• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic modulated single-photon routing

    2023-12-15 11:47:54HaoZhenLi李浩珍RanZeng曾然MiaoHu胡淼MengmengXu許蒙蒙XueFangZhou周雪芳XiuwenXia夏秀文JingPingXu許靜平andYaPingYang羊亞平
    Chinese Physics B 2023年12期
    關(guān)鍵詞:蒙蒙亞平

    Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Miao Hu(胡淼), Mengmeng Xu(許蒙蒙),Xue-Fang Zhou(周雪芳), Xiuwen Xia(夏秀文), Jing-Ping Xu(許靜平), and Ya-Ping Yang(羊亞平)

    1School of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018,China

    2Zhejiang Province Key Laboratory of Quantum Technology and Device,Zhejiang University,Hangzhou 310027,China

    3Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China

    4Institute of Atomic and Molecular Physics and Functional Materials,School of Mathematics and Physics,Jinggangshan University,Ji’an 343009,China

    Keywords: single-photon router,dynamical modulation,waveguide-QED

    1.Introduction

    Quantum networks,[1]which composed of various nodes and channels for storing, processing and distributing quantum information, have been widely applied to quantum computing, quantum simulation, quantum communication, and fundamental tests of physics in large scale space.[2-6]As one kind of typical node devices, quantum routers are essential elements in quantum networks, which can be exploited to transfer information from its source to different quantum channels.In this regard, a variety of theoretical and experimental efforts have been devoted to the realization and development of single-photon router based on atomic systems,[7-9]whispering-gallery resonators,[10-13]optomechanical systems,[14-17]cavity(circuit)quantum electrodynamics(QED),[18-22]and waveguide-QED systems.[23-37]

    However, most of the previous single-photon router can only work well with a high routing efficiency at the resonant or selected frequency point under the condition that all the system dissipations are completely ignored.[38-40]The selected frequency points are usually non-adjustable due to the fact that all the system parameters are constants in previous routing schemes.As a result, once the input frequency is altered to outside the selected region, the whole system needs to be reconfigured.In addition, if the system dissipation is taken into account, the routing scheme becomes considerably imperfect and the routing capability shows a drastic reduction.[41,42]These features restrict the scalability and integration of the previous routers for the realization of quantum networks.Therefore,how to achieve a high efficiency and tunable single-photon router,which can not only be operated well for photons with different frequencies in a wide range but also can effectively against the influence of external dissipation,is highly desirable and vital for practical applications in scalable quantum information processing.

    In this paper, we develop a dynamical tunable quantum routing scheme for single photons with different frequencies based on a Floquet atom-cavity system,where time modulated coupling strength are introduced to describe the interactions between the atom and the cavity modes.The results reveal that the Floquet atom-cavity structure can be served as a dynamic modulated quantum router, where the routing ports to which single photons are directed or transferred can be dynamically selected, and the incident single photon can be deterministically routed into any selected ports of the two waveguides by adjusting the modulated parameters of the atom-cavity coupling strengths, associated with the help of the asymmetrical waveguide-cavity couplings.More importantly, such router is efficient for photons with different frequencies due to the reason that the optimal working frequency of the router is dynamically tunable within a wide frequency region.In addition, the results demonstrate that the present router is robust against the system dissipation, and the time modulation of the atom-cavity interactions protects the routing scheme from atomic and cavity loss.Compared to the purely static routing schemes,the routing capability can be improved by introducing time modulation in the presence of dissipation.Especially,by properly designing and manipulating the system parameters,photons can be redirected from one waveguide to any selected ports of another with a 100%probability(deterministically)even when the atomic dissipation is taken into account.These results should be important and meaningful for designing dynamical modulated photonic devices and the studies on dynamic modulated photonic router for photons with different frequencies will certainly contribute to the realizations of future quantum network communications.

    The rest of the paper is organized as follows.In Section 2,we introduce the theoretical model of the Floquet waveguide-QED system and derive the analytical expressions for determining the routing probability with a full quantum mechanical method.In Section 3,we first demonstrate how a tunable photonic router for single photon with different frequencies can be achieved for the case that the Floquet atom-cavity system is symmetrically coupled to the two waveguides.Subsequently,we proceed to explore the routing properties with asymmetrical waveguide-cavity couplings.Then, the influence of the system dissipation on the routing capability is discussed, and a brief remark on the experimental feasibility is given.Finally,a conclusion is drawn in Section 4.

    2.Model and basic theory

    The model under consideration is composed of a pair of parallel one-dimensional waveguides, a two-level atom and two single mode cavities, as schematically shown in Fig.1.The two waveguides [waveguide M (WM) and waveguide N(WN)] are side coupled to the two cavity modes A and B located atx=0 with coupling strengthsVd,p, (d=R,L;p=m,n), respectively.Furthermore, the atom simultaneously couples to the two cavity modes with a periodically modulated coupling strengthgj(t) =g0+2ηcos(νdt+φj), (j=a,b),whereinηthe modulated amplitude,νdthe modulated frequency,φjthe modulated phase andg0the static coupling strength.

