天堂av在线观看| 综合色丁香网| 人人妻人人澡人人爽人人夜夜 | 成人欧美大片| 亚洲欧洲日产国产| 亚洲精华国产精华液的使用体验 | 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 久久人妻av系列| 美女黄网站色视频| 成人美女网站在线观看视频| www.色视频.com| 久久精品国产鲁丝片午夜精品| 六月丁香七月| 欧美区成人在线视频| 久久韩国三级中文字幕| 三级男女做爰猛烈吃奶摸视频| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 成人毛片60女人毛片免费| 热99re8久久精品国产| 精品人妻偷拍中文字幕| 亚洲成人久久爱视频| 日日啪夜夜撸| 国产视频内射| 最好的美女福利视频网| 中文字幕制服av| 午夜a级毛片| 久久久a久久爽久久v久久| 天堂√8在线中文| 成人午夜精彩视频在线观看| 国产一区二区在线av高清观看| 中国美白少妇内射xxxbb| 亚洲av第一区精品v没综合| 网址你懂的国产日韩在线| 免费人成视频x8x8入口观看| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 12—13女人毛片做爰片一| 久久久久性生活片| 久久亚洲精品不卡| 成人美女网站在线观看视频| 亚洲最大成人av| 大香蕉久久网| 亚洲va在线va天堂va国产| 身体一侧抽搐| 乱系列少妇在线播放| av天堂在线播放| 免费看av在线观看网站| 国产蜜桃级精品一区二区三区| 中文字幕免费在线视频6| 在线免费观看的www视频| 精品久久久噜噜| 一边亲一边摸免费视频| 赤兔流量卡办理| 青青草视频在线视频观看| 久久久久久久久久成人| 精品久久久久久久末码| 免费无遮挡裸体视频| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 久久午夜福利片| 在线天堂最新版资源| 国产精品美女特级片免费视频播放器| 国产一区二区三区av在线 | 精品人妻熟女av久视频| 国产熟女欧美一区二区| 久久久色成人| 免费av不卡在线播放| av视频在线观看入口| 91狼人影院| 亚洲av熟女| 国产亚洲精品久久久久久毛片| 精品人妻熟女av久视频| 日日撸夜夜添| 一个人看视频在线观看www免费| 久久午夜亚洲精品久久| 看非洲黑人一级黄片| 欧美变态另类bdsm刘玥| videossex国产| 日韩精品青青久久久久久| av黄色大香蕉| 午夜亚洲福利在线播放|