    The total Hamiltonian of the compound system under investigation can be decomposed into three parts as, i.e.,H=Hfree+Hwc+Hca.The first part is(ˉh=1 in what follows)

    Fig.1.Schematic diagram of single-photon routing between a pair of one-dimensional waveguides, waveguide M (WM) and waveguide N(WN).Each waveguide couples to the Floquet quantum emitter at x=0 with coupling strengths Vd,p, (d =R,L;p=m,n).The emitter contains a two-level atom (with transition frequency ωeg) and two single mode cavities(denoted by cavity A and cavity B),wherein the two cavity modes couple to the atom with a time modulated coupling strength gj=a,b. γa,b and γe denote the decay rates of the cavity modes and the atom,respectively.

    whereJeff= 2η2sin(φa-φb)/νdis the effective coupling strength between the two cavity modes.As a result,the Hamiltonian of the whole system becomesHeff=Hfree+Hwc+Heffca.

    Suppose that initially the cavities were empty and the two-level atom was in the ground state.Thus, the scattering eigenstate for the HamiltonianHeffcan be expressed as

    whereφrm(x),φrn(x),φl(shuí)m(x),andφl(shuí)n(x)denote the probability amplitudes of the right or left propagating photon in WM or WN.μa,μb, andμeare the excitation amplitudes of cavity A,cavity B,and the atom,respectively.|υ〉is the vacuum state,which means that no photon in the waveguide or cavities and the atom in ground state|g〉.If the single photon with frequencyωis injected from the left of WM,then the coefficientsφrm(x),φrn(x),φl(shuí)m(x),andφl(shuí)n(x)in Eq.(5)can be expressed as[41]

    wherekp=m,n=ω/υg,s(x) is the step function withs(0)=1/2.tm(tn) denotes the single-photon transmission amplitude andrm(rn) represents the reflection amplitude in WM(WN), respectively.By solving the Schr¨odinger equationHeff|Ψ〉=(ω+ωg)|Ψ〉,[47,48]one can obtain

    whereΓdp=V2d,pυg, (d=R,L;p=m,n) denotes the corresponding coupling loss between cavity modes and waveguides,Γm= (ΓRm+ΓLm)/2,Γn= (ΓRn+ΓLn)/2, ?Γm=(ΓLm-ΓRm)/2.kj=a,b=(?j+iγj/2),andke=(?eg+iγe/2)with?j=ω-ωj(?eg=ω-ωeg)the frequency detuning between the waveguide photons and the cavity modes(atom).In the following discussion,we assume thatωa=ωb=ωeg ≡ω0,correspond to?a=?b=?eg ≡?.Furthermore, in order to quantitatively analyze the single photon scattering properties in the waveguides, we introduce the dimensionless quantityTm=|tm|2,Tn=|tn|2,Rm=|rm|2,andRn=|rn|2for describing the photon transport probability of each ports in WM and WN withTm+Rm+Tn+Rn=1.

    3.Results and discussion

    3.1.Routing with symmetrical waveguide-cavity coupling

    In this part, we focus on exploring how the photon scattering process can be controlled for the situation that the Floquet atom-cavity system is symmetrically coupled to the two waveguides, i.e.,ΓRm=ΓLm=ΓRn=ΓLn ≡Γ, and show how a dynamical tunable router for single photons with different frequencies could be implemented by the time modulation.

    First, we study how the behaviors of the photon transmission are influenced by the relative modulated phase ?φf(shuō)or a given modulated amplitudeη=200Γ.In Fig.2, we plot the transport probabilitiesTm,nandRm,nas a function of the frequency detuning?/Γfor different parameter sets of?φ=φa-φband the static atom-cavity coupling strengthg0.One can find that the transport of the incident photon can be effectively controlled by ?φ, and the system can behave as a phase-modulated single photon router.Specifically, for the case ofg0=0 and ?φ=0 (corresponding toJeff=2η2sin(φa-φb)/νd=0), both the effective coupling between atom-cavity and two cavity modes vanish, which means that the whole compound system is degenerated to a single waveguide side coupled by an optical cavity.In this case, the transmission spectrum of photons in the incident waveguide displays a Lorentzian or inverted Lorentzian line shape withTm=0 andRm=1 at the resonant point due to the perfect destructive interference between the incident wave and the re-emitted one [see the red solid and blue dash line in Fig.2(a)],and the incoming single photon cannot be transferred into the other waveguide withTn=0 andRn=0, as shown by the green dot and cyan dashed-dot line in Fig.2(a).

    However, if we modulate the two coupling strengthsgaandgbout of phase, i.e.,g0=0 and ?φ=π/2, the Floquet atom-cavity system can be treated as two coupled optical cavities.In this case,the effective coupling between the two cavity modes becomes nonzero,i.e.,Jeff=8Γ,which leads to the normal mode splitting with?=±Jeff.As a result, an incident single photon with frequencyω=ω0±Jeffcan be absorbed by the coupled cavity system and then re-emitted into arbitrary output ports of either the incident waveguide or the other one with the same probability [as shown in Fig.2(b)],which indicates that the considered Floquet atom-cavity system can work as a single photon router for routing the photon to either of the two waveguides.Interestingly,comparing Figs.2(a)and 2(b),one can find that such the photon routing is phase-sensitive.The single photon routing between the two waveguides can be controlled by tuning the modulated phases of the two atom-cavity coupling strengths.

    Fig.2.The transport probabilities Tm, Tn, Rm, and Rn as a function of the frequency detuning ?/Γ for different parameter sets of ?φ and g0.The other common parameters are η = 200Γ, νd = 50η, and γe=γa=γb=0,respectively.

    Fig.3.The contour map of the transfer probability Pn =Tn+Rn as a function of both ?/Γ and ?φ with g0 =0 in panel(a)and g0 =4Γ in panel (b).Other common parameters are the same as those shown in Fig.2.

    Below,we explore how to control the single photon routing between the two waveguides through varying the modulated amplitudeηfor a given relative modulated phase ?φ=π/2.The transfer probabilityPnversus both?/Γandηare plotted in Fig.4(a)withg0=0 and in Fig.4(b)withg0=4Γ,respectively.It is obvious from Fig.4 that the transfer spectra are strongly related toη.For the case ofg0=0,whenηis very small(Jeff=2η2sin?φ/νd ≈0),the two cavity modes are decoupled.As a result,no photon can be routed from WM into WN,which is consistent with that discussed in Fig.2(a).Withηgradually increasing,Jeffbecomes nonzero,which plays an essential role in the spectral line shapes and a normal mode splitting with?=±Jeffcan be observed,as shown by the two bright red zones in Fig.4(a).The width between the two red zones increases with the increasing ofη.According to what discussed in Figs.2 and 3,this suggests that the optimal routing frequency regime can be further enlarged depending onη.

    Fig.4.The contour map of the transfer probability Pn =Tn+Rn as a function of both ?/Γ and η/Γ with g0 =0 in panel (a) and g0 =4Γ in panel(b).Other common parameters are the same as those shown in Fig.2,except that ?φ =π/2.

    3.2.Routing with asymmetrical waveguide-cavity coupling

    In previous part, we demonstrated a tunable photonic router for single photon with different frequencies via dynamically modulating the coupling strengths between the atom and the two cavity modes.However, the routing efficiency between the waveguides is extremely limited to no more than 50%due to the symmetrical coupling,i.e.,ΓRm=ΓLm=ΓRn=ΓLn ≡Γ.As we know, a reliable photonic routing scheme is required to be not only controllable but also able to redirect photons with high routing efficiency.In order to improve the routing capability,asymmetrical waveguide-cavity couplings,i.e.,ΓRm/=ΓLm,ΓRn/=ΓLn,are considered below.

    Fig.5.The transport probabilities Tm,n, Rm,n, and Pn as a function of ΓLm/Γ with ΓLn =ΓRn, ?=8Jeff, ?φ =π/2, and g0 =0.Other common parameters are the same as those shown in Fig.2.

    In Fig.5,the transport probabilitiesTm,n,Rm,n,andPnof routing the input photon with frequency?=8Jeffto various output ports versusΓLm/Γwith fixed modulated parameters under the conditionΓLn=ΓRnare plotted.It can be seen that,comparing to the symmetrical case whereTm=Rm=Tn=Rn=0.25 at the frequency point?=8Jeff,Tm,Rm<0.25,andTn=Rn>0.25 can be obtained by decreasingΓLmin the regionΓLm<Γ.In the ideal case, i.e.,ΓLm=0, the transfer ratePnreaches its maximum 1 (see the pink circle) withTm=Rm=0 andTn=Rn=0.5.This means that the incident single photon from WM can be completely routed into WN but symmetrically output either from the left or right port with equal probability.To deterministically route the single photon into the two output ports, we can further break the symmetry betweenΓLnandΓRn.

    In Fig.6,the transport probabilitiesTnandRnversus bothΓLn/ΓandΓRn/Γare plotted in Figs.6(a) and 6(b), respectively.It can be seen thatTn(Rn) can be further enhanced toTn>0.5 (Rn>0.5) at the expense of decreasingRn(Tn) below 0.5 under the conditionΓRn>ΓLn(ΓRn<ΓLn).This is because the asymmetrical coupling,i.e.,ΓLn/=ΓRn,leads to an imbalance between the reemitting photons to the left and right directions of WN.In the ideal case,i.e.,ΓLn=0,ΓRn=2ΓorΓLn=2Γ,ΓRn=0,the incident single photon can be fully redirected into the right or left port of WN withTn ≈1 orRn ≈1,as shown by the bright red zones in Figs.6(a)and 6(b).These results clearly show that the present proposed routing scheme can transfer photons from the input port to other arbitrarily selected one with a perfect transfer efficiency.This also implies that a dynamical tunable targeted single-photon router with 100% routing probability can be achieved with the help of the asymmetric waveguide-cavity coupling.For further insight, the transport probabilities versus the dynamical modulating parameters,i.e.,?φandη,under the asymmetrical conditions are given in Figs.7 and 8,respectively.

    Fig.7.The transport probability Tn and Tm as a function of ?φ for different photon frequencies with ?=0, 4Γ, 8Γ in panels(a)-(c), respectively.Other common parameters are the same as those shown in Fig.5,except that ΓLm=ΓLn=0,ΓRm=ΓRn=2Γ.

    In Fig.7, we show how a dynamical tunable targeted single-photon router can be implemented by manipulating the relative modulated phase ?φ.Without loss of generality and for simplicity,we assume thatΓLm=ΓLn=0 andΓRm=ΓRn=2Γ,which means that the incident photon from the input port can only be directed rightwards, and correspondingly both the probability amplitudesRmandRnvanish.The transport probabilitiesTmandTnof routing the incident photon to the right ports of WM and WN, with respect to ?φand different inputting frequencies(i.e.,?=0, 4Γ, 8Γ), are plotted in Figs.7(a)-7(c), respectively.It can be seen that, for incident photon with fixed frequencies,the relative phase ?φplays an important role in manipulating the photon routing.The transport probabilities can be tuned from 0 to 1 by properly adjusting ?φ,with the behaviors ofTmandTnshow opposite trends.Namely,whenTnincreases to the maximal 1,Tmwill decrease to its minimal 0,andvice versa.These results indicate that the incident single photon with different frequencies can either be redirected into the right port of WM or WN with a determinately routing probability of 100%.Furthermore, the relative modulated phase can behave as dynamical switch to turn on or off the photon routing between the two desired ports of WM and WN,which implies that a dynamic modulated directional single-photon router can be realized.

    In Fig.8, The transport probabilitiesTmandTnversus the modulated amplitudeηwith different inputting frequencies(i.e.,?=0,4Γ,8Γ)are plotted.The results show again that bothTnandTmcan be modulated from 0 to 1 with opposite trends, which implies that a dynamical tunable single-photon router between the two desired ports of WM and WN can also be implemented by controlling the modulated amplitudeη.We would like to point out that such dynamic modulated directional single-photon router can also be achieved between any other selected output ports of the two waveguides by carefully designing and manipulating the asymmetrical coupling conditions,and such photonic router can also be studied in a similar way as those discussed above when the influence of the static atom-cavity coupling is taken into account (not shown here due to the length limitation).

    Fig.8.The transport probability Tn and Tm as a function of η/Γ for different photon frequencies with ?=0, 4Γ, 8Γ in panels(a)-(c), respectively.Other common parameters are the same as those shown in Fig.5,except that ΓLm=ΓLn=0,ΓRm=ΓRn=2Γ.

    3.3.Influence of dissipation

    Up to now, we have demonstrated that how an ideal dynamical tunable single-photon router can be realized and be controlled by the time modulations in the absence of dissipation.However, in any realistic physical system, the effects of dissipation cannot be ignored.In the present system, the main dissipation originates from spontaneous emission of the two-level atom and the intrinsic dissipative process of the two cavity modes.With this concern, in what follows, we focus on exploring how the routing capability is influenced by the atomic and cavity decays.

    First, we study how the routing efficiency is affected by the atomic spontaneous emission.The variations of the routing probabilityTnversus the frequency detuning?/Γand the atomic decay rateγefor different parameter sets ofg0andηare plotted in Figs.9(a)-9(c), respectively.It is clear from Fig.9(a) that, for the case ofg0= 4Γandη= 0 [corresponding to the purely static atom-cavity coupling system discussed in Fig.2(c)],the routing efficiency of both the resonant(?=0)and non-resonant(?=5.6Γ)photons decreases with increasingγe,but the non-resonant photons are more sensitive to the atomic decay than the resonant one.However, if we dynamically modulating the atom-cavity coupling strengths withη=200Γ,the behaviors of the sensitivity show opposite trend,e.g.,the non-resonant photons become insensitive toγe,as shown in Fig.9(b).More importantly,in this case,the routing efficiency of the non-resonant photons can persist a high value even when the atomic decay rate become large,and this high routing efficiency can be further improved to approach 1 by properly adjusting the static atom-cavity coupling strength,i.e.,g0=0, as shown in Fig.9(c).These remarkable results can be seen more clearly in Fig.9(d), where the routing efficiencies of the non-resonant photons corresponding to each case of Figs.9(a)-9(c)are plotted.According to Fig.9,from the routing perspective,one can come to a conclusion that the dynamical interaction between atom and cavity modes protect the present photonic routing scheme from atomic dissipation,although the inputting frequencies are different.

    Fig.9.The contour map of the transport probability Tn as a function of both ?/Γ and γe/Γ for different parameter sets of η and g0: η =0,g0=4Γ in panel(a);η =200Γ,g0=4Γ in panel(b);η =200Γ,g0=0 in panel(c).(d)Tn as a function of γe/Γ for special parameter sets of η,g0,and ?.Other common parameters are ?φ =π/2,νd =50η,ΓLm=ΓLn=0,ΓRm=ΓRn=2Γ,and γa=γb=0,respectively.

    Fig.10.The transport probability Tn as a function of γa/Γ for different parameter sets of η,g0,and ?.Other common parameters are the same as those shown in Fig.9,except that γe=0.1Γ and γb=γa.

    Then,we proceed to study how the cavity dissipation affects the routing capability.In Fig.10,the routing efficiency is plotted as a function of the cavity decay rate for three different parameter sets ofg0,η, and?.It is shown that, due to the time modulation,the routing scheme can be notably improved even in the presence of cavity loss.All in all, figures 9 and 10 indicate that the quality of such a dynamically modulated single photon router is robust against to the atomic and cavity dissipation.

    3.4.Physical implementation

    Before summary, let us provide a brief remark on the experimental feasibility of our scheme.As schematically shown in Fig.1, the present scheme can be implemented in different physical platforms, including superconducting circuits,[50]optomechanical circuits[51]or photonic-crystal resonator lattice.[52]As superconducting circuits for example, the single-mode cavity, the two-level atom and the onedimensional waveguide can be achieved by a superconducting resonator,a superconducting qubit and a superconducting transmission line,respectively.In our model,one of the key elements is the time-modulated coupling between the atom and the two cavity modes, which can be realized by embedding a superconducting quantum interference device between the qubit and the two resonators.[53-55]Another one is the chiral interaction between the waveguides and the cavity modes,which can be achieved by inserting circulators in superconducting circuits.[56]Consequently,if the two points can be realized perfectly,then the dynamical tunable directional singlephoton router may be demonstrated in a circuit-QED system.

    Next,we examine the realistic parameter space for physical implementation under the existing experimental techniques.To simulate the transmission properties of the waveguide photons, all the system parameters are normalized toΓin the numerical simulation,e.g., the static coupling strengthg0assumed to be 4Γ.It was demonstrated that the decay rateΓ(corresponding to the coupling between cavity modes and waveguides)can be adjusted from zero to hundreds of megahertz in a circuit QED experiment.[57]Then for a givenΓ,e.g.,Γ/2π=25 MHz,one can obtaing0/2π=100 MHz,which is a typical atom-cavity coupling constant attainable with modern circuit-QED technologies.[58,59]

    4.Conclusion

    In conclusion,we have theoretically studied the coherent scattering process of photons between two one-dimensional waveguides side coupling to a Floquet atom-cavity system,

    wherein the atom dynamically interacts with the cavity modes with time-modulated coupling strengths.The results indicate that such Floquet atom-cavity system can behave as a dynamical tunable targeted single photon router, which can dynamically route the incident waveguide photon into any ports of the other with a 100% probability via adjusting the modulated parameters introduced into the atom-cavity coupling strengths, associate with the help of the asymmetrical waveguide-cavity couplings.Compared to previous routing schemes, this scheme has following advantages: (i) The application of the dynamical modulated atom-cavity coupling strength instead of a purely static one makes our photonic router more tunable.The optimal working frequency of the router is dynamically tunable within a wide frequency region,which makes this router efficient for photons with different frequencies.(ii) The present router is robust against the system dissipation, and the time modulation of the atom-cavity interactions protects the routing scheme from atomic and cavity loss.Under appropriate conditions, photons can be redirected from one waveguide to any selected ports of another with a 100% probability even in the presence of atomic dissipation.These advantages are expected to be applicable in quantum network communication.

    Acknowledgements

    Project supported by China Postdoctoral Science Foundation (Grant No.2023M732028), the Fund from Zhejiang Province Key Laboratory of Quantum Technology and Device(Grant No.20230201), the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK199900299012-015), the Natural Science Foundation of Zhejiang Province,China(Grant No.LY21A040003),the National Natural Science Foundation of China (Grant Nos.12164022, 12174288, and 12274326), and the Natural Science Foundation of Jiangxi Province, China (Grant No.20232BAB201044).

    猜你喜歡
    蒙蒙亞平
    Semantic Path Attention Network Based on Heterogeneous Graphs for Natural Language to SQL Task
    一起完成想象作文
    王亞平講述出艙:“伸手摘星”的夢(mèng)想實(shí)現(xiàn)了?。ㄉ希?/a>
    軍事文摘(2022年20期)2023-01-10 07:19:44
    《家》《竹》
    啟啟、蒙蒙勇闖螞蟻國(guó)(176)——我怎么變成了“汗飽包”
    啟蒙(3-7歲)(2019年8期)2019-09-10 03:08:58
    啟啟、蒙蒙勇闖螞蟻國(guó)(163)——人為什么眨眼睛
    啟蒙(3-7歲)(2018年7期)2018-07-10 09:37:48
    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *
    啟啟、蒙蒙勇闖螞蟻國(guó)(158)——“狗年”快樂(lè)
    啟蒙(3-7歲)(2018年2期)2018-03-15 08:03:27
    孔亞平和她的三個(gè)夢(mèng)
    啟啟、蒙蒙勇闖螞蟻國(guó)(142)———圓圓的鍋圓圓的碗
    啟蒙(3-7歲)(2016年10期)2016-02-28 12:27:02
    国产亚洲av片在线观看秒播厂 | 女人被狂操c到高潮| 欧美一级a爱片免费观看看| www.av在线官网国产| 亚洲精品乱码久久久久久按摩| 亚洲精品色激情综合| 欧美激情在线99| 男人和女人高潮做爰伦理| 热99re8久久精品国产| 男人和女人高潮做爰伦理| 国产精品一区www在线观看| 国产精品不卡视频一区二区| 国产亚洲精品av在线| 亚洲精华国产精华液的使用体验| 亚洲在线观看片| 青春草视频在线免费观看| 欧美潮喷喷水| 午夜日本视频在线| 久久精品人妻少妇| 亚洲成人av在线免费| 国产一级毛片七仙女欲春2| 国产极品天堂在线| 成人国产麻豆网| АⅤ资源中文在线天堂| 乱人视频在线观看| 久久韩国三级中文字幕| 国产精品熟女久久久久浪| 99热全是精品| 成年av动漫网址| 黄色欧美视频在线观看| 一个人看视频在线观看www免费| 一个人看的www免费观看视频| 国产极品精品免费视频能看的| 日韩人妻高清精品专区| 国产一区二区三区av在线| 99热网站在线观看| 淫秽高清视频在线观看| 国产精品嫩草影院av在线观看| 免费黄色在线免费观看| 中文字幕制服av| 成人美女网站在线观看视频| 中文字幕av在线有码专区| 国产精品乱码一区二三区的特点| 一级黄色大片毛片| 成人高潮视频无遮挡免费网站| 黄色日韩在线| 国产成人精品久久久久久| 亚洲真实伦在线观看| 男女下面进入的视频免费午夜| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲精品久久久com| 久久精品久久久久久久性| 级片在线观看| 亚洲三级黄色毛片| 国产伦在线观看视频一区| 国产精品.久久久| 欧美三级亚洲精品| 日本五十路高清| 看非洲黑人一级黄片| 国产男人的电影天堂91| 青青草视频在线视频观看| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 亚洲一区高清亚洲精品| 又爽又黄a免费视频| kizo精华| 人妻制服诱惑在线中文字幕| 中文亚洲av片在线观看爽| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久 | 精品久久久久久久久久久久久| 久久久a久久爽久久v久久| 久久这里有精品视频免费| 亚洲在久久综合| 亚洲第一区二区三区不卡| 国产av在哪里看| 99久久精品热视频| 天天躁夜夜躁狠狠久久av| 波多野结衣高清无吗| av免费观看日本| 久久精品影院6| 综合色丁香网| 大香蕉97超碰在线| 99热这里只有是精品在线观看| 晚上一个人看的免费电影| 国产精品久久电影中文字幕| 乱系列少妇在线播放| 午夜福利在线观看吧| 观看美女的网站| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的 | 只有这里有精品99| 国产精品av视频在线免费观看| 亚洲欧洲日产国产| 欧美激情在线99| 日韩 亚洲 欧美在线| 国产91av在线免费观看| 联通29元200g的流量卡| 久久亚洲国产成人精品v| 亚洲经典国产精华液单| 中文天堂在线官网| 最新中文字幕久久久久| 精品午夜福利在线看| 国产黄片视频在线免费观看| 男人和女人高潮做爰伦理| 又爽又黄无遮挡网站| 黄色欧美视频在线观看| 内射极品少妇av片p| 国产免费福利视频在线观看| 婷婷色综合大香蕉| 亚洲自偷自拍三级| 搡老妇女老女人老熟妇| 国产精品熟女久久久久浪| 久久久国产成人精品二区| 国产在视频线在精品| 国产亚洲精品av在线| 国产av码专区亚洲av| 欧美日韩在线观看h| 99热网站在线观看| 国产精品精品国产色婷婷| 久久久久九九精品影院| 成年免费大片在线观看| 国产精品永久免费网站| 青春草视频在线免费观看| 久久鲁丝午夜福利片| 日韩欧美 国产精品| 久久久久精品久久久久真实原创| 男女边吃奶边做爰视频| 欧美激情在线99| 国产精品久久久久久精品电影小说 | 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 亚洲不卡免费看| 免费av观看视频| 插逼视频在线观看| 久久99精品国语久久久| 美女国产视频在线观看| 狂野欧美激情性xxxx在线观看| 最近手机中文字幕大全| 国产乱来视频区| 国产免费又黄又爽又色| 女人久久www免费人成看片 | 日韩 亚洲 欧美在线| 国产精品久久电影中文字幕| 亚洲国产日韩欧美精品在线观看| 国产av码专区亚洲av| 男女啪啪激烈高潮av片| 成人国产麻豆网| 中国国产av一级| 一区二区三区乱码不卡18| 99热这里只有是精品在线观看| 国产成人精品一,二区| 日本熟妇午夜| 日韩欧美 国产精品| 午夜a级毛片| 国产视频首页在线观看| 午夜福利在线观看吧| 久久精品久久久久久久性| 日韩视频在线欧美| www.av在线官网国产| 亚洲激情五月婷婷啪啪| www日本黄色视频网| 男女边吃奶边做爰视频| 97热精品久久久久久| 麻豆av噜噜一区二区三区| 青春草视频在线免费观看| 九九在线视频观看精品| 色噜噜av男人的天堂激情| 欧美一区二区国产精品久久精品| 免费搜索国产男女视频| 久久精品夜色国产| 真实男女啪啪啪动态图| 白带黄色成豆腐渣| 亚洲自拍偷在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品福利在线免费观看| 中文精品一卡2卡3卡4更新| 亚洲aⅴ乱码一区二区在线播放| 午夜激情福利司机影院| 日韩欧美国产在线观看| 麻豆成人av视频| 久久精品人妻少妇| 久久精品久久久久久噜噜老黄 | 最近最新中文字幕大全电影3| 国产亚洲精品av在线| 永久免费av网站大全| 国产成人91sexporn| 视频中文字幕在线观看| 一本久久精品| 精品久久久久久成人av| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 免费av毛片视频| 听说在线观看完整版免费高清| 欧美色视频一区免费| 亚洲美女搞黄在线观看| 18+在线观看网站| 成年女人看的毛片在线观看| 国产不卡一卡二| 国产精品精品国产色婷婷| 日韩 亚洲 欧美在线| 中文字幕久久专区| 国产精品.久久久| 日本色播在线视频| 国产一区二区在线av高清观看| 国语对白做爰xxxⅹ性视频网站| 九九爱精品视频在线观看| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 亚洲四区av| 亚洲精品一区蜜桃| 精品少妇黑人巨大在线播放 | 非洲黑人性xxxx精品又粗又长| 日韩视频在线欧美| 亚洲中文字幕日韩| 少妇被粗大猛烈的视频| 国产高清国产精品国产三级 | 亚洲人成网站在线播| 欧美潮喷喷水| av在线蜜桃| 亚洲av成人av| 国产在视频线精品| 直男gayav资源| 少妇熟女aⅴ在线视频| 亚洲欧美精品专区久久| 国产成人精品婷婷| 国语对白做爰xxxⅹ性视频网站| 内地一区二区视频在线| 久久精品国产亚洲av涩爱| 国产亚洲5aaaaa淫片| 亚洲欧洲日产国产| 男人和女人高潮做爰伦理| 久久久a久久爽久久v久久| 少妇高潮的动态图| 久久精品久久久久久噜噜老黄 | 国产精品99久久久久久久久| 中文字幕av成人在线电影| 九色成人免费人妻av| 成人av在线播放网站| 国产免费又黄又爽又色| 国产精品国产高清国产av| 亚洲成人中文字幕在线播放| 色综合站精品国产| 亚洲国产色片| 中文字幕久久专区| 你懂的网址亚洲精品在线观看 | 精品久久久久久成人av| 国产免费男女视频| 午夜日本视频在线| 一级毛片电影观看 | 日日摸夜夜添夜夜添av毛片| 国内少妇人妻偷人精品xxx网站| av又黄又爽大尺度在线免费看 | 99久久人妻综合| 少妇熟女aⅴ在线视频| 最新中文字幕久久久久| 我要搜黄色片| 中文乱码字字幕精品一区二区三区 | av卡一久久| 色尼玛亚洲综合影院| 精品酒店卫生间| 26uuu在线亚洲综合色| 免费观看人在逋| 国产精品一二三区在线看| 内射极品少妇av片p| 91av网一区二区| 免费看美女性在线毛片视频| 国产69精品久久久久777片| 色5月婷婷丁香| 中文欧美无线码| 久久综合国产亚洲精品| 中文字幕制服av| 国产精品一区二区三区四区免费观看| www日本黄色视频网| 少妇猛男粗大的猛烈进出视频 | 亚洲av免费在线观看| 毛片一级片免费看久久久久| 国产av一区在线观看免费| .国产精品久久| 国产成人免费观看mmmm| 大香蕉97超碰在线| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 欧美性猛交╳xxx乱大交人| 欧美丝袜亚洲另类| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 国产黄片视频在线免费观看| 成人二区视频| 少妇高潮的动态图| 日日撸夜夜添| 99久国产av精品国产电影| 99热精品在线国产| 久久久午夜欧美精品| 搡老妇女老女人老熟妇| 晚上一个人看的免费电影| 麻豆精品久久久久久蜜桃| 亚洲天堂国产精品一区在线| 成人高潮视频无遮挡免费网站| 久久精品91蜜桃| 国产成年人精品一区二区| 亚洲欧美日韩高清专用| 老师上课跳d突然被开到最大视频| 在线天堂最新版资源| 国产精品一区二区三区四区久久| 人妻少妇偷人精品九色| 亚洲无线观看免费| 日本午夜av视频| 国产精品久久视频播放| 青春草视频在线免费观看| 亚洲精品自拍成人| 免费大片18禁| 欧美高清性xxxxhd video| 国产精品久久久久久久电影| 五月玫瑰六月丁香| 国产美女午夜福利| av在线亚洲专区| 最新中文字幕久久久久| 插阴视频在线观看视频| 天堂网av新在线| 永久免费av网站大全| 国产高清国产精品国产三级 | videos熟女内射| 精品国产露脸久久av麻豆 | 亚洲欧美精品自产自拍| 一边亲一边摸免费视频| 青春草国产在线视频| 99久久九九国产精品国产免费| 成人国产麻豆网| 男人和女人高潮做爰伦理| 91精品一卡2卡3卡4卡| 日日撸夜夜添| 中文乱码字字幕精品一区二区三区 | 在线免费十八禁| 久久久欧美国产精品| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 欧美97在线视频| 国产免费一级a男人的天堂| 亚洲最大成人av| 18禁动态无遮挡网站| 精品不卡国产一区二区三区| 变态另类丝袜制服| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放 | 欧美成人精品欧美一级黄| 伦理电影大哥的女人| 日本wwww免费看| 亚洲欧美中文字幕日韩二区| 麻豆成人av视频| 国产精品一及| 熟女人妻精品中文字幕| 国产毛片a区久久久久| 免费不卡的大黄色大毛片视频在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 色综合站精品国产| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 国产国拍精品亚洲av在线观看| 婷婷色av中文字幕| 国产精品1区2区在线观看.| 黑人高潮一二区| 久久久国产成人精品二区| 亚洲av二区三区四区| 九色成人免费人妻av| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆 | 日韩一本色道免费dvd| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 国内精品美女久久久久久| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看 | 高清av免费在线| 国产精品一区www在线观看| 麻豆一二三区av精品| 热99在线观看视频| 麻豆成人午夜福利视频| 熟妇人妻久久中文字幕3abv| 我的女老师完整版在线观看| 热99re8久久精品国产| 免费无遮挡裸体视频| 长腿黑丝高跟| 建设人人有责人人尽责人人享有的 | 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 亚洲国产精品sss在线观看| 午夜福利视频1000在线观看| 波多野结衣巨乳人妻| 黄片wwwwww| 久久精品夜色国产| av天堂中文字幕网| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 欧美激情在线99| 看片在线看免费视频| 国产精品无大码| 国内精品宾馆在线| 精品少妇黑人巨大在线播放 | 国产亚洲av片在线观看秒播厂 | 国产精品.久久久| 五月玫瑰六月丁香| 免费看日本二区| 身体一侧抽搐| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频| 国产精品国产三级专区第一集| 一区二区三区免费毛片| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 久久人人爽人人片av| 国产高清不卡午夜福利| 日韩强制内射视频| 高清在线视频一区二区三区 | 日韩成人av中文字幕在线观看| 中文字幕久久专区| 日韩制服骚丝袜av| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 国产乱来视频区| 亚洲欧美精品自产自拍| 色播亚洲综合网| 亚洲丝袜综合中文字幕| 婷婷六月久久综合丁香| a级毛色黄片| 夫妻性生交免费视频一级片| 舔av片在线| 老师上课跳d突然被开到最大视频| 欧美日韩在线观看h| 国产亚洲av嫩草精品影院| 国产成人freesex在线| 亚洲国产欧美人成| videos熟女内射| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 色网站视频免费| 欧美性感艳星| 午夜久久久久精精品| 中文欧美无线码| 午夜精品在线福利| 看十八女毛片水多多多| 18禁在线播放成人免费| 精品久久久噜噜| 午夜a级毛片| 麻豆av噜噜一区二区三区| 我的老师免费观看完整版| 色播亚洲综合网| 国产精品不卡视频一区二区| 99久久精品国产国产毛片| 国产v大片淫在线免费观看| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 麻豆成人av视频| 97在线视频观看| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| 亚洲五月天丁香| 免费看光身美女| 中文字幕熟女人妻在线| 青春草视频在线免费观看| 国产成人91sexporn| 国产精品久久久久久久久免| 亚洲激情五月婷婷啪啪| 国产精华一区二区三区| 人人妻人人澡人人爽人人夜夜 | 婷婷色综合大香蕉| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 深爱激情五月婷婷| 看片在线看免费视频| 长腿黑丝高跟| 老女人水多毛片| 精品一区二区免费观看| 晚上一个人看的免费电影| 日本与韩国留学比较| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| av福利片在线观看| 免费观看人在逋| 日韩在线高清观看一区二区三区| 黑人高潮一二区| 高清毛片免费看| av免费观看日本| 久久精品久久久久久久性| 亚洲av中文av极速乱| 精品欧美国产一区二区三| 九九在线视频观看精品| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 日韩强制内射视频| 久久这里有精品视频免费| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| 国内揄拍国产精品人妻在线| 99久国产av精品| 国产一区二区三区av在线| 少妇人妻精品综合一区二区| av在线蜜桃| 日本欧美国产在线视频| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 中国美白少妇内射xxxbb| 国产高清国产精品国产三级 | 国产亚洲精品av在线| 欧美精品国产亚洲| 国产一区有黄有色的免费视频 | 国内少妇人妻偷人精品xxx网站| 久久久色成人| 精品一区二区三区人妻视频| 国产精华一区二区三区| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 国产精品.久久久| 欧美zozozo另类| 免费看光身美女| av在线播放精品| 伊人久久精品亚洲午夜| 我要搜黄色片| 搞女人的毛片| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 天美传媒精品一区二区| 欧美+日韩+精品| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 成人特级av手机在线观看| a级一级毛片免费在线观看| 日日撸夜夜添| 中文字幕免费在线视频6| 我的老师免费观看完整版| 国产高清国产精品国产三级 | 少妇熟女aⅴ在线视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| av专区在线播放| 天堂√8在线中文| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产探花在线观看一区二区| 一边亲一边摸免费视频| 成人欧美大片| 91久久精品国产一区二区三区| 成人一区二区视频在线观看| 九色成人免费人妻av| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 欧美高清成人免费视频www| 嫩草影院精品99| 欧美+日韩+精品| 欧美zozozo另类| h日本视频在线播放| 欧美激情在线99| 久久久久久久久大av| 蜜桃亚洲精品一区二区三区| 在线观看一区二区三区| 成人亚洲精品av一区二区| 国产一区二区在线观看日韩| 99热这里只有精品一区| 国产精品久久久久久精品电影| 观看免费一级毛片| 国产精品,欧美在线| 亚洲不卡免费看| 我的女老师完整版在线观看| 老师上课跳d突然被开到最大视频| 色吧在线观看| 国产成人a区在线观看| 少妇的逼好多水| 午夜免费男女啪啪视频观看| 亚洲av福利一区| 麻豆一二三区av精品| 日韩强制内射视频| 欧美日韩国产亚洲二区| 观看美女的网站| 久久久久久久久久久免费av| 69av精品久久久久久| 久久久久国产网址| 成人午夜高清在线视频| h日本视频在线播放| 最后的刺客免费高清国语| 精品国产一区二区三区久久久樱花 | 熟女电影av网| 久久久国产成人免费| 男人舔奶头视频| 免费看日本二区| 国产精品久久久久久精品电影| 国产免费又黄又爽又色| 精品久久国产蜜桃| 午夜视频国产福利| 观看美女的网站| av天堂中文字幕网| 1024手机看黄色片| av.在线天堂| 久久久国产成人免费| 亚洲精品自拍成人| 久久久久性生活片| 日本色播在线视频| 欧美成人午夜免费资源| 精品久久久久久电影网 | 99久久中文字幕三级久久日本